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Abstract

Colocation services offered by stock exchanges enable market participants to achieve
execution costs for large orders that are substantially lower and less sensitive to trans-
acting against high-frequency traders. However, these benefits manifest only for orders
executed on the colocated brokers’ own behalf, whereas customers’ order execution
costs are substantially higher. Analyses of individual order executions indicate that
customer orders originating from colocated brokers are less actively monitored and
achieve inferior execution quality. This suggests that brokers do not make effective use
of their technology, possibly due to agency frictions or poor algorithm selection and
parameter choice by customers.
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1 Introduction

“[B]rokers and other industry players are learning from [...] HFT strategies and

in turn offering tools to their clients[...] that take advantage of the same sophis-

ticated technology and logic. We’re all high frequency traders now.”

Credit Suisse Whitepaper (Avramovic et al., 2017)

Equity market participants invest heavily in the speed of market access by employing

cutting-edge hardware, relying on real-time market data feeds, and subscribing to exchanges’

colocation facilities in order to place their servers within the exchanges’ datacenters in close

proximity to the matching engine. While the academic literature has explored the role of

trading speed in the context of high-frequency trading (HFT), the impact of the speed of

institutional investors and broker-dealers on their trading outcomes remains unexplored.1

We investigate how the execution costs for large orders traded in a proprietary or agency

capacity are affected by the use of exchanges’ colocation facilities. Trades executed by colo-

cated exchange members in a proprietary capacity achieve about 6 basis points (henceforth

bps) lower execution costs compared to similar orders executed without colocation. However,

agency orders do not benefit to any extent from brokers’ colocation. After controlling for

commonly used predictors of execution costs (market conditions, order characteristics, and

trading strategy), agency orders executed by colocated brokers experience higher costs as

compared to proprietary ones. The difference in execution costs between the two capacities is

almost 5 bps across all exchange members and 9 bps within the subsample of broker-dealers

1For the remainder of the paper, we use the terms exchange member, broker, and broker-dealer inter-
changeably.
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who execute orders in both agency and proprietary capacities.

The magnitude of these differences in execution costs is economically large compared to

average quoted spreads of 9 bps for the largest tercile of stocks, which account for the ma-

jority of trading volume in our sample. A back-of-the envelope calculation suggests that the

incremental costs incurred by agency compared to proprietary orders executed by colocated

brokers are economically sizable at more than 300 million euros annually.2

We also find that the execution costs of brokers using colocation for proprietary orders

are less affected by the extent to which they interact with the flow of HFT firms. Trading

against HFT firms is generally associated with higher execution costs, though this is driven

by transactions against HFTs acting as aggressive counterparties, whereas the opposite holds

for passive, liquidity providing HFT counterparties. The magnitude of these effects is around

3.5 bps and −3.0 bps for a 10 percentage point increase in the share of the aggressive and

passive HFT as counterparties to the large order, respectively. Conditional on exchange

members being colocated, the effect of aggressive HFT on execution costs of proprietary

orders is reduced by more than half but remains positive, whereas the conditional effect

of passive HFT is smaller in magnitude but remains negative. These results indicate that

access to speed-enhancing facilities potentially allows large traders to reduce the sensitivity

of execution outcomes to the nature and technological sophistication of their counterparties.

There are several potential explanations for the fact that, while colocation allows broker-

dealers to obtain better execution outcomes for large orders, these benefits are limited to

their proprietary orders. To the extent that broker-dealers provide the same algorithmic

2This number is obtained by multiplying the average trade size by the number of colocated agency trades,
the difference in execution costs, the ratio of the length of a year relative to our sample period, and the ratio
of the number of stocks relative to the number contained in our sample.
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execution strategies to their customers that they use when trading in a principal capacity,

the differences in execution outcomes indicate the presence of inefficiencies in the choice of

algorithm and/or the parameters governing such algorithms employed by the customers. The

use of algorithms developed by third party providers or by large buy-side investors in-house

(see, for example, Frazzini et al., 2018) – possibly inferior to algorithms provided by brokers

– and then deployed using an exchange member’s direct electronic access infrastructure may

also help explain the results. Finally, an alternative or supplemental explanation of our

results may be that the choice of execution algorithms brokers make available to customers

is different to those used for their proprietary trades.

We examine two additional reasons related to the objectives the algorithms might have.

First, prior literature (Battalio et al., 2016; Anand et al., 2021) shows that brokers try to

minimize exchange fees, likely because these fees cannot be passed on to the customer, and

that such behavior leads to inferior execution outcomes. We do not find that brokers in

our sample attempt to minimize exchange fees for agency compared to proprietary trades.

Second, customers might care not only about average execution costs but also about their

uncertainty, and such preferences might be incorporated in execution algorithms. However,

we do not find the execution costs of agency orders to be more predictable than those of

proprietary orders.

To better understand the channels behind our main results, we investigate the order

submission behavior and the execution quality at the level of the child orders that constitute

the large parent orders. In an algorithmic trading setup, one major characteristic of an

algorithm is its ability to monitor orders actively with low latency. We find that, compared

to colocated agency orders, the proprietary counterparts on average have higher order-to-

4
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trade ratios. This suggests that the algorithms used to execute proprietary orders monitor

the limit order book more actively – possibly in event time as opposed to calendar time

(Bacidore, 2020). We furthermore find a higher degree of periodicity in colocated agency

as compared to proprietary orders, which is consistent with a more prevalent use of timer-

based algorithms for agency trades. Brugler (2015) and Sağlam (2020) also provide evidence

of calendar-time periodicity in trading activity, which in Sağlam (2020) is associated with

poor execution quality. Finally, the individual child order executions of proprietary orders

experience better execution quality when measured in terms of effective spreads and price

impacts in comparison to observationally similar agency orders. These results altogether

suggest that the quality of child order executions for agency orders is inferior compared to

that of proprietary orders.

It is unclear whether our results constitute evidence for a formal violation of brokers’

best execution obligations for at least two reasons. First, in contrast to the US, brokers in

the EU have significant flexibility when defining their best execution policies. Second, to

the extent customers make poor choices when using the algorithms provided by the brokers,

brokers are not in violation of any obligations. However, if the clients make these poor

execution decisions, brokers could better educate their customers to eliminate such ineffi-

ciencies. Regardless of whether our results are interpreted as consistent with best execution,

our approach of benchmarking client execution outcomes against brokers’ own orders may

be useful for brokers to demonstrate, and regulators to verify, best execution.

Our results are based on a pan-European equity market dataset made available by the

European Securities and Markets Authority (ESMA). The data contains exchange message-

level information including masked identifiers of exchange members whose activity can be

5
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tracked across stocks and exchanges. We aggregate individual order executions to 11,724

parent orders based on unidirectional order flow of non-HFT exchange members and examine

the determinants of execution costs for these parent orders using a doubly robust estimator

combining panel regressions with inverse probability weights. Our results also hold for simple

fixed effects models and are robust to including exchange fees in the execution costs.

A potential concern in our analysis is that our regression design does not fully control for

the differences in trading motives or investment styles across agency and proprietary orders.

While investors’ trading motives are not directly observable in our dataset, our choice of

control variables and fixed effects indirectly controls for trading motives and differences in

execution strategy originating from heterogeneous trading motives. Specifically, our regres-

sions are estimated within stock-day and also control, inter alia, for the time of day the

execution begins. Additionally, we control for the volatility and short-term return of the

stock immediately before trading, the size of the parent order, its total time of execution,

its number of executed child orders, the proportion of liquidity-consuming child orders, the

total trading volume in the stock, the proportion of trading executed away from the pri-

mary exchange, and the information content of the order. Thus, we consider it unlikely that

unobserved trading motives would affect execution costs to any substantial extent.

Our paper contributes to the literature on brokers’ order handling practices and their

impact on institutional execution costs. Barbon et al. (2019) find evidence that brokers

leak information on institutional trades to other customers, which leads to increased exe-

cution costs for those trades. Conrad et al. (2001) show that institutional investors’ use of

soft dollar brokers, i.e., those providing sell-side research in exchange for executing trades,

is associated with higher transaction costs. Anand et al. (2011), while mainly concerned
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with the performance of trading desks of institutional investors, find that broker execution

performance is persistent and related to trading commissions. Anand et al. (2021) show

that institutional execution costs are higher for brokers sending a large share of orders to

affiliated alternative trading systems. Battalio et al. (2018) study the effect of routing or-

ders to off-exchange high-frequency liquidity providers and find that such behavior leads to

higher execution costs on institutional orders. However, apart from trading venue choices,

prior literature provides little evidence on how and why execution costs differ across brokers.

Our paper fills this gap by focusing on the role of technology, specifically colocation, as a

differentiating factor that enables the effective use of sophisticated algorithms.

Our paper also contributes to the literature on speed dispersion. This literature finds that

the effect of faster HFTs on slower non-HFTs depends on whether the former use their speed

advantage to provide liquidity (as in Ait-Sahalia and Saglam, 2017; Brogaard et al., 2015)

or to engage in arbitrage or back-running (as in Foucault et al., 2016; Shkilko and Sokolov,

2020). Our paper, while obtaining results consistent with both views, shows that broker-

dealers’ investment in enhancing their speed of market access can reduce the sensitivity of

execution costs to trading against HFTs.

We also contribute to the literature studying the effects of HFT on the trading acitivity

and associated costs of institutional investors.3 Yang and Zhu (2020) extend the two-period

Kyle (1985) model by including a “back-runner” – a trader who infers the fundamental

information by observing the order flow – alongside the informed trader. The former’s

presence leads to less aggressive trading by the informed trader, thereby delaying price

3More broadly, prior research shows that HFT has a positive or, at least, benign effect on common
measures of market liquidity, such as bid-ask spreads, and price efficiency, such as variance ratios (e.g.
Hasbrouck and Saar, 2013; Menkveld, 2013; Brogaard, Hendershott, and Riordan, 2014). See Menkveld
(2016) for a survey.
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discovery.4 Korajczyk and Murphy (2019) show that, in the Canadian equity market, the

presence of HFT firms engaging in market-making activity leads to higher transaction costs

for large institutional trades. Van Kervel and Menkveld (2019) find that, in the Swedish

equity market, HFTs provide liquidity early-on during institutional trades but later turn to

trade in the same direction. Sağlam (2020) observes that execution algorithms such as the

Volume-Weighted Average Price (VWAP) can lead to predictable patterns in order flow that

can be picked up by HFTs. Putniņš and Barbara (2016) find that, in the Australian equity

market, the effects of HFT firms on institutional transaction costs differ in the cross-section

of HFT firms, with some affecting them positively and others negatively. Tong (2015),

in a study of the U.S. equity market, obtains evidence that institutional execution costs

increase with the amount of HFT. She also observes that this effect is alleviated for some

institutional investors with high levels of trading skills, as measured by historical transaction

costs, though her data do not allow her to explore the determinants of institutional trading

skills. Chen and Garriott (2020) find that HFT in the Canadian bond futures market leads

to lower institutional execution costs for relatively small parent orders. Finally, Brogaard,

Hendershott, Hunt, and Ysusi (2014) do not find any causal effect of HFT on institutional

transaction costs on the London Stock Exchange. Our paper contributes to this literature

by establishing differential effects of trading against aggressive and passive HFT orders, and

4In addition to HFTs affecting the profitability of investors’ trading strategies and price discovery in
the market, several studies have shown that rent seeking behaviour by HFTs negatively affects investors’
information acquisition decision. Baldauf and Mollner (2020) model a fragmented market in which HFTs
can both demand and supply liquidity. HFTs anticipate other participants’ order flow and, as they become
faster, information acquisition decreases. Dugast and Foucault (2018) show that the existence of inexpensive
unprocessed but imprecise information can lead market participants to reduce their demand for processed
and more accurate information, leading to a decrease in price informativeness. Weller (2017), in a study of
algorithmic trading – a superset of HFT – in the U.S. equity market, and Gider, Schmickler, and Westheide
(2021), in an international study on HFT, find evidence consistent with this idea.
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by showing that brokers can reduce these effects through their own trading speed.

The remainder of the paper is structured as follows. Section 2 describes the institutional

background. Section 3 presents the data and discusses the variables used. In Section 4,

we discuss the measurement and potential determinants of execution costs. The estimation

approach is detailed in section 5. Section 6 contains descriptive statistics at the levels of

exchange members and parent orders. In Section 7, we present the parent order level results.

Section 8 contains analyses of order submissions and the execution quality of child orders,

as well as possible motives explaining our key results. Section 9 concludes.

2 Institutional Background

In this section, we discuss the institutional arrangements, the trading process, and the re-

lationship between the sell-side (investment banks and specialized execution brokers) and

the buy-side investors, as well as proprietary trading by exchange members, thus providing

background information that helps understand the channels behind our results.

Large institutional orders are predominantly handled by specialized algorithmic execution

desks provided by the sell-side who develop the algorithms that implement the execution

strategy for an order across venues and over time with the aim of meeting the investors’

objectives. These sell-side banks are exchange members and thereby provide the buy-side

investors with access to the different trading venues. A smaller amount of trading volume by

the sell-side on behalf of the buy-side is conducted manually (“high-touch” as opposed to the

algorithmic “low-touch”) and relies on the traders’ individual skills rather than technological

sophistication. Our data do not allow us to distinguish high-touch from low-touch executions,
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though firms that invest in colocation presumably mostly trade algorithmically.

Exchange members may also trade on their own account. They may do so with the

goal of profiting from taking positions in anticipation of price changes or by engaging in

market-making strategies. Some proprietary trading may happen with the goal of acquiring

or disposing of a position after agreeing to trade against the customer at a reference price

(e.g., the value-weighted average price, VWAP). In such cases, while the trade happens to

facilitate a customer trade, the sell-side tries to earn a profit by trading at prices superior to

the reference price. There also is a subset of exchange members that have no customers at

all but instead purely trade on their own account so as to earn a profit. Some of these firms

are HFTs, others may pursue longer-horizon strategies and deliberately take on relatively

large positions in individual securities.

The relationship between a buy-side investor and a sell-side firm determines who controls

the execution strategy. For instance, some sell-side firms provide a suite of algorithmic

execution strategies to their customers who then choose the appropriate strategy and the

underlying parameters for a given order. Alternatively, the broker may have more discretion

with respect to the execution strategy and make these choices on the investors’ behalf.

There exist information and agency frictions between the buy-side and sell-side. For

instance, brokers’ willingness to continuously invest in trading speed depends on the extent to

which they can recover the resulting fixed costs from end investors. This will be possible only

if the buy-side has both sufficient information on differences in execution costs across brokers

and is motivated to minimize execution costs. Since proficient transaction cost analysis

requires large amounts of data and an investment in analytical capabilities, many members

of the buy-side are unlikely to identify differences in execution quality that are economically
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meaningful but, due to noise in the data, not immediately obvious. Furthermore, investment

banks’ services other than execution services desired by buy-side investors (e.g., access to

analyst research) may mean that execution quality is not the decisive factor in choosing an

execution provider due to soft dollar arrangements.5

If a sell-side firm has already made an investment in colocation on a given exchange, there

are additional constraints that accompany the use of this colocated access. For instance, any

connection to an exchange comes with limitations to its bandwidth, i.e., the amount of data

sent and received via the connection has limits. Thus, an expansion of the use of a firm’s

colocation access may require the purchase of additional servers and expenses for additional

connections to the exchange’s matching engine. If it is hard for the buy-side to observe

how a sell-side firm’s connections to the exchange are used, there will be incentives for the

sell-side to limit the intensity of the use of the connections when engaging in agency trading.

Conversely, they will be used to the maximum extent for proprietary trading because the

benefit thereof accrues directly to the exchange member.

These frictions drive the differences in execution costs not only between colocated and

non-colocated brokers, but also between agency and proprietary orders originating from

colocated brokers.

In some cases, especially those involving the largest buy-side investors, the algorithms

used may be developed by the investors themselves and employed using an investment banks’

technological infrastructure through a direct electronic access arrangement (DEA) setup

(see, e.g., Frazzini et al., 2018). In such cases, the brokers have little to no control over the

5Regulations governing best execution arrangements seek to minimize the costs associated with such
frictions. For instance, requirements for brokers to provide execution quality statistics to their customers
help reduce the information frictions associated with access to data. However, it is unlikely that these costs
are completely eliminated.
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execution strategy employed by the investor. If the buy-side investors’ ability to develop

execution algorithms were inferior to that of the sell-side, this skill gap could also explain

part of the differences in execution costs. All these factors potentially explain the differences

in execution outcomes between agency and proprietary orders in cases where the investment

firm providing market access is different from the firm that develops the algorithmic execution

strategies.

3 Data

Our analysis is based on the proprietary high-frequency database of the European Securities

and Markets Authority (ESMA). This database was designed by the regulator to study HFT

activity in fragmented equity markets in the EU. The original sample comprises 98 stocks

from nine countries – Belgium, Germany, Spain, France, Ireland, Italy, the Netherlands,

Portugal and the United Kingdom – that were members of the EU at the time. Dependent

on the size of the national markets, between 5 and 16 stocks are chosen for each country via

a stratified sampling approach to ensure it is representative of the EU market with respect

to market value, trading volume, and level of fragmentation. The database includes all

order messages and trades for each stock from the respective primary market and the three

main lit multilateral trading facilities (MTFs) – Chi-X, BATS, and Turquoise – for the 22

trading days in May 2013. The data allow us to track individual exchange members’ activity

across all trading venues. Bouveret et al. (2014) provide detailed information on the sample

selection approach and the database construction, as well as a first analysis of HFT activity
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based on the data.6

3.1 Member Categorization, Trading Capacity, and Colocation

While individual members’ identities remain unknown to us, ESMA groups them into three

categories: HFTs, Investment Banks, and Others. Previous studies identify HFT firms ei-

ther based on their primary business model or on measures of trading and quoting activity

such as order-to-trade ratios or order lifetimes. Bouveret et al. (2014) compare these two

identification approaches and find that the former provides a conservative estimate by only

including proprietary trading firms and excluding HFT activity originating at investment

banks. It also prevents the erroneous classification of sophisticated traders employing low

latency infrastructure as HFTs, even though their business model substantially differs from

that of HFTs. For example, Avramovic et al. (2017) argue that the quoting and trading

behavior (speed of response to market events, order-to-trade ratios, etc.) of large techno-

logically sophisticated broker-dealers may resemble that of HFTs, even though the size and

holding period of their positions are vastly different. We hence rely on the HFT flag based

on the former approach, which categorizes 20 exchange members as HFTs, 18 of which serve

as counterparties to the institutional trades identified below.

Trading activity by individual exchange members is further split by capacity into trading

on behalf of customers (agency) and trading on the firm’s own account (proprietary). We rely

on this flag to identify differences in execution quality between institutional trades executed

by exchange members on behalf of their clients and on a proprietary basis. This flag is

6The dataset, however, excludes trading activity in off-exchange venues such as dark pools, systematic
internalizers, and the over-the-counter market. To the best of our knowledge, statistics on institutional usage
of such venues in the EU are unavailable. However, Beason and Wahal (2020) observe that, for a single firm
providing algorithmic execution services in the US, over 77% of child orders are routed to lit venues.
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generated by ESMA based on the reporting of this information by trading venues.7

Finally, the database also contains a binary variable indicating whether members use the

colocation service offered by the different trading venues, i.e., whether members have located

their equipment within the venues’ data centers. Colocation, combined with a subscription

to the venues’ low latency market data feeds, allows members to minimize the round-trip

latency between their servers and the venues’ matching engines.8 We distinguish colocation

on the primary markets from that on the MTFs. While we are able to directly observe

whether an individual exchange member is colocated on the primary listing venue, we proxy

for colocation on the MTFs based on whether the member is colocated on Turquoise. This

is because we cannot directly observe such a flag for BATS Chi-X. We also exclude the 12

Spanish stocks from our sample as the colocation flag for the Spanish stock exchange is

missing.

3.2 Identification of Institutional Orders

Large institutional parent orders are typically split into multiple smaller child orders and

then executed over time and across venues. While our dataset allows us to track the message

traffic (order submissions, cancellations, and transactions) of individual exchange members,

we do not have information on the parent order’s size. Korajczyk and Murphy (2019) and

7While Bouveret et al. (2014) report inconsistencies in the reporting of this information by the venues,
those issues were subsequently fixed. This has been confirmed to us by ESMA. Furthermore, the reporting
of riskless principal orders by some brokers as proprietary may introduce some noise in our results. However,
we do not expect the magnitude of this noise to be substantial or to bias our results.

8We acknowledge that colocation, potentially, could also be used as a cost-efficient alternative for foreign
firms to establishing an office in a country. If that were true for a subset of the exchange members in our
sample, it would attenuate our results related to the differences in execution costs between orders originating
from colocated versus non-colocated members. Furthermore, EU’s single passport rights allows non-EU firms
to trade across the European single market by using an office in one EU-member country, thus eliminating
the need to colocate on multiple venues. However, the most active exchange members in our sample are in
fact colocated across multiple venues.
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Van Kervel and Menkveld (2019) solve this problem by stitching together a string of child

order executions.

Korajczyk and Murphy (2019) define an institutional parent order as an uninterrupted

sequence of one or more trades on the same side by the same exchange member if the total

volume of those trades is at least CAD100,000.9 Van Kervel and Menkveld (2019), on

the other hand, start by first lumping together all executions on a given stock-day and then

applying a directionality (the difference of buy and sell volume relative to total volume) cutoff

of 90%. Both combine parent orders across days if there is a child order executed during

both the last and first 30 minutes of two consecutive days. We employ the methodology of

Korajczyk and Murphy (2019) to identify parent orders by applying an order size cutoff of

e 100,000. Following Putniņš and Barbara (2016), we further require that a parent order is

worked in the market for at least two hours.10 For our final sample of institutional orders, we

additionally require an exchange member to have at least ten parent orders across all stocks.

We use the capacity flag to further classify orders into those executed on behalf of a customer

(agency execution) or on the exchange member’s own account (proprietary execution) and

construct parent orders separately for each capacity such that a single parent order consists

of agency or proprietary child orders only.

9Korajczyk and Murphy (2019) use this cutoff based on the distribution of institutional order size in the
US market as reported by Chan and Lakonishok (1995) and Cready et al. (2014).

10All parent orders identified using our approach originate from non-HFT members. This is unsurprising
considering HFT firms generate their profits not by acquiring large positions, but by rapidly turning over
their positions at high-frequencies, while providing liquidity and/or exploiting short-term informational
asymmetries.
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4 Measuring and Explaining Execution Costs

In this section, we explain how we measure the execution costs of large orders. We also

describe the commonly-used determinants of execution costs that act as controls in our

main analysis.

4.1 Measuring Parent Order Level Execution Costs

Perold (1988) defines implementation shortfall as the cost of implementing investment de-

cisions and further decomposes it into execution costs and opportunity costs. The former

relates to transactions actually executed while accounting for the fact that individual child

orders may execute at different prices. Implicitly, the execution cost component includes

instantaneous transaction costs such as the bid-ask spread as well as the price impact asso-

ciated with the actions taken by other market participants upon detecting the presence of

a large institution in the market as in Brunnermeier and Pedersen (2005), Ait-Sahalia and

Saglam (2017), and Yang and Zhu (2020). The latter component relates to transactions that

cannot be executed. As in most other studies of institutional transaction costs (Keim and

Madhavan, 1997; Korajczyk and Murphy, 2019; Van Kervel and Menkveld, 2019), we ignore

the opportunity cost of non-execution as we cannot observe the initially planned parent order

size.

For parent order k executed by exchange member i in stock s on day t, the execution

cost is defined as

Execution Costistk =

(
VWAPistk

P 0
istk

− 1

)
×Qistk (1)
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where VWAP is the value-weighted average price of all child order executions, Q ∈ {−1, 1}

is the sign of the order which equals 1 (-1) for buy (sell) orders, and P 0 is the benchmark

price. The quote midpoint immediately before the execution of the first child order serves

as the benchmark price. We express the execution cost in basis points.

4.2 Determinants of Institutional Execution Costs

Our objective is to evaluate how brokers’ use of colocation services affects the execution

costs of their parent orders, and whether these effects differ for the brokers’ proprietary ver-

sus agency executions. The use of exchanges’ colocation facilities potentially allows exchange

members to get better execution by strategically choosing when to supply and consume liq-

uidity, better managing adverse selection costs, and reacting to changes in market conditions

at high speeds. We construct a binary variable for each broker-stock combination based on

whether the broker is colocated on any of the markets where the stock trades. A second

binary flag associated with each message allows us to identify the capacity (agency or pro-

prietary) in which the orders are submitted.

We control for several factors expected to affect institutional execution costs (see e.g.

Chan and Lakonishok, 1997; Keim and Madhavan, 1997; Jones and Lipson, 1999, 2001).

Keim and Madhavan (1997, 1998) argue that trading costs are driven by trade difficulty,

which they proxy for using trade size, stocks’ market capitalization, trader’s investment

style and other factors. We divide the previously established determinants of execution

costs into three broad categories: order characteristics, market conditions, and execution

strategy.
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Several studies (Keim and Madhavan, 1997; Chan and Lakonishok, 1997; Jones and Lip-

son, 1999) find that institutional trading costs are higher for larger orders as counterparties

require larger price concessions to take the other side of the trade. This is because dis-

played liquidity, even for the most actively traded stocks, is finite and may not fully absorb

a large trade. Investors also perceive traders executing large quantities as better informed

(Easley and O’Hara, 1987). To capture these effects, we include the parent order size as a

control variable. Furthermore, Chan and Lakonishok (1995) and Engle et al. (2012) argue

that trade size should be compared with the stock’s typical trading volume when measuring

execution costs. Higher overall volume in the market potentially allows the institution to

better hide its trading intentions (Kyle, 1985). Hence, we also control for the total volume

of all other executed orders across the primary market and the 3 MTFs in our sample during

the execution of the parent order.

Previous studies (see for example Chan and Lakonishok, 1993; Saar, 2001; Jones and

Lipson, 2001) have also shown that the execution costs of buy versus sell orders are different.

For example, Saar (2001) predicts that institutional buy orders are more difficult to execute

as they are perceived to be more informed than large sell orders. Jones and Lipson (2001),

on the other hand, argue that buy orders tend to be cheaper to execute than sell orders. To

capture any potential differences between buys and sells, we include a dummy variable for

buy orders.

Keim and Madhavan (1996) find that establishing a long (short) position when prices are

rising (falling) is more difficult due to potential information leakage before the order starts

trading. We control for this pre-trade momentum by including the signed return of the stock

during the 10-minute window before the first child order execution. Similarly, volatility in
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the market influences the algorithms’ trading strategy – for instance, how finely should a

parent order be sliced or how aggressively should the order be worked in the market – as they

seek to minimize the cost and risk of execution (Engle et al., 2012). Hence, we include pre-

trade volatility, defined as the standard deviation of ten-millisecond quote midpoint returns

during the 10-minute period before the first child order execution, as a control variable.

Previous studies have also shown that execution costs are affected by the fund manager’s

identity (Chan and Lakonishok, 1993, 1995) and their investment style (Keim and Madhavan,

1997; Jones and Lipson, 1999). Keim and Madhavan (1997) also observe substantial variation

in trading costs within the same investment style which they attribute to trading skill, which

is largely unobservable (see also Anand et al., 2011). These variables affect institutional

execution costs as they are related to investors’ need for immediacy, order aggressiveness,

level of informational advantage, etc. While we cannot directly observe fund manager identity

and investment style, we include several control variables that capture differences in trading

behavior originating from heterogeneous investment styles.

To capture the degree to which an institutional investor is informed, we include the

long term price impact as measured by the trade direction-signed return from the quote

midpoint immediately before the parent order begins trading to the closing quote midpoint

one day after the last child order execution. When determining their execution strategy,

investors’ urgency to trade likely influences how patient or aggressive they are while trading.

For example, Keim and Madhavan (1997) find that value (technical) traders rely heavily

on limit (market) orders and have lower (higher) transactions costs. Patient institutional

investors may be able to lower their transaction costs by spreading their order flow over

a longer time interval. Hence, we include the trade duration (measured as the number of
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exchange trading hours between the first and the last child order execution) in our analysis.

Note that all of the aforementioned determinants of execution costs are directly deter-

mined by the investor’s trading interest or the prevailing market conditions. In addition to

these variables, there are choices the broker’s order routing strategy can make to obtain the

best execution outcome. In most analyses, we include variables of this kind that are expected

to predict execution costs, such that the results we report as effects of trading in different

capacities and with or without colocation are incremental to the choices made in these re-

spectes. Execution algorithms may attempt to trade passively by using non-marketable limit

orders and thus earn the bid-ask spread and to split up the order into many child orders.

Hence, we include the percentage of volume executed through aggressive orders, and the

number of child order executions in a parent order. The choice of trading venue is another

part of the execution strategy. To capture any differences in trading costs associated with

this decision, we include the percentage of volume executed on the three MTFs. These lat-

ter characteristics of order routing strategies always have to be interpreted as a function of

the, to some extent unobservable, difficulty of executing an order.11 Thus, while they may

be strong predictors of execution costs, their regression coefficients may not reflect causal

effects. We also present results excluding these variables.

Finally, one potential channel through which colocation likely helps institutions is by

allowing them to mimic HFT strategies and to minimize the sensitivity of their trading costs

to trading against HFT. To test for this possibility, we include three measures capturing the

interactions of HFT activity and institutional investors’ trades: the fraction of the order exe-

11E.g., ceteris paribus, splitting up a large order into many small pieces may help reduce execution costs.
However, this decision may be made when executing the parent order at low cost is particularly difficult.
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cuted against all HFTs, aggressive (liquidity-taking) HFTs, and passive (liquidity-providing)

HFTs. Separating HFT into liquidity taking and liquidity supplying HFT allows us to cap-

ture the impact on execution costs associated with different HFT strategies. For example,

liquidity supplying (consuming) HFTs are more likely to trade against (with) “the wind”

(Van Kervel and Menkveld, 2019). As is the case for choices the broker has with respect to

the way of executing a parent order, interaction with HFTs results endogenously from the

trading process. Thus, coefficients estimated in the regressions should be only considered

indicative of the mechanisms affecting execution costs.

5 Estimation Approach

We use order level regressions to examine the determinants of institutional execution costs

and particularly whether the use of colocation services allows members to lower the execution

costs for their trades executed in an agency and a proprietary capacity. We employ the

following panel regression setup for this purpose:

Execution Costistk = α + β1TradeCharistk + β2Agencyistk + β3Colois

+ β4Colois × Agencyistk + β5HFTistk + β6ColoHFTistk

+ β7Agencyistk × HFTistk + β8Agencyistk × ColoHFTistk

+ µst + ηk + νi + εistk

where for parent order k on day t in stock s by exchange member i, TradeChar is a vector of

the order and execution characteristics defined in Subsection 4.2, Agency indicates agency
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orders, Colo indicates whether an exchange member is colocated on the stock’s primary

listing venue or Turquoise12, HFT is a vector containing the fraction of the parent order

executed against all, passive, or aggressive HFT counterparties, and ColoHFT is the frac-

tion of the parent order executed against an HFT on a venue where the exchange member

is colocated. Stock-day fixed effects µst capture any unobservables affecting the execution

cost for a stock on the day the order starts trading. For example, trend-chasers, momentum

(Jegadeesh and Titman, 1993) and contrarian traders (De Bondt and Thaler, 1985), trade

stocks based on their past performance. Quarter-hour fixed effects ηk capture systematic

differences in execution costs depending on when during the trading day the execution be-

gins. This includes differences in execution costs likely arising due to distinct patterns in

intraday price formation.13 For example, Madhavan et al. (1997) find that intraday patterns

in liquidity and volatility are consistent with a decreasing level of information asymmetry

and increasing inventory costs through the day. Another example is the potential impact of

the increased trading activity around the US market open. Exchange-member fixed effects

νi capture the impact of broker skill and other unobserved effects associated with the in-

dividual brokers, for example differences between high-touch versus low-touch brokers. We

estimate the above model with and without exchange-member fixed effects to separately

understand the differences in execution costs by trading capacity and colocation within indi-

vidual brokers. In all models, standard errors are clustered by exchange member and stock.

We winsorize all variables, except the dummy variables and those expressed in percentages,

at the 99.5% level.

12As discussed above, we use colocation on Turquoise as a proxy for colcation on the MTFs.
13In untabulated results, we examine the distribution of orders throughout the trading session and do not

find any large differences in when agency and proprietary trades begin.
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A potential concern in our analysis is that our regression design does not fully control for

the differences in trading motives or investment styles across agency and proprietary orders.

While investors’ trading motives are not directly observable in our dataset, our choice of

control variables and fixed effects indirectly controls for trading motives and differences in

execution strategy originating from heterogeneous trading motives. Furthermore, if trades

are observationally indistinguishable in our data, they are likely also hard to distinguish

by other market participants, whose response ultimately, apart from observable execution

characteristics, determines execution costs. It appears unlikely that unobserved trading

motives would affect execution costs.

A second possible concern in our regression design could be that the functional form of the

dependence of the execution costs on the observable trade characteristics might differ from

that assumed in our regression specification, which would pose a problem in the presence of

an imbalance in the covariates. For example, larger orders are more difficult to execute and

are generally associated with higher execution costs. However, the exact relationship, whilst

apparently concave (Keim and Madhavan, 1996, 1998), is unknown. While the square root

law is widely accepted in the industry (see, for example, Torre, 1997), Almgren et al. (2005)

and Zarinelli et al. (2015) obtain evidence against it.

We address this concern by using inverse propensity score weighting (IPW) in our regres-

sions. This estimator combines weighting and regression adjustment and has the doubly-

robust property (Robins and Rotnitzky, 1995; Imbens and Wooldridge, 2009), meaning that

it is consistent even if one of the models for the propensity score or the outcome regression is

misspecified. While this approach has occasionally been used in the finance and economics

literature in the case of binary treatments (see e.g. Bird, 2018; Van Biesebroeck et al., 2015),
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our context entails multiple treatments: the exchange members’ colocation status, and the

trading capacity (agency vs. proprietary).14,15

We thus follow the literature started by Imbens (2000), who extends the binary treat-

ment propensity score methodology to multiple treatments. In our case, there are two

binary treatment variables forming four treatment categories with no natural ordering:(
C̄, P

)
, (C,P ) ,

(
C̄, A

)
, (C,A), where C and C̄ denotes colocation and non-colocation and

A and P denotes agency and proprietary trades, respectively. In the first stage, we esti-

mate the propensity score for the four treatment categories using a multinomial logit model,

where we include as independent variables the same vector of market, trade, and execu-

tion characteristics described above. Similar to Uysal (2015), the inverse of the predicted

propensity score for each of the four respective treatment categories is then used to weigh

the observations in the second stage regression where we again control for market, trade, and

execution characteristics as well as stock-day, quarter-hour, and, in some of our analyses,

exchange member fixed effects. Since this is a two-step estimation approach with no known

analytical expression for the standard errors, we estimate these using bootstrapping with

1,000 iterations.

14Another commonly used doubly-robust approach employing propensity scores uses matching. While
matching is possible even in the multiple treatment case (Linden et al., 2016), finding good matches becomes
increasingly difficult in finite samples.

15We report results from unweighted panel regressions in the internet appendix A. The results do not
qualitatively differ from those obtained using the doubly-robust estimator.
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6 Descriptive Statistics

6.1 Stock Characteristics

Table 1 shows the summary statistics for the 83 out of 86 stocks in our final sample which

have parent orders. We also report the summary statistics for each market capitalization

tercile. The stocks have an average market capitalization of e 8.75 billion, daily continuous

trading volume of e 29 million, and a quoted bid-ask spread of 20 bps. Trading activity is

highly fragmented across the four main venues with the primary listing exchange responsible

for 62% of the market share and the three largest MTFs contributing the remaining 38%

for the average stock. However, there is substantial cross-sectional variation across all these

dimensions as evidenced by the difference in mean (and median) values across the three size

groups. Stocks of larger firms have higher trading volumes, lower bid-ask spreads, and their

trading activity is more fragmented. Finally, according to Refinitiv data, the four lit venues

in our data jointly comprise more than 95% of the total lit trading.

Insert Table 1 about here

6.2 Exchange Member Characteristics

We identify 11,724 parent orders executed by 139 exchange members in 83 stocks from 8

countries. Table 2 provides exchange-member level summary statistics separately for all

exchange members in our sample (Panel A) and for those who trade both in a proprietary

and agency capacity (Panel B).

Insert Table 2 about here
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The average exchange member executes 84 parent orders in about 14 stocks from 3

countries totaling e 48.1 million during our sample period. There is substantial heterogeneity

across exchange-members: some are active in only three (one) stocks (country), whereas

others are active in 54 (eight) stocks (countries). 36 exchange-members engage in both agency

and proprietary trading and 60 (43) members specialize in agency (proprietary) trading.

However, the dual capacity members are much more active. The average exchange member

trading in a dual capacity trades more than 29 stocks from 5 countries totaling e 138.3

million during our sample period. This translates to such exchange-members accounting

for more than 70% of all the parent orders both in terms of order count and total trading

volume.

35% of all exchange members and two-thirds of those acting in a dual capacity execute

some fraction of their institutional orders on the three MTFs. This may seem surprising con-

sidering the best execution obligations imposed on brokers by EU regulations, in particular

by the Markets in Financial Instruments Directive (MiFID).16 However, broker-dealers enjoy

substantial flexibility while ensuring compliance with these rules. For example, MiFID al-

lows them to define best execution in terms of price, costs, speed, likelihood of execution and

settlement, size, nature or any other consideration relevant to order execution. At the same

time, brokers can apply these factors differently to different clients, orders, instruments, and

venues. It is also not mandatory that brokers are connected to multiple trading venues.17

The mean and median number of primary markets in which the average exchange member

is colocated is 0.6 and 0, respectively, indicating that the majority of members in our sample

16Contrary to the US, where the obligation to provide best execution rests largely with trading venues, in
the EU, brokers are obligated to provide best execution to their clients.

17See CESR (2007) for further details.
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choose not to colocate. In fact, only 30% of the exchange members use any colocation

services. The vast majority of these members choose to colocate on one of the primary

listing exchanges as opposed to on the MTFs. Conditional on being colocated anywhere,

exchange-members are on average colocated on 2.2 venues. Exchange-members trading in a

dual capacity are more likely to colocate on the primary markets and the MTFs. They are

also colocated on more trading venues compared to exchange-members trading exclusively

in an agency or proprietary capacity. Specifically, 56% and 25% of all exchange-members

trading in dual capacity are colocated on the primary markets and MTFs, respectively.

Unconditionally, such members on average colocate on 1.3 primary markets and, conditional

on being colocated anywhere, they are colocated on 2.8 venues.

6.3 Parent Order Characteristics

Table 3 provides summary statistics at the parent order level separately for the complete set

of orders and for those executed in an agency and proprietary capacity. The table also reports

the mean differences between agency and proprietary orders, the associated t-statistics, and

the standardized mean difference as a measure of the economic magnitude of the differences.

Insert Table 3 about here

Panel A shows that, for approximately 53% of all parent orders, the executing broker is

colocated on the stock’s primary exchange or on the MTFs. The difference between these

figures for agency and proprietary orders (51% versus 55%), while statistically significant, is

economically small.

Panel B shows that there are roughly equal numbers of buy and sell orders. The average
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trade size is 570 thousand Euro and Information, the average long-term price impact of

trades, amounts to −9 bps suggesting that, on average, a parent order is uninformed. These

numbers do not substantially differ between trades executed in the different capacities as

indicated by the insignificant differences. The execution lasts on average about 5 exchange

trading hours and, while the difference between agency and proprietary trades is statistically

significant, its magnitude is rather small.

Panel C describes the parent order execution characteristics.There is a substantial differ-

ence between the two capacities in their choice to supply or consume liquidity: 44% of an

average agency trade consumes liquidity, whereas this percentage is only 39% of proprietary

trades. The difference concerning the choice of trading venue is even larger: only 17% of

the average agency order executes on the MTFs, whereas the corresponding percentage for

proprietary orders is 39%.

Panel D reports the execution costs of the average parent order, the effective half spread

paid (earned) by the aggressive (passive) executions that are part of an average parent order,

and finally the one-minute price impact associated with every aggressively and passively

executed child order, respectively. The execution cost, our main variable of interest, is

−4.46 bps on average. The negative average may result from the fact that the average parent

order in our sample is uninformed, as evidenced by the negative value of the Information

variable, and traded predominantly passively, as evidenced by the Aggressiveness variable.

For instance, Keim and Madhavan (1998) find that value (technical) traders who trade

passively (aggressively) end up with negative (positive) execution costs. Furthermore, based

on the regression coefficients estimated later in this paper, the expected execution cost for

an agency order with zero information and an even split between liquidity-consuming and
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-providing executions is positive. However, average execution costs are significantly smaller

for proprietary orders than for agency orders. The difference of more than 4 bps, while not

large relative to the variation in execution cost between individual trades, is economically

large and statistically significant. The average aggressive (passive) trade incurs (earns) a

half-spread of 4.97 bps (3.62 bps). The average trade when executed aggressively incurs

a lower cost for proprietary trades vis-à-vis agency trades (4.75 bps vs 5.20 bps). At the

same time, the average passively executed proprietary trade earns a larger half spread than

the average passively executed agency trade (3.74 bps vs 3.49 bps). The better child order

execution outcomes measured in terms of effective spreads also extended to the average

price impact. The average price impact of an aggressively executed order is higher for

agency trades as compared to proprietary trades (3.75 bps vs 3.25 bps). The corresponding

numbers for passive executions are nearly identical (−4.68 bps vs −4.67 bps). The difference

in effective spread and price impact between agency and proprietary trades provides the

first evidence of the execution performance of underlying algorithms. In Section 8, we test

whether differences in these (and other) variables hold using the empirical model described

in Section 5.

Finally, Panel E reports the HFT interaction statistics. Agency orders trade about 30%

of their volume against HFT firms, whereas the number for proprietary orders is about

33%. This difference is significant and consistent with proprietary orders being executed

to a larger extent on MTFs, where HFTs are generally more active than on the primary

listing exchanges. The average parent order is approximately twice as likely to interact with

aggressive HFTs as compared to passive HFTs. However, agency orders execute to a slightly

lesser extent against aggressive as opposed to passive HFTs (65% vs 68%). These statistics
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are broadly consistent with the usage of aggressive orders in Panel C. For instance, roughly

two-thirds of the average parent order is executed passively and roughly two-thirds of the

average parent order’s HFT interactions are against aggressive HFT. Similarly, the average

agency order is more aggressively executed compared to the average proprietary order and

is also more likely to interact with passive HFT counterparties. These statistics suggest that

the algorithmic decision to supply or consume liquidity does not substantially influence the

extent to which the parent order interacts with HFT firms.

To conclude, agency and proprietary executions are largely similar in terms of their order

characteristics, duration, and the use of exchanges’ colocation services. However, they differ

with respect to their choice of trading venue, level of aggressiveness, and interactions with

HFT firms. We overcome this imbalance via the doubly robust approach of controlling

for all these variables in our analyses in combination with inverse propensity weighting.

Table 4 in the internet appendix demonstrates the success at eliminating meaningful covariate

imbalances across all four combinations of capacity and colocation.

6.4 IPW balancing performance

Table 4 provides evidence for the covariate imbalance in the original data and the success

IPW achieves in reducing this imbalance. It shows means of the predictors for each of the

four combinations of capacity and colocation, as well as comparisons between each of the

six pairs of combinations. Whereas the significance tests are highly dependent on sample

size, the degree of potentially economically important difference can be inferred from the

standardized differences (∆
σ
). We observe in Panel A that there are economically meaningful
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differences for all pairs, and that these differences are not limited to variables that can be

assumed to reflect differences between execution algorithms (last three rows). IPW suc-

ceeds at reducing the differences to magnitudes that mostly appear negligible. Among 60

comparisons, only five differences exceed 0.1 standard deviations. Three of these differences

result from aggregate trading volume in the stock during execution (log Market Trading) in

the weighted sample being somewhat smaller for colocated proprietary trades, whereas the

other two reflect differences in the degree of order splitting and the use of MTFs. Note that

covariate imbalances do not have to be problematic per se because we employ regression

adjustments in all of our analysis; yet, the reduction in imbalances that IPW achieves limits

the sensitivity of results to the exact specification of the regression model.

Insert Table 4 about here

7 Parent Order Results

This section analyzes the determinants of execution costs of large orders. Our main focus is

on understanding how execution costs differ by the capacity in which the exchange member

trades an order and the use of colocation. Additionally, we consider the relation between

execution costs and interactions with HFTs.

7.1 Baseline Analysis

Execution costs are positively related to trade difficulty (Keim and Madhavan, 1997). For

example, orders that are large (relative to the daily volume of a stock) are more difficult

to execute. A market participant acquiring a large position may prefer to trade patiently
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over a long period while relying on limit orders (to avoid crossing the bid-ask spread) and

minimizing executions on MTFs to avoid being back-run by HFTs. However, if a market

participant is impatient, possibly because it possesses short-term information, it may have to

trade aggressively using marketable orders while accessing all sources of liquidity. We exam-

ine this tradeoff by regressing execution costs on the predictors described in Subsection 4.2.

Table 5 contains the baseline results.

Insert Table 5 about here

As expected, transaction costs increase with parent order size. Depending on the regres-

sion specification, a 0.1 unit increase in log trade size is associated with between 0.26 and

0.33 bps higher execution costs. As trade sizes vary substantially and can be very large in

some cases, this effect is economically significant. The total trading volume in the market,

Market Trading, is negatively related to execution costs, consistent with the notion that a

higher trading volume introduces more noise in the signal generated by the parent order

executions. A 0.1 unit increase in log total volume during the parent order’s lifetime is

associated with 0.34 bps lower execution costs.

The execution costs for buys are around 2 bps higher than for sells, though the effect is

statistically insignificant.

Pre-trade volatility, measured as the standard deviation of ten-millisecond quote midpoint

returns over the ten minutes before the first child order execution, predicts a 17 bps difference

in parent order execution costs for every 1 bps change in volatility, however the impact is

statistically insignificant. Note that the mean and standard deviation of volatility are both

less than one-tenth of one basis point. The stock return over the ten minutes before the
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trade has no explanatory power across all specifications.

The permanent information content of the trade is, as expected, positively associated

with the execution cost. A 10 bps increase in Information is associated with approximately

1.5 bps higher execution costs. The time it takes to complete a parent order is negatively

associated with transaction costs and the association is statistically significant. Specifically,

working a parent order for one additional hour is associated with a 1.7 bps lower execution

cost. This is because, keeping parent order size constant, duration is inversely related to

the institution’s participation rate and, consequently, negatively associated with transaction

costs. However, this effect becomes somewhat smaller and statistically weaker once we

control for the stock’s total trading volume (Market Trading) during the parent order’s life

time, which together with the child order size determines the participation rate. Trading

impatiently by using aggressive (i.e., marketable) orders is associated with higher transaction

costs. A trade that is executed with a 10 percentage points higher share of liquidity taking

orders is associated with a 3.1 bps higher execution cost.

The number of child order executions is also significant in explaining parent order trans-

action costs: a 0.1 unit increase in log child order executions is associated with a 0.41 bps

increase in execution costs, though this effect decreases slightly once we control for the frac-

tion of a parent order traded on MTFs, where individual order executions are generally

smaller. Considering that the size of individual child order executions, and therefore their

number, is endogenously related to the liquidity available in the limit order book, even in

the presence of stock-day fixed effects, the direction of any causality between the number of

child orders and execution costs is unclear. The situation is similar when interpreting the

effect of the volume executed on MTFs because the choice of venue partially depends on the
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liquidity available in the primary market. The coefficients suggest that shifting 10% of the

parent order away from the primary market and towards the MTFs is associated with a 0.7

bps increase in execution costs.

7.2 Trading Capacity, Colocation, and Interaction with HFT

In Table 6, we consider the effects of exchange members’ execution capacity, whether the

exchange member executing the parent order is colocated on a venue where the stock trades,

and the fraction of a parent order that executes against liquidity providing and consuming

HFTs. We report the results from panel regressions with stock-day and quarter-hour fixed

effects, and the variables included in column (4) of Table 5 as untabulated controls. We

center all interacted continuous variables at zero.

Insert Table 6 about here

We find that, after including all baseline control variables, orders executed in an agency

capacity are substantially more expensive than proprietary orders. The difference in exe-

cution costs is economically meaningful at about 4.5 bps, or more than 50% of the quoted

spread of a typical large cap stock in our sample. Column (2) shows that additionally includ-

ing a colocation dummy does not unconditionally explain any variation in execution costs.

In columns (3) and (4) we add an interaction term that identifies the effects of colocation on

the execution costs of agency versus proprietary orders. The main effect of colocation, now

representing the effect for proprietary orders, turns significant and shows an execution cost

reduction of around 6 bps, whereas colocation for agency trades is associated with 7.2 bps

higher execution costs compared to proprietary orders, suggesting that agency orders do not
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benefit from exchange members’ subscription to colocation facilities.

We next include trading volume against HFTs and find that an additional 10% of an

order traded against HFTs is associated with an increase in execution costs by 0.9 bps.

When splitting HFT into liquidity taking versus liquidity providing executions, we find that

they have opposite effects on transaction costs: trading an additional 10% of an order against

aggressive HFT is associated with around 3.7 bps higher execution costs, whereas the effects

of trading the same amount against passive HFT is around −3.0 bps.

We then include the fraction of trading volume against HFT on a venue where the

exchange member is colocated and find that both the adverse effects of aggressive, and the

beneficial effects of passive, HFT are reduced when the exchange member is colocated. The

adverse effect of aggressive HFT is reduced by around 50% whereas the beneficial effect of

passive HFT is smaller by more than 80%. This indicates that execution costs depend on

the type of counterparty to a lesser extent for colocated market participants, allowing them

to obtain execution costs that are less sensitive to the nature of the counterparty. The net

impact of HFT on orders originating from colocated exchange members nevertheless remains

positive due to the higher magnitude of the effect of aggressive HFT on execution costs and

due to parent orders in our sample being twice as likely to trade against aggressive HFTs

than passive HFTs.

Finally, we interact the fraction of trading against HFT on a venue where the exchange

member is colocated with the agency dummy to examine whether agency orders not only

generally fail to benefit from colocation but possibly also see a smaller effect of colocation

on the costs when facing HFTs. However, the coefficients suggest no significant effects when

trading against HFTs.
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7.3 Within Exchange Member Variation in Execution Costs

Despite all the covariates and fixed effects we employed in the previous analyses, it might

be that unobservable differences across exchange members drive our results. This includes

differences in the type of colocation facilities, such as access speed and capacity, chosen by

individual members as well as other technological and connectivity differences. For exam-

ple, as of June 2022, Deutsche Börse allows exchange members to configure their colocated

infrastructure based on power requirements, type of market data, and other connectivity

options.18 Finally, differences in trading skills, specifically the quality and choice of order

splitting and routing algorithms, might also explain part of our results.

To address these concerns, we conduct an alternative analysis in Table 7 that, in addi-

tion to stock-day and quarter-hour fixed effects, includes exchange member-fixed effects.19

While the inclusion of the additional fixed effects eliminates the variation in colocation on

Turquoise, we retain the colocation variable that captures exchange members’ decision to

colocate on individual primary markets, which we denote ColoPM . This is because brokers

are not colocated on all primary venues. The identification of the colocation effect now stems

only from those exchange members that execute parent orders on primary markets where

they are colocated and others where they are not colocated. Similarly, the identification of

the differences between execution costs for agency and proprietary orders now comes from

exchange members executing orders in both capacities. Employing exchange-member fixed

effects in combination with our control variables and IPW effectively allows us to estimate

18Further details on Deutsche Boerse’s colocation service are available at https://www.xetra.com/xetra-
en/technology/co-location-services.

19We do not report the baseline results with exchange-member fixed effects as these are qualitatively
similar to the results in Table 5.
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the impact of colocation for agency versus proprietary orders for similar orders originating

at the same exchange-member.20

Insert Table 7 about here

Similar to the previous analyses, parent orders executed in an agency capacity incur

higher execution costs. Compared to the earlier results, the size of the coefficient increases

to 9.2 bps. This finding implies that, while agency executions across all member firms incur

higher execution costs, execution costs of those firms that specialize in agency or proprietary

executions differ less compared to the differences between agency and proprietary orders

originating from exchange members that trade in a dual capacity.

After including the colocation dummy and its interaction with the capacity dummy, the

results are again similar to those obtained without using exchange member-fixed effects:

proprietary trades benefit from the use of colocation, whereas this is not the case for agency

trades. Specifically, the effect of colocation on the execution costs of proprietary orders is

−6.3 bps. However, when these colocated brokers execute agency orders, they have signifi-

cantly higher execution costs with a coefficient of 7.8 bps. The effect of the agency dummy

variable is statistically significant at 5 bps, which suggests that agency orders originating

from dual-capacity exchange members have higher execution costs compared to proprietary

orders executed by the same firm even when the broker is not colocated.

The unconditional effects of parent orders interacting with HFT firms remain qualitatively

unchanged. In aggregate, trading against HFTs is associated with higher execution costs.

The volume transacted against aggressive HFT orders is associated with higher execution

20The reduction in effective sample size necessarily reduces the estimations’ statistical power.
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costs whereas the volume against passive HFT orders has the opposite effect. Compared

to the results without exchange-member fixed effects, the coefficients for the interaction of

colocation with aggressive and passive HFTs retain their signs whereas the size and statistical

significance changes somewhat. The benefit enjoyed by a non-colocated broker from trading

against passive HFTs is somewhat larger, whereas the interaction effect between colocation

and passive HFT is larger and now significant. The two effects cancel out suggesting that

sophisticated traders do not systematically experience large differences in execution costs

based on the kind of counterparties they trade with.

In conclusion, the main results do not appear to be sensitive to the chosen regression

specifications. Colocation helps proprietary traders reduce their transaction costs and avoid

losses to aggressive HFTs, but these benefits are limited to proprietary executions.

7.4 Analysis of Individual Member Fixed Effects

While our previous results document that, on average, the benefits of colocation in the form

of lower execution costs are limited to proprietary executions, they leave unanswered the

question whether this phenomenon is common or driven by a small number of outliers among

the brokers. To answer this question, we perform regressions similar to the above, except

that we include a larger set of dummy variables to study the cross-sectional distribution

of within-broker differences in execution costs between agency and proprietary trades. In

particular, in addition to the baseline control variables and stock-day and quarter-hour fixed

effects as in the regressions in Table 5, we include dummy variables at the broker-capacity-

colocation level. There are 18 brokers trading in both capacities on venues where they are
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colocated. For each of these brokers, we compute the difference between the fixed effects of

agency and proprietary trades, respectively, for trades executed on a venue where the broker

is colocated.

Insert Figure 1 about here

Figure 1 shows the estimates and error bars of this difference for the individual brokers.

Execution costs are higher for agency orders for 15 of the 18 brokers and for 5 of them

the difference is statistically significant at the 10% level. At the same time, none of the 3

differences in the opposite direction are statistically significant. A non-parametric Wilcoxon

signed-rank tests provides strong evidence that agency orders do not obtain the same benefit

from colocation as do proprietary orders, with a p-value of 0.0021. In summary, the higher

execution costs of agency compared to proprietary trades executed by the same colocated

broker can be observed for most dual capacity brokers in our sample. Overall, these results

show that our main findings are not driven by a small subset of these brokers but the result

of likely similar choices made by brokers and their institutional customers.

8 Potential channels behind the key results

The results reported in Section 7 raise the question as to how and why agency trades, in

particular those executed via colocated brokers, obtain execution costs that are higher than

comparable trades executed by exchange members in a proprietary capacity. We here do

not aim to establish causal effects of any particular characteristics of the order submission

strategies on parent order execution costs. This would require reengineering the logic of
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the order execution algorithms, a task that appears infeasible, considering the fact that

we observe data on a broker level and each broker likely employs multiple algorithms.21

Instead, we first consider the algorithms’ ability to monitor the order books. Next, we

analyze the execution quality of the individual child orders and how these measures relate

to the brokers’ colocation status and the capacity in which they execute orders. Then,

we consider the possibility that brokers route their customer orders with the objective of

minimizing exchange fees. Finally, we ask whether differences in execution cost risk might

rationalize the differences in average execution costs observed.

8.1 Order Book Monitoring

Subscribing to exchanges’ colocation facilities should allow brokers to better monitor the

order book at high frequencies and employ order execution algorithms that quickly respond

to changing market conditions. For instance, it can allow brokers to rapidly revise a passive

child order after submission if the order becomes stale due to price changes, thereby resulting

in improved fill ratios and/or reduced price impact costs. In this subsection, we provide

evidence indicative of the improved monitoring ability by analyzing order flow periodicity

and order-to-trade ratios (OTR) for orders submitted in both capacities and with or without

the use of colocation technology.

Bacidore (2020) argues that “one tremendous avoidable source of latency stems from algo

provider’s decision to use ‘timer-based’ instead of ‘event-based’ processing.[. . . ] A timer-

based algorithm ‘wakes up’ periodically, e.g., every 500 milliseconds, samples the state of

21For a detailed analysis of the execution algorithms offered by a single broker, see Beason and Wahal
(2020).
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the market, and then takes action before beginning another 500-millisecond slumber[. . . ].”

The relatively higher latency in the absence of colocation may be a reason for brokers to

employ timer-based strategies. Figure 2 shows the the frequencies of orders submitted during

different seconds within a minute separately for the four combinations of colocation/no

colocation and agency/proprietary orders. The plots show deviations of the logarithm of

the number of order submissions from their mean. For all four groups, the largest abnormal

number of order submissions occurs in the first second of a minute, and the effect is larger for

agency compared to proprietary orders, and for non-colocated compared to colocated orders.

While we cannot rule out the possibility that (some of) the excess order volume may be in

response to other market participants’ high activity at those times, the plot does suggest the

existence of algorithms using clock-time scheduling. There are also spikes at the other 10-

second intervals within the minute for both agency and proprietary colocated orders. These

spikes are more pronounced for agency orders, which is indicative of agency algorithms being

less responsive to market events. The lower periodicity observed for non-colocated orders

is likely due to the presence of high-touch trading in this category, which introduces noise

in the observed periodicity. In untabulated tests, we find that the observed differences at

second 0 hold after employing stock-fixed effects or stock- and broker-fixed effects, whereas

the coefficients for those at seconds 10, 20, 30, 40, and 50, are of the expected sign though

not statistically significant.

Insert Figure 2 about here

Altogether, the figure and the statistical tests imply that there is more periodicity in

the order submission of agency versus proprietary colocated orders. The presence of such
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predictable patterns in order submissions in calendar time, which has also been observed

in earlier studies (Brugler, 2015; Sağlam, 2020), might contribute to poor execution perfor-

mance, as such patterns can be anticipated by HFTs engaging in back-running behavior. For

instance, Sağlam (2020) finds that the use of time- and volume-based execution algorithms

leads to predictable patterns in order flow, which are correlated with higher execution costs.

Conversely, a reduction in predictability is associated with lower execution costs. While the

above analysis reveals the presence of such predictable patterns for parent orders executed

with and without colocation in both capacities, the disproportionately higher predictability

of colocated agency orders may help explain the higher execution costs for such orders.

Next, we analyze the differences in the OTR – defined as the ratio of the number of order

submissions to the number of child order executions – by capacity and use of colocation.

Specifically, we consider whether the OTR systematically differs by the type of parent or-

ders by regressing parent orders’ OTR on the same predictors as in the previous analyses.

OTRs are generally used to track algorithmic and high-frequency trading activity in elec-

tronic markets (see, for example, Hendershott et al., 2011). The results in Table 8 show that

there is no statistically significant difference between agency and proprietary orders in the

absence of colocation.22 The results without broker-fixed effects in column (1) show that

proprietary colocated orders feature a significantly higher OTR than non-colocated ones,

which is consistent with colocation enabling brokers to more successfully manage their or-

ders’ positions in the limit order book. However, this effect is absent for colocated agency

orders, with a coefficient that, albeit only weakly statistically significant, nearly offsets the

22The table is based on observations for 80 of the 83 sample stocks. Due to only intermittent access to
the data, we will update the table with results for the complete sample in the next revision.
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positive coefficient for colocation. The within-broker differences in OTR between colocated

and non-colocated proprietary orders reported in column (2) are positive, though smaller

than in column (1) and statistically insignificant. This reduced effect is consistent with the

idea that brokers that colocate anywhere employ relatively sophisticated algorithms across

trading venues regardless of their colocation. This would allow them to actively manage

their orders to some degree even where they are not colocated. However, OTR is signifi-

cantly lower for colocated agency orders, which, somewhat surprisingly, results in colocated

agency orders having a lower OTR than non-colocated agency orders. However, the latter

difference (untabulated) is not statistically significant.

Insert Table 8 about here

Altogether, this subsection provides evidence suggesting that the algorithms colocated

brokers use for their proprietary orders materially differ from those used for customer ex-

ecution. The latter feature higher periodicity and, in particular, a lower OTR, which is

indicative of a less active management strategy of child orders, and likely contributes to

higher parent order execution costs.

8.2 Child Order Execution Quality

Having established some differences between colocated agency and proprietary orders with

respect to their child order submission behavior, in this subsection, we turn to their execution

quality. When executing a child order, an institutional investor would like to accomplish two

goals: first, low execution costs of individual child orders, and second, to minimize the extent

of adverse price changes that would make subsequent child order executions more expensive.
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As a measure of how well an order performs with respect to the first goal, we compute parent

order level averages of the effective spreads for the individual child executions that make up

a given parent order. We disaggregate the analysis into spread costs for aggressive versus

passive order execution.

Panel A of Table 9 contains the results. Note that the number of observations in this

table is smaller than in the previous ones because a parent order is included only if it contains

at least one aggressive (passive) child order execution. Column (1) shows that colocation

reduces the spread paid by liquidity consuming orders, and this effect does not significantly

differ between proprietary and agency orders. However, agency orders pay wider spreads

regardless of the use of colocation, suggesting that execution algorithms used for agency

trades may generally be inferior to those used for proprietary trades. This cost disadvantage

of 0.4 bps amounts to more than half of the benefit colocation provides. However, it makes

up only a small part of the execution cost disadvantage agency parent orders suffer. When

we consider within-broker variation in column (2), we do not find statistically significant

differences between trades in stocks listed on an exchange where a broker is colocated and

where it is not, and, though the coefficient estimate is of the expected sign, it is of sub-

stantially smaller magnitude than in the analysis without broker fixed effects. This finding

is consistent with that in the previous subsection that brokers’ execution capabilities may

to a significant extent translate across exchanges, and that the use of colocation anywhere

goes hand-in-hand with higher technological skills. The interaction effect of colocation with

agency orders is also statistically insignificant, though the magnitude and sign suggest that

any advantage of using colocation almost exactly cancels out for agency orders. Agency

orders pay wider spreads regardless of colocation.
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Insert Table 9 about here

Turning to effective spreads earned in passive order executions, the negative coefficient

on colocation in column (3) indicates that colocation is associated with wider spreads earned

by the liquidity provider. The effect size is smaller than for aggressive orders, suggesting that

speed and/or sophistication is more important for liquidity taking orders. We do not observe

any significant differences between proprietary and agency orders. While the results obtained

when we consider within-broker variation in column (4) are not statistically significant,

agency orders generally obtain inferior execution, which, in this case, means they earn smaller

spreads. This result suggests that dual capacity brokers manage agency limit orders worse

than comparable proprietary limit orders, whereas this finding is not observable in the results

exploiting differences across brokers. Compared to the analysis of aggressive orders, we

observe that, in relative terms, colocation remains an economically more important predictor

of effective spreads. While the effect size is somewhat smaller than in column (3), it does

appear that speed, in addition to general technological sophistication, helps brokers earn

wider spreads through facilitating timely responses to changing market conditions. The

interaction effect of colocation and agency is statistically insignificant, though the point

estimate amounts to a reduced benefit of employing colocation by more than half.

We now turn to the second goal institutional investors have with respect to minimizing

their execution costs, i.e., avoiding price impact as a result of information leakage. Whereas

in classic microstructure models the price impact is a reflection of the information content

of a trade, investors splitting their trade among multiple child order executions desire to

minimize their price impact so as to obtain beneficial trade prices in subsequent child trades.
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Thus, for aggressive orders, a low price impact points to a good execution outcome. For

passive orders, a price movement against the direction of the order is usually interpreted as

adverse selection and therefore undesirable. However, assuming that a trade happened at a

certain price, an institutional trader would prefer experiencing a large price impact to obtain

better prices for subsequent child orders. Yet, a limit order trader who does not manage

the order effectively may get an execution when the order is stale, i.e., the price at which

the child order trades may be disadvantageous as it would have been possible to trade at a

better price. In that situation, while the price impact incurred may be large, the prices of

subsequent child trades may not necessarily improve because the price would have moved

anyway. Thus, for passive trade executions, it is unclear whether a large price impact should

be interpreted as beneficial or harmful.

We measure price impact as the quote midpoint change from immediately before to either

1 or 60 seconds after a trade, signed by the direction of the institutional order. Similar to

the effective spreads, we report the results separately for aggressive and passive orders.

Panels B and C of Table 9 show the results for price impacts at a one-second and one-

minute horizon, respectively. For aggressive orders, the results show that colocation enables

significantly smaller price impacts, with an effect size of about 0.7 bps within one second,

which grows to 1.0 bps within one minute. Non-colocated agency orders are associated

with statistically insignificant immediate and near-zero one-minute additional price impacts.

However, the benefit to using colocation vanishes for agency orders. While the effect is

slightly smaller and not statistically significant within one second, it grows to almost 1 bp

after one minute, offsetting the advantage implied by the coefficient for colocation. The

within-broker analysis yields similar results to those for effective spreads: the effects of colo-
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cation and its interaction with agency are small, whereas agency orders in general, regardless

of colocation, result in price impacts that are higher by about 0.8 bps, within one second,

though the coefficient shrinks to about 0.4 bps and becomes statistically insignificant for the

one-minute horizon.

Columns (3) and (4) report the price impact results for passive orders. We note that

a negative coefficient indicates a larger price impact from the institution’s perspective or,

put differently, a larger price move against the institution’s trade direction. Column (3)

shows that passive agency orders incur a larger price impact, with an effect size that rises

to about 0.7 bps within a minute. As explained above, this could be an indication of trade

execution at stale prices, and thus reflect poor execution quality. Alternatively, it suggests

lower information leakage, potentially enabling successive trades at better prices. While we

consider the former channel more likely as the results in Subsection 8.1 indicate that it is

unlikely that agency orders are better monitored than proprietary ones, our estimations do

not allow us to discriminate between the two interpretations. Proprietary colocated orders

enjoy a price impact that is larger by about 0.8 bps after one second and 0.9 bps after one

minute, whereas the positive coefficients for the interaction effect of colocation and agency

show that the colocation effect nearly cancels out for agency orders. Based on the findings of

the previous subsection and for spreads, it is likely that the effect of colocation for proprietary

orders is reflective of the avoidance of information leakage. By contrast, agency orders do not

enjoy the same benefit from colocation, and appear to be more exposed to stale executions,

though the coefficient estimates alone do not firmly lead to a unique interpretation.

The within-broker analysis in column (4) shows that here, significant differences between

non-colocated proprietary and agency orders do not exist. Colocation by itself does not
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statistically significantly predict price impact, though the effect size at a one-minute horizon

is about half that observed in column (3). However, for colocated agency orders, the price

impact is smaller, from the parent order’s perspective, by 0.8 bps after one second and 0.5

bps after one minute. While the latter coefficient is not statistically significant, it is still

sizable, when considering that this effect size accumulates over multiple child orders. To

sum up, the effects of colocation are smaller within than across brokers, consistent with the

previous results in this subsection.

8.3 Exchange fees

Prior literature has shown that brokers may prefer routing customers’ orders in a way that

minimizes fees (Battalio et al., 2016; Anand et al., 2021) at the expense of the orders’

execution quality. While, as is the case for the other order routing characteristics considered

in this section, we cannot test whether such behavior is the cause of our main results, we

can test whether there are differences in the fees dependent on the principal versus agency

capacity and the existence of colocation. To do so we conduct analyses similar to those for

the execution costs, with the exchange fees as the dependent variable instead. However, here

we omit in our main specification the predictors that are already a function of the algorithm

used rather than of a parent order’s objective: the aggressiveness, the number of child orders,

and the use of MTFs. This is because, if brokers attempt to minimize exchange fees, much

of this minimization could be captured by these variables, whereas we are interested in

whether brokers minimize exchange fees for a given trading interest. For exchanges offering

fee schedules dependent on the members’ total trading volume, we assume the fee/rebate
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corresponding to the highest volume threshold. The baseline results, not including capacity

and colocation, are reported in the internet appendix Table C1. Table 10 provides the results

for our variables of interest, columns (1) to (3) and (4) to (6) showing the results without

and with broker fixed effects, respectively.

We find that, for the specification without broker-fixed effects, exchange fees for agency

orders in aggregate do not significantly differ from those for comparable principal orders.

However, when conditioning the results on colocation, we observe that non-colocated agency

orders incur higher exchange fees (by about 0.03 bps) than comparable principal orders.

Fees for principal colocated orders are higher than those for non-colocated ones, though

when customer orders are executed by a colocated broker, fees are lower than those for

comparably principal orders. Thus, among non-colocated orders, brokers pay higher fees

for agency than for principal orders, whereas the converse hold for colocated orders. It

appears that brokers achieve lower exchange fees precisely for that type of parent order that

we observe to obtain the poorest execution quality relative to similar proprietary orders.

When including exchange-member fixed effects, we again find that agency orders incur higher

exchange fees. However, colocated principal orders do not significantly differ in their trading

fees from non-colocated ones. The interaction effect of colocation and agency orders roughly

cancels out the agency main effect. Thus, within broker, colocated agency orders again incur

lower expenses than non-located ones, and they are on a par with non-colocated principal

orders.

Insert Table 10 about here

To sum up, we do not find evidence that brokers attempt to generally minimize exchange
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fees when trading for customers as compared to on their own account. By contrast, non-

colocated agency orders incur the highest exchange fees.

8.4 Execution cost risk

If institutional investors are risk-averse with respect to execution costs and proprietary

traders possibly are not, the differences in average execution costs that we observe could

result from the optimization of different targets. To test for this possibility, we analyze

whether the magnitude of the residuals from the execution cost regressions differs depen-

dent on capacity and colocation. For reasons analogous to those outlined in the analysis of

exchange fees above, our focus here is on the results that exclude observable characteristics

of the execution algorithm (aggressiveness, number of child orders, use of MTFs). The re-

gression models we employ are, with the exception of the dependent variables, identical to

those used when explaining execution costs. We present, in Table 11, results for two different

measures of the variation in unexplained execution costs: the absolute values of the residuals

(models (1) and (2)), and the squared residuals (models (3) and (4)). The results across

exchange members (models (1) and (3)) show significant effects neither for agency trades

nor for the interaction of agency trades with colocation, thus providing no evidence for seek-

ing to reduce variation in execution costs of agency orders. Colocation is associated with a

larger variation in outcomes (by about 3 bps in absolute value), suggesting that algorithms

used by colocated brokers pay less regard to the variation in outcomes. The within-exchange

member analyses (models (2) and (4)) show significantly larger variation in outcomes for

non-colocated agency orders, rejecting the notion that the variation in costs of agency orders
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is minimized. The coefficients for colocation and its interaction with agency trading are not

statistically significant, and their size implies that, holding the colocation status constant,

costs of agency orders vary to a larger extent than those of proprietary orders. Thus, there

is no evidence for the idea that an attempt at minimizing variation of trading cost could

explain our main results.

8.5 Summary of potential channels

In conclusion, the results on effective spreads and price impact contribute to our understand-

ing of the results on parent order execution costs. Across brokers, in aggregate we observe

poorer execution quality for agency orders and, in particular, colocated agency orders. Most

of the results of the within-broker analyses are quantitatively and statistically weaker, but

they tend to point toward poorer execution quality for agency orders irrespective of coloca-

tion. The OTR results, indicating a less active management of child orders, complement the

evidence described above and help explain the incremental parent order execution costs not

captured by measures of immediate child order execution quality.

We find no evidence for the notion that our main results are driven by brokers’ attempts

at minimizing trading fees when trading for their customers, nor for the idea that the results

stem from minimizing agency trades’ variation in unexpected execution costs.

9 Conclusion

Speed dispersion across market participants is of importance because recent empirical and

theoretical research has shown that HFTs can make large institutional trades more expensive,
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which, in turn, can lead to reduced price discovery and allocative efficiency of capital in

the economy. Subscribing to exchanges’ colocation facilities allows exchange members to

submit orders and access the exchanges’ market data feeds at low latencies. Based on a

pan-European highly granular dataset comprising the main equity markets, we study how

the execution costs of exchange members attempting to acquire or dispose of a large position

in a proprietary or agency capacity vary with their use of the exchanges’ colocation facilities.

Exchange members who colocate obtain lower execution costs for their proprietary orders

but not for the orders of their buy-side customers. These results hold not only across brokers

but also for the subset of brokers who execute large orders in a dual capacity. Furthermore,

while institutional investors’ execution costs are, on average, sensitive to trading against HFT

firms, the magnitude of this effect is significantly smaller for colocated exchange members

trading in a proprietary capacity. Investigations into the underlying trading patterns reveal

that the above differences between customer and proprietary orders executed via colocated

brokers coincide with differences in the monitoring and the execution quality of individual

child orders. By contrast, there is no evidence that they result from attempts at minimizing

exchange trading fees or the variation in execution costs to a larger extent for customer than

for proprietary orders.

We conjecture that the lack of benefit from colocation for customer orders is due to cus-

tomers making inferior choices when selecting the most appropriate algorithm for a particular

order or due to brokers using different algorithms for their proprietary and customer orders.

While regulations do not require benchmarking the execution costs of orders originating from

buy-side customers to the brokers’ own executions, this comparison could be considered a

natural approach to evaluating best execution.
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Putniņš, T. J. and J. Barbara (2016). Heterogeneity in the Effects of Algorithmic and

High-Frequency Traders on Institutional Transaction Costs. Working Paper .

Robins, J. M. and A. Rotnitzky (1995). Semiparametric Efficiency in Multivariate Regression

Models with Missing Data. Journal of the American Statistical Association 90 (429), 122–

129.

Saar, G. (2001). Price Impact Asymmetry of Block Trades: An Institutional Trading Expla-

nation. Review of Financial Studies 14 (4), 1153–1181.
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d’économique 48 (4), 1481–1512.

Van Kervel, V. and A. J. Menkveld (2019). High-frequency trading around large institutional

orders. Journal of Finance 74 (3), 1091–1137.

Weller, B. M. (2017). Does Algorithmic Trading Reduce Information Acquisition? Review

of Financial Studies 31 (6), 2184–2226.

Yang, L. and H. Zhu (2020). Back-running: Seeking and hiding fundamental information in

order flows. Review of Financial Studies 33 (4), 1484–1533.

Zarinelli, E., M. Treccani, J. D. Farmer, and F. Lillo (2015). Beyond the square root:

Evidence for logarithmic dependence of market impact on size and participation rate.

Market Microstructure and Liquidity 1 (02), 1550004.

56

Electronic copy available at: https://ssrn.com/abstract=4301525



Figure 1: Difference between Agency and Proprietary Trades of Colocated Exchange Members

This graph shows the distribution of within-exchange member differences in execution costs in bps between agency and propri-
etary trades that a given exchange member executes on a trading venue where they are colocated. The estimates are based on
regressions that include exchange member-capacity-colocation fixed effects in addition to baseline control variables and stock-
day and intraday fixed effects. Standard errors are clustered by exchange member and stock and estimated using bootstrapping
with 1,000 iterations. The ranges indicate 90% confidence intervals.
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Figure 2: Periodicity in Order Submissions

This graph shows the distribution of child order submissions within a minute at the exchange member-stock-capacity level. The
number of submissions is given in deviations of the logarithm of the number of order submissions at a given second from their
overall mean. The horizontal axis indicates the second within a minute. The data is split according to whether an exchange
member is colocated at an exchange where a given stock can be traded.
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Table 1: Stock Summary Statistics

This table shows summary statistics on the 83 sample stocks. The stocks are sorted into terciles based on their average market
capitalization during the sample period. Market Cap. is the average market capitalization in 1bn Euro. Trading Value is the
average daily lit trading value across all exchanges in 1mn Euro. SharePM and ShareMTF are the market shares of the stock’s
primary market and of the three MTFs combined, respectively, in percent. Spread is the average relative bid-ask spread at the
primary market in percent.

Size
Market Cap. Trading Value SharePM ShareMTF Spread
Mean P50 Mean P50 Mean P50 Mean P50 Mean P50

Small 0.83 0.81 2.25 1.57 77.5 78.9 22.5 21.1 0.30 0.20
Medium 3.33 3.04 11.86 7.39 69.8 71.7 30.2 28.3 0.20 0.14
Large 22.57 9.72 74.53 36.44 60.6 57.4 39.4 42.6 0.09 0.08

Total 8.75 2.94 29.00 7.29 62.3 72.4 37.7 27.6 0.20 0.13
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Table 2: Exchange Member Summary Statistics

This table shows exchange member level summary statistics. Active Stocks is the number of different stocks that the exchange
member is actively trading. Active Countries is the number of different countries where those stocks are listed. Total Volume
is the total trading value of parent orders in 1mn Euro. # Orders is the number of parent orders. Active on MTF is a binary
variable set to one if the exchange member trades on any MTF, scaled by 100. Agency is the number of agency trades relative
to all trades of an exchange member, in percent. Colo, Colo PM, and ColoTQ are binary variables set to one if the exchange
member is colocated on any venue, any primary market, or Turquoise, respectively, scaled by 100. Colo# PMs is the number of
different primary markets at which the exchange member is colocated. Colo#|Colo is the number of different venues at which
the exchange member is colocated conditional on being colocated at any venue.

Mean P5 P50 P95

Panel A: All Exchange Members (N = 139)

Active Stocks 14.2 3.0 7.0 54.0

Active Countries 3.2 1.0 2.0 8.0

Total Volume 48.1 2.8 10.7 288.8

# Orders 84.3 11.0 29.0 497.0

Active on MTF 35.3 0.0 0.0 100.0

Agency 56.5 0.0 68.6 100.0

Colo 29.5 0.0 0.0 100.0

Colo PM 28.8 0.0 0.0 100.0

ColoTQ 8.6 0.0 0.0 100.0

Colo# PMs 0.6 0.0 0.0 4.0

Colo#|Colo 2.2 1.0 1.0 6.0

Panel B: Members Trading in Both Capacities (N = 36)

Active Stocks 29.4 6.0 23.5 68.0

Active Countries 5.3 1.0 6.0 8.0

Total Volume 138.3 9.5 78.1 489.8

# Orders 229.5 26.0 134.5 755.0

Active on MTF 66.7 0.0 100.0 100.0

Agency 51.5 20.3 49.8 86.0

Colo 55.6 0.0 100.0 100.0

Colo PM 55.6 0.0 100.0 100.0

ColoTQ 25.0 0.0 0.0 100.0

Colo# PMs 1.3 0.0 1.0 4.0

Colo#|Colo 2.8 1.0 2.5 5.5
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Table 3: Parent Order Summary Statistics

This table shows parent order level summary statistics. Colo is a binary variables set to one if the exchange member is colocated on the stock’s primary market or the MTFs,
scaled by 100. Buy is a binary variable for buy trades, scaled by 100. Order Size is the size of the parent order in 1k Euro. Information is the signed return from the quote
midpoint before the first to the closing price one day after the last child order execution in bps. Duration is the trading-hours adjusted time the parent order is worked in the
market. Aggressiveness is the volume of executions of marketable orders relative to the size of the parent order, in percent. MTF is the percentage of trade volume executed
on an MTF. Execution Costs are the execution costs in bps. Effective Half Spread and Price Impact are the average effective half-spread and 1 minute price impact of all
aggressive (liquidity-taking) and passive (liquidity providing) child order executions for a given parent order in bps. Volume HFT is the fraction of trade volume with an HFT
counterparty in percent. Volume aggr. HFT is the fraction of trading volume where the counterparty is a liquidity-taking HFT in percent. The last columns show the results
of t-tests for differences between agency and proprietary orders. ∆

σ
is the difference standardized by the standard deviation of the overall sample.

All Orders Agency Orders Proprietary Orders Difference

Mean P5 P50 P95 Mean P5 P50 P95 Mean P5 P50 P95 ∆ t-stat ∆
σ

Panel A: Colocation and Capacity

Colo 52.95 0.00 100.00 100.00 51.35 0.00 100.00 100.00 54.47 0.00 100.00 100.00 3.12 (3.38)∗∗∗ 0.06

Agency 48.65 0.00 0.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00

Panel B: Order Characteristics

Buy 50.03 0.00 100.00 100.00 49.98 0.00 0.00 100.00 50.07 0.00 100.00 100.00 0.08 (0.09) 0.00

Trade Size 570.7 109.0 265.3 1,992.6 560.3 109.5 265.4 2,016.5 580.5 108.5 264.9 1,976.7 20.14 (1.15) 0.02

Information -9.41 -330.08 -7.32 312.08 -6.71 -333.87 -3.41 311.50 -11.97 -322.22 -10.67 312.20 -5.27 (-1.38) -0.03

Duration 4.95 2.13 4.30 8.68 5.09 2.15 4.45 9.05 4.82 2.13 4.15 8.49 -0.27 (-5.47)∗∗∗ -0.10

Panel C: Execution Characteristics

Aggressiveness 41.70 0.00 37.58 97.78 44.05 1.23 40.00 99.86 39.46 0.00 35.10 94.89 -4.59 (-8.28)∗∗∗ -0.15

Child Order Executions 72.87 4.00 35.00 273.00 65.72 3.00 30.00 258.00 79.65 4.00 40.00 286.50 13.92 (6.92)∗∗∗ 0.13

MTF 28.39 0.00 3.63 100.00 17.20 0.00 0.00 100.00 38.99 0.00 28.40 100.00 21.79 (33.71)∗∗∗ 0.59

Panel D: Execution Costs

Execution Costs -4.46 -112.78 -2.60 102.69 -2.22 -110.35 -0.47 108.74 -6.59 -115.96 -4.56 94.91 -4.38 (-3.51)∗∗∗ -0.06

Effective Half Spreadaggr. 4.97 0.63 3.30 14.46 5.20 0.69 3.39 14.77 4.75 0.60 3.16 14.09 -0.45 (-3.18)∗∗∗ -0.06

Effective Half Spreadpass. -3.62 -10.50 -2.48 0.74 -3.49 -9.72 -2.45 1.06 -3.74 -11.15 -2.50 0.49 -0.25 (-1.83) -0.04

Price Impact1min
aggr. 3.49 -4.52 1.97 15.78 3.75 -4.39 2.08 16.44 3.25 -4.65 1.89 15.07 -0.51 (-2.88)∗∗∗ -0.06

Price Impact1min
pass. -4.67 -15.99 -3.30 3.52 -4.68 -16.35 -3.22 3.95 -4.67 -15.16 -3.35 2.94 0.01 (0.05) 0.00

Panel E: HFT Interactions

Volume HFT 31.41 2.18 30.21 64.96 29.50 1.38 27.73 62.49 33.22 3.52 32.24 66.35 3.72 (10.58)∗∗∗ 0.19

Volume aggr. HFT 20.83 0.00 17.87 53.65 19.07 0.00 15.60 51.73 22.49 0.00 20.10 55.11 3.42 (10.61)∗∗∗ 0.19

N = 11,724 N = 5,704 N = 6,020
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Table 4: IPW Performance

This table shows parent order level averages of and differences between agency (A) and proprietary (P) orders originating from exchange members that are (C) or are not (C̄)
colocated on a venue where the stock can be traded. In panel A, each observations is equally weighted. In panel B, the observations are weighted by the inverse probability
of being in their observed category of colocation and agency, where the probabilities are estimated in a first stage using a multinomial logit model with the same independent
variables as in Table 5. t-statistics of the differences are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively. ∆

σ
is the difference

standardized by the standard deviation of the respective variable in the unweighted sample.

PC̄−AC̄ AC−AC̄ PC−AC̄ AC−PC̄ PC−PC̄ AC−PC

AC̄ PC̄ AC PC ∆ t ∆
σ ∆ t ∆

σ ∆ t ∆
σ ∆ t ∆

σ ∆ t ∆
σ ∆ t ∆

σ

Panel A: Unweighted Sample

log Order Size 12.62 12.78 12.78 12.63 0.16 (6.39)∗∗∗ 0.18 0.16 (6.69)∗∗∗ 0.18 0.01 (0.51) 0.01 -0.00 (-0.03) -0.00 -0.15 (-6.21)∗∗∗ -0.16 0.15 (6.54)∗∗∗ 0.16
log Market Trading 15.86 16.01 15.39 15.00 0.16 (3.07)∗∗∗ 0.08 -0.47 (-9.43)∗∗∗ -0.25 -0.86 (-17.63)∗∗∗ -0.45 -0.63 (-12.57)∗∗∗ -0.33 -1.01 (-20.87)∗∗∗ -0.53 0.39 (8.07)∗∗∗ 0.20
Buy 48.40 50.09 51.49 50.05 1.69 (1.26) 0.03 3.09 (2.33)∗∗ 0.06 1.65 (1.28) 0.03 1.39 (1.05) 0.03 -0.05 (-0.04) -0.00 1.44 (1.13) 0.03
Volatility t-10min 0.09 0.09 0.08 0.08 0.01 (2.66)∗∗∗ 0.07 -0.01 (-2.59)∗∗∗ -0.07 -0.00 (-0.61) -0.02 -0.01 (-5.12)∗∗∗ -0.14 -0.01 (-3.32)∗∗∗ -0.09 -0.00 (-2.07)∗∗ -0.05
Return t-10min -2.08 -1.71 0.67 0.70 0.37 (0.51) 0.01 2.75 (3.86)∗∗∗ 0.10 2.77 (4.08)∗∗∗ 0.10 2.37 (3.28)∗∗∗ 0.09 2.40 (3.46)∗∗∗ 0.09 -0.03 (-0.04) -0.00
Information -21.04 -13.42 6.87 -10.76 7.62 (1.34) 0.04 27.91 (5.07)∗∗∗ 0.14 10.27 (1.90)∗ 0.05 20.29 (3.76)∗∗∗ 0.10 2.66 (0.50) 0.01 17.63 (3.44)∗∗∗ 0.09
Duration 5.11 5.12 5.07 4.57 0.01 (0.08) 0.00 -0.04 (-0.54) -0.01 -0.54 (-8.08)∗∗∗ -0.20 -0.05 (-0.62) -0.02 -0.55 (-8.16)∗∗∗ -0.20 0.50 (7.39)∗∗∗ 0.19
Aggressiveness 45.62 39.60 42.57 39.35 -6.01 (-7.30)∗∗∗ -0.20 -3.05 (-3.72)∗∗∗ -0.10 -6.27 (-8.05)∗∗∗ -0.21 2.97 (3.74)∗∗∗ 0.10 -0.25 (-0.34) -0.01 3.22 (4.31)∗∗∗ 0.11
log Child Exec. 2.99 3.61 3.74 3.62 0.61 (16.10)∗∗∗ 0.47 0.75 (22.71)∗∗∗ 0.58 0.63 (19.50)∗∗∗ 0.48 0.14 (3.97)∗∗∗ 0.11 0.02 (0.53) 0.01 0.12 (4.19)∗∗∗ 0.09
MTF 17.09 41.82 17.31 36.62 24.73 (23.28)∗∗∗ 0.67 0.22 (0.26) 0.01 19.53 (22.41)∗∗∗ 0.53 -24.51 (-24.86)∗∗∗ -0.67 -5.20 (-5.15)∗∗∗ -0.14 -19.31 (-24.86)∗∗∗ -0.52

Panel B: Weighted Sample

log Order Size 12.76 12.71 12.71 12.71 -0.05 (-1.70)∗ -0.05 -0.04 (-1.41) -0.05 -0.05 (-1.67)∗ -0.05 0.01 (0.31) 0.01 0.00 (0.09) 0.00 0.01 (0.23) 0.01
log Market Trading 15.67 15.24 15.53 15.57 -0.43 (-2.60)∗∗∗ -0.22 -0.15 (-2.05)∗∗ -0.08 -0.11 (-1.63) -0.06 0.29 (1.74)∗ 0.15 0.33 (2.02)∗∗ 0.17 -0.04 (-0.66) -0.02
Buy 50.58 49.53 49.68 51.85 -1.05 (-0.66) -0.02 -0.90 (-0.58) -0.02 1.26 (0.87) 0.03 0.15 (0.09) 0.00 2.31 (1.52) 0.05 -2.17 (-1.48) -0.04
Volatility t-10min 0.09 0.09 0.09 0.09 0.00 (0.25) 0.01 -0.00 (-0.52) -0.02 -0.00 (-0.19) -0.01 -0.00 (-0.67) -0.03 -0.00 (-0.40) -0.01 -0.00 (-0.35) -0.01
Return t-10min -0.16 -1.26 -0.77 -0.71 -1.10 (-1.20) -0.04 -0.61 (-0.70) -0.02 -0.55 (-0.72) -0.02 0.49 (0.50) 0.02 0.55 (0.63) 0.02 -0.06 (-0.07) -0.00
Information -9.33 -6.70 -11.76 -11.44 2.63 (0.39) 0.01 -2.43 (-0.37) -0.01 -2.11 (-0.33) -0.01 -5.06 (-0.75) -0.02 -4.74 (-0.72) -0.02 -0.32 (-0.05) -0.00
Duration 5.16 4.98 4.95 5.03 -0.17 (-2.14)∗∗ -0.06 -0.21 (-2.58)∗∗∗ -0.08 -0.12 (-1.50) -0.05 -0.03 (-0.40) -0.01 0.05 (0.59) 0.02 -0.08 (-0.99) -0.03
Aggressiveness 41.66 41.59 39.37 41.17 -0.07 (-0.08) -0.00 -2.29 (-2.48)∗∗ -0.08 -0.49 (-0.57) -0.02 -2.22 (-2.37)∗∗ -0.07 -0.42 (-0.47) -0.01 -1.81 (-2.02)∗∗ -0.06
log Child Exec. 3.52 3.49 3.57 3.43 -0.03 (-0.72) -0.02 0.05 (1.33) 0.04 -0.09 (-2.22)∗∗ -0.07 0.09 (2.04)∗∗ 0.07 -0.06 (-1.36) -0.04 0.14 (3.89)∗∗∗ 0.11
MTF 29.24 26.64 31.11 28.68 -2.60 (-2.03)∗∗ -0.07 1.87 (1.25) 0.05 -0.56 (-0.47) -0.02 4.47 (3.44)∗∗∗ 0.12 2.04 (2.20)∗∗ 0.06 2.43 (2.00)∗∗ 0.07
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Table 5: Baseline Execution Cost Analysis

This table shows parent order level regressions with stock-day fixed effects in addition to quarter-hour intraday fixed effects for
the beginning of the order’s execution. The dependent variable is the execution cost in basis points. Order Size is the parent
order size in Euro. Market Trading is the total trading volume of all other trades during the execution of the parent order.
Buy is a binary variable equal to one for buy orders. Volatility t-10min is the standard deviation of 10ms quote midpoint returns
and Return t-10min is the trade direction signed quote midpoint return in the 10min interval before the first execution of a child
order, in bps, respectively. Since the previous two variables are based on less than 10min of observations for early trades, a
binary variable for trades starting before 9:10h is included in all models but not reported. Information is the permanent price
impact as measured by the trade direction signed return from the quote midpoint immediately before the parent order to the
closing quote midpoint one day after the last child order execution, in bps. Duration is the time difference between the first and
last execution of a child order, adjusted for exchange trading hours. Aggressiveness is the volume of executions of marketable
orders relative to the size of the parent order, in percent. Child Order Executions is the number of individual child order
executions. MTF is the total volume executed on MTFs relative to the size of the parent order, in percent. The observations
are weighted by the inverse probability of being in their observed category of colocation and capacity, where the probabilities
are estimated in a first stage using a multinomial logit model with the same independent variables while the standard errors are
estimated using bootstrapping with 1,000 iterations. Standard errors are clustered by exchange member and stock. t-statistics
are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3)

log Order Size 2.597∗∗∗ 2.663∗∗∗ 3.330∗∗∗

( 2.63) ( 2.71) ( 3.21)

log Market Trading −3.370∗ −3.441∗

(−1.67) (−1.71)

Buy 1.870 1.936 1.985
( 1.29) ( 1.34) ( 1.37)

Volatility t-10min 17.310 17.035 17.081
( 1.35) ( 1.33) ( 1.33)

Return t-10min 0.005 0.006 0.006
( 0.17) ( 0.19) ( 0.18)

Information 0.146∗∗∗ 0.145∗∗∗ 0.145∗∗∗

(27.65) (27.57) (27.59)

Duration −1.675∗∗∗ −1.033∗ −0.975∗

(−4.72) (−1.88) (−1.78)

Aggressiveness 0.305∗∗∗ 0.305∗∗∗ 0.310∗∗∗

(12.32) (12.36) (12.45)

log Child Order Executions 4.114∗∗∗ 4.142∗∗∗ 3.280∗∗∗

( 5.73) ( 5.77) ( 4.06)

MTF 0.065∗∗∗

( 2.97)

Stock-Day FE ✓ ✓ ✓
Intraday FE ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓
Exchange Member FE − − −

N = 11,724
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Table 6: Exchange Member Colocation and HFT

This table shows parent order level regressions with stock-day and intraday fixed effects. The dependent variable is the execution
cost in basis points. Agency is a binary variable equal to one for agency and zero for proprietary orders. Colo is a binary
variable equal to one if the exchange member is colocated on the primary market or on the MTF. HFT is the fraction of the
parent order executed against an HFT counterparty in percent. HFTAggr. and HFT Pass. is the fraction of the parent order
executed against an HFT counterparty where the HFT takes or provides liquidity, respectively, in percent. ColoHFTAggr.

and ColoHFT Pass. is the fraction of the parent order executed against a liquidity taking or providing HFT, respectively, on a
venue where the exchange member is colocated, in percent. The HFT variables are centered at zero. The remaining variables
capturing order and execution characteristics are defined as in Table 5 and all included in all models. The observations are
weighted by the inverse probability of being in their observed category of colocation and capacity, where the probabilities are
estimated in a first stage using a multinomial logit model with the independent variables as in Table 5 while the standard
errors are estimated using bootstrapping with 1,000 iterations. Standard errors are clustered by exchange member and stock.
t-statistics are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 4.465∗∗∗ 4.365∗∗∗ 0.555 0.682 1.029 3.654
( 2.87) ( 2.80) ( 0.26) ( 0.32) ( 0.49) ( 0.96)

Colo −2.301 −5.978∗∗∗ −5.960∗∗∗ −5.659∗∗∗ −5.857∗∗∗

(−1.45) (−2.71) (−2.71) (−2.58) (−2.62)

Colo×Agency 7.223∗∗ 7.165∗∗ 6.289∗∗ 6.024∗∗

( 2.48) ( 2.47) ( 2.16) ( 2.02)

HFT 0.088∗∗

( 1.97)

HFT Aggr. 0.365∗∗∗ 0.451∗∗∗

( 6.65) ( 5.77)

HFT Pass. −0.304∗∗∗ −0.382∗∗∗

(−4.15) (−3.87)

ColoHFT Aggr. −0.211∗∗

(−2.01)

ColoHFT Pass. 0.334∗∗∗

( 2.85)

Agency×HFT Aggr. −0.090
(−0.88)

Agency×HFT Pass. −0.056
(−0.48)

Agency×ColoHFT Aggr. 0.254
( 1.64)

Agency×ColoHFT Pass. −0.189
(−1.07)

Order Controls ✓ ✓ ✓ ✓ ✓ ✓
Execution Controls ✓ ✓ ✓ ✓ ✓ ✓
Stock-Day FE ✓ ✓ ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓ ✓ ✓ ✓
Exchange Member FE − − − − − −

N = 11,724

63

Electronic copy available at: https://ssrn.com/abstract=4301525



Table 7: Exchange Member Colocation and HFT with Exchange Member FE

This table shows parent order level regressions with stock-day, intraday, and additionally exchange member fixed effects. The
dependent variable in all models is the execution cost in basis points. The independent variables are defined as in Table 5 and
Table 6. As being colocated on the MTF does not vary within exchange members, only colocation at the stock’s primary market
is considered. Consequently, trading against HFTs has been split by trading venue type. The HFT variables are centered at
zero. The observations are weighted by the inverse probability of being in their observed category of colocation and capacity,
where the probabilities are estimated in a first stage using a multinomial logit model with the independent variables as in
Table 5 while the standard errors are estimated using bootstrapping with 1,000 iterations. Standard errors are clustered by
exchange member and stock. t-statistics are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level,
respectively.

(1) (2) (3) (4) (5) (6)

Agency 9.217∗∗∗ 9.215∗∗∗ 4.991∗ 5.111∗ 5.180∗ 4.529
( 4.06) ( 4.06) ( 1.70) ( 1.74) ( 1.77) ( 1.52)

Colo PM −2.937 −6.258∗ −6.126∗ −6.182∗ −6.879∗

(−0.90) (−1.74) (−1.70) (−1.71) (−1.91)

Colo PM×Agency 7.834∗∗ 7.763∗∗ 7.704∗∗ 7.659∗∗

( 2.22) ( 2.20) ( 2.18) ( 2.11)

HFT 0.091∗∗

( 2.10)

HFT Aggr. 0.351∗∗∗ 0.352∗∗∗

( 6.34) ( 4.75)

HFT Pass. −0.297∗∗∗ −0.353∗∗∗

(−4.28) (−3.99)

ColoHFT Aggr.
PM −0.110

(−0.91)

ColoHFT Pass.
PM 0.407∗∗∗

( 2.62)

Agency×HFT Aggr.
PM 0.038

( 0.36)

Agency×HFT Pass.
PM 0.009

( 0.07)

Agency×HFT Aggr.
MTF 0.115

( 0.93)

Agency×HFT Pass.
MTF −0.031

(−0.21)

Agency×ColoHFT Aggr.
PM 0.021

( 0.13)

Agency×ColoHFT Pass.
PM −0.361∗

(−1.73)

Order Controls ✓ ✓ ✓ ✓ ✓ ✓
Execution Controls ✓ ✓ ✓ ✓ ✓ ✓
Stock-Day FE ✓ ✓ ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓ ✓ ✓ ✓
Exchange Member FE ✓ ✓ ✓ ✓ ✓ ✓

N = 11,724
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Table 8: Order to Trade Ratios

This table shows parent order level regressions with stock-day and intraday fixed effects. The dependent variable is the number
of child order submissions relative to the number of child order executions. The independent variables are defined as in Table 5
and Table 6. The model in column (2) additionally includes exchange member fixed effects. As being colocated on the MTF does
not vary within exchange members, only colocation at the stock’s primary market is considered in this model. The observations
are weighted by the inverse probability of being in their observed category of colocation and capacity, where the probabilities
are estimated in a first stage using a multinomial logit model with the independent variables as in Table 5 while the standard
errors are estimated using bootstrapping with 1,000 iterations. Standard errors are clustered by exchange member and stock.
t-statistics are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2)

Agency −1.425 −0.424
(−0.42) (−0.16)

Colo 10.722∗∗ 3.883
( 2.12) ( 0.99)

Colo×Agency −9.679∗ −10.481∗∗∗

(−1.80) (−2.60)

Order Controls ✓ ✓
Execution Controls ✓ ✓
Stock-Day FE ✓ ✓
Intraday FE ✓ ✓
Inv. Prob. Weighting ✓ ✓
Exchange Member FE − ✓

N = 10,411
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Table 9: Child-order Execution Quality

This table shows parent order level regressions with stock-day fixed effects in addition to quarter-hour intraday fixed effects
for the beginning of the order’s execution. Columns (2) and (4) additionally include exchange member fixed effects. Each
panel shows a separate set of regression results where the dependent variables are the effective half spread and the price
impact after 1 second and 1 minute, respectively. All dependent variables are parent order level averages of the respective
measures across all aggressive (liquidity-taking) or passive (liquidity-providing) child order executions of a given parent order.
All three measures are expressed in basis points where positive (negative) values indicate a loss (gain) for the institution. The
independent variables are defined as in Table 5 and Table 6. The observations are weighted by the inverse probability of being
in their observed category of colocation and capacity, where the probabilities are estimated in a first stage using a multinomial
logit model with the independent variables as in Table 5 while the standard errors are estimated using bootstrapping with
1,000 iterations. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***, **,
* denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4)

Aggr. Aggr. Pass. Pass.

Panel A: Effective Half Spread

Agency 0.421∗∗∗ 0.385∗ −0.009 0.261
( 3.09) ( 1.92) (−0.07) ( 1.49)

Colo −0.739∗∗∗ −0.147 −0.487∗∗∗ −0.302
(−5.62) (−0.62) (−3.82) (−1.40)

Colo×Agency 0.045 0.176 0.084 0.170
( 0.26) ( 0.72) ( 0.50) ( 0.87)

Panel B: Price Impact at 1 Second

Agency 0.335∗ 0.768∗∗∗ −0.331∗ 0.010
( 1.67) ( 2.80) (−1.93) ( 0.05)

Colo −0.694∗∗∗ 0.290 −0.753∗∗∗ −0.035
(−3.80) ( 0.88) (−5.09) (−0.15)

Colo×Agency 0.351 −0.096 0.616∗∗∗ 0.788∗∗∗

( 1.45) (−0.30) ( 3.05) ( 3.28)

Panel C: Price Impact at 1 Minute

Agency −0.091 0.390 −0.741∗∗∗ 0.117
(−0.31) ( 1.00) (−2.91) ( 0.38)

Colo −1.009∗∗∗ 0.084 −0.853∗∗∗ −0.385
(−3.35) ( 0.18) (−3.79) (−1.05)

Colo×Agency 0.930∗∗ 0.096 0.873∗∗∗ 0.517
( 2.34) ( 0.19) ( 2.70) ( 1.38)

Order Controls ✓ ✓ ✓ ✓
Execution Controls ✓ ✓ ✓ ✓
Stock-Day FE ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓ ✓
Exchange Member FE − ✓ − ✓

N = 10,926 N = 10,969
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Table 10: Relative Fees and Exchange Member Colocation

This table shows parent order level regressions with stock-day and intraday fixed effects. The dependent variables in all models
are the exchange fees in basis points. The independent variables are defined as in Table 5 and Table 6. The corresponding
baseline model including the control variables can be found in Table C1 in the internet appendix. The models in columns
(4)-(6) additionally include exchange member fixed effects. As being colocated on the MTF does not vary within exchange
members, only colocation at the stock’s primary market is considered in these models. The observations are weighted by the
inverse probability of being in their observed category of colocation and capacity, where the probabilities are estimated in a first
stage using a multinomial logit model with the independent variables as in the baseline model in Table C1 while the standard
errors are estimated using bootstrapping with 1,000 iterations. Standard errors are clustered by exchange member and stock.
t-statistics are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 0.029∗∗∗ 0.030∗∗∗ 0.063∗∗∗ 0.067∗∗∗ 0.067∗∗∗ 0.094∗∗∗

( 3.21) ( 3.38) ( 5.41) ( 6.62) ( 6.58) ( 5.65)

Colo 0.028∗∗∗ 0.060∗∗∗ −0.011 0.011
( 3.56) ( 4.38) (−0.60) ( 0.58)

Colo×Agency −0.063∗∗∗ −0.054∗∗∗

(−3.80) (−2.98)

Order Controls ✓ ✓ ✓ ✓ ✓ ✓
Execution Controls − − − − − −
Stock-Day FE ✓ ✓ ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓ ✓ ✓ ✓
Exchange Member FE − − − ✓ ✓ ✓

N = 11,724
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Table 11: Execution Cost Risk

This table shows parent order level regressions with stock-day and intraday fixed effects. The dependent variables are the
absolute residuals (in columns (1) and (2)) or squared residuals (in columns (3) and (4)) of the execution cost regressions shown
in model (3) of Table 6 (for columns (1) and (3)) and Table 7 (for columns (2) and (4)), respectively. The independent variables
are defined as in Table 5 and Table 6. The models in columns (2) and (4) additionally include exchange member fixed effects.
As being colocated on the MTF does not vary within exchange members, only colocation at the stock’s primary market is
considered in these models. The observations are weighted by the inverse probability of being in their observed category of
colocation and capacity, where the probabilities are estimated in a first stage using a multinomial logit model with the same
independent variables except for colocation and capacity while the standard errors are estimated using bootstrapping with
1,000 iterations. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***, **, *
denotes significance at the 1%, 5%, 10%–level, respectively.

Abs. Residuals Sq. Residuals

(1) (2) (3) (4)

log Order Size 1.056∗∗ 0.726∗ 99.068 81.114
( 2.56) ( 1.68) ( 1.52) ( 1.23)

log Market Trading 7.003∗∗∗ 6.300∗∗∗ 990.406∗∗∗ 825.692∗∗∗

( 3.64) ( 3.26) ( 3.10) ( 2.78)

Buy −0.032 −0.273 −85.322 −98.286
(−0.04) (−0.36) (−0.62) (−0.75)

Volatility t-10min 6.705 5.324 310.106 329.209
( 1.09) ( 0.88) ( 0.27) ( 0.31)

Return t-10min 0.027∗ 0.024 3.321 3.524
( 1.78) ( 1.62) ( 1.20) ( 1.36)

Information −0.002 0.000 −0.388 −0.184
(−0.60) (−0.13) (−0.75) (−0.38)

Duration 0.483 0.602 82.168 108.089
( 1.14) ( 1.45) ( 1.14) ( 1.62)

Agency 1.088 3.037∗∗ 149.992 446.405∗∗

( 1.05) ( 2.06) ( 0.91) ( 2.01)

Colo 3.191∗∗∗ −1.113 442.918∗∗ −226.732
( 2.95) (−0.40) ( 2.56) (−0.57)

Colo×Agency −1.450 −2.447 −222.289 −397.380
(−1.00) (−1.24) (−0.95) (−1.25)

Stock-Day FE ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓ ✓
Exchange Member FE − ✓ − ✓

N = 11,724
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Internet Appendix

In this internet appendix, we first provide evidence that our key results remain robust to not

using IPW in Appendix A. In Appendix B, we show that the results are not meaningfully

affected by exchange fees. Appendix C shows the baseline results for exchange fees. Ap-

pendix D shows that the main results hold if we exclude predictors that are directly affected

by the execution algorithm.

A Unweighted estimates

First, we estimate the panel regression for parent order execution costs without employing

IPW. Table A1 reports the baseline results. The coefficients for log order size, Informa-

tion, parent order duration, aggressiveness, log child order executions, and MTF trading are

consistent in magnitude and statistical significance with the main specification employing

IPW. Additionally, the market trading variable that is weakly significant in the main spec-

ification becomes insignificant in the estimation without IPW. Finally, the trade direction

variable and historical volatility become weakly significant in the specification without IPW.

Table A2 reports the relationship between execution costs on the one hand and trading ca-

pacity, colocation, and HFT interactions on the other hand. Again, the results remain very

similar to the estimations with IPW. After controlling for the baseline variables, agency or-

ders have a higher execution cost than proprietary orders, colocated proprietary orders have

lower execution costs than colocated agency orders, and aggressive (passive) HFT activity

is positively (negatively) associated with order execution costs. The sign, magnitude, and

statistical significance of the coefficients is also similar between the two specifications.
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Table A3 contains the results after including exchange-member fixed effects. While the

overall conclusions remain unchanged, we do observe some differences compared to the IPW

results. Specifically, the coefficient for the execution costs of agency orders, while positive,

is no longer weakly significant after controlling for colocation and HFT. At the same time,

the coefficient of the colocation dummy and its interaction with the agency dummy in spec-

ifications (3) to (6) is larger in absolute terms and gains in statistical significance. Finally,

the relationship between execution costs and total HFT as well as its decomposition into

aggressive and passive strategies remain largely unchanged.

Figure A1 shows that the broker-level difference in fixed effects between agency and

proprietary orders is similar to the output with IPW. Overall, the above findings indicate

that our key results are robust to the weighting scheme employed in the estimation process.

Insert Table A1 about here

Insert Table A2 about here

Insert Table A3 about here

Insert Figure A1 about here

B Execution costs incorporating exchange fees

Next, we estimate all the main results by computing execution costs after including ex-

change fees and subtracting any rebates. For exchanges offering fee schedules dependent on

the members’ total trading volume, we assume the fee/rebate corresponding to the highest

volume threshold. As some of the competing MTFs operate a maker-taker fee structure,
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offering rebates to liquidity providers, the sum of fees incurred can be zero or even negative

in some cases. We report the coefficients from the estimation with and without exchange

member-fixed effects. The results are reported in Table B1, Table B2, and Table B3. While

we do observe small differences in the statistical significance of some coefficients, the overall

conclusions concerning the relationship between execution costs and trader capacity, coloca-

tion, and HFT remain robust to including fees/rebates.

Insert Table B1 about here

Insert Table B2 about here

Insert Table B3 about here

C Baseline model for exchange fees

Table C1 shows the baseline results for exchange fees. Most predictors of execution costs

do not predict exchange fees. Exchange fees decrease in order size and increase in execution

duration, two variables that are generally positively correlated with each other.

Insert Table C1 about here

D Robustness to excluding routing characteristics

In Tables D1 and D2, we repeat the main analyses contained in Subsections 7.2 and 7.3

while excluding predictors reflecting characteristics of the execution algorithm. Thus, results

reported in Table D2 measure the total impact of capacity and colocation on execution costs
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rather than the direct effect after conditioning on certain characteristics of the algorithm.23

The results without exchange member fixed effects (models (1) to (3)) are qualitatively

unchanged compared to those reported in Subsection 7.2, with slightly larger effect sizes.

The within-exchange member analysis (models (4) to (6)) provides results that also do not

qualitatively differ from those reported in Subsection 7.3, again with some minor differences

in effect size estimates. The results of the baseline analysis shown in Table D1 also do not

qualitatively differ from those in Table 5. The only quantitatively apparent difference is in

the coefficient for order size, which can be explained by the fact that the excluded variables,

and in particular the number of child orders, are correlated with the parent order size.

Insert Table D1 about here

Insert Table D2 about here

23We use the term “algorithm” in a broad sense, including choices high-touch traders may make when
executing a large order.
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Figure A1: Difference between Agency and Proprietary Trades of Colocated Exchange Mem-
bers without IPW

This graph shows the distribution of within-exchange member differences in execution costs in bps between agency and pro-
prietary trades that a given exchange member executes on a trading venue where they are colocated. The estimates are based
on regressions that include exchange member-capacity-colocation fixed effects in addition to baseline control variables and
stock-day and intraday fixed effects. Standard errors are clustered by exchange member and stock. The ranges indicate 90%
confidence intervals.

-50

0

50

100

150

200

250

73

Electronic copy available at: https://ssrn.com/abstract=4301525



Table A1: Baseline Execution Cost Analysis without IPW

This table shows parent order level regressions for the execution cost in basis points similar to Table 5, but without inverse
probability weighting. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***,
**, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3)

log Order Size 2.646∗∗∗ 2.671∗∗∗ 3.379∗∗∗

( 2.90) ( 2.92) ( 3.56)

log Market Trading −1.226 −1.280
(−0.61) (−0.64)

Buy 2.133∗ 2.140∗ 2.173∗

( 1.68) ( 1.69) ( 1.71)

Volatility t-10min 19.553∗ 19.645∗ 19.733∗

( 1.77) ( 1.78) ( 1.78)

Return t-10min 0.000 0.000 0.000
( 0.00) ( 0.00) (−0.01)

Information 0.142∗∗∗ 0.142∗∗∗ 0.142∗∗∗

(31.40) (31.39) (31.37)

Duration −1.304∗∗∗ −1.065∗∗ −1.001∗

(−4.18) (−2.03) (−1.91)

Aggressiveness 0.305∗∗∗ 0.305∗∗∗ 0.309∗∗∗

(14.11) (14.10) (14.28)

log Child Order Executions 4.238∗∗∗ 4.243∗∗∗ 3.396∗∗∗

( 6.25) ( 6.26) ( 4.58)

MTF 0.060∗∗∗

( 3.12)

Stock-Day FE ✓ ✓ ✓
Intraday FE ✓ ✓ ✓
Inv. Prob. Weighting − − −
Exchange Member FE − − −

N = 11,724
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Table A2: Exchange Member Colocation and HFT without IPW

This table shows parent order level regressions for the execution cost in basis points similar to Table 6, but without inverse
probability weighting. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***,
**, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 4.593∗∗∗ 4.477∗∗∗ −0.304 −0.234 0.377 3.765
( 3.07) ( 2.98) (−0.15) (−0.11) ( 0.18) ( 1.08)

Colo −1.840 −6.212∗∗∗ −6.195∗∗∗ −5.819∗∗∗ −5.309∗∗∗

(−1.29) (−3.11) (−3.11) (−2.94) (−2.70)

Colo×Agency 8.840∗∗∗ 8.826∗∗∗ 7.793∗∗∗ 7.085∗∗

( 3.21) ( 3.21) ( 2.83) ( 2.55)

HFT 0.081∗∗

( 2.09)

HFT Aggr. 0.347∗∗∗ 0.468∗∗∗

( 7.02) ( 6.54)

HFT Pass. −0.296∗∗∗ −0.334∗∗∗

(−4.70) (−3.72)

ColoHFT Aggr. −0.258∗∗∗

(−2.72)

ColoHFT Pass. 0.280∗∗∗

( 2.63)

Agency×HFT Aggr. −0.122
(−1.33)

Agency×HFT Pass. −0.044
(−0.41)

Agency×ColoHFT Aggr. 0.244∗

( 1.68)

Agency×ColoHFT Pass. −0.224
(−1.36)

Order Controls ✓ ✓ ✓ ✓ ✓ ✓
Execution Controls ✓ ✓ ✓ ✓ ✓ ✓
Stock-Day FE ✓ ✓ ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓ ✓ ✓
Inv. Prob. Weighting − − − − − −
Exchange Member FE − − − − − −

N = 11,724
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Table A3: Exchange Member Colocation and HFT with Exchange Member FE without IPW

This table shows parent order level regressions for the execution cost in basis points similar to Table 7, but without inverse
probability weighting. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***,
**, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 8.668∗∗∗ 8.543∗∗∗ 3.607 3.756 3.843 3.489
( 4.12) ( 4.06) ( 1.37) ( 1.43) ( 1.46) ( 1.30)

Colo PM −4.806 −8.305∗∗∗ −8.150∗∗ −8.259∗∗∗ −8.417∗∗∗

(−1.63) (−2.60) (−2.55) (−2.59) (−2.64)

Colo PM×Agency 8.865∗∗∗ 8.764∗∗∗ 8.674∗∗∗ 8.515∗∗

( 2.66) ( 2.63) ( 2.60) ( 2.48)

HFT 0.095∗∗

( 2.44)

HFT Aggr. 0.343∗∗∗ 0.362∗∗∗

( 6.93) ( 5.28)

HFT Pass. −0.274∗∗∗ −0.274∗∗∗

(−4.39) (−3.20)

ColoHFT Aggr.
PM −0.123

(−1.14)

ColoHFT Pass.
PM 0.219

( 1.55)

Agency×HFT Aggr.
PM −0.026

(−0.28)

Agency×HFT Pass.
PM −0.025

(−0.22)

Agency×HFT Aggr.
MTF 0.088

( 0.75)

Agency×HFT Pass.
MTF −0.047

(−0.33)

Agency×ColoHFT Aggr.
PM 0.133

( 0.82)

Agency×ColoHFT Pass.
PM −0.231

(−1.15)

Order Controls ✓ ✓ ✓ ✓ ✓ ✓
Execution Controls ✓ ✓ ✓ ✓ ✓ ✓
Stock-Day FE ✓ ✓ ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓ ✓ ✓
Inv. Prob. Weighting − − − − − −
Exchange Member FE ✓ ✓ ✓ ✓ ✓ ✓

N = 11,724
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Table B1: Baseline Execution Cost Analysis after Exchange Fees

This table shows parent order level regressions similar to Table 5, but for the execution cost after adding exchange fees and
subtracting rebates in basis points. Standard errors are clustered by exchange member and stock. t-statistics are given in
parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3)

log Order Size 2.281∗∗ 2.378∗∗ 2.975∗∗∗

( 2.25) ( 2.36) ( 2.79)

log Market Trading −4.906∗∗ −4.970∗∗

(−2.27) (−2.30)

Buy 1.925 2.021 2.064
( 1.30) ( 1.37) ( 1.40)

Volatility t-10min 15.370 14.968 15.010
( 1.10) ( 1.07) ( 1.07)

Return t-10min 0.002 0.003 0.002
( 0.04) ( 0.07) ( 0.07)

Information 0.154∗∗∗ 0.154∗∗∗ 0.154∗∗∗

(25.15) (25.13) (25.13)

Duration −1.857∗∗∗ −0.922 −0.870
(−4.92) (−1.58) (−1.49)

Aggressiveness 0.303∗∗∗ 0.304∗∗∗ 0.309∗∗∗

(11.94) (12.00) (12.06)

log Child Order Executions 4.261∗∗∗ 4.302∗∗∗ 3.530∗∗∗

( 5.77) ( 5.83) ( 4.23)

MTF 0.059∗∗∗

( 2.59)

Stock-Day FE ✓ ✓ ✓
Intraday FE ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓
Exchange Member FE − − −

N = 11,724
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Table B2: Exchange Member Colocation and HFT after Exchange Fees

This table shows parent order level regressions similar to Table 6, but for the execution cost after adding exchange fees and
subtracting rebates in basis points. Standard errors are clustered by exchange member and stock. t-statistics are given in
parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 4.600∗∗∗ 4.496∗∗∗ 0.578 0.692 1.044 4.081
( 2.88) ( 2.81) ( 0.27) ( 0.32) ( 0.48) ( 1.02)

Colo −2.420 −6.200∗∗∗ −6.184∗∗∗ −5.879∗∗ −6.124∗∗∗

(−1.48) (−2.70) (−2.69) (−2.57) (−2.61)

Colo×Agency 7.426∗∗ 7.375∗∗ 6.485∗∗ 6.209∗∗

( 2.45) ( 2.44) ( 2.14) ( 1.99)

HFT 0.079∗

( 1.73)

HFT Aggr. 0.360∗∗∗ 0.448∗∗∗

( 6.47) ( 5.65)

HFT Pass. −0.319∗∗∗ −0.400∗∗∗

(−4.25) (−3.95)

ColoHFT Aggr. −0.202∗

(−1.87)

ColoHFT Pass. 0.351∗∗∗

( 2.88)

Agency×HFT Aggr. −0.104
(−0.99)

Agency×HFT Pass. −0.067
(−0.55)

Agency×ColoHFT Aggr. 0.260
( 1.64)

Agency×ColoHFT Pass. −0.189
(−1.04)

Order Controls ✓ ✓ ✓ ✓ ✓ ✓
Execution Controls ✓ ✓ ✓ ✓ ✓ ✓
Stock-Day FE ✓ ✓ ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓ ✓ ✓ ✓
Exchange Member FE − − − − − −

N = 11,724
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Table B3: Exchange Member Colocation and HFT with Exchange Member FE after Exchange
Fees

This table shows parent order level regressions similar to Table 7, but for the execution cost after adding exchange fees and
subtracting rebates in basis points. Standard errors are clustered by exchange member and stock. t-statistics are given in
parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 9.234∗∗∗ 9.232∗∗∗ 4.378 4.486 4.555 3.988
( 3.99) ( 3.98) ( 1.45) ( 1.48) ( 1.51) ( 1.30)

Colo PM −3.296 −7.112∗ −6.993∗ −7.051∗ −7.689∗∗

(−0.99) (−1.91) (−1.88) (−1.89) (−2.06)

Colo PM×Agency 9.002∗∗ 8.938∗∗ 8.878∗∗ 8.742∗∗

( 2.45) ( 2.43) ( 2.41) ( 2.31)

HFT 0.082∗

( 1.84)

HFT Aggr. 0.348∗∗∗ 0.356∗∗∗

( 6.18) ( 4.72)

HFT Pass. −0.316∗∗∗ −0.366∗∗∗

(−4.42) (−4.00)

ColoHFT Aggr.
PM −0.108

(−0.87)

ColoHFT Pass.
PM 0.416∗∗∗

( 2.60)

Agency×HFT Aggr.
PM 0.011

( 0.10)

Agency×HFT Pass.
PM −0.021

(−0.16)

Agency×HFT Aggr.
MTF 0.100

( 0.79)

Agency×HFT Pass.
MTF −0.033

(−0.22)

Agency×ColoHFT Aggr.
PM 0.052

( 0.30)

Agency×ColoHFT Pass.
PM −0.350

(−1.63)

Order Controls ✓ ✓ ✓ ✓ ✓ ✓
Execution Controls ✓ ✓ ✓ ✓ ✓ ✓
Stock-Day FE ✓ ✓ ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓ ✓ ✓ ✓
Exchange Member FE ✓ ✓ ✓ ✓ ✓ ✓

N = 11,724
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Table C1: Baseline Relative Fees Analysis

This table shows parent order level regressions for the sum of exchange fees as dependent variables, taking any rebates into
account. The regressions are otherwise similar to Table 5, but while excluding execution characteristics as independent control
variables. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses. ***, **, * denotes
significance at the 1%, 5%, 10%–level, respectively.

(1) (2)

log Order Size −0.015∗∗∗ −0.015∗∗∗

(−4.44) (−4.40)

log Market Trading −0.003
(−0.44)

Buy 0.002 0.002
( 0.38) ( 0.39)

Volatility t-10min −0.008 −0.008
(−0.29) (−0.30)

Return t-10min 0.000 0.000
(−1.48) (−1.48)

Information 0.000 0.000
(−0.07) (−0.09)

Duration 0.008∗∗∗ 0.008∗∗∗

( 4.80) ( 3.85)

Stock-Day FE ✓ ✓
Intraday FE ✓ ✓
Inv. Prob. Weighting ✓ ✓
Exchange Member FE − −

N = 11,724
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Table D1: Baseline Execution Cost Analysis excluding Execution Characteristics

This table shows parent order level regressions for the execution cost in basis points similar to Table 5, but while excluding
execution characteristics as independent control variables. Standard errors are clustered by exchange member and stock.
t-statistics are given in parentheses. ***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2)

log Order Size 5.450∗∗∗ 5.527∗∗∗

( 7.03) ( 7.12)

log Market Trading −3.237
(−1.53)

Buy 2.339∗ 2.394∗

( 1.67) ( 1.72)

Volatility t-10min 14.878 14.712
( 1.09) ( 1.08)

Return t-10min 0.002 0.003
( 0.08) ( 0.09)

Information 0.145∗∗∗ 0.145∗∗∗

(28.40) (28.33)

Duration −1.342∗∗∗ −0.717
(−3.84) (−1.32)

Stock-Day FE ✓ ✓
Intraday FE ✓ ✓
Inv. Prob. Weighting ✓ ✓
Exchange Member FE − −

N = 11,724
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Table D2: Exchange Member Colocation excluding Execution Characteristics

This table shows parent order level regressions for the execution cost in basis points similar to Table 6 and Table 7, but while
excluding execution characteristics as independent control variables. Models (4)-(6) include exchange member fixed effects.
As being colocated on the MTF does not vary within exchange members, only colocation at the stock’s primary market is
considered in these models. Standard errors are clustered by exchange member and stock. t-statistics are given in parentheses.
***, **, * denotes significance at the 1%, 5%, 10%–level, respectively.

(1) (2) (3) (4) (5) (6)

Agency 3.851∗∗ 3.784∗∗ −2.145 7.601∗∗∗ 7.573∗∗∗ 3.508
( 2.54) ( 2.49) (−1.07) ( 3.88) ( 3.88) ( 1.41)

Colo −1.656 −7.359∗∗∗ −3.569 −6.852∗

(−1.06) (−3.35) (−1.09) (−1.94)

Colo×Agency 11.168∗∗∗ 7.936∗∗

( 3.94) ( 2.24)

Order Controls ✓ ✓ ✓ ✓ ✓ ✓
Execution Controls − − − − − −
Stock-Day FE ✓ ✓ ✓ ✓ ✓ ✓
Intraday FE ✓ ✓ ✓ ✓ ✓ ✓
Inv. Prob. Weighting ✓ ✓ ✓ ✓ ✓ ✓
Exchange Member FE − − − ✓ ✓ ✓

N = 11,724
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