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1 Introduction

Digital tools and the ICT revolution allow shifting collaboration entirely into the digital space leading to

the “death of distance.” This hypothesis has been prominently put forward by Cairncross (1997) at the

heyday of the IT boom and has recently gained traction again through Baldwin (2019) while being further

fueled by the rapid uptake of remote work during the pandemic. However, compelling empirical evidence

supporting this view is scant, while there are numerous studies finding increased spatial concentration of

knowledge-intensive economic activity in few large centers (see, e.g., Chattergoon and Kerr, 2022; Moretti,

2021; Catalini, 2018; Forman et al., 2016). Scholars proposed various explanations for this, including the

importance of face-to-face interaction (Atkin et al., 2022; Battiston et al., 2021), positive industry-cluster

spillovers (Greenstone et al., 2010), and size benefits of local labor markets (Dauth et al., 2022; Manning

and Petrongolo, 2017).

This paper investigates the role of geographic proximity for collaboration of software developers in the

United States, an already highly digitized occupation thus featuring high potential for remote collabora-

tion. Drawing on detailed network data from the largest online code repository platform, I analyze regional

concentration and collaboration patterns of about 191 thousand software developers in open-source projects

between 2015 and 2021. In a first step, I provide descriptive evidence and fit gravity-type regression models

to explain spatial concentration and to distinguish the colocation effect from general relevance of increased

distance. In a second step, I ask if spatial clustering differs between software developer and other types

of human networks. To this end, I compare software developer to social networks by benchmarking the

results using regional social connectedness data from Bailey et al. (2018b). To analyze the relationship be-

tween distance and connectedness in the two networks, I apply fractional polynomial regression analyses to

region-size-independent indices.

Results show high spatial concentration with 79.8% of users clustering in only 10 of 179 economic areas.

This is a slightly stronger concentration than for computer science patent inventors (68.9%) and compares to

32.2% of the population concentrating in the same economic areas. Binned scatter plots show collaboration

is strongly associated with economic-area characteristics, pointing to significant spillover effects from clus-

ter size in line with recent findings by Abou El-Komboz and Fackler (2022). Conditional on economic-area

characteristics, collaboration is essentially unrelated to distance apart from a strong benefit from coloca-

tion. Holding economic-area characteristics constant, gravity-type regression analysis suggests colocation

is associated with nine times higher collaboration among software developers.

The comparison with regional connectedness in social networks shows no statistically significant regional

overlap of software developer and social networks in the United States. Predicting the relative probability

of connectedness between economic areas with geographic distance by use of fractional polynomial regres-

sion reveals a distinct difference between the two networks. While there is spatial decay in collaboration

probability in both networks, the decrease in connectedness probability in distance is confined to very low
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distances in the software developer network and remains at a much higher, stable level thereafter. This points

to the colocation effect being weaker and suggests a higher level of remote connectedness independent of

distance in software developer networks.

Data validity checks show the data sample features high regional fit with economic-area GDP in profes-

sional, technical, and scientific services as well as the share of inventors of computer science patents. This

suggests no significant geographic bias is present in the analyzed sample. Robustness checks confirm the

main results and show that they are robust to increased model flexibility and inclusion of geographically

close economic areas in the definition of colocation.

Related literature. This work relates to the effects of distance on economic activity which originated form

the trade literature (Tinbergen, 1962; Bergstrand, 1985). Inspired by the gravity model, other fields adopted

similar research designs and find distance relevant, e.g., in scientific research (Catalini, 2018), patenting

(Jaffe et al., 1993; Thompson and Fox-Kean, 2005), and business relations (Cristea, 2011). Studies on

the impact of technology on trade show that improved ICT fosters trade by enhancing market integration

(Steinwender, 2018; Jensen, 2007). Research on online software development, where new ICT and digital

tools are used heavily, shows strong spatial clustering in Europe (Wachs et al., 2022) and suggests increased

distance matters for global collaboration, but less than for trade flows (Fackler and Laurentsyeva, 2020).1

Brucks and Levav (2022) demonstrate in the lab that virtual interaction comes with a cognitive cost for

creative idea generation. This paper is, to the best of my knowledge, the first to show a setting in which,

apart from a large colocation effect, increased distance does not matter for collaboration.

Another related literature discusses benefits from geographic proximity, building on the Marshallian notion

of costs for moving goods, people, and ideas. Studies confirmed existence of local spillovers, e.g., for pro-

ductivity (Greenstone et al., 2010; Baum-Snow et al., 2020), in customer-supplier relationships (Ellison et

al., 2010), and for knowledge transmission (De La Roca and Puga, 2017). Recent evidence shows further

positive spillovers from clustering in knowledge-intensive settings, e.g., for inventor (Moretti, 2021), firm

(Nagle, 2019) and software developer productivity (Abou El-Komboz and Fackler, 2022), as well as for

entrepreneurship (Wright et al., 2021). Yang et al. (2022) show remote collaboration of information workers

made information sharing harder. This study confirms that local characteristics are a main driver of collabo-

ration among software developers. Results suggest more opportunities for direct collaboration (as opposed

to more indirect spillovers) in larger clusters contribute to agglomeration effects, in line with Azoulay et al.

(2010).

Increased data availability allows researchers to measure inter-personal connectedness in great detail and

comprehensively. Bailey et al. (2018a) construct regional connectedness from Facebook data. Analyses of

this data reveal highly local clustering in social networks (Bailey et al., 2020b) and a strong association with

1In computer science, there is some anecdotal evidence of a colocation effect in software development driven by face-to-face
interaction (Bird et al., 2009; Al-Ani and Edwards, 2008) and papers investigating the network structure of online coding platforms
(Badashian et al., 2014; Thung et al., 2013) as well as specific features of particular platforms (Blincoe et al., 2016).
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travel (Bailey et al., 2020a) and trade (Bailey et al., 2021). Also drawing on Facebook data, Chetty et al.

(2022a,b) compute social capital measures showing substantial regional variation in social connectedness

between people with high and low socio-economic status. I contribute to this literature by, first, showing

that there is essentially no regional overlap between software developer and social networks. Second, I

show that, compared to social networks, software developers’ connectedness probability features a weaker

colocation effect and remains at a higher (stable) level with increasing distance thereafter.

The remainder of this paper is organized as follows. In Section 2, I provide a brief background on online

collaboration in software development and present the data. Section 3 explores the role of colocation and

distance in online software development collaborations and in Section 4 the observed spatial collaboration

pattern is compared to social networks. Section 5 concludes.

2 Background and data

Background. While software development can in principle be done alone, it is typically a collaborative

effort of teams and research suggests this is increasingly the case in all high-skilled professions as projects

become more complex (Jones, 2009; Wuchty et al., 2007). Hence, collaboration is an important driver of

labor productivity (Hamilton et al., 2003). While software developers often interact face-to-face with their

collaborators, they could interact completely remotely. Occupation-level estimates by Dingel and Neiman

(2020) report 100% of jobs in related occupations can be done remotely.2 High potential to work remotely

has been confirmed during the COVID-19 pandemic, when the IT sector ranked among the industries with

the highest work-from-home take-up in the United States (Dey et al., 2020). This makes software developers

a particularly interesting group to study if digital tools help to overcome geographic distance.

Digital tools for collaborative software development drastically improve the workflow of developers to work

together remotely in teams via cloud-based online code repositories. These repositories are maintained by

using the integrated version control software git. Version control with git can be highly customized in

combination with local code repository copies and can be controlled conveniently via the native or GUI-

integrated command line. GitHub is by far the largest online code repository platform. It was founded in

2008, reached 10 million users by 2015, and in 2021 reported 73 million users worldwide (GitHub, 2021;

Startlin, 2016). Since many developers routinely engage in open-source software development, a large num-

ber of repositories are public. Survey evidence generated by GitHub in 2021 suggests that approximately

19% of code contributions on the platform are to open-source projects (GitHub, 2021). Due to the nature

of the version control system git, a detailed history of code changes and contributing users is available and

openly visible online for public repositories. GitHub provides access to public user profiles and repositories

via API.
2Related SOC occupations include, e.g., Computer and Information Research Scientists, Computer Systems Analysts, Com-

puter Programmers, Software Developers (Applications), Software Developers (Systems Software), Web Developers, and Database
Architects.
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Data. Data analyzed in this paper originates from GHTorrent, a research project by Gousios (2013) that

mirrors the data publicly available via the GitHub API and generates a queryable relational database in

irregular time intervals.3 The resulting snapshots contain data from public user profiles and repositories

as well as the detailed activity stream capturing all contributions to and events in public repositories. This

paper relies on ten GHTorrent snapshots dated between 09/2015 and 03/2021, i.e., roughly one snapshot

every seven months.4 Overall, the data contains 44.1 million users worldwide. For analysis of regional

collaboration patterns of software developers in the United States, the sample of GitHub users is selected

according to three criteria: (1) a user location is available and refers to a location within the United States;

(2) the user is active in the observation period; and (3) the user contributes to at least one project with another

in-sample user.

On their GitHub online profile, users can indicate their location. This self-reported indication is voluntary

and is neither verified nor restricted to real-world places by GitHub. It is thus difficult to examine the

accuracy comprehensively. However, researching profiles online that are connected to persons due to use

of real name on the platform and with known location from other sources suggests that those who make a

location available on GitHub to a large extent provide their correct location.5 As GitHub also functions as a

social network for software developers, users have an incentive to report their correct location for networking

purposes since they are then more easily found by their local peers.

About 5.2% of users captured in the data (2.30 million) include a self-reported location in their public user

profile. Thereof, 34% (778 thousand) can be georeferenced to a location within the United States.6 This

roughly corresponds with a survey conducted by GitHub in 2021, reporting a share of 31.5% of users being

located in North America (GitHub, 2021). Of these users located in the United States, a portion of 46% (354

thousand) is active in public repositories, which I define as contributing at least once in two time intervals

between data snapshots.7 Finally, 54% of active U.S. users contribute in at least one project to which

multiple users contribute in the observation period. This leaves a sample of 190,637 active, collaborating

users geolocated in the United States during the observation period from 2015 to 2021. For the remainder

of this paper, I refer to users and their activity in this sample.

For the purpose of regional analysis, each user is assigned to one of 179 economic areas in the United

States as defined by the Bureau of Economic Analysis based on the self-reported geolocation on her user

3GHTorrent data contains potentially sensitive personal information. Information considered sensitive (e.g., e-mail address or
user name) has been de-identified (i.e., recoded as numeric identifiers) by data center staff prior to data analysis by the author. Data
from the GHTorrent project is publicly available at ghtorrent.org.

4Snapshots are dated 2015/09/25, 2016/01/08, 2016/06/01, 2017/01/19, 2017/06/01, 2018/01/01, 2018/11/01, 2019/06/01,
2020/07/17, and 2021/03/06.

5Due to de-identification of user names, the user profiles cannot be linked to other data to a larger extent in order to verify this
anecdotal impression. I perform further aggregate plausibility checks below.

6This processing step also confirms above impression that most users provide correct location, as non-sense locations like, e.g.,
“the moon,” together with other locations for which georeferencing to a country was unsuccessful, only make up 1.4% of users with
non-empty location.

7New users in the last time interval are regarded as active if they contribute in this time interval.
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profile. This regional level is chosen such that it is both sufficiently detailed to study colocation and distance

effects and provides an adequate level of aggregation given the number of users in each economic area. The

Bureau of Economic Analysis economic areas define the relevant regional markets surrounding metropolitan

or micropolitan statistical areas (Johnson and Kort, 2004). Economic areas are similar to metropolitan

statistical areas (MSA) in most cases. To capture entire economic regions, economic areas tend to be larger

than corresponding MSAs for big cities.

Summary statistics. In-sample users contribute to about 4.29 million repositories, i.e., open-source code

projects on the platform. In total, they make roughly 97.3 million single code contributions to these projects,

so-called commits. The most popular programming languages used on the platform are JavaScript, Python,

as well as C and related languages (see Figure A.1). As typical for digital platforms, activity in GitHub’s

open-source projects is highly skewed, meaning that only a fraction of users contributes the majority of

content.8 See Figure A.2 for a visual impression.

Each user on average contributes to 28.5 projects (median: 14) in the observation period. 28% of projects

are one-time uploads with one (inital) commit. To projects that are not one-time uploads, users make on

average 37.2 code contributions (median: 7). About 90% of observed projects are personal, i.e., only one

user contributes to them. This leaves around 430 thousand projects run by teams. Although team projects

account for only one tenth of all observed projects, they make up 45% of commits (≈43.3 million). Team

projects have on average 3.6 (contributing) members (median: 2). In the observation period, a user on

average makes 510 code contributions (median: 156), with an average of 18.4 commits in each of her

projects (median: 3). 31% of commits are one-time contributions to a project.

I define users as being linked or collaborating with each other if they contribute to at least one joint project

in the observation period. There are 2.94 million links between users in the sample. Each user on average

is linked to 45.2 other in-sample users (median: 4). Overall, 12.4% of links are between users in the same

economic area. For the average user, 34.7% of collaborations are with other local users (median: 14.3%)

and two thirds of team projects are fully colocated, meaning that all contributing in-sample users are located

in the same economic area. I define links between users that have more than one joint project strong ties.

19% of links between users are strong ties. More detailed summary statistics can be found in Table A.1.

Representativeness. Given the low share of users reporting a geolocation and the availability of only public

user profiles and projects, I address potential concerns regarding the plausibility and representativeness of

the sample by comparing the observed regional concentration patterns with other data. For this, I rely

on two types of data associated with the regional concentration of knowledge workers and their activity

footprint across U.S. economic areas: locations of inventors of computer science patents and regional GDP

for professional, scientific, and technical services.

8See, e.g., Luca (2015) for a review of user content generation on social media platforms.

5



Figure 1: GitHub users, inventors, and GDP

Note: Plots show the relationship between (the share of) users per economic area and economic-area GDP in profes-
sional, scientific, and technical services (Panel A) and economic-area (share of) computer science inventors (Panel
B). Bubble size represents economic-area population size. Red lines are best linear fits from user-weighted log-log
regressions. The share of inventors in computer science by economic area is sourced from Moretti (2021). Sources:
GHTorrent, Moretti (2021), Bureau of Economic Analysis, own calculations.

Figure 1 shows the relationship between the sampled GitHub users and both economic area GDP for profes-

sional, scientific, and technical services (“tech sector GDP”) and inventor share of computer science patents.

I find a strong positive association for both benchmarks on this regional level. Relating users to tech sec-

tor GDP in a simple user-weighted log-log regression explains 85.6% of regional variation. Similarly, the

(logarithmic) share of computer science inventors explains 90% of regional variation in the (logarithmic)

user share. Slope coefficients from user-weighted log-log regressions are .993 for tech sector GDP and .744

for computer science inventor share, both highly significant. This mitigates concerns regarding potential

regional bias in the sample.

3 The role of colocation and distance for collaboration

Users are extremely concentrated in space. Figure 2 maps the number of active, collaborating users with a

geolocation in the United States for each economic area. 79.8% of users concentrate in ten economic areas,

all of which contain (at least) one major city: San Francisco, New York, Seattle, Los Angeles, Boston,

Chicago, Washington D.C., Denver, Austin, and Atlanta. This is an even higher concentration in the largest

hubs relative to inventors of computer science patents, where 68.9% cluster in the respective ten largest

economic areas (Moretti, 2021). For comparison, the largest ten economic areas in terms of users account

for only 32.2% of U.S. inhabitants.

Concentration is high even among the largest economic areas. While the largest economic area San Jose-

San Francisco-Oakland, CA, hosts over 53 thousand users, only 16.3 thousand users are located in the
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Figure 2: Geographic distribution of users

Notes: Map shows the number of (in-sample) users per economic area. The remote economic areas
Anchorage, AK, and Honolulu, HI, are not shown. Classification method used is quantiles with six
classes. Sources: GHTorrent, own calculations.

fifth-largest economic area Boston-Worcester-Manchester, MA-NH, and less than nine thousand users in

the tenth-largest economic area Atlanta-Sandy Springs-Gainesville, GA-AL. On average an economic area

contains 1,895 users with the median economic area hosting 302 users. Normalizing these numbers by

economic area population size reveals user density in the general population. Three places stand out here:

San Francisco, Austin, and Seattle; all with around 0.5% (in-sample) users in terms of population. Density

is less than 0.25% for all other economic areas, for most of them much lower. Collaboration, measured in

terms of the number of links users in an economic area are part of relative to the total number of links, is

even more concentrated at the top than users. See Figure A.3 for more complete information on the largest

twenty economic areas according to these metrics.

A notable property of collaborations is the extent to which they are local. 12.4% of links are between users

in the same economic area. Hubs, the ten largest economic areas in terms of users, are involved in 67.9% of

cross-economic area collaborations, a number with relatively little variation across economic areas.9 Note

that this is less than their combined user share of around 80%. Panel A of Figure 3 shows that the larger an

economic area, measured by total collaboration share, the more of its users’ collaborations are local. This

strong relationship can be intuitively explained by increased opportunity for collaboration in a larger pool

of users.

In Panel B of Figure 3 I benchmark this against a naı̈ve hypothetical I call “flat world,” a situation where

links occur with equal probability irrespective of geography. “Local collaboration bias” divides the observed

share of local collaborations of an economic area by its total share of collaborations. This means that an

economic area part of 20% of total collaborations for which 20% of collaborations are local features a local

9See Figure A.4 for a distribution plot.
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collaboration bias of one (with logarithm zero). Naturally, this measure is rarely smaller than one.10 Local

collaboration bias is larger the greater the share of local collaborations of an economic area relative to its

size. Interestingly, Panel B of Figure 3 shows local bias is strongly negatively related to size. This implies

while larger regions feature a greater their share of local collaborations, this effect is not proportional.

Smaller economic areas, with respect to their size, disproportionately collaborate more with other local

users. Overall, these descriptive findings suggests a high importance of being colocated for collaboration.

To assess the role of colocation and distance in collaborations, I calculate the geographic distance between

economic areas and the number of links between each economic area pair. Distance between economic

areas is computed as the (geodesic) distance in kilometers between the centroids of each economic area pair.

Figure A.5 plots the histogram of distances between economic areas. The number of links (collaborations)

between each economic area pair represents the count of connections between users in both economic areas

as defined by active contribution to at least one project in the observation period.

I study the relationship between distance and collaboration by constructing binned scatter plots. Panel C of

Figure 3 shows a binned scatter plot for the median number of links between economic areas depending on

geographic distance, with one point for each percentile. The graph shows a U-shaped relationship with a

stronger increase in collaborations on the right side. I hypothesise this is likely driven by the collaborations

between the large hubs on opposite coasts. Therefore, I construct another binned scatter plot (Panel D) after

controlling for a set of variables measuring user size of each economic area pair: the number of users and

users squared (to allow for nonlinear effects) for the two economic areas, respectively, and the number of

users multiplied for each economic area pair as a representation of bilateral collaboration potential.

The results confirm the conjecture that the U-shape in Panel C is driven by the hubs’ locations on opposite

coasts. In Panel D, the pattern is essentially flat over the whole distance range, with the notable exception

being the first distance percentile, for which (residual) collaborations are much higher. The mean distance

between economic-area centroids in the first distance percentile is 28.6km.11 Excluding the first percentile,

residual medians range between 308 and 409 with a mean of 343. Being colocated (i.e., in the first distance

percentile) increases median collaboration by a factor of 2.8 relative to the mean of other percentiles to a

(residual) collaboration median of 951, conditional on user size controls. This suggests that, for region pairs

with similar cluster size, being colocated is associated with almost three times as many collaborations for

the median user.
10There are only two relatively small economic areas out of 179 with values smaller than one: Fayetteville-Springdale-Rogers,

AR-MO-OK (.699), and Rapid City, SD-MT-ND-NT (.999).
11Note that this refers to centroid-based distance. Depending on the geographic expansion of economic areas actual distance

between relevant users might differ.
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Figure 3: (Local) collaboration and distance

Notes: Panel A shows the relationship between the share of collaborations of an economic areas users in all collabo-
rations. The red line represents the best linear fit weighted by total collaboration share as economic area size measure.
Panel B shows the deviation of the economic area user collaboration share from the benchmark of being equal to
the percentage share in all collaborations. The horizontal red line (=0) represents this “flat-world” benchmark. Eco-
nomic areas above the benchmark line feature a higher local collaboration share than their share in total collaborations,
economic areas below the benchmark line have a lower share of local collaborations than their share in total collabo-
rations. Bubble size indicates the collaborations of economic area users. Panels C and D show binned scatter plots of
the median number of collaborations and the geographic distance between economic area pairs. The number of bins
is 100, i.e., each point represents one percentile. Within economic area collaborations as well as Honolulu, HI, and
Anchorage, AK, economic areas are excluded. Panel C plots the binned scatter without controls. Panel D plots the
binned scatter after controlling for the following variables: users and users squared for both economic areas, respec-
tively, and the multiplication of users of each economic area pair. Means are added back to residuals before plotting.
Sources: GHTorrent, own calculations.

To complement above analysis of the relationship between colocation, distance, and collaboration, I run

simple gravity-type regression analyses of the form

linksi, j = β0 +β11{coloci, j}+β2disti, j +Xiβ3 +Xjβ4 +Xi,jβ5 + εi, j (1)

where collaborations are explained by a colocation indicator marking collaboration between users in the

same economic area, 1{coloci, j}, a distance term, and origin and destination economic-area characteris-
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tics.12 In all specifications I include the continuous centroid-based distance, disti, j. As control variables,

I either include origin and destination economic-area characteristics, Xi and Xj, or origin and destination

economic-area fixed effects. Explicit controls include the number of users, GDP, and population. To con-

trol for collaboration potential between two economic areas, I further add the multiplication of origin and

destination users, Xi,j.

Table 1: Collaboration, colocation, and distance

Collaboration [log] (1) (2) (3) (4) (5) (6)

Colocation 2.921*** 2.435*** 2.387*** 2.462*** 2.373*** 2.414***
(0.227) (0.181) (0.180) (0.175) (0.157) (0.074)

Distance 0.025*** -0.006*** -0.006*** -0.001 -0.007*** -0.004***
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Users × × × ×
Users, multiplied × × × ×
GDPs × ×
Populations ×
Origin FE ×
Destination FE ×

Observations 31,329 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.016 0.404 0.405 0.465 0.591 0.913

exp(β̂colocation)−1 17.56 10,41 9.87 10.73 9.73 8.92

Notes: The outcome variable is the natural logarithm of collaborations between two economic areas plus one.

Colocation indicates collaboration between users in the same economic area. Distance is scaled in 100km.

Users, GDPs, and Populations refers to the respective variables for both origin and destination. Users, multi-

plied, is the multiplication of the number of users in origin and destination. Collaboration with Anchorage, AK,

and Honolulu, HI, are excluded. Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05, *

p<0.1. Sources: GHTorrent, Bureau of Economic Analysis, own calculations.

The main results reported in Table 1 are stable over all specifications and confirm the findings from above

analyses. Collaboration is strongly positively associated with being colocated. Effect size for colocation is

large and statistically highly significant, suggesting colocated users collaborate about 8.9 to 10.7 as much

as users that are not colocated, holding economic-area characteristics constant. Further, there is only a very

weak, but statistically significant negative relation with distance. Depending on the specification and given

equal economic-area characteristics, results suggest -0.1% to -0.7% fewer collaborations when distance

increases by 100km.

Economic-area characteristics play an important role for collaboration, as shown by the naı̈ve model in

column (1) without controls. In line with the descriptive finding that a large part of collaborations happens

within and between large hubs in terms of users, this specification overestimates both the role of colocation

12To deal with unconnected economic areas, I follow a common solution from the trade literature and avoid omission by adding
one after logarithmic transformation of the number of links between each economic area pair.
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and distance and is not able to explain variation in the data well. Once control variables for economic-

area characteristics are subsequently added, the results remain robust and stable, while explained variation

increases to around 40% with user controls and 59% with GDP and population controls. Adding origin and

destination fixed effects that capture also unobserved economic-area characteristics further improves model

fit to 91%. The fixed-effects model controlling for the multiplication of origin and destination users shown

in column (6) is my preferred specification.

I conduct further robustness checks. For example, I vary the definition of colocation regarding to the distance

cutoff, allow for more flexibility by adding various squared terms of the variables, and by including more

economic area pair controls. Varying the definition of colocation by including not only users in the same

economic area but also allowing for small centroid-based distances between nearby economic areas shows a

comparable effect when including distances smaller than 100km and a much smaller effect when including

distances smaller than 200km (see Table A.2). This points to the colocation effect being confined to small

distances only and essentially vanishing thereafter, confirming findings from Panel D in Figure 3. Increasing

model flexibility yields similar results (see Table A.3).

4 Spatial decay of collaboration in developer versus social networks

Human networks are generally known to have a strong spatial dimension. Due to the nature of software de-

velopment as highly digitized activity with a large potential for remote collaboration, regional connectedness

patterns are likely different to other types of human networks. To evaluate how the pattern between geo-

graphic distance and collaboration in online (open-source) networks of software developers relate to other

human networks, I compare the results with patterns in social networks using data on regional connectedness

from Facebook.

Connections on Facebook map to a large extent to real-world friendship, family and acquaintanceship ties.

As such, observed regional network data constructed form active users on Facebook is an adequate repre-

sentation of real-world social networks.13 Social networks on Facebook feature a high degree of spatial

clustering of connections (Bailey et al., 2018a). Bailey et al. (2018b) construct an openly available index

of social connectedness on the United States’ county-county level.14 The so-called Social Connectedness

Index (SCI) measures the relative probability of connections between users in two counties by

indexi, j =
linksi, j

usersi ∗users j
. (2)

13See Bailey et al. (2018a) for a detailed discussion.
14Data is retrieved online via data.humdata.org/dataset/social-connectedness-index.
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Importantly, the index is independent of region size and scaled to numbers between 1 and 1,000,000,000.15

I aggregate the county-county SCI to the economic-area pair level by using multiplied county population

size as weights, since user counts are not available in the public data. After aggregation I rescale the index

again. Further, I similarly compute a scaled index using the GHTorrent data sample, which I call GH

Connectedness Index (GHCI). Figure A.6 provides a comparison of the two indices’ key properties by

depicting their histograms. Notable is the right-skewed distribution of both indices, which is stronger in the

SCI. This is also reflected in the medians, which sits at maximum frequency for the GHCI and is shifted

towards the right for the SCI. The fat right tails suggest many economic-area pairs feature a relatively

low connectedness while few pairs are highly interconnected. Since the SCI has a fatter right tail, more

economic-area pairs are highly connected as compared to the GHCI.

The two regional connectedness indices are essentially orthogonal to each other, with a low Pearson’s corre-

lation of 0.0248 that is not statistically significantly distinguishable from zero. This is also shown by Panel

D of Figure 4 and a data example for the Los Angeles-Long Beach-Riverside, CA, economic area in Figure

A.7 provides an illustration. While the (weighted) number of collaborations on GitHub is strongly associated

with large clusters, this relationship vanishes for the GHCI since it is constructed analogous to the SCI and

therefore is independent of economic-area size. This shows that software developer and general friendship

networks measured through size-independent indices such as GHCI and SCI feature no significant regional

overlap.

Data confirms the presence of a strong colocation effect in both networks. Panels A and B of Figure 4

plot raw data from scaled GHCI (Panel A) and SCI (Panel B) after logarithmic transformation. A large

colocation effect is already visible in the raw data by the sharp upward shift of the (logarithmic) distribution

at a distance of zero for both indices. Apart from the colocation effect, GHCI is essentially independent

of distance, in line with the findings in Section 3. In contrast, the SCI features strong spatial clustering as

depicted by the continued decrease over the whole distance range. The decrease in social connectedness

with increasing distance is particularly strong for distances smaller than 500km.

For a model-based comparison of the relationship of the indices to geographic distance, I fit fractional poly-

nomial regressions to flexibly model the relationship in the data. Panel C of Figure 4 graphs the predicted

relationships. The fitted curve in blue, with a larger confidence interval, represents the relationship between

the scaled GHCI and geographic distance while the fitted curve in red shows the same relationship for the

scaled SCI. Spatial decay of the relative probability of a connection is present in both indices. It is, however,

much more pronounced for predicted SCI, as shown by the steep and immediate decline of the index level,

converging to very low index levels at a distance of 1,000km.16 The predicted GHCI is also characterized

by a steep decline in index level in the beginning, but the decline is less pronounced and values level off

15To (re)scale the indeces, following formula is applied: index → index−min(index)
max(index)−min(index) ∗ [max(scale)−min(scale)]+min(scale).

16The slight increase of the predicted SCI towards the right end reflects the connections between opposite coasts.
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Figure 4: Relative collaboration probability and distance

Note: Panels A and B show scattered values of scaled GHCI and SCI after logarithmic transformation. Both indices
are scaled between 1 and 1,000,000,000. Scaled SCI from Bailey et al. (2018b) is mean-aggregated from county-
county level weighted by multiplied populations of each county-pair and rescaled between 1 and 1,000,000,000. Panel
C shows the predicted relationship between scaled GHCI/SCI indices and distance as estimated by a fractional poly-
nomial regression. Gray areas represent the 95% confidence interval. For purpose of readability I divide scaled GHCI
by 100,000 and scaled SCI by 1,000,000. Panel D shows the correlation between scaled GHCI and SCI after logarith-
mic transformation with within-economic-area collaborations excluded. Sources: GHTorrent, Bailey et al. (2018b),
Bureau of Economic Analysis, own calculations.

earlier (at around 300km). Afterwards, the predicted GHCI remains stable over a large part of the distance

range and declines slowly and gradually starting at a distance of approximately 3,000km.

Underlying populations differ in both indices. GHCI refers to open-source software developers on GitHub

and SCI more to the general population (for a discussion, see Bailey et al., 2018a). Recognizing this, a

logical question is how much of the difference in the observed distance pattern is driven by composition dif-

ferences in underlying populations. Software developers tend to be working-age, urban and more educated

than the general population, but a separate SCI for a population with these characteristics is not publicly

available. However, Bailey et al. (2018b) provide Facebook users’ share of friends within 50, 200, and 500

miles distance for users with “some college” education, urban users, and users aged 35-55, as well as the

full sample. These statistics show only small differences for these subgroups compared to the full sample,
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with differences averaging 1.1%. This mitigates concerns that the observed difference in distance pattern is

driven to a larger extent by composition differences in index populations.

Overall, although there is spatial decay in connectedness present in both indices, this analysis suggests that

distance is much more relevant for social networks in general as compared to for software developer net-

works in the online open-source community. Further, decline in connectedness is fastest in the beginning

and then levels off in both networks, but remains at a much higher level in software developer networks. In

addition, the drop is much smaller, more sudden, and leveling off happens earlier in software developer net-

works suggesting fewer benefits from colocation to collaboration that are present only for small distances.

5 Conclusion

The results of investigating open-source software developer networks in the United States emphasize the

overpowering importance of colocation for collaboration – even in the digital space and for a highly digitized

occupation. However, apart from this colocation effect and in line with the long standing prediction that

digital tools help to overcome geographic frictions in knowledge-driven sectors, I find strong evidence of

further increased distance being only weakly associated with collaboration. These findings show that there

is a setting where digital tools do indeed contribute to the “death of distance,” but to date cannot replace the

huge benefits for collaboration of being colocated.

Even in online collaboration networks of software developers data shows strong spatial concentration in few

large clusters, driven to a large extent by local characteristics such as cluster size in terms of users, GDP, and

population, as well as collaboration potential between economic areas. While this research cannot pinpoint

what exactly causally explains the apparently present agglomeration effects, I find suggestive evidence that

direct collaboration with other local users plays an important role. This does, of course, not rule out ben-

efits from other (more indirect) local spillovers from interactions not observed here such as, e.g., informal

exchange and networks or chance encounters.

This work implies that geographic clusters maintain enormous advantage compared to smaller regions due

to benefits from colocation and cluster size, likely in part driven by improved direct local collaboration

opportunities. However, there is no significant strong barrier from distance for collaboration among software

developers in online open-source development. This allows software developers to engage with non-local

peers even from remote regions. The big open question for non-cluster regional development is to identify

drivers of the colocation effect and try to recreate similar experiences remotely.
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A Appendix

Table A.1: Summary statistics

Statistic Mean Median Min Max N

Users
Projects per user 28.51 14 1 46,508 190,637
Links per user 123.65 7 1 14,739 190,637
Commits per user 510.42 156 1 388,287 190,637
Commits per user-project 18.40 3 1 364,397 5,286,886

Projects
Commits per project 22.64 3 1 364,397 4,298,045

per personal project 13.97 3 1 364,397 3,867,611
per team project 100.52 18 2 209,214 430,435

Users per team project 3.64 2 2 147,236 430,435

Economic areas
Users per economic area 1,895 302 2 53,818 179
Projects per economic area 26,924 3,328 4 831,728 179
Links per economic area 130,562 15,329 1 5,175,727 179
Links per economic-area pair 930 23 1 1,550,463 25,135
Commits per economic area 543,600 69,185 19 19,165,952 179

Notes: All statistics refer to the final sample of 190,637 active, collaborating users geolocated in

the United States and retrieved from ten data snapshots dated between 09/2015 and 03/2021. Means

are rounded to two decimal places for user and project statistics and to integers for economic-area

statistics. Team projects are projects with more than one contributing user in the observation period

and personal projects are projects with only one contributing user in the observation period. Commits

per user-project is the number of commits to each project by each contributing user. Links refers to

connections between users as defined by contributing to at least one joint project in the observation

period. Links per economic-area pair excludes 6,906 (= 2179 −25,135) unconnected economic-area

pairs. Sources: GHTorrent, own calculations.
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Table A.2: Robustness checks: colocation

Collaboration [log]
distance cutoff

(1) (2) (3)
= 0 km < 100 km < 200 km

Colocation 2.414*** 2.238*** 0.908***
(0.074) (0.083) (0.052)

Distance -0.004*** -0.004*** -0.004***
(0.001) (0.001) (0.001)

Users, multiplied × × ×
Origin FE × × ×
Destination FE × × ×

Observations 31,329 31,329 31,329
Adj. R2 0.913 0.912 0.909

exp(β̂colocation)−1 10.18 8.38 1.48

Notes: Model (1) is the preferred (fixed-effects) specification from Ta-

ble 1, defining colocation as indicator of being in the same economic

area. Models (2) and (3) extend this definition of colocation to include

centroid-based distances of 100km and 200km, respectively. The out-

come variable is the natural logarithm of collaborations between two

economic areas plus one. Colocation indicates collaboration between

users in the same economic area. Distance is scaled in 100km. Users,

multiplied, is the multiplication of the number of users in origin and des-

tination. Collaboration with Anchorage, AK, and Honolulu, HI, are ex-

cluded. Robust standard errors are reported in parenthesis. *** p<0.01,

** p<0.05, * p<0.1. Sources: GHTorrent, Bureau of Economic Anal-

ysis, own calculations.
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Table A.3: Robustness checks: model flexibility

Collaboration [log] (1) (2) (3) (4)

Colocation 2.295*** 2.353*** 2.433*** 2.277***
(0.075) (0.082) (0.074) (0.079)

Distance -0.022*** -0.004*** -0.004*** -0.020***
(0.002) (0.001) (0.001) (0.002)

Distance, squared 0.001*** 0.000***
(0.000) (0.000)

Users, multiplied × × × ×
Users, multiplied (squared) × ×

GDPs, multiplied × ×
GDPs, multiplied (squared) ×

Populations, multiplied × ×
Populations, multiplied (squared) ×

Origin FE × × × ×
Destination FE × × × ×

Observations 31,329 31,329 31,329 31,329
Adj. R2 0.913 0.915 0.913 0.917

exp(β̂colocation)−1 8.92 9.52 10.39 8.74

Notes: Table shows model variations allowing for increased model flexibility relative to the pre-

ferred specification in Table 1 by including: more economic-area pair characteristics and squared

terms thereof as well as squared distance. The outcome variable is the natural logarithm of collabo-

rations between two economic areas plus one. Colocation indicates collaboration between users in

the same economic area. Distance is scaled in 100km. Multiplied refers to the multiplication of the

respective metric in origin and destination. Multiplied (squared) refers to the squared multiplication

of the respective metric in origin and destination. Collaboration with Anchorage, AK, and Hon-

olulu, HI, are excluded. Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05,

* p<0.1. Sources: GHTorrent, Bureau of Economic Analysis, own calculations.
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Figure A.1: Programming languages

Note: Bars show the number of commits contributed to open-source projects by active,
collaborating users in the United States in the observation period for each programming
language. Unknown refers to commits that are not assigned to a programming language in
the data. Sources: GHTorrent, own calculations.

22



Figure A.2: CDFs of user activity

Note: Plots show cumulative density functions for different user activity metrics. Vertical red lines represent median
values of each metric (i.e., projects per user: 14; commits per user: 156; commits per project: 7; links per user: 4). All
x-axes are scaled logarithmically. The graph for commits per project excludes projects representing one-time uploads,
i.e. projects with only one (initial) commit. Sources: GHTorrent, own calculations.
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Figure A.3: Concentration at the top

Notes: Plots show the values of different user and activity concentration metrics for the twenty
largest economic areas in terms of respective metrics. Sources: GHTorrent, own calculations.
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Figure A.4: Collaboration with hubs

Notes: Plot shows the distribution of collaboration shares of each
economic area with hubs, defined as the ten largest economic ar-
eas in terms of users. Sources: GHTorrent, Bureau of Economic
Analysis, own calculations.

Figure A.5: Distance

Notes: Plot shows the distribution of centroid-based geodesic
distance between economic areas. The horizontal red line indi-
cates the median distance of 1,439. The blue curve represents the
Epanechnikov kernel density estimate. The right tail of the distri-
bution starting approximately at distances greater than 4,000km
is essentially driven entirely by the remote economic areas An-
chorage, AK, and Honolulu, HI. Sources: GHTorrent, Bureau of
Economic Analysis, own calculations.
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Figure A.6: Histograms of scaled GHCI and SCI

Note: Plots show the distribution of scaled GHCI and SCI regional connectedness indices. The horizontal red lines
indicate medians of 133,753 for the GHCI and 3,518,538 for the SCI. The blue curves represent the Epanechnikov
kernel density estimates. Both indices are scaled between 1 and 1,000,000,000. Scaled SCI from Bailey et al. (2018b)
is mean-aggregated from county-county level weighted by multiplied populations of each county-pair and rescaled
between 1 and 1,000,000,000. As indices are highly skewed, I restrict the y-axes to maximum values of 20,000,000
for GHCI and 600,000 for SCI to achieve meaningful visualization. Scaled GHCI values of one, representing no links,
are excluded from the histogram but not from the median. Sources: GHTorrent, Bailey et al. (2018b), Bureau of
Economic Analysis, own calculations.
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Figure A.7: Data example for Los Angeles-Long Beach-Riverside, CA

Notes: Maps show the connectedness of the Los Angeles-Long Beach-Riverside, CA, economic area
with other U.S. economic areas according to different indicators. Anchorage, AK, and Honolulu, HI, are
not shown. The classification method used for scaling is quantile with nine classes. Link weights used in
the Panel B are the number of joint projects. Sources: GHTorrent, Bailey et al. (2018b), own calculations.
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