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Abstract 

Economies of scale in data aggregation is a widely accepted concept.  It refers to improved prediction 
accuracy when the number of observations on variables in a dataset increases. By contrast, economies of 
scope in data is more ambiguous. The classic economic interpretation refers to cost savings in the re-use of 
data for other purposes. Here, we introduce another interpretation of economies of scope, in data aggregation. 
It refers to improvements in prediction accuracy when the number of complementary variables in a dataset 
increases, not the number of observations on these variables. If economies of scope in data aggregation exist, 
the value of aggregated data pools of complementary variables is higher than the sum of values of the 
disaggregated datasets because more and better insights can be extracted from the aggregated dataset. 

Economies of scope in data aggregation is controversial in the economic research literature, also because 
there is so far little empirical evidence for their existence. The objective of this project is to fill that gap. For 
this purpose we create an aggregated data pool of health and health-related variables.  We run machine 
learning models on this data pool to predict health outcomes. We gradually increase the number of 
independent variables in the model to estimate the magnitude of economies of scope in the aggregation of 
variables. Our findings confirm the existence of economies of scope in the aggregation of health and health-
related variables in order to improve the prediction accuracy of health outcomes. The evidence is based on a 
nation-wide household survey and medical consumption data from the Netherlands.  

 

 

 

 

 

 

This study was carried out by the Centerdata research institute1 on behalf of the Joint Research Centre (JRC) 
under contract JRC/SVQ/2020/LVP/1587 “Economies of scope in the aggregation of health-related data”. This 
report is the final deliverable for this project. 

                                           
1 Centerdata is an independent non-profit research institute, located on the campus of Tilburg University 

(Netherlands). Answering research questions in the area of people and society has been its mission since 
1997. It collects, analyzes and disseminates reliable data for the academic community, government and 
private sector to support and contribute to scientific, social and policy-relevant research. It also develop 
models and draw up forecasts for a better future. For more information, see Home - Centerdata EN 
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1 Introduction 
The classic concept of economies of scope dates back to the 1980s. It originates in the literature on joint 
production of several goods by a single firm and the reuse of the same input to produce multiple outputs 
(Teece, 1980, 1981; Panzar and Willig, 1981)2. In this interpretation, economies of scope occur when a single 
product or asset can be (re)used for several purposes. For example, the same car engine can be used in 
several car models. For rival physical goods like engines, reuse implies reproduction of the same good at a 
positive marginal cost. Rival goods can only be used by one party at the same time. However, for non-rival 
immaterial products, reuse comes at zero marginal cost. Non-rival products can be used by many parties and 
purposes at the same time. The design of an engine, for example, can be reused to produce an endless series 
of copies of that engine. The reuse of designs does not involve reproducing a physical good. This results in 
cost savings. At best it requires copying a set of papers or electrons that constitute the underlying information 
file. This interpretation applies to the data economy.  

Data are non-rival: many parties can use the same dataset for a variety of purposes without functional loss 
to the original data collector (OECD, 2016; Jones and Tonetti, 2019)3. Data only have to be collected once in 
order to be used many times. To illustrate the power of this idea, imagine that cars would be non-rival goods 
like digital data. It would suffice to produce a single car, rather than millions of cars, to enable any consumer 
to use it for any trip. This reasoning underpins the widely held view that more data access and sharing is 
beneficial for society (OECD, 2015). It multiplies data use benefits for the same single-shot data collection 
cost. Palfrey & Grasser (2012)4 warned that this is a biased perception. Society can benefit but also suffer 
from wider access and sharing of data. People do not want their private data to be publicly available and 
firms want to keep their commercial data confidential. While non-rivalry implies that the original use of data 
is not functionally affected by reuse for another purpose, the original data collector and user may face 
economic opportunity costs from reuse by other users. A better formulation of the policy implications of non-
rivalry would be to ask what is the optimal degree of access to data that maximizes social welfare? Most 
likely, it will neither be zero nor full data sharing, but somewhere in between.   

This research project is not about the classic concept of economies of scope in the reuse of data.  Here, we 
focus on a new interpretation of economies of scope in data aggregation. When two complementary datasets 
are merged or aggregated into a single data pool, the aggregated dataset may produce more insights and 
economic value than the sum of insights and values of the individual datasets. Instead of using a single data 
input to produce several data outputs, economies of scope in data aggregation imply the use of several data 
inputs to create a single data output. Economies of scope in the reuse of data result from cost savings 
because it avoids re-collection of data and benefits from reuse at zero marginal cost for the production of 
another service. By contrast, the benefits of economies of scope in data aggregation stem from extracting 
new or additional insights from the merged dataset that cannot be obtained from the separate datasets.  

This interpretation of economies of scope can be traced back to the economics of learning. Rosen (1983)5 
observed that when a person has a choice between learning two skills, specialisation in one skill is always 
beneficial when the costs of learning both skills are entirely separable and not complementary. However, 
when costs are not separable and learning one skill decreases the cost of learning another, than there are 

                                           
Panzar, J and R D Willig (1981) Economies of Scope, American Economic Review Vol. 71, No. 2, pp. 268-272.  Teece, 

David (1980), Economies of scope and the scope of the enterprise, Journal of economic behaviour and organisation, 
1980. Teece, David (1982) Towards an economic theory of the multi-product firm, Journal of economic behaviour and 
organisation, 1982, pp 39-63. 

2 Jones, Charles and Christopher Tonetti, Nonrivalry and the economics of data, NBER Working Paper nr 26260, September 
2019. OECD Maximizing the economic and social value of data, understanding the Benefits and Challenges of 
Enhanced Data Access, Directorate for Science and Technology, Committee on Digital Economic Policy, Paris, 
November 2016. 

2 Palfrey, John and Urs Gasser, Interop: The Promise and Perils of Highly Interconnected Systems, 2012.2 Panzar, J and R D 
Willig (1981) Economies of Scope, American Economic Review Vol. 71, No. 2, pp. 268-272.  Teece, David (1980), 
Economies of scope and the scope of the enterprise, Journal of economic behaviour and organisation, 1980. Teece, 
David (1982) Towards an economic theory of the multi-product firm, Journal of economic behaviour and organisation, 
1982, pp 39-63. 

3 Jones, Charles and Christopher Tonetti, Nonrivalry and the economics of data, NBER Working Paper nr 26260, September 
2019. OECD Maximizing the economic and social value of data, understanding the Benefits and Challenges of 
Enhanced Data Access, Directorate for Science and Technology, Committee on Digital Economic Policy, Paris, 
November 2016. 

4 Palfrey, John and Urs Gasser, Interop: The Promise and Perils of Highly Interconnected Systems, 2012. 
5 Rosen, Sherwin (1983) Specialisation and human capital, Journal of Labor Economics, Volume 1, Number 1 Jan., 1983.  
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economies of scope in learning both skills, provided that the benefits from interaction are sufficiently large to 
overcome the increased marginal costs of learning. In other words, the benefits from learning both skills 
jointly are higher compared to learning them separately. The magnitude of economies of scope depends on 
the degree of complementarity between the datasets. Without complementarity, there are no economies of 
scope in the aggregation of datasets.   

There is a lot of confusion about economies of scope in data, not only because of the two different 
interpretations of economies of scope, but also because economies of scope and economies of scale are 
often mixed up. Economies of scale in the aggregation of data refers to an increase in model accuracy, and 
thus the model quality, when the number of observations of the independent variables increase. Economies of 
scope in data aggregation refers to an increase in model accuracy when the number of independent variables 
increase. Adding more variables is only helpful when they are complementary and neither entirely correlated 
nor completely unrelated. The marginal costs of applying analytics to the merged dataset should be lower 
than the marginal benefits. Therefore, the cost involved in setting up data collection, processing, and 
algorithmic implementation of the aggregated dataset should be lower than the potential benefits.  

A convenient way to distinguish economies of scale and scope is to consider a dataset as a two-dimensional 
spreadsheet. Here, the number of columns represents the number of independent variables and the number 
of rows represent the number of observations of these variables. When this two-dimensional dataset is used 
in a model to predict a given outcome, economies of scale in data aggregation would result in higher 
prediction accuracy due to an increase in the number of rows (observations on variables), while economies of 
scope in data aggregation would improve prediction accuracy due to an increase in the number of columns 
(explanatory variables).  Economies of scope will occur only if additional variables bring complementary 
information. Adding highly correlated variables would only increase the number of substitute variables 
without adding complementary information. Adding totally unrelated variables would not increase the 
information content either. Both economies of scale and scope can run into diminishing returns with 
increasing number of observations and variables.   

While economies of scale is a widely accepted concept, economies of scope in data aggregation remains 
controversial, partly because there is little empirical evidence for their existence. A number of empirical 
studies on the prediction accuracy of larger datasets focus on economies of scale rather than economies of 
scope in data aggregation. Chiou and Tucker (2017)6, for example, find no decrease in search engine accuracy 
when time series of consumers’ historical searches are shortened because of EU privacy regulation.  However, 
this result does not relate to economies of scale or scope in data as the anonymization did not reduce the 
amount of clicking data the search engines could access. Neumann, Tucker and Whitfield (2018) show that 
large data brokers do not necessarily perform better in consumer profiling than data brokers with fewer 
consumer profile data. Claussen, Peukert and Sen (2019)7 find that more individual user data helps 
algorithms to outperform human news editors, but decreasing returns to user engagement sets in rapidly. On 
the other hand, Safi and Schaefer (2019) find that the quality of search engine results do improve with more 
data on previous searches. This is in line with McAfee et al (2015) who find that Google Search outperforms 
Microsoft Bing in long-tail searches because of a higher number of users.  Klein et al. (2021) conducted an 
experiment with a small search engine. They find that a small search engine can produce equally good search 
results as the largest search engine (Google) for popular queries, but not for infrequent long-tail queries. This 
suggests that differences in search engine quality are largely driven by the amount of data a search engine 
has collected from its users in the past. 8   Bajari et al (2018)9 come close to economies of scope in data 
aggregation. They find that product sales forecasts do not become more accurate when historical data from 
several products markets are aggregated. However, weak complementarity between product markets results 
in separable datasets and thus in weak economies of scope. There is also some anecdotal evidence that 
supports economies of scope in data aggregation. For example, McNamee (2019)10 mentions that Google 
gradually improved its targeted advertising by combining personal data from several sources, starting from 
web searches and later adding email and maps (location) data.   
                                           
6 Chiou L and C Tucker (2017) Search engines and data retention, implications for privacy and antitrust.  NBER working 

paper nr 23815. 
7 Claussen, Jörg and Peukert, Christian and Sen, Ananya, The Editor vs. the Algorithm: Targeting, Data and Externalities in 

Online News (2019). 
8 Klein, T., Kurmangaliyeva , M., Prüfer, J. and Prüfer P. (2021), The dependence of search result quality on user-generated data: 
evidence from an experiment, mimeo, Tilburg University 
 
9 Bajari, P and V Chernozhukov, A Hortaçu and J Suzuki (2018) The impact of big data on firm performance, an empirical 

investigation, NBER working paper nr 24334.  
10 McNamee, Roger (2019)  Zucked: waking up to the Facebook catastrophe.  
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The objective of this project is twofold. First, it seeks to find evidence for the existence of economies of scope 
in data aggregation. Second, it relies on economies of scope in data aggregation to improve prediction 
accuracy of health outcomes using health and non-health data. The findings of improved model predictions in 
health outcomes will confirm the existence of economies of scope in data aggregation. . Data aggregation is 
achieved by adding more independent variables to a health prediction model that uses machine learning 
techniques.  

There have been other research projects that focus on the benefits of data aggregation in the health sector. 
The increased use of electronic medical records has promoted research in medical prognosis, producing 
models that can predict the future health of an individual. Larabee (2008)11 showed that aggregating multiple 
indicators improved the detection of malingering, invoking health reasons to stay away from work. Colbaugh 
and Glass (2017)12 proposed a novel machine learning methodology that facilitates accurate individual-level 
prediction models to be learned from aggregated data. 

The focus on the prediction of health outcomes is important because health issues are of strong public 
interest and have a social welfare dimension on top of a private dimension. There may be significant benefits 
for society from health data aggregation. At the same time, health data are sensitive personal data that 
require strong data protection. This may complicate the pooling and aggregation of personal health data with 
other personal datasets, unless anonymization techniques can guarantee privacy and data protection.  

 

 

 

 

                                           
11 Larrabee GJ. Aggregation across multiple indicators improves the detection of malingering: relationship to likelihood 

ratios. Clin Neuropsychol. 2008 Jul;22(4):666-79. Epub 2007 Sep 17.  
12 “Learning about individuals’ health from aggregate data”, Rich Colbaugh & Kristin Glass, IEE (2017). 
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2 Technical background 
Recent research in various sectors such as healthcare, retail, telecommunications, and online business has 
empirically shown that aggregation of datasets helps machine learning models to generalize well over 
training datasets and allow for better predictions.  Generally, when datasets comprise less information (few 
variables) about each data instance, the aggregation of related datasets will provide more variables. This can 
boost the predictive performance of machine learning models. Agarwal et al. (2011) found a noticeable drop 
in the performance of their proposed model on a subsample of an advertising dataset and they achieved 
better results by using the entire dataset. Sometimes the aggregation of large numbers of datasets also 
results in sparse and high dimensional data. Junque de Fortuny et al. (2013), for example, proposed a 
modified version of multivariate Naive Bayes which achieved marginal increases in performance of the model 
as training datasets continue to grow. 

For this study, our proposition was to combine longitudinal data from a representative household panel of the 
Dutch population, the so-called Longitudinal Internet studies for the Social Sciences (LISS) panel, with 
administrative microdata from Statistics Netherlands (CBS). This provides us with a substantial dataset 
containing many observations on a considerable number of variables, which can be segmented across data 
sources, years, variables, and observations into many smaller datasets. This way, we can analyze the impact 
of data aggregation by studying the (aggregation of) subsets of the larger dataset. This enables us to assess 
to what extent economies of scope in the aggregation of data result in increased prediction accuracy due to 
an increase in the number of columns (i.e., variables). Adding more variables is only helpful when they are 
complementary and not entirely unrelated. 

2.1 The datasets 

Centerdata manages and operates the LISS panel which was established in 2007 for scientific, social, and 
policy-relevant research. The LISS panel is ideally suited for research that requires a representative sample.13 
It is a probability-based panel (no self-selection) and currently (May 2021) counts 5,000 Dutch households, 
comprising approximately 7,000 individuals who complete online surveys every month. The address samples 
to recruit households are randomly selected from the Dutch population register in collaboration with CBS. If a 
selected household does not have a broadband internet connection or a computer, Centerdata loans out the 
required equipment to enable the household to participate in the panel. This is what sets the LISS panel apart 
from other online panels: people without internet access are able to participate and there is no self-selection.  

Since 2007, LISS panel members have been completing online questionnaires every month, which adds up to 
over 250 questionnaires. These questionnaires vary greatly in terms of subject matter (politics, finances, 
culture), but also in terms of clients for whom we carry out the survey (academics, social, and policy 
researchers). Every year, a fixed set of questionnaires are fielded in the panel covering a broad range of 
topics, such as health, personality, income and assets, spending leisure time, and politics and religion in the 
panel, known as the longitudinal LISS Core Studies14. 

To be specific, for the current research we use the following longitudinal questionnaires from the LISS Core 
Study: 

1. Health (also contains the outcome variables) 

2. Family and Household 

3. Work and Schooling 

4. Personality 

5. Economic Situation: Income 

In addition to the data from these longitudinal questionnaires, we use a sixth dataset from the LISS panel. 
This dataset contains all the available demographic15 information of the LISS panel members and households. 

Remarkably, the LISS panel has high response rates for years on end. Over the past few years, the response 
rate averaged 79% on the individual panel member level. This high response rate is achieved by offering an 
attractive range of questionnaires, but also by providing an effective monetary incentive. Respondents receive 

                                           
13 For further details about the setup and composition of the LISS panel, please refer to section 6.2. 
14 https://www.dataarchive.lissdata.nl/study_units/view/1 
15 https://www.dataarchive.lissdata.nl/study_units/view/322 
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€7.50 for a questionnaire that takes 30 minutes to complete. Each fieldwork period lasts one month and 
respondents receive a reminder twice during this period. Everyone, from young to old, employed, unemployed, 
or on leave, is given the opportunity to complete the questionnaires. The response and panel members’ 
reactions throughout the fieldwork period are closely monitored. 

Another unique feature of the LISS panel is the associated LISS Data Archive. This archive offers access to all 
the research data collected since 2007. By linking the unique ID of panel members, the data from different 
questionnaires can be combined (over time) and subsequently can be merged with data from other studies.16 

Moreover, given that the composition of the LISS panel is based on a sample of the Dutch population drawn 
by CBS, the data from the LISS panel can be merged and enriched with CBS administrative microdata based 
on unique identifiers. 

CBS microdata are linkable data at the level of individuals, companies, and addresses that can be made 
available to Dutch universities, scientific organizations, planning agencies and statistical authorities within the 
EU under strict conditions for statistical research. The guiding principle here is safeguarding privacy and 
preventing disclosure of persons or companies. 

To gain access to CBS microdata, several steps must be completed. Once authorization is provided and access 
is granted, the CBS microdata can be analyzed in a remote environment via a secure internet connection. 
External datasets can be uploaded to the CBS remote environment and linked to the CBS microdata. All 
microdata, together with the uploaded external data, remain within this secure CBS environment.  

The CBS microdata catalogue contains data on the following main subject areas: 

 Labor and social security 

 Enterprises 

 Population 

 Construction and dwellings 

 Financial and business services 

 Health and wellbeing 

 Trade, hotels, and restaurants 

 Income and expenditure 

 International trade 

 Manufacturing industry and energy 

 Agriculture 

 Macroeconomics 

 Nature and environment 

 The Netherlands, regional 

 Education 

 Government and politics 

 Prices 

 System of Social Statistical Datasets 

 Security and justice 

 Traffic and transport 

 Leisure and culture 

 

                                           
16 Provided that the relevant LISS data user statement has been signed: https://statements.centerdata.nl/liss-panel-data-

statement 
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More details on the main subject areas and their underlying microdata datasets can be found on the CBS 
website17. 

For the current research, we requested five microdata datasets from the main subject area “Health and 
wellbeing”. We selected these datasets to have maximum overlap with the LISS panel data participants when 
aggregated. All selected datasets from CBS have relevance to our topic and each dataset contains multiple 
variables, which is about 10 on average. CBS pseudonymizes the uploaded LISS panel data in the same 
fashion as their own data, such that it will become possible to merge all datasets by a unique key variable.  

 

2.2 Data architecture 

Both Centerdata’s LISS panel data (survey data) and CBS microdata (registry data) are considered rich 
sources of data, comprising information on an individual level with many independent variables. Since our 
focus is on health data, we concentrated on health-related categories from each data source, which were 
collected and compiled in the first phases of the project.  

After merging the individual datasets, the integral final dataset is a high volume, multivariable, longitudinal, 
and mixed source dataset (i.e., numerical, ordinal, nominal, and textual), containing both objective and 
subjective information.  

The goal of this final dataset was to create a comprehensive set of independent variables to predict selected 
outcome (or dependent) variables, which we will refer to as target variables from hereon. The next step is 
training and optimizing supervised machine learning models on individual datasets to objectively compare the 
performances of trained models, based on their learning curve and predictive power on new and unseen data. 
This provides us with the opportunity to measure effectiveness of data aggregation on the predictive power of 
machine learning models. 

We grouped the independent datasets in three distinct categories: two are from the LISS panel and one from 
the CBS. Here we explain the selection, structure, and composition of each of these groups and their 
respective sizes.  

LISS health 

Our fiducial (main) dataset is the LISS core questionnaire about health. This is called LISS health from here 
on. Our main target variables are selected from this dataset, since they provide insight into people’s health 
through the questions posed in the health surveys. These can be either subjective question answers, such as 
“How good is your health?”, or objective question answers, such as “Do you currently smoke?” 

LISS background 

Combining a selection of other relevant LISS core questionnaires, that is, including socio-economic, socio-
demographic, family and household, work, schooling, and personality comprises our second LISS dataset. We 
call this LISS background from here on. 

CBS medicine 

The CBS dataset that is used in this work is the prescribed medicine dataset for the whole population of the 
Netherlands. This dataset falls under the major theme ‘Health and Welfare’, as categorized by the CBS. We 
call this CBS medicine from here on. 

Other CBS datasets that were originally selected to be used in this study are, however, excluded from the 
analyses. This was because of a very low overlap found with respect to the LISS panel participants. These 
other CBS datasets contained data on mental healthcare treatments and products, used facilities and received 
support from the Dutch social support act (WMO), and received disability benefits. The percent overlap 
between the non-included datasets and the LISS participants ranged from 1.5% to 6%. These overlap scores 
are too low to include them in the analyses. Even when aggregated to a higher level, that is, grouping multiple 
variables and/or multiple years together, the overlap scores proved to be insufficient for modelling purposes. 
Therefore, only the prescribed medicine dataset is included from the CBS categories.  

 

                                           
17 https://www.cbs.nl/nl-nl/onze-diensten/maatwerk-en-microdata/microdata-zelf-onderzoek-doen/catalogus-microdata. This 

page is in Dutch, with links to the subcategories and documents. 
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The medicine dataset is, however, by far the largest among the CBS datasets in terms of both observations 
and the number of variables. The percent overlap of the CBS medicine dataset with the LISS participants is 
92%, as calculated on the whole set basis, that is, ranging over multiple years. On a single year basis, the 
overlap fluctuates between 70-75%. 

Each of the three major group datasets, that is, LISS health, LISS background, and CBS medicine, gives us 
many new and independent variables when aggregated. We utilized these datasets to study the impact of 
economies of scope on data aggregation. Figure 1 depicts the composition and size of the aggregated dataset 
used for the economies of scope. 

 

 

 Figure 1: Composition of the aggregated dataset, including individual dataset sizes. 

 

2.3 Longitudinal data 

In addition to the three types of independent datasets, we have annual longitudinal data at our disposal, 
comprising multiple years. In the LISS panel, these are called ‘waves’. 13 waves have been administered 
between the years 2007 and 2020 (with only one wave between the years 2013 and 2016 due to funding 
limitations at that time).  

For the CBS medicine dataset, the data registration dates back to the year 2006, while the data for the year 
2020 is not yet published. The following table (Table 1) shows the range in years for each of the independent 
datasets. 

 

Table 1: Availability of historical datasets 

Dataset starting year final year 

LISS health 2007 2020 

LISS background 2007 2020 

CBS medicine 2006 2019 

 

We note that the CBS medicine dataset covers the entire range of the LISS panel data except for the year 
2020. The year 2020 is not yet published at the time of writing. 
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Since the LISS data are collected near the end of the year (around November), the year 2020 may not be very 
a representative year due to the COVID19 pandemic. Similarly, the starting year of 2007 may also be subject 
to some differences. These two boundaries will later on be excluded from the analyses. The remaining 
overlapping years among all datasets is 2008-2019. 
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3 Data processing 
After obtaining all the datasets (LISS and CBS), data processing steps commenced. This involved data 
cleaning, data transformation, variable selection, noise removal, and data coupling (not necessarily in that 
order). Prior to coupling, data pre-processing must be done on the individual datasets. After coupling, some 
post processing is also required. We first start with the data cleaning. 

3.1 Data cleaning 

The first phase of data cleaning is done before the data is submitted to the CBS secure environment where 
the LISS datasets Health and Background can be coupled to the CBS dataset Medicine. This cleaning phase is 
needed because the LISS core questionnaires can have some intrinsic differences among them that have to 
be resolved first (see also the first interim report). We completed this step by combining all the longitudinal 
data of the relevant core questionnaires. 

The second cleaning phase commenced within the CBS secure environment. This phase encompasses rigorous 
cleaning of all the data by considering data variance, data correlation, data imputation, data normalization, 
and data encoding, and while doing that, dealing with the various data types that exist in the combined 
dataset.  

 

Table 2: Cleaning steps on LISS panel data 

Cleaning step description Dropped 
variables 

Dropped 
observations 

1. Removed all (free) text data 74  

2. Excluded the years < 2008 and 2020 from the analyses  16,272 

3. Removed completely unfilled questionnaire questions 80  

4. Removed questions that were all uniformly answered (e.g., all 
answered ‘yes’) 44  

5. Merged the same questions appearing in multiple questionnaires 6  

6. Removed variables containing 70% or more missing (e.g., many 
follow-up questions are not relevant to many people) 1189  

7. Removed variables that showed very little variability  31  

8. Removed highly correlated variables (P. coefficient > 0.9) 22  

9. Removed nonsensical variables (e.g., month of survey) 34  

10. Removed variables with too many or unrelated categories (e.g., 
“which insurance company are you registered to?”) 14  

11. Discarded the variables used for coupling datasets 3  

 

Table 2 shows the cleaning steps that are performed during this second phase together with the number of 
variables that are removed from consideration for the analyses. The starting total number of variables was 
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2,007, that is, the raw LISS panel data right after the initial submission to the CBS secure environment, and 
the number of observations was 89,611. 

The CBS data did not require any deep cleaning as they are registry data that are extensively checked and to 
this purpose specifically prepared. They are not subjective in nature.  

 

3.2 Data transformation 

The next step comprised the transformation of categorical (nominal) data to a type that is suitable for 

modelling. After a thorough process, from the remaining 512 variables 35 nominal variables are identified.18 
These variables are then encoded using the one-hot encoding technique.  

One-hot encoding essentially converts each category of a variable into a new variable. For example, for the 
hypothetical question “Which color do you like?” with the selectable answer categories ‘green’, ‘blue’, and ‘red’, 
one-hot encoding will make three new dummy variables where each new encoded variable represents a new 
question, such as, ‘do you like the color green?’ (yes/no), ‘do you like the color blue?’ (yes/no), and ‘do you like 
the color red?’ (yes/no). Each of these new variables are now in a format that is suitable for modelling. 

Encoding always results in the increase of the total number of variables, often significantly if there are many 
categories to start with. Encoding also makes the data sparser (more cells containing zeros). However, it 
makes nominal data variables usable by making all datatypes uniform. 

In this case, our 35 nominal categories became 143 new one-hot encoded variables, thereby growing the 
total number of variables by 108. After all these steps, the total number of variables of the LISS panel that 
we were left with was:  

 620 independent variables (columns) and  

 73.3k observations (rows) 

The CBS medicine dataset was provided in a long format and it needed to be transformed to be usable. Every 
individual person has a list of prescribed medicine (ATC4) categories given as observations. We converted 
each of the medicine categories to new variables, in essence also creating dummy variables per medicine 
category. The original long-format single variable of prescribed medicine categories after conversion became 
187 new independent variables. 

 

3.3 Data coupling 

 

After the cleaning and transformation steps, we finally coupled the processed LISS panel data with the 
processed CBS data. Only the people who gave consent to CBS coupling or did not object to this, which is one 
of the questions in the questionnaires, were considered in the coupling with CBS. The total number of 
participants that can be used for the analyses decreases somewhat because of this.  

The total number of observations of the coupled dataset also depends on the selected range in years. For the 
last five years (2015-2019), the total number of observations amounted to 22,792. The total number of 
variables from the final merger ended up as 807 (620 + 187). 

 

 

 

                                           
18 Except binary categories since binary categories can simply be used after numerical encoding. 
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4 Modelling 
 

We employ two types of machine learning algorithms. These are Logistic Regression (LR) and Random Forest 
(RF). Both types of algorithms are transparent models. A conscious choice. This means that from model 
outputs, insights into model behavior can be gained and the variable importance lists can be extracted. With 
these lists, one is able to determine which variables are the main causes for an improved model performance. 

Next to feature importance, also the direction of importance of a variable can sometimes be obtained. To give 
an example, if age is an important predictor for high blood pressure, the question can be if higher age or 
lower age causes the high blood pressure. Often common sense will lead you to an answer, but this is not 
always obvious. With LR, one has the coefficients for each of the variables that leads to the decision 
boundary. The coefficients are the multipliers of the features, the same as in linear regression. From the value 
of these coefficients, one is able to extract the importance of a variable and from the sign of the coefficients 
one can tell in which direction it points. 

With RF, there is the Gini index. The Gini index is a commonly used metric in RF, which is a measure of 
variance, and is used for determining the decision boundary. The higher the variance, the more 
misclassification there is. Therefore, lower values of the Gini index yield better classification. An RF model 
typically returns the normalized Gini indexes per variable. Using this, one can immediately find the order of 
relevance of the variables given a model prediction. Since an RF is a collection of decision trees, and the 
majority voting is selected as the final answer, the direction of a variable is lost in the final outcome. By 
running a lower-level algorithm like a decision tree or even an LR on the main indicators, one can still obtain 
the direction of variable importance.  

In this work, we do not focus on the direction of variable importance, but we provide insight into the absolute 
and relative importance of the predictor variables. A notable limitation of these models is that causality is not 
captured, neither from variable importance nor directionality. 

4.1 Classification techniques 

There are many different types of models for predictive analyses. Some models are more descriptive and 
exploratory while others are more powerful and accurate. The predictive power of a model is often related to 
how transparent and interpretable a model is. The general statement ‘the more transparent a model, the less 
powerful its prediction’ can be made. In this work, we are more interested explainability and interpretability of 
model outcomes. 

The focus here is on supervised machine learning, since, by choice, we have the dependent (target) variables. 
Supervised machine learning models can be divided into two separate groups, that is, regression models and 
classification models. Since most of the LISS panel data are categorical in nature, especially the dependent 
variables, we employ classification models for this work. With the points made above, our list was shortened 
to two selected models, that is, LR and RF. 

In the next sections, we briefly explain the selected two classification models for this work. 

4.1.1 Logistic Regression (LR) 

Logistic regression is a type of regression analysis. Although the method resembles a linear regression 
technique, Logistic Regression is actually a classification technique. Logistic Regression is an algorithm used 
to assign observations to a separate set of two or more classes. With it one is able to predict the class of a 
dependent variable (often a binary outcome) using a set of independent variables. A popular example of a 
binary classification problem is the prediction of whether a received email is spam or not. 
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In general, Logistic Regression uses a linear combination of multiple explanatory variables (X1, X2,… Xn), just 
like linear regression does (i.e., Y = b0 + b1X1 + b2X2 +… bnXn). But now, the linear combination of variables 
is used as an argument to the sigmoid function instead. 

The sigmoid function can be given as =  
ଵ

ଵାషೊ
 

The corresponding output of the sigmoid function is a number between 0 and 1. An input that returns 0.5 or 
more is counted as class 1, while an output lesser than 0.5 is counted as class 0. Unlike linear regression 
analysis, where the dependent variable is a continuous variable, in Logistic Regression the dependent variable 
is a categorical (discrete) variable. Figure 2 highlights the method of the Logistic Regression technique. 

 

Figure 2: Example of the Logistic Regression technique and a comparison to linear regression. 

 

One downside of LR is that it underperforms in the presence of too many independent variables. Independent 
variables are also known as features in data science. To deal with this problem, regularizations are introduced 
in Logistic Regression. These techniques impose a penalty on the model's coefficients to regulate their 
influence on the model. Regularization is an important addition to LR that is often used to avoid the 
overfitting of a model.  

There are two main-stream regularization techniques, these are Ridge and Lasso. The Ridge regression 
technique (or L2-regularization) squares the coefficients in the penalty term of the OLS loss function and 
tends to drive the coefficients of minor variables close to zero, but not quite to zero. The Lasso regression 
technique (or L1-regularization), on the other hand, penalizes the absolute values of the coefficients and 
shrinks some coefficients all the way to zero. In this way, the method also helps to reduce the number of 
dependent variables, improving model performance. In this work, we employed Lasso (L1) regularization.  

Logistic Regression for more than two classes is called multiclass classification. Multiple classes can be 
treated via the one-vs-rest scheme (OVR), in which each class is still regarded as a binary classification 
problem. Some of our employed models used the OVR scheme. 

4.1.2 Random Forest (RF) 
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Random Forest is a popular tree-based supervised machine learning technique, in which many decision trees 
are combined to arrive at the final prediction. We speak of an ensemble method when several models are 
combined into one large model. Decision trees are therefore the building blocks of a Random Forest. 
Combining many separate decision trees into an ensemble model results in a higher precision and in more 
stable model predictions. A Random Forest therefore generally gives much better predictions than a single 
Decision Tree. 

A single decision tree is an easily interpretable classification method. It is one of the more commonly used 
classification methods because of the high level of transparency it provides. Decision trees are often 
considered fun, insightful, and management friendly. A graphical representation is quickly made, and it gives a 
clear overview of the route to the forecast. 

With Random Forest, where many decision trees are used, the collection of trees is called random because 
each tree is trained on a random selection of variables and observations (with replacements). Each individual 
tree spews out a prediction. If the target variable for the prediction is categorical in nature, the final outcome 
is determined by majority voting. In other words: the outcome of most trees counts as the final outcome. 
Figure 3 depicts the hierarchy of an RF model. 

 

 

Figure 3: Schematic representation of the Random Forest algorithm. 

(Image credit: TIBCO Software) 

 

The fundamental concept behind Random Forest is simple yet powerful - the wisdom of multitudes. All the 
trees together form an entity that is greater than the sum of its parts. The method can produce ensemble 
predictions that are more accurate than all the individual predictions. The reason for this amazing effect is 
that the trees protect each other from their individual faults, as long as they are no systematic errors. Some 
trees may be wrong, but many other trees are right. 
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In this work, we selected to use 500 decision trees for our Random Forest algorithm. The maximum allowed 
tree depth is set to 7 and the minimum samples per leaf is set to 2. The remainder are standard settings for 
the Scikit-Learn Random Forest algorithm. 

 

4.2 Model building pipeline 

When a data-driven research is started, it is useful to follow a detailed plan. In a general sense, there are five 
steps that must be followed to obtain good model performance, see Figure 4. The steps are: 

1. Get the data 

2. Process the data 

3. Train a model 

4. Test and evaluate 

5. Optimize the model 

 

 

 

Figure 4: The five steps of a data-driven research. 

(Image credit: Data Science Initiative) 

 

The sequence of the step-by-step plan may deviate somewhat and depends on the research objective or the 
type of model. The step-by-step plan is often also an iterative process. For example, after testing, evaluation, 
and optimization (steps 4 and 5), it is often wise to go back and retrain the model (step 3) or go back even 
further to better preprocess the data (step 2) in order to improve model results.  

The steps we followed while building our predictive model are listed below: 

 We merged all LISS panel data into one file.  

 We pre-cleaned the data. This phase only involved the cleaning of LISS panel data. In this, the unrelated, 
non-filled, low variance, and highly similar survey question answers were removed from the dataset. 

 We combined all the datasets. In the simplest terms, these are the major datasets LISS health & 
background and CBS medicine. In non-simple terms, the major datasets also contained many sub-groups. 

 We split the data year wise and took random samples of the independent variables. 

 We selected the target (dependent) variables. There are four target variables, ranging from very 
subjective health-related questions to highly objective health outcomes.  
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 We perform the final stage processing on the created subsets. This involves cleaning using automatic 
correlation dropping, regrouping the classes of the target variables, and the removal of the other target 
variables from the selected target variable set. 

 We impute the missing values. We do this in two ways: imputing by mode for categorical data and 
imputing by median for numerical data. 

 We normalize the data using MinMax normalizer such that every value will be within a range of 0 and 1. 
Normalizing is not necessary for some type of algorithms but is required for other algorithms. Staying 
consistent is always preferable.  

 We set-up our machine learning models. Some hyperparameters must be selected, like the number of 
trees in Random Forest (see also section 4.1). 

 We then run all the combinations in the parameter space with two different machine learning algorithms, 
that is, Logistic Regression and Random Forest. 

 We evaluate the models using the k-fold cross-validation technique. This means that the data is split into 
a training set and a test set. The percentage wise split is taken as 80/20, training and testing, 
respectively. The test set is used to evaluate model performance. More on k-fold cross-validation 
technique in section 4.4.2. 

 We optimize the models. For this, one must go back to the second step and start the cycle anew. 
Optimizing is done until an acceptable model performance is achieved. In this work, the optimization of 
models has not been a major focus, since our goal is not to create the best possible model, but rather to 
see how model performances improve with increasing dataset size. 

 

4.3 Labels 

In machine learning, the target variables are also known as ‘labels’. These are the known variables on which a 
supervised machine learning model is ‘trained’. Basically, the smart algorithm learns how to get to the known 
outputs (labels) by figuring out the importance of each of the independent variables. It weighs them, connects 
them to one another, and does this in a multi-dimensional space, where each variable/feature can be 
considered as another dimension.  

 

Instead of performing the analyses on a single target (dependent) variable, we have decided to select four 
target variables and run all models for all variables separately. The reason for doing this is that the choice of 
a target variable may have an impact on results. Some target variables may be more susceptible to data 
aggregation, while others may actually be less prone. Furthermore, some target variables can be more 
subjective in nature, whereas others are very objective. Since the goal here is to study the impact of data 
aggregation on predictive modelling on health-related data, there is not a clear research question at hand. By 
taking more than one target variable, assuring some diversity, and by taking the average of the model 
outcomes, we can say something about the general impact of data aggregation on predictive modelling. 

 

For each chosen target variable, we drop the others from the list of dependent variables to mitigate their 
impact on the analyses. Our target variables are further detailed in section 5.2. 

4.4 Model evaluation 

As soon as the models generate outcomes, it is fundamental to know how well the models are performing. To 
assess the performance of a model and to be able to compare it to other models, various evaluation metrics 
can be used. There are many ways to this.  

Model evaluation metrics quantify model performances. The choice of an evaluation metric depends on a 
particular machine learning task (such as classification, regression, ranking, clustering, or topic modelling). 
Some metrics, such as Precision and Recall, are useful for multiple tasks. Others are highly specific to a cause, 
such as the False Negative Rate or Gini coefficient. The most used performance metrics in supervised 
machine learning are: 
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 Accuracy 

 Precision 

 Recall (also known as sensitivity) 

 Confusion matrix 

 F1-score 

 Receiver Operating Characteristic Area Under Curve (ROC-AUC) 

 

Accuracy is the part of the observations that is correctly predicted. It is often described as the number of 
correctly predicted observations over the total number of observations. This is also formulated as 
(TP+TN)/(TP+TN+FP+FN), where TP stands for true positive, TN for true negative, FP for false positive, and FN 
for false negative. 

Recall or sensitivity is the part of the observations that was correctly predicted for that class. This can be 
done per class or averaged over all classes. For example, for a given class 1 of a dichotomous variable, the 
formula would be: Recall = the number of 'true positives' over the number of actual positives = TP/(TP+FN). 

Precision is the part of the predictions that is correctly classified for the given class. This can again be done 
per class or averaged over all classes. For example, for class 1 of a dichotomous variable, the formula would 
be: Precision = the number of true positives over the number of predicted positives = TP/(TP+FP). 

In a confusion matrix, for a binary target variable, the predicted class is compared to the actual class in a way 
that is given in Figure 5. 

 

 

Predicted class 

0 1 

Actual class 

0 True Negative (TN) False Positive (FP) 

1 False Negative (FN) True Positive (TP) 

Figure 5: An example of a confusion matrix 

 

4.4.1 F1-score 

The F1-score measures a model's performance as the harmonic mean between precision and sensitivity 
(Provost & Fawcett, 2013). The result is a value between zero and one, where a value of one would imply 
perfect precision and sensitivity. The F1 score is calculated by the following formula: 

F1-score = 2 * (Precision * Sensitivity) / (Precision + Sensitivity) 

The F1-score is a much better measure than accuracy, precision, or recall individually, especially in the case if 
the data is imbalanced. This is in fact the case most of the time in this work.  

The formula above is given for the case of two classes in the target variable. When there are more than two 
classes in the target variable, the macro average F1-score is considered. The macro average is simply 
calculated as the sum of the F1-scores for each of the classes divided by the number of classes. 
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Before evaluation by the F1-score can be done, the data must first be split into a part used for training the 
algorithm and a part for model evaluation. The splitting of the data must be done before training the model 
or imputing any of the variables. 

4.4.2 K-fold cross-validation 

Cross-validation is a statistical resampling method used together with the evaluation of machine learning 
models. This method is often implemented when dealing with limited or imbalanced data sets. In applied 
machine learning, it is commonly used to compare and select the better model for a given predictive 
modelling problem, because it is easy to understand and easy to implement. The procedure has a single 
parameter "k" that refers to the number of groups into which a given data sample is to be split, or also known 
as folds. Therefore, the procedure is often referred to as k-fold cross-validation. 

 In a practical sense, the data is first shuffled and then split into k-groups. Each group is, in turn, reserved as a 
test set, while the remainder of the dataset is used for training. The model is then trained on the training set. 
In this way, each group gets its turn to become part of training and part of testing. This approach allows the 
optimal use of the whole dataset for testing and evaluating, which offers a great benefit over the regular 
train-test splitting, where one is basically forced to reduce the dataset size for testing purposes. Especially for 
the smaller datasets this is ideal, where you cannot afford to lose any of your data. The only downside with 
this approach is that one does not have a truly ‘unseen’ test set on which one bases the model evaluation, 
thereby sacrificing some generalization of the model. 

 A typical value of k is taken as 5, resulting in an 80% train and 20% test sample, which is then run five 
times. Sometimes k=10 is also used for larger datasets. We choose k to be 5 in our models. One can choose 
to re-shuffle every time a new split/fold is made (this is called the “ShuffleSplit” method), resulting in more 
randomness. While this can be seen as fairer, it comes at the cost of not optimally using the whole dataset. It 
can sometimes also lead to identical sets, however highly rare. We do not adopt this method because we 
prefer reproducibility of the results and wish to involve less randomness into the equation in order to better 
explain the results.  

One can also choose to stratify the data (this is called the “Stratified Kfold” method), meaning that all target 
classes must be (about) equally represented in each k-group. This allows for good training and testing of the 
models, but a limitation is imposed, that is, not all possible k-groups are allowed. While this can be a 
necessary thing for very small and imbalanced datasets, since you do not want to have a k-group with 
missing samples to test for, for the larger datasets it can be avoided, even if it helps model performance. 

 K-fold cross-validation is independent on the choice of an evaluation metric. Any evaluation metric can be 
applied together with the k-fold cross-validation. Some popular ones include the ones mentioned in the 
previous section, such as accuracy, precision, recall, and F1-score. We apply the macro average F1-score in 
our models as the evaluation metric.  

The output of the k-fold cross-validation method is k evaluations of the whole dataset. The final result is 
taken as the average of all these evaluations (i.e., in our case, the mean F1-score). 
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5 The parameter space 

5.1 96 models 

We ran our predictive models for a wide range of parameter space. This is done to make the model results 
independent of a varied range of parameters, such as the chosen machine learning model or the (random) 
sampling method. We first explain the parameter space in which the models are run. 

We used two different machine learning algorithms, LR and RF, for our model predictions. This makes the 
results model agnostic to a certain degree. In order to measure economies of scope in data aggregation we 
ran each of the algorithms  20 times, each time increasing the randomly sampled number of independent 
variables  (columns), from 5% to 100% with increments of 5%.  

We also ran the models for two different time series ranges, 2018 to 2019 and 2015 to 2019. This increases 
the size of the dataset in rows (instead of columns) by having more observations of the same participants. 
The further we go back in time, the more data we have per participant. The number of participants does not 
change, however. 

In the machine learning models as well as in the sampling method there is randomness involved. To make the 
model results reproducible, fixed seed randomness is selected for all models and the data sampling methods. 
In order to eliminate any potential dependence on the selected random seed, all model combinations were 
also run for two different, but fixed, random number seeds.  

The other parameters are described in the following sections. Together, varying all parameters results in a 
combination of 96 models. Table 3 gives a complete overview of the used parameter space. 

 

Table 3: Chosen parameters and their descriptions 

Parameter Combinations Description 

Machine learning algorithms 2 Logistic Regression, Random Forest 

Range in years 2 2018-2019, 2015-2019 

Randomness 2 Used seeds #3, #30 

Correlation thresholds 3 0.5, 0.7, 0.9. See section 5.2 

Target variables 4 See section 5.3 

 

5.2 Correlation thresholds 

Prior to running any models, we compute the pairwise correlation between all variables of the data (excluding 
null values). This results in a large matrix of dimension N x N, where N is the number of variables. We use 
each individual correlation coefficient to decide if a variable is too strongly correlated with another. Too 
correlated variables are then discarded from the analysis.  

An example of a matrix of highly correlated variables (with Pearson’s r > 0.9) in shown by a triangle graph in 
Figure 6. In this figure, some of the variables are encoded, but age (leeftijd) and birth year first child (cf456) 
or size of household (aantalhh) and number of kids (aantalki) are typical examples of strong (anti)correlations. 
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Figure 6: A correlation triangle graph showing correlated variables of Pearson’s r > 0.9. 

 

The correlation check step is automated, that is, one of the two correlated variables has to be removed from 
analysis and the algorithm selects which one. This is done in a consistent and reproducible way. The sampling 
for dataset size is performed at a later stage, such that the removal of variables due to correlation is not 
affecting the size and composition of the subsets. 

To compute the pairwise correlation, we use the Pearson method, also referred to as Pearson’s r or bivariate 
correlation. It is essentially a normalized measurement of the covariance. Pearson’s correlation coefficient 
ranges from -1 to 1, but we take the absolute value, now ranging between 0 and 1, to determine the level of 
(anti)correlation. Anything above a selected threshold level is marked for removal. The choice of the threshold 
is somewhat arbitrary. We therefore selected three threshold levels to study the impact of removing 
correlated variables from the analysis. These are thresholds 0.5, 0.7, and 0.9. Changing correlation thresholds 
can also be perceived as the amount of cleaning and processing performed on the data prior to the analyses 
(lower threshold means more cleaning). 
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5.3 Target variables 

Finally, we have to choose the target variables (aka dependent variables) for the supervised machine learning 
models. This study aims to give a general result for the impact of data aggregation in the prediction health-
related outcomes. Any chosen dependent variable might result in a bias toward that target variable. Since it is 
not inconceivable that some variables might be more prone to data aggregation than others, any choice of a 
target variable may have an important impact on results.  

Hence, to be choice independent, we selected four inherently different variables, ranging from highly 
subjective to highly objective ones, as our target variables. The proof of a similar behavior for each of the 
variables with dataset size, or at least the trend of the average prediction of the four target variables, will 
allow us to justify the general result for the impact of data aggregation in the prediction health-related 
outcomes. 

Our choices in the target variables are: 

A. Perceived health. The exact question for this in the LISS health questionnaire is “How would you 
describe your health, generally speaking?” Possible answers scale from 1 to 5, where 1 is ‘poor’ and 5 
is ‘excellent’. This variable is very subjective. 

B. Functional disability. There are three related survey questions for this. These are based on the 
following: “To what extent did your physical health or emotional problems hinder your xxx over the 
past month?”, where xxx is either ‘daily activities’, ‘social activities’, or ‘work’. Possible answers scale 
from 1 to 5, where 1 is ‘not at all’ and 5 is ‘very much’. These variables are more objective, but still 
fairly subjective. 

C. Chronic lung disease. The question for this in the LISS health questionnaire is “Has a physician told 
you this last year that you suffer from: a chronic lung disease such as chronic bronchitis or 
emphysema?” Possible answers are 0 ‘no’ and 1 ‘yes’. This variable is objective. 

D. Prescribed medicine for respiratory system (ATC-R). This data is taken from the CBS registry. The 
data is based on the medicine prescribed that are reimbursed according to entitlement to 
pharmaceutical care under the basic healthcare insurance to persons who are registered in the 
Personal Records Database (BRP). The value range is a scaled number on the count of how many 
ATC-R19 sub-categories are prescribed over the course of one year. This variable is based on facts. 

 

For target variable A., the number of people answering 1 or 5 are much less in comparison to the other 
answers, especially 3. Good models always benefit from a balanced dataset. Following good modelling 
practice, for improvement in model predictions, we grouped the given answers of categories 1 and 2 to the 
category ‘bad’ and the answers of categories 4 and 5 to the category ‘good’. We now have only three, more 
balanced categories that are classified as ‘bad’, ‘normal’, and ‘good’.  

For target variable B., We merged the three questions into a single variable. For this, we took the mean of all 
three answers. We then combined the answer categories ‘hardly’ and ‘a bit’ into one category and the 
categories ‘quite a lot’ and ‘very much’ into another. This reduced the five categories into three, more 
balanced categories. We then removed the original variables from the analysis. The new variable has 
essentially become a general question about functional disability in daily life. It is more objective in relation to 
perceived health. However, it remains a question to the participants and thus is prone to one’s personal view 
of functional disability. 

For target variable C., we already have only two classes, either 0 or 1. While imbalanced, that is more people 
answered 0 ‘no’ than 1 ‘yes’, no adjustments to this variable were made.  

                                           
19 The Anatomical Therapeutic Chemical (ATC) code is a drug classification system that classifies the active ingredients of drugs according 

to the organ or system on which they act and their therapeutic, pharmacological, and chemical properties. ATC-R is the Respiratory 
system main anatomy group. 
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For target variable D., we merged the ATC4-R sub-groups into this single variable. The sub-groups contain a 0 
(a medicine is prescribed in that sub-category) or 1 (no medicine is prescribed in that sub-category). The ATC-
R respiratory group category now has an integer number representing the number of sub-categories in which 
one had medicine prescribed for a given year. No further adjustments were made. 
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6 Results 
We present the results in the form of graphs of model performance versus the dataset size for each 
combination of the parameter space. As described in section 5.1, there are in total 96 combinations. This 
comprises 48 different models with each model performed twice (changing randomness). We show the results 
for the four target variables in this section. The complete set of figures for all combinations of the parameter 
space, for one fixed seed randomness, are presented in Appendix A. 

In this section, we present the model performance results (prediction value according to the F1 score) for each 
of the four target variables. The target variables are in function of the size of the explanatory variables 
dataset, as a percentage of total number of available variables, for the two types of machine learning 
algorithms (LR and RF). We also plot the average result of both algorithm performance scores combined in 
the same figure. The selected correlation threshold (0.7 or 0.9) and data range (years 2015-19 or 2018-19) 
are given in the image captions. The full set of results is presented in the appendix. 

 

 

Figure 7: Prediction F1-scores of perceived health versus dataset size for two independent machine learning algorithms. 
Correlation threshold is 0.7 and year range is 2018-19. 
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Figure 8: Prediction F1-scores of functional disability versus dataset size for two independent machine learning 
algorithms. Correlation threshold is 0.7 and year range is 2015-19. 

 

 

Figure 9: Prediction F1-scores of prescribed medicine for the respiratory anatomy group (ATC-R) versus dataset size for 
two independent machine learning algorithms. Correlation threshold is 0.9 and year range is 2018-19. 
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Figure 10: Prediction F1-scores of chronic lung disease versus dataset size for two independent machine learning 
algorithms. Correlation threshold is 0.9 and year range is 2018-19. 

 

All results show a decreasing trend toward smaller number of explanatory variables. This confirms the 
presence of economies of scope in data aggregation across variables: prediction accuracy increases with a 
higher number of explanatory variables.  

There are sometimes jumps in model performance and prediction does not always follow a smooth line with 
respect to dataset size. These can especially be noticed from figures 9 and 10. The addition of some (key) 
variables to the dataset sometimes improves model performance significantly. This is another indication in 
favor of economies of scope in the aggregation of data. Such behavior is more often observed with the more 
objective variables, such as ATC-R and chronic lung disease. It seems that the predictive models of objective 
target variables are more reliant on direct information from individual (relevant) sources, whereas the more 
subjective target variables show a more smooth behavior and are rather dependent on a combination of 
variables that lead to the final prediction.   

Model performance can also sometimes decrease with increasing number of variables. This can especially be 
noticed from the figures A1, A3, A9, and A13 in the appendix. We attribute this to the condition that 
sometimes the addition of new data rather acts as noise to the models, thereby reducing performance, albeit 
slightly. This behaviour may be overcome if more time and effort is spent on data (pre-)processing of the 
subsets, such as cleaning, transforming, and imputing. 

 

6.1 Quantifying economies of scope 

The graphs above give a first visual confirmation of the existence of economies of scope in data aggregation. 
We continue to quantify the magnitude of economies of scope. For this, we run 48 linear regressions on the 
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log (F1-score) = a + b log (data size in percentage of variables used) 

The estimated value of b represents the magnitude of economies of scope. We expect b > 0. Table 4 below 
shows the results for RF estimations only. The estimated values of the b coefficients in Table 4 should be 
interpreted as follows: a coefficient of 0.109 (value in the upper left corner) implies that a 1 per cent increase 
in the number of variables used results in a 0.109 per cent increase in prediction accuracy as measured by 
the F1-score.  

Table 4:  The magnitude of economies of scope in data aggregation 

Correlation 
threshold 

Subjectively 
perceived 

health 

Functional 
disability 

Diagnosed 
respiratory 

disease 

Consumption of 
respiratory 
medicines 

Time series 2018-19   

0,5 0.109 0.079 0.117 0.036 

0.7 0.064 0.060 0.025 0.076 

0.9 0.045 0.046 0.061 0.042 

    

Time series 2015-19   

0,5 0.071 0.119 0.142 0.059 

0.7 0.074 0.054 0.101 0.055 

0.9 0.071 0.078 0.109 0.052 

          

Source: LISS and CBS data; authors’ calculations. 

 

For the 48 regressions, we find an average value of the b-coefficient of 0.086. Per model type, the average 
for LR estimates is 0.103 and for RF estimates is 0.071. The average for the period 2015-19 is 0.097; for 
2018-19 this is 0.076. The average varies according to the degree of complementarity among the variables. 
It reaches 0.094 at a correlation threshold level of 0.5. It decreases to 0.086 for a threshold of 0.7 and to 
0.080 for a threshold of 0.9. This confirms the Rosen hypothesis that more complementary datasets with less 
correlation between variables, exhibit stronger economies of scope. 
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7 Conclusions 
There is considerable controversy and confusion about economies of scale and scope in data. While 
economies of scale may be intuitively clear, the interpretation of economies of scope when applied to data is 
ambiguous. We introduce a conceptual distinction between the traditional interpretation of economies of 
scope in the reuse of data and a new interpretation of economies of scope in data aggregation. Economies of 
scope in reuse constitutes an argument in favour of lowering access barriers and wider sharing and diffusion 
of data. Economies of scope in data aggregation put a premium on concentration of data in large pools. Apart 
from conceptual ambiguity, the absence of empirical evidence has contributed to doubts about the existence 
of economies of scope in data aggregation. 

The existing confusion about economies of scale and scope in data in the economic literature is not only due 
to conceptual ambiguities but also to the absence of empirical evidence on the existence of economies of 
scope in data aggregation. In the second part of this paper, we present empirical evidence from the 
aggregation of Dutch health and health-related datasets for the prediction of health outcomes. We find that 
more aggregation across a wider set of independent and complementary variables significantly increases the 
prediction accuracy of health outcomes.   

These findings suggest that the aggregation of health and non-health personal and socio-economic data may 
lead to better insights in health outcomes. It would be an argument in favour of opening up health data silos 
and merging them with other sources into large multi-domain data pools in order to produce better health 
research outcomes. Companies with access to large and very diverse consumer data pools should have an 
advantage if they manage to combine this with personal health data. Since health data are particularly 
sensitive from a personal data protection point of view, merging or aggregating personal health data into 
wider data pools should be subject to strict data protection procedures.   
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Annexes 

 

 

 

 

 

 

Annex 1. All results 

Here, we show the resulting graphs from the modelling for all the combinations of the 
parameter space. The raw data from which the figures are made are provided as 
separate Excel files. 

 

Correlation threshold 0.5, range in years 2018-2019. 

 

Figure 1 Target variable: ATC-R 

 

40.35

40.4

40.45

40.5

40.55

40.6

40.65

LR F1-scores



 

31 

 

 

Correlation threshold 0.5, range in years 2018-2019. 

 

Figure 2: Target variable: Perceived health 
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Correlation threshold 0.5, range in years 2018-2019. 

 

Figure 3: Target variable: Chronic lung disease 
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Correlation threshold 0.5, range in years 2018-2019. 

 

Figure 4: Target variable: Functional disability 
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Correlation threshold 0.7, range in years 2018-2019. 

 

Figure 5: Target variable: ATC-R 
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Correlation threshold 0.7, range in years 2018-2019. 

 

Figure 6: Target variable: Perceived health 
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Correlation threshold 0.7, range in years 2018-2019. 

 

Figure 7: Target variable: Chronic lung disease 
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Correlation threshold 0.7, range in years 2018-2019. 

 

Figure 8 Target variable: Functional disability 
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Correlation threshold 0.9, range in years 2018-2019. 

 

Figure 9: Target variable: ATC-R 
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Correlation threshold 0.9, range in years 2018-2019. 

 

Figure 10 Target variable: Perceived health 
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Correlation threshold 0.9, range in years 2018-2019. 

 

Figure 11: Target variable: Chronic lung disease 
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Correlation threshold 0.9, range in years 2018-2019. 

 

Figure 12: Target variable: Functional disability 
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Correlation threshold 0.5, range in years 2015-2019. 

 

Figure 13: Target variable: ATC-R 
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Correlation threshold 0.5, range in years 2015-2019. 

 

Figure 14: Target variable: Perceived health 
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Correlation threshold 0.5, range in years 2015-2019. 

 

Figure 15: Target variable: Chronic lung disease 
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Correlation threshold 0.5, range in years 2015-2019. 

 

Figure 16: Target variable: Functional disability 
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Correlation threshold 0.7, range in years 2015-2019. 

 

Figure 17: Target variable: ATC-R 
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Correlation threshold 0.7, range in years 2015-2019. 

 

Figure 18: Target variable: Perceived health 
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Correlation threshold 0.7, range in years 2015-2019. 

 

Figure 19: Target variable: Chronic lung disease 
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Correlation threshold 0.7, range in years 2015-2019. 

 

Figure 20: Target variable: Functional disability 
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Correlation threshold 0.9, range in years 2015-2019. 

 

Figure 21 Target variable: ATC-R 
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Correlation threshold 0.9, range in years 2015-2019. 

 

Figure 22: Target variable: Perceived health 
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Correlation threshold 0.9, range in years 2015-2019. 

 

Figure 23: Target variable: Chronic lung disease 
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Correlation threshold 0.9, range in years 2015-2019. 

 

Figure 24: Target variable: Functional disability 
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