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Abstract 

The static model of two sided markets proposed by Rochet and Tirole analyses optimal pricing of a 
monopolistic platform at the equilibrium point. Their framework implicitly assumes that for each prices set by 
the platform, the equilibrium number of users on each side will be unique. However, under general conditions, 
the uniqueness of market equilibrium is not guaranteed. Optimal static prices do not ensure convergence to 
the preferred full market outcome, as platform may face failure-to-launch or failure-to-grow problems. 
Hence, to study problems around multiplicity of equilibria, a different framework is required. We propose a 
dynamic model of monopolistic platform and demonstrate the effects of different dynamic pricing strategies 
for equilibrium selection and convergence. The main conclusion from the study is that emerging platform can 
reach the preferred equilibrium by using tariffs with subsidies for early stage users. We give examples of 
dynamically adjusting tariffs that minimize subsidies. Finally, the dynamic setting reveals a trade-off between 
the platform profits and social welfare, related to the speed of user base growth. 



1 Introduction

Multiple equilibria are a rule rather than exception in the analysis of multi-sided markets. They
arise in a coordination game between di�erent sides of the market, whose payo�s are interdepen-
dent via indirect network e�ects. Multiplicity of equilibria introduces indeterminacy that cannot be
dealt with in the static framework with constant prices. Thus, static models pick one equilibrium
and focus on the analysis of the optimal level and structure of pricing in that point. The problem
of equilibrium selection is by-passed in one way or another. For example, rational expectations
of users that give unique participation levels or the capacity of a platform to make credible com-
mitments are assumed. Some papers introduce technical regularity conditions which guarantee
uniqueness of the equilibrium or claim to focus only on grown-up platforms. Mature platforms
have already brought su�cient number of users on board and can leverage positive indirect net-
work e�ects. Static models ignore that platforms often face a failure-to-grow problem and thus are
incapable to reach the full market coverage or other preferred point.

The importance of equilibrium selection has been mostly acknowledged in the context of chicken
and egg problem which refers to the imperative of a start-up platform to build a critical mass of
users in order to stay in business. Evans and Schmalensee (2010) show that the severity of this
constraint depends on the strength of network e�ects and heterogeneity of users with respect to ben-
e�ts from participation on the platform. They use a dynamic approach based on time-continuous
di�usion of innovation model. In their framework, in some cases it is su�cient to get only very
little users on board in order to enter the path towards fully covered equilibrium. In other cases, a
new entrant will have to make a huge investment to get away from a zero participation stable equi-
librium. An important insight from their work is that the choice of equilibrium may be a relevant
problem also for the established platforms. The critical mass logic applies not only to the choice
between zero and full participation but equally to low and high participation. Recently Cabral
(2019) proposed a discrete time dynamic model which focuses on the evolution of platform's size.
In his setting there exists always a unique equilibrium to which a platform converges. Platform's
size in this unique equilibrium may be di�erent, including a combination of low and high partic-
ipation levels on both sides. The size of the installed base on each side in equilibrium depends
on the intensity of indirect network e�ects and the level of membership bene�ts. A big advantage
of dynamic pricing is that it allows to escape from coordination of expectations towards decisions
based on current prices and the actual size of the platform. This approach is closer to real-world
conditions where platforms deal with large numbers of myopic users and can adjust prices over time.

Dynamic models are well suited for the analysis of failure-to-launch and failure-to-grow phenom-
ena on multi-sided-markets. These concepts o�er an explanation of why there are so few successful
attempts and many more failures to establish a platform and also why a large installed user base
can be an entry blocking factor. Despite its realism, the dynamic approach is less willingly adopted
in literature because of its complexity and di�culty to obtain general results. The present paper
aims to contribute to the literature on equilibrium selection in multi-sided markets. We propose a
continuous time dynamic model of a monopolistic platform which builds on the framework of Tirole
and Rochet (2006) and allows for multiple equilibria and dynamic pricing. In our model a platform
achieves a speci�c equilibrium given the initial market conditions and a given momentary pricing
scheme composed of interaction and membership fees. We apply time-dependent price schemes.
A change of fees leads to a new equilibrium point to which a platform converges. The focus of
the paper is on the economic e�ects and trade-o�s which arise under di�erent forms of dynamic
pricing as such. Hence we are not solving for pro�t-maximizing dynamic prices. Doing so would
require strong additional assumptions to make optimal control problem tractable. We deliberately
decided to avoid it at this stage.

In Rochet and Tirole's model, the regularity conditions which guarantee uniqueness are as-
sumed implicitly. This is a routine practice in static models. However, as the present paper shows
even under very simple forms of users heterogeneity the uniqueness of equilibrium is not guaran-
teed. We argue that multiple equilibria are not a technical anomaly but rather a prevalent feature
of multi-sided markets that has far reaching practical implications. First, platform operator has
to identify di�erent equilibrium points and deal with the choice of one of them. Second, this
choice is constrained by initial conditions. Not all equilibrium points can be reached by a platform
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starting with a particular number of users on each side. Third, setting the optimal prices that
correspond to the static solution in principle will not allow a platform to reach the most preferred
market equilibrium. We formally show that for each momentary price levels there exists at least
one equilibrium in participation rates. We provide examples in which there are few or continuum
of equilibria. Our paper focuses on the behavior of a platform before reaching any non-empty equi-
librium point, namely on the equilibrium selection process, in which dynamic pricing plays a key
role. By engaging in a dynamic pricing a platform can leapfrog from one equilibrium to another
avoiding failure to launch or failure to grow. We allow for pricing strategies to be composed of
interaction and membership fees set, possibly asymmetrically, for each side of the market. We
start from a two-period strategy in which fees are changed once from a subsidy to a positive level.
Next, we demonstrate a single two-part tari� which automatically adjusts the size of subsidy and
eventually turns it into pro�ts at a later stage. Finally, we show a continuous adjustment strategy
that increases revenues while maintaining a highest possible platform growth. Di�erent economic
e�ects arise from various pricing strategies. For example, a platform may set a subsidy such that
the least wanting user chooses to enter. This is an insulation tari� (Weyl, 2010) which ensures a full
speed growth towards a desired equilibrium path. However this boosted growth comes at a cost of
low or even negative momentary pro�ts. On the other hand, insulation maximizes momentary de-
mand and leads to a maximal consumer surplus. We compare di�erent strategies in terms of these
e�ects. Conceptually our setting can be considered a dynamic extension of a static framework from
Tirole and Rochet (2006). We do not restrict heterogeneity of users with regards to the interaction
and membership bene�ts. We propose a reasonable dynamic system that governs the evolution of
platform's user base. Each stationary point has its basin of attraction which de�nes a set of initial
conditions leading to a particular equilibrium. Since our focus is on equilibrium selection, we use
exemplary pricing strategies are not not necessarily optimal. As already explained, computation
of pro�t maximizing strategies is beyond the scope of the current study.

The rest of the paper is organized as follows: In section 2 we brie�y review literature on mo-
nopolistic platform operating a two-sided market. In section 3 we outline our dynamic modeling
setup and motivate it with some examples of non-uniqueness of equilibria. In section 4 we demon-
strate equilibrium selection process with several pricing schemes and discuss their implications for
platform's pro�ts and social welfare. Section 5 concludes.

2 Related literature

Our paper is closely related with the discussion of the coordination problem on multi-sided mar-
kets. Multiple equilibria is a rule rather than exception in multi-sided markets, even for relatively
simple forms of user heterogeneity. Due to indirect network externalities, for a given prices there
may exist several participation levels on both sides that will form an equilibrium. The inherent
problem of discrimination between di�erent equilibria has been solved in static models by intro-
ducing user expectations or reputation-driven favorable beliefs (Caillaud & Jullien, 2001, 2003).
The criticism of expectation approach boils down to limited cognitive capacities of users who can-
not be reasonably expected to coordinate their network choices, especially under heterogeneity
of preferences and externalities. There have been some attempts in literature to escape from a
coordination failure, such as price commitment and design. Hagiu (2006) introduces a sequential-
move coordination game in which sellers come before buyers, as is the case in credit cards or video
console markets. In such situations a platform needs to coordinate only the sellers. The buyers
will adapt accordingly. On the other hand, a platform can choose to credibly commit ex ante to
the price for the buyers, signaling to the sellers a large ex-post participation rate.

Weyl (2010) discusses an alternative approach in which platform can induce participation be-
havior of consumers by designing a price mechanism. Weyl uses the same participation constraint
as Tirole and Rochet (2006) but focuses on a di�erent pricing problem. A platform chooses an
optimal allocation of users rather than maximizes pro�ts. The preferred allocation can be induced
by charging insulating tari�s. These tari�s guarantee a certain utility level for users and therefore
achieve coordination by making a desired behavior a dominant strategy. In particular, by using an
insulation tari� a platform may allocate a positive utility to the equilibrium number of users on
side A irrespective of the participation of anyone from another side B. For a given number ofgNA

users there is one-to-one correspondence between price and the number of users on B side. Hence,
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a platform may trigger the equilibrium demand response on that other side by setting a unique
value for PB .

1 Insulation tari�s may indeed help to reach a preferred equilibrium. The problem
with insulation tari�s however is that after the platform achieves an equilibrium on side B, the
participation on side A will almost certainly change (increase) because of positive network exter-
nalities that now will induce even more users. Hence a a price adjustment on the insured side will
be needed anyway and this is infeasible in a purely static framework. The costs of insuring side A
might be prohibitively large so that a platform may be interested in a di�erent pricing strategy. In
another paper White and Weyl (2016) formulate a concept of insulated equilibrium in the context
of platform competition to address potential coordination failure. Insulated equilibrium is a re�ned
Nash equilibrium in which each user has a dominant strategy to enter. Thus the concept rules
out equilibria that are supported by partial participation rates. The way the insulation tari�s can
be implemented depends on the details of user heterogeneity with regards to valuation of network
e�ects, membership and interaction bene�ts. In any case, as argued above, the concept of insula-
tion is not compatible with a static framework. We show how it could be implemented in practice
when a platform can explicitly use dynamic prices. A somehow similar concept to insulation tar-
i�s, put forward in a context of chicken and egg problem is "divide and conquer" pricing (Evans,
2003). This strategy is widely observed in practice and consists of platform subsidizing the more
price sensitive side in order to incentivize entry on the pro�t side. Depending on the parameters,
sometimes it is su�cient to o�er arbitrarily low subsidy to move a platform from an empty (0,0)
equilibrium and reach a trajectory towards stable full market equilibrium. Hence, the objective
of this strategy is to compensate early adopters for the low utility and then let the market grow
organically. The e�ects of price adjustments can only be studied in a dynamic framework, such as
the one introduced in this paper.

The issue of multiplicity of equilibria seems to be inherent to the multi-sided markets. It is
persistent regardless of the maturity of a platform: new entrant may fail to launch, while an
established platform may fail to grow. The problem of equilibrium selection cannot be satisfac-
torily solved in static models. Dynamic models introduce an explicit possibility for the platform
to change prices and manage the evolution of their user base. The problem of expectations is
ruled out by assuming myopic users who decide about participation based on the current prices
and size of the platform, as for example in Evans and Schmalensee (2010) or Cabral (2019). Such
setting can be realistic when the costs of reversing participation is negligible, as is often the case
with online platforms. The dynamic model developed in this paper elaborates on the selection
of equilibrium by using time dependent strategies. We show some examples of insulation which
ensures maximal momentary demand and adjusts fees to a changing participation constraint on
each side. Maintaining a maximal growth of the market is socially desirable but usually will not
result in the highest pro�ts for the platform. On the other hand, it turns out that some forms
of subsidization beyond critical mass may trigger higher pro�ts than if a platform grows organically.

Theoretical foundations of multi-sided markets have been laid down in the seminal paper of
Rochet and Tirole (2003). This paper analyzes a monopolistic intermediary in the speci�c context
of card payment market, where both merchants and cardholders have heterogeneous interaction
bene�ts. In this particular application 'quasi' demand of one side depends only on the price set
for that side (page 995). Hence, there is no coordination game involved. Rochet and Tirole show
that in the unique equilibrium, total price set by the platform is given by the markup formula
containing the sum of elasticities. The price structure is de�ned by the ratio of demand elas-
ticities on both sides. The generic model of monopolistic platform has been laid down in Tirole
and Rochet (2006) and Armstrong (2006). Both papers di�er with regards to assumptions about
user heterogeneity in interaction and membership bene�ts. For the perfect homogeneous case,
Armstrong shows that in equilibrium the price for each side decreases with elasticity of demand
and is corrected downwards for the external bene�t this side generates to the users on a di�erent
side. This result implies that a platform might set a price for one side, say A below marginal cost,
possibly o�ering a subsidy. This occurs for example in dating or nightclub platforms, if group A
(women) has high elasticity of demand and generates large external bene�t to the second group B
(men). Armstrong avoids multiplicity of equilibria in his model by assuming monotone in utility
demand function. Tirole and Rochet develop equilibrium analysis for the case of heterogeneous

1Speci�cally, Weyl shows that the function NB(PB ;gNA) is reversible, leading to a unique set of prices

PA;B(gNA;gNB), pro�ts and welfare that is consistent with the equilibrium (gNA;gNB), see Weyl (2010, p. 1648).
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interaction bene�ts and heterogeneous membership bene�ts. Participation constraint accounts for
cross-side externalities proportional to the number of users. Importantly, for the derivation of the
main result they implicitly assume that the resulting system of demand equations has a unique
solution characterizing memberships as a function of prices.2 This assumption in turn leads to the
correspondence between prices and pro�ts and ensures a unique equilibrium.

We argue that the assumption about uniqueness of positive participation equilibrium is quite
restrictive and unrealistic. We demonstrate on a few examples that, for a given momentary prices,
multiple equilibria exist. Platform's choice of a given equilibrium point is constrained by its current
size (initial conditions). The major implication of this observation is that it might be impossible
to reach the full market equilibrium point, even if a platform sets optimal static prices. This point
of departure motivates our analysis of how a platform may use dynamic pricing to reach the full
market equilibrium. We assume that users are heterogeneous in both dimensions (membership and
interaction bene�ts). We also provide some insights into the interplay between social welfare and
platform's pro�ts and the speed of growth.

3 The model

Our framework builds on Tirole and Rochet (2006) and can be considered a dynamic extension
of their original model. In the static formulation platform sets prices only once and the resulting
number of users on each side, given by demand function is �xed. The impact of network external-
ities on i-side user's utility is proportional to the number of users on side j. The total number of
interactions on a platform equals to a product of number of users: Ni �Nj . Because the number of
users on each side is invariable in the static model, so is the number of interactions. This allows
to reduce dimensionality of the price vector by including a �xed fee into the per interaction unit
price. In the dynamic variant, user base changes over time and hence all four prices are relevant
and useful for constructing pricing strategies.

3.1 Basic setup

A monopolist operates a two-sided platform on which two di�erent groups of users i; j interact. In
a speci�c context of market places, these groups will be called buyers and sellers. Users on each
side derive intrinsic membership or participation bene�ts Bi from subscribing to the platform and
also interaction bene�ts bi from concluding a single transaction with a person on other side of the
market. Interaction bene�ts can also be interpreted as a valuation of indirect network e�ect. The
market place operator charges i side users with a variable fee pi for a unit of interaction and a �xed
fee Pi for the membership. These fees can be negative, which implies that users are (temporarily)
subsidized by the platform. In reality, subsidization can be realized in money, for example by pro-
viding rebates or promotional codes, or any equivalent in-kind bene�t, such as access to a premium
service or additional functionality.

With cross-side network e�ects, the utility of a particular user on side i from using a platform
depends not only on his intrinsic bene�ts and the level of fees set by the operator but also on
the number of participants on the other side: Nj . In line with Evans and Schmalensee (2010)
we assume that users are myopic and the costs of reversing participation decision are negligible.
Consequently, a user can step in or out from the platform depending on a momentary net utility
being non-negative. His decision can change at any time for example in reaction to a change in
the momentary price or platform's size. To maximize pro�ts, the platform operator has to balance
the level of fees with the incentives for participation on each side.

We normalize the total number of users on the i-side to one and denote it by Ni 2 [0; 1]. Addi-
tionally, we assume that the utility function is quasi-linear in money, which means that additional
unit of money increases utility always by the same amount. This assumption introduces common
measurement scale for utilities of di�erent users, allowing for a direct comparison of utilities, and
facilitates welfare analysis.

2Literary they write: "Under regularity conditions, the system (4) has a unique solution characterizing member-
ships NB and NS as functions of (pB , pS)", see Tirole and Rochet (2006, p. 653).
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We introduce continuous time horizon [0; T ]. Prices are momentary, and hence they can be
changed at any point in time. User is charged for a total number of interactions available to him
at any given point. Users can enter and leave the platform at any time they wish based on the
sign of the net momentary utility from participating on a platform.

3.1.1 Notation

Below we introduce a full notation of variables in the model:

B;S � buyers and sellers, the two sides of market, interacting on the platform. For general
considerations one side is denoted by i the and respectively the other side by j.

Ni � a total normalized number of users on the side i. In fact it is a percentage share of i-side
users on the platform in the set of all potential users, but will be called "number of users".

Ci � a �xed cost to a platform of getting on board a single user on i-side.

c � a constant marginal cost to a platform for providing an interaction between users.

Bi � i-side user's utility from participation/membership, given by a constant or a draw from a
continuous random variable.

bi � i-side user's utility from a unit of interaction given by a constant or a draw from a continuous
random variable.

pi � a per interaction fee paid by the user on i-side.

Pi � a fee for the membership paid by the user on i-side.

ND
i � a normalized number of users from i-side, who are willing to participate on a platform for

given fees and a number of users on the other side.

t � a point from continuous time horizon [0; T ].

Ui � a net utility, i-side user gains in a speci�ed point of time t.

� � momentary platform's pro�t in a speci�ed point of time t.

� � total aggregated platform's pro�t in the entire time horizon.

W � total aggregated social welfare in the entire time horizon.

All variables including number of users, costs, bene�ts and prices, except � and W , represent
momentary values i.e values in the speci�ed point of time. For simplicity unit cost incurred by
the platform as well as interaction and membership bene�ts of a particular user are stationary, i.e
they do not change over time. A quadruple (pB ; pS ; PB ; PS) is a price scheme set by a platform in
any given moment of time. A dynamic pricing strategy is a mapping of price schemes into time.

3.1.2 Demand, pro�t and equilibrium

A momentary utility of an i-side user is equal to:

Ui = (bi � pi)Nj +Bi � Pi (1)

Normalizing the utility of an outside option to zero, a user will participate on a platform
in a given moment if and only if the net utility is non-negative. Users with zero utility from
participation are indi�erent, but we will assume that they enter the platform.3 The momentary
demand function of i-side represents a number of users willing to participate on the platform on
side i for a given number of j-side users and can be presented as follows:

ND
i (Nj ; pi; Pi) = Pr(Ui � 0) = Pr((bi � pi)Nj +Bi � Pi � 0): (2)

3Due to the continuity of the considered random variables a set of zero-utility users has measure zero: Pr(Ui =
0) = 0.
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We note that the above expression is bounded by 0 and 1, since it is a probability. Momentary
demand ND

i depends not only on prices pi, Pi and the distributions of bene�ts Bi, bi, but also on
the total number of users who joined the platform on the other side. For a speci�ed price scheme
(pB ; pS ; PB ; PS) the function N

D
i (Nj ; pi; Pi) will be denoted for simplicity by N

D
i (Nj). Momentary

pro�t is given by:

� = (pB + pS � c)NBNS + (PB � CB)NB �+(PS � CS)NS : (3)

A momentary platform's pro�t depends on the total numbers of users on both sides (NB ; NS) and
momentary unit prices (pB ; pS ; PB ; PS) chosen by the platform. Note that because the number of
users on each side is momentary, the number of transactions is momentary as well.

A pair NS ; NB forms an equilibrium if and only if it satis�es conditions given by the following
system: �

NB = ND
B (NS);

NS = ND
S (NB):

(4)

Each solution to system (4) is an equilibrium in the Nash sense. For a given momentary prices
nobody new will enter the platform and none of the current users will want to exit. Hence, if the
platform already is in equilibrium and keeps momentary prices constant, its size and momentary
pro�ts will be stationary in time. The dynamic approach allows us to analyze the process of getting
into a particular equilibrium point from a given initial size of the platform, including the starting
point with no customers. Moreover, because a platform may freely change momentary prices, it
can move from one equilibrium point to another.

3.1.3 Existence of equilibrium

In this subsection we show that at least one equilibrium pair of NS ; NB exists for any set of
momentary prices. Let us start with de�nition of a relevant strategic game, based on the static
model of Rochet-Tirole. For a �xed price scheme, the utility of each user depends only on the
total number of users on the other side. Thus, it is reasonable to model a two-sided market as
the game between two players i 2 fB;Sg, representing the two sides. These representative players
have strategy spaces Ni, formed from shares of users who enter the platform. The payo� of each
player is the sum of payo�s of all platform participants on the respective side, represented by the
integral Payo�(NB ; NS)i =

R
Ni
�(Bi; bi; Nj)d(Bi; bi), where Ni denotes the set of Ni users with

the highest bene�t from using platform among all users of i side.

De�nition 1. For the speci�ed price scheme (pB ; pS ; PB ; PS) let the strategic game G between
the buyers and sellers be de�ned as follows:

G(pB ;pS ;PB ;PS) =< fB;Sg; [0; 1]� [0; 1]; (Payo�B(NB ; NS);Payo�S(NB ; NS)) >

The demand functions from expression (2) are the best responses of the players, which implies that
Nash equilibrium is achieved whenever the system (4) is satis�ed.

Theorem 1. For each (pB ; pS ; PB ; PS) in a strategic game G(pB ;pS ;PB ;PS) there exists at least one
Nash equilibrium (NB ; NS).

Proof. See appendix A.

System (4) possibly has multiple solutions, which collapses predictive power of static models. The
existence of ambiguous solutions means that for the �xed price scheme multiple equilibria exist,
possibly with di�erent pro�t levels. Such situation, with best response functionsND

B (NS); N
D
S (NB)

intersecting three times in the cube [0; 1]� [0; 1], is illustrated by the example below.

Let PB = PS = 0, bB = bS = 2, pB = pS = 1 and BB � Unif([�1; 0]); BS � N (�0:5; 0:3).
The interaction bene�ts bB ; bS are constant, therefore the demand functions have relatively simple
formulas:

ND
B (NS) = Pr((bB � pB)NS +BB � PB � 0) = Pr(NS � �BB) = F�BB

(NS)

ND
S (NB) = Pr((bS � pS)NB +BS � PS � 0) = Pr(NB � �BS) = F�BS

(NB)

9



The demand functions are cumulative distribution functions of random variables �BB and �BS .
As shown in Fig.1 both functions intersect three times at points (0:082; 0:082); (0:5; 0:5); (0:918; 0:918),
indicating three Nash equilibria.

Figure 1: Demand functions ND
B (NS); N

D
S (NB), such that three equilibria exist.

There can be in�nite equilibria even in simple conditions. Let us consider the previous example,
but with both BS ; BB from a uniform, independent distributions. Let PB = PS = 0, bB = bS = 2,
pB = pS = 1 and BB � Unif([�1; 0]); BS � Unif([�1; 0]. In this case, both demand functions
are given by ND

S (NB) = NB and ND
B (NS) = NS . Therefore the system (4) has the following form:�

NB = NS ;

NS = NB :
(5)

In consequence, equal market participation rates: NB = NS form Nash equilibria. This case is
illustrated in the Fig.2. Multiple equilibria can also arise when users are perfectly homogeneous in
bene�ts.

3.2 Dynamisation

As noted in section 2 existing literature predominantly focuses on the optimal pricing at a single
equilibrium point. We argue that multi-sided markets can have multiple equilibria, and hence
focus on equilibrium selection and convergence process. Equilibrium selection can be modeled
with dynamic prices which allow to account for an evolution of customer base and platform pro�ts
over time.

3.2.1 Evolution process

Let assume that a price scheme (pB ; pS ; PB ; PS) is speci�ed. Let NB(t); NS(t) denote the normal-
ized number of users on respective side B and S, who participate on the platform in a speci�ed
point of time t. We need to specify how platform's size adjusts over time. For that purpose we
assume that participation on each side is ruled by the following system of di�erential equations:�

_NS(t) = �S(N
D
S (NB(t); pB ; pS ; PB ; PS)�NS(t));

_NB(t) = �B(N
D
B (NS(t); pB ; pS ; PB ; PS)�NB(t)):

(6)

All stationary points of the above system are pairs of points (NB ; NS), which meet conditions
ND
B = NB and ND

S = NS . Hence, they correspond to Nash equilibria. From (6) it follows that

10



Figure 2: Demand functions ND
B (NS); N

D
S (NB), such that in�nite equilibria exist.

Ni increases, if it is below and decreases if it is above demand ND
i . The type of dynamics is

compatible with a basic economic intuitions and rationality of the users. If Ni is below the current
demand level then there are i-side users, who can increase (maximize) their utility by joining the
platform. Similarly, if ND

i < Ni then there are users on the platform, who receive a negative net
utility. Such users are going to leave the platform. Let us point out that a speed of changes in
membership is proportional to the demand gap - a di�erence between the number of type i users
who are willing to use the platform and the number of i-users, using the platform in a speci�c
moment. The proportionality ratio, denoted by �i, can be interpreted as a speed of membership
adjustment to changes in the demand.

According to the system (6) and the previous considerations, derivatives _NB ; _NS converge to
zero, so NS ; NB converge to a stationary point - the market equilibrium. The equilibrium which
a market converges to depends on the initial conditions set in the beginning of the time horizon,
i.e. the values of NS(0); NB(0). The convergence process according to initial conditions can be
illustrated by the phase portrait, such as the one in Fig.3. It is important to note that each phase
portrait is drawn for a speci�c vector of prices. If a platform changes momentary price levels, the
location of stationary points change.

3.2.2 Platform's decision-making process

We introduce a pricing strategy function which assigns price schemes to the speci�ed points of
time: PS : t 7! (pB(t); pS(t); PB(t); PS(t)), where t 2 [0; T ], (pB(t); pS(t); PB(t); PS(t)) � R

4 and
[0; T ] � R. Let us point out that this de�nition encompasses �xed fees and subsidies (negative
fees). We assume that at the beginning of the time horizon no one is on the platform, which implies
that initial conditions of the system (6) are NB(0) = NS(0) = 0. Momentary pro�t in a speci�ed
point of time t is given in equation (3) and will be denoted by �. For a given pricing strategy the
platform earns total pro�ts in the period [0; T ], discounted by the continuous interest rate r. Total
pro�ts will be written as:

�(pB ; pS ; PB ; PS) =

TZ
0

�(pB(t); pS(t); PB(t); PS(t))e
�rtdt:

11



Figure 3: Phase portrait of the (6) system with stationary points and graphs of functions
ND
B (NS); N

D
S (NB).

After substitution of � according to equation (3) this is equivalent to:

�(pB ; pS ; PB ; PS) =

TZ
0

((pB(t)+pS(t)� c)NBNS+(PB(t)�CB)NB+(PS(t)�CS)NS)e
�rtdt (7)

where NB ; NS are functions of the price scheme and time in accordance with equation (2) and
system (6) for the speci�ed initial conditions. The arguments of function � - pricing strategies are
integrable functions.

A momentary social welfare is the sum of platform's momentary pro�t and consumer surpluses
on both sides:

� +

Z
NB

UB(�)d� +

Z
NS

US(�)d� (8)

where Ni := f� 2 [0; 1]2 : Ui(�) � 0g and � = (�1; �2) speci�es values of the random variables bi; Bi

i.e. Ui(�) = (bi(�1)� pi)Nj + Bi(�2)� Pi. Ni stands for the set of i-side users, using platform at
present. The measure of set Ni is equal to a normalized number of users on side i - Ni.

4 Main results

In this subsection, we illustrate how the model operates under speci�ed preference parameters and
initial conditions. Consider a startup platform that aims to build a critical mass in order to start
developing itself organically via leveraging network externalities. We will present several pricing
strategies, which work in this situation by subsidizing users in the initial period of platform's
activity. All considered strategies allow a platform to make a transition from a failure to launch
(empty) equilibrium to the full market equilibrium point NS = NB = 1. The strategies di�er in
construction, costs of subsidization paid by the platform and convergence time to the equilibrium,
but all generate equal momentary pro�t in that point. The objective of the analysis is to compare
the performance of strategies with regards to the aggregated pro�ts and social welfare.

4.1 Dynamic pricing strategies

We start from specifying the common market conditions. Consumers are heterogeneous with re-
gards to interaction and membership fees. The heterogeneity is captured by the two uniform

12



distributions: BB ; BS � Unif([�1; 0]), bB ; bS � Unif([10; 20]) We assume that �xed member-
ship bene�ts from joining a platform are negative, because users must devote time to register.
Marginal costs of providing the membership and a unit of interaction are zero. A membership
adjustment speed is set to one and future pro�ts are not discounted: �B = �S = 1; r = 0 and
CB = CS = c = 0. A time horizon in which the evolution of the market will be analyzed is set to
�ve: T = 5.

For the benchmark we choose a 'static' pricing strategy (pB ; pS ; PB ; PS) = (9; 9; 0; 0). According
to this strategy a platform sets positive and constant interaction fees and no membership fees. For
the de�ned market conditions, the benchmark pricing strategy produces two equilibria as shown
in Fig.4.

Figure 4: Phase portrait and equilibria for the benchmark unit prices.

We verify these two equilibria. First, because almost certainly BB ; BS < 0, then the pair
(NB ; NS) = (0; 0) is an equilibrium for every single pricing strategy, composed only of variable
fees. To see this we check the demand function: ND

i (0) = Pr(Bi�Pi � 0) = Pr(Bi � 0) = 0. The
second equilibrium is the point (NB ; NS) = (1; 1). To show this we check that for lower bounds of
variables bi; Bi, respectively �1 and 10, the system (4) is satis�ed by (NB ; NS) = (1; 1):

1 � ND
i (1) = Pr((bB � pB) +BB � 0) � Pr((10� 9)1� 1 � 0) = Pr(0 � 0) = 1:

Let us point out that if a platform uses price scheme composed of only variable fees (pB ; pS ; 0; 0)
in the entire time horizon [0; 5], then always NB = NS = 0. Since nobody enters, a momentary
platform pro�t is constantly equal to zero:�

_NB = 1(ND
B (0)� 0) = 0;

_NS = 1(ND
S (0)� 0) = 0:

Consequently, the total platform's pro�ts are also equal to zero. In particular the above remark
holds for the price scheme (pB ; pS ; PB ; PS) = (9; 9; 0; 0). Clearly, in a static framework with only
�xed unit prices, a platform would fail to launch under the speci�ed speci�ed market conditions. In
what follows we demonstrate four di�erent types of pricing strategies which can be used to depart
from the initial 'empty market' equilibrium point (NB ; NS) = (0; 0) and move to a 'full market'
equilibrium (NB ; NS) = (1; 1). In all four cases the platform earns the same momentary pro�t in
the full equilibrium as for the benchmark pricing strategy (9; 9; 0; 0). These strategies di�er in how
fast they attract new users and in the level of total pro�ts earned by the platform.
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4.1.1 Two-period pricing

As shown above, the static pricing benchmark with only variable fees is ine�ective when a plat-
form initially does not have users. It fails to collect a critical mass of users who start to generate
positive network externality. An obvious way of boost early membership is to provide time-limited
subsidies. This is the main idea behind a two-period pricing strategy. In the �rst, shorter period
this strategy o�ers a subsidy in form of a negative membership fee. In the second period, it charges
everybody with positive interaction fees.

Let us consider a two-period pricing strategy, composed of the pricing scheme (0; 0;�1;�1) in
the initial period [0; 0:15) and the pricing scheme (9; 9; 0; 0) in the subsequent period [0:15; 5]. In
the period [0; 0:15) a momentary demand on each side is constantly equal to 1, independently of
the number of users on the other side. This follows from a substitution of random variables Bi

and bi with their lower bound values given by �1 and 0:

1 � ND
i (Nj) = Pr((bi � pi)Nj � (Pi) +Bi � 0) = Pr((bi)Nj � (�1) +Bi � 0) = Pr(0 � 0) = 1:

Hence, in the initial period the system (6) has two autonomic linear equations:�
_NB = 1�NB ;
_NS = 1�NS :

The general solution to this system is a pair of functions NB = NS = C1e
�t+1. After taking into

account initial conditions we obtain the speci�c solution in the initial period:�
NB(t) = �e�t + 1;
NS(t) = �e�t + 1:

(9)

In the moment t = 0:15 the platform changes a price scheme to (9; 9; 0; 0). Momentary demand is
no longer equal to one, but remains symmetric. Because distributions of bi and Bi are uniform and
independent, the demand formulas can be calculated as the area of the speci�ed part of rectangle
divided by the area of the whole rectangle. Both cases are presented in Fig.5.

Figure 5: Demand functions as �lled parts of rectangles.

Hence, in the second period the momentary demand function ND
i (Nj) = Pr((bi � 9)Nj +Bi � 0)

take the form:

ND
i (Nj) =

(
6Nj for Nj �

1
11 ;

1� (1�Nj)
2

20Nj
for Nj �

1
11 :

(10)

Because in t = 0:15 we have Nj = Ni = 1 � e�0:15 � 0:1393 > 1
11 , only the bottom formula

applies. The solution for the total number of users on the platform in the period [0:15; 5) can be
approximated by Runge-Kutta 4th order algorithm.4 The results of the numerical simulation are
presented in Fig.6:

4This algorithm approximates the value of an unknown function of time recursively by a weighted average of
increments over a small sub-interval of time. See appendix B for more details.
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Figure 6: Demand functions NB(t); NS(t) for the two-period pricing strategy from subsection 4.1.1,
approximated by the Runge-Kutta algorithm on 200 sub-intervals.

The momentary platform's pro�t can be written as follows:

�(t) =

�
�NB(t)�NS(t) for t 2 [0; 0:15)

18NB(t)NS(t) for t 2 [0:15; 5]

Total platform pro�t is an integral of momentary pro�ts on the interval [0; 5]. The value of this
integral is approximately equal to � = 61:9073. Let us emphasize that the total loss incurred in the
initial period [0; 0:15) is approximately equal to 0:002. The cost of attracting the �rst 13.9% users
is very low in comparison to the stream of pro�ts earned at a later stage. This example illustrates
that the initial investment in a critical mass initiates a positive loop of network externalities. Late
users enter on a platform despite the positive interaction fees. In the above example, in contrast
to the static benchmark, a small subsidy was e�ective in unlocking a 'full coverage' equilibrium.

4.1.2 Two-part tari�

The two period strategy required a change of the price scheme. This may be di�cult from a
practical point of view as customers may not accept worsening of pricing conditions. Moreover,
introducing new prices may involve menu and other transaction costs for the platform. In addi-
tion, the speed of customer base development under the two period strategy was not the highest
possible. The momentary demand in the second sub-period was less than one. In this subsection
we introduce a strategy, which guarantees the highest growth of customer base without a need of
changing fees. A two-part tari� strategy adopts a single pricing scheme in the entire time horizon
and automatically adjusts charges for the users: from negative in the beginning, to positive and
constantly increasing later on.

Consider the following two-part tari�: (18; 18;�9;�9). It sets negative membership fee com-
bined wand positive interaction fee. We can check that (i) a pair (NB ; NS) = (1; 1) constitutes an
equilibrium and (ii) momentary platform pro�t constantly equals one. For bi � 10 and Bi � �1
we get:

1 � ND
i (Nj) = Pr((bi � 18)Nj � (�9) +Bi � 0) � Pr(�8Nj + 8 � 0) = Pr(1 � Nj) = 1:

Hence, the total number of users in the platform is characterized by the system (9), similarly to
initial period of the two-period strategy from section 4.1.1. We note that that a momentary plat-
form's pro�t is negative for small values of t. First, the platform has to incur losses by subsidizing
users on early stage of development in order to generate positive pro�t later. The total platform's
pro�t from the two-part tari� strategy is equal to 54:363.
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We compare the e�ects of using the two-part tari�, and respectively the two-period pricing
strategy in Fig.7. The two-part tari� guarantees that demand on each side is constantly equal
to 1 and consequently speed of customer base development is the highest possible. However the
maximum speed of development comes at a cost of lower temporary platform's pro�t per user. On
the other hand, the two-period pricing strategy maintains a maximum momentary demand only
in the initial period. Despite lower pace of growth, the total platform's pro�ts are higher than
in the case of the two-part tari� (61:907 vis-a-vis 54:363). These two examples suggest that an
unregulated monopoly platform may have an incentive to restrict its rate of growth in order to
earn higher pro�ts, before reaching a full coverage equilibrium.

Figure 7: Number of users on speci�ed side NB ; NS and the momentary platform's pro�t � for a
two-part tari� (TPT) and two-period pricing (TPP) strategies.

One more thing is noteworthy about two-part tari�s. In a static model, the tari� (18; 18;�9;�9)
and the benchmark (9; 9; 0; 0) are totally equivalent in a full market equilibrium (1,1). This is
because membership fees can be 'averaged into' interaction fees (Tirole & Rochet, 2006). In
dynamic models these two strategies bring di�erent e�ects. The two-part tari� ensures sustainable
convergence to (1,1) while the benchmark keeps the platform in the initial equilibrium in (0,0).

4.1.3 Continuous price adjustment

The particular two-part tari� strategy from section 4.1.2 guarantees a maximal momentary demand
on both sides and consequently the highest possible speed of users growth. The two-period pricing
strategy allows for a relatively quick resignation from subsidies. Let us introduce a continuous
price adjustment strategy, which connects in a way main advantages of the two previous strategies.
It maintains maximal speed of user base development while reducing subsidization costs, compared
to the two-part tari�:

(pB ; pS ; PB ; PS) =

�
(0; 0;�1;�1) for t 2 [0; 0:15);
(10� 1

1�e�t ; 10�
1

1�e�t ; 0; 0) for t 2 [0:15; 5]:
(11)

In the �rst period, this strategy is identical to the two-period pricing strategy. It o�ers a subsidy
to incentivize early users to joint a platform. After the initial period the platform continuously
adjusts variable fees to the level, which guarantees a maximal momentary demand on both sides.
We already showed in subsection 4.1.1 that for the pricing scheme (0; 0;�1;�1) the demand is
equal to one for t 2 [0; 0:15). For the second sub-period we have:

1 � ND
i = Pr((bi � (10� 1

1�e�t ))(1� e�t) +Bi � 0) �
Pr((10� 10 + 1

1�e�t )(1� e�t)� 1 � 0) � Pr(1� 1 � 0) = 1

16



The solution of the system (6) on t 2 [0; 5] is the pair of functions NB = NS(t) = 1 � e�t.5.
Momentary pro�ts can be expressed as � = 2(10 � 1

1�e�t )(1 � e�t)2 and are positive only in the
second sub-period. The total platform's pro�ts from using continuous price adjustment strategy
in the entire time horizon equals to 62:259. This value is higher than for both previously discussed
strategies. The momentary platform's pro�ts from all three strategies are presented in Fig.8.

Figure 8: Momentary pro�ts from a two-period pricing (TPP), two-part tari� (TPT) and a
continuous price adjustment (CPA) strategies.

4.1.4 Asymmetric two-part tari�

All three strategies considered before set the same price levels for both sides of the platform. The
results of Tirole and Rochet (2006) related to optimal pricing suggest that not only the over-
all level but also the structure of prices across sides matters. Evans and Schmalensee (2010)
discuss asymmetric subsidy targeted at one side only, in the context of the failure-to-launch prob-
lem. The e�ects of asymmetric pricing can also be analyzed in the present model. To illustrate
this, we introduce asymmetry between buyers and sellers into the two-part tari� from subsec-
tion (4.1.2). More speci�cally, in the entire time horizon the platform uses a single price scheme:
(pB ; pS ; PB ; PS) = (18; 9;�9; 0) which ensures that the point (NB ; NS) = (1; 1) is an equilibrium.
Let us compare pro�ts of the asymmetric two-part tari� and the symmetric two-part tari� con-
sidered before. We check that a temporary demand of the subsidized B-side constantly equals
one:

ND
B = Pr((bB � 18)NS + 9 +BB � 0) � Pr((10� 18)NS + 9� 1 � 0) = Pr(�8NS + 8 � 0) = 1:

Hence, according to (6) the membership on the B-side will evolve according to NB = 1�e�t. Using

this formula, the equality 1�e�ln(
11

10
) = 1

11 and the previously calculated momentary demand (10),
we obtain the corresponding formula for a number of S-side users:

ND
S (t) =

(
6(1� e�t) for t < ln( 1110 );

1� (e�t)2

20(1�e�t) for t � ln( 1110 ):

The above solution of the problem _NS = ND
S �NS ; NS(0) = 0 is unique.6 We apply the Runge-

Kutta algorithm to approximate values of NS in time. The evolution of sellers' side for assymetric
and symmetric two-part tari�s is compared in Fig.9.

5The uniqueness of that solution results from the Picard-Lindelöf theorem, because of Lipschitz continuity of the
functions on the right-hand side.

6By virtue of the Picard-Lindelöf theorem the function ND
S does not depend on NB but only on t, and a

component NS is linear. It is worth pointing out that function ND
S is continuous in the point ln( 11

10
).
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Figure 9: Number of sellers NS(t) for symmetric (TPT) and asymmetric (ATPT) two-part tari�s,
approximated by the 4th order Runge-Kutta algorithm.

When only one side is subsidized, the users from the other side are joining platform at a slower
pace than in the case of symmetric subsidies. Hence, lower level of total subsidy implies a slower
customer base development. Depending on the magnitudes of these two e�ects asymmetric strategy
can be more or less pro�table than the otherwise identical symmetric one. In our example, the
asymmetric pricing strategy generates greater pro�ts, as can be seen in Fig.10. Both strategies
converge to a full coverage equilibrium (NB ; NS) = (1; 1) and generate the same level of momentary
pro�ts in that point. There is however a di�erence in convergence paths, which translates into total
pro�ts. Approximated total pro�t equals 56:4823 for the asymmetric strategy and 54:363 for the
symmetric one. The current example shows that it might be more pro�table in a dynamic setting
to apply asymmetric subsidies to initiate platform development.

Figure 10: Momentary platform's pro�ts � for symmetric (TPT) and asymmetric (ATPT) two-part
tari�s.
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4.2 Welfare analysis

In all considered situations, a platform was incurring initially some losses in order to initiate the
development of its customer base and earn pro�ts later. In this section we look at the welfare
e�ects of di�erent dynamic pricing strategies. We start from de�ning a momentary social welfare:

�(t) + CS(t) = �(t) +

Z
NB(t)

UB(�; t)d� +

Z
NS(t)

US(�; t)d� (12)

In the above formula Ni(t) denotes a set of platform users in a given moment t and Ui(�; t) =
(bi(�1) � pi(t))Nj(t) + Bi(�2) � Pi(t) is a utility function de�ned in expression (1). For the sake
of simplicity we assume that the current set of users on the platform is representative for a set
of agents, who can get positive utility from participation. This assumption guarantees that con-
ditional expected values of the random variables bi; Bi for users on-board are equal to the corre-
sponding expected values of these variables for new users, who joined a platform in a given moment.

The total social welfare is an integral of the discounted momentary social welfare over time:

W =

TZ
0

(�(t)+

Z
NB(t)

UB(�; t)d�+

Z
NS(t)

US(�; t)d�)e
�rtdt = �+

TZ
0

(

Z
NB(t)

UB(�; t)d�+

Z
NS(t)

US(�; t)d�)e
�rtdt:

(13)
The second and third components of the above formula represent consumer surplus CS on both
sides. Let a momentary total costs be denoted by tc(t) and the total cost in the entire time horizon
be denoted by TC. With simple arithmetics we can eliminate from the social welfare expression
cash �ows between platform and users.

CS =

Z
NB(t)

UB(�; t)d� +

Z
NS(t)

US(�; t)d� =
X

i2fB;Sg

Z
Ni(t)

((bi(�1)� pi)NS(t) +Bi(�2)� Pi(t))d(�1; �2) =

(14)

= �pB(t)NBNS � PB(t)NB � pS(t)NBNS � PS(t)NS +
X

i2fB;Sg

Z
Ni(t)

(bi(�1)NS(t) +Bi(�2))d(�1; �2) =

(15)

= �(�(t) + tc(t)) +

Z
NB(t)

(bB(�1)NS(t) +BB(�2))d(�1; �2) +

Z
NS(t)

(bS(�1)NB(t) +BS(�2))d(�1; �2)

(16)

After substitution into the total social welfare formula (13) we obtain the following equation:

W =

TZ
0

(

Z
NB(t)

(bB(�1)NS(t)+BB(�2))d(�1; �2)+

Z
NS(t)

(bS(�1)NB(t)+BS(�2))d(�1; �2))e
�rtdt�TC:

(17)
The new formula for social welfare is intuitive. The revenue received by a platform comes from
user fees. Hence, any additional unit of revenue received by the platform has to subtracted from
the users as their expenditure. To sum up, social welfare equals the discounted aggregated users'
gross utility net of the total costs of the platform.

All considered strategies, except of the static benchmark (9; 9; 0; 0) generate positive social
welfare. Every user on the platform receives a positive net utility.7 As a result, consumer surplus
is positive as well. Let us consider the value of the social welfare when the platform uses strategy
which maximizes the speed of customer base development, i.e. guarantees that momentary demand
functions ND

B ; N
D
S constantly equal one. Using the assumption about expected values, we can

7This is because in the entire time horizon the following inequality holds: 0 < Ni < ND
i .
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substitute the integrals of bi and BB into the formula (17):

W =

TZ
0

(NB(t)NS(t)E(bB jNB) +NB(t)E(BB jNB) +NB(t)NS(t)E(bS) +NS(t)E(BS)e
�rtdt� TS

Because ND
i � 1 for every t from the time horizon, all users obtain a positive utility from partic-

ipation. The expected values of bi and Bi for users on board are simply equal to expected values
in the entire population:

W =

TZ
0

(NB(t)NS(t)(E(bB)�c)+NB(t)(E(BB)�CB)+NB(t)NS(t)E(bS)+NS(t)(E(BS)�CS))e
�rtdt:

The integrand from the above formula is an increasing function of NB(t) and NS(t). Consequently,
faster growth of user base increases social welfare. The maximum social welfare level will be reached
when the number of users increases as fast as possible, i.e. demand on both sides is equal to one.
Intuitively, more users generate more interactions, which in turn generates a higher momentary
utility.

In what follows we calculate the total welfare for the two strategies, which guarantee the highest
momentary social welfare level in the entire time horizon - the two-part tari� from section 4.1.2
and the continuous price adjustment strategy from section 4.1.3. After substituting parameters
speci�ed before: r = 0, E(Bi) = �0:5, E(bi) = 15, Ni(t) = 1� e�t into the social welfare formula
we obtain:

W =

TZ
0

(30(1� e�t)2 � (1� e�t))dt � 101:40:

Both strategies generate the same level of a total social welfare, however its distribution between
the platform and users is di�erent. The aggregate platform pro�t is equal to 54:363 for the two-
part tari� and 62:259 for the continuous price adjustment strategy. The corresponding customer
surplus CS =W �� equals to 47:037 and 39:141 respectively.

4.2.1 Regulated platform

In this last section we ask a question about the strategy for the social planner who would be
interested in maximizing the well-being of platform's users? We are looking for a strategy that
maximizes a social welfare and passes all pro�ts to consumers. Let us consider a modi�ed two-part
tari� with a price scheme (18, 18, -15.782, -15.782) used in the entire time horizon. This strategy
resembles the symmetric two-part tari� considered in section (4.1.2) but has higher levels of �xed
subsidies. The proposed strategy allows the platform to reach a full market equilibrium and it is
socially optimal.8 At the same time it takes away all pro�ts from the platform:

� =

5Z
0

�e�0tdt =

5Z
0

36(�e�t + 1)2 � 31:564(�e�t + 1)dt � 0

The temporary platform's pro�t is shown in Fig.11. The membership subsidies are adjusted such
that they transfer out all pro�ts earned by the platform from interactions. It should be noted that
the zero total pro�t condition is met exactly at the end-point of the speci�ed time horizon [0; 5].
The platform is allowed to make a positive momentary pro�t to regain losses incurred in the initial
stage.

5 Discussion and conclusions

This paper introduced a continuous-time dynamic model of a two-sided monopolistic platform that
builds on the static model of Tirole and Rochet (2006). The form of individual utility and exter-
nalities is the same as in their model. There are however important points of departure as well.

8It induces the highest possible momentary demand because it is even more generous than the socially optimal
two-part tari� considered in section 4.1.2.
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Figure 11: Momentary platform's pro�ts � for socially optimal regulated prices.

We account for a richer consumer heterogeneity and allow a platform to use more complex pricing
schemes, composed of �xed membership fees and interaction fees. In static models membership
fees are usually ignored because at the equilibrium, they can be 'averaged' into the interaction fees
paid by the participants. In a dynamic framework �xed fees turn out to be a very useful instru-
ment for provision of subsidies to early adopters. We showed that with a single two-part tari�, a
platform can manage a complete evolution of the market: incentivize users in the initial period and
then make a positive pro�t from interactions. There is no need to change a price scheme during
operation in order to make the business sustainable. On the other extreme, we considered 'truly'
dynamic pricing strategies, including the one with continuous price adjustments.

In a dynamic framework the focus is not on the optimal pricing in a particular equilibrium
point, but on the equilibrium selection and convergence. Therefore, dynamic approach is partic-
ularly relevant for the analysis of a start-up platform, which has to resolve the chicken-and-egg
problem or an established platform facing a failure-to-grow. We demonstrate how a platform can
move between di�erent equilibrium points by adopting dynamic pricing. In our model users are
myopic and decide whether to join the platform based on a momentary net utility received. Par-
ticipation constraint changes continuously with platform's size and prices. We assume that the
cost of reversing participation decision is negligible, so there is no risk of lock-in that could a�ect
user beliefs. We do not provide a pro�t-maximizing solution for the convergence to the pro�ered
point. Finding optimal pricing strategies in a general dynamic model is a complex tasks and re-
quires simplifying assumptions about a class of pricing functions and a form of users heterogeneity.
Hence, we deliberately focused on selected examples of di�erent pricing strategies with an aim
to demonstrate their impact on platform's pro�ts and social welfare in comparison to the static
benchmark solution. The economic e�ects of these pricing strategies are summarized in Tab.1. We
can derive few main lessons from these examples.

First, for a given price scheme, multiple equilibria can occur even in relatively simple market
conditions. These equilibria may correspond to an empty and fully covered market, as well as any
intermediate level of users' participation. Multiplicity of equilibria implies that any static model
essentially has no predictive power. There is no guarantee that the optimal �xed prices will lead
to the most preferred outcome from the platform's perspective. The added value of a dynamic ap-
proach is that it can determine which equilibrium will be achieved for particular initial conditions,
how much time it will take and what adjustments in fees are required.

Second, in order to control the membership evolution, a platform has to recognize that each
equilibrium has its own gravity zone, technically corresponding to a basin of attraction on a phase
portrait. In the simplest case, a dynamic price may be composed of a single pricing scheme held
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constantly. Such pricing strategies yield time-invariant set of equilibria. The platform is however
not bound to keep constant prices over time. For every change of momentary prices, the set of
equilibrium points and the corresponding phase portrait change. This introduces additional com-
plexity into the price optimization problem. Optimal convergence path involves �nding not only
the preferred equilibrium, but also the speed of user base growth. In a dynamic framework, like
the one proposed in this paper, a platform may go beyond trial and error in testing dynamic prices.

Third, the simplest type of pricing strategy with a constant pricing scheme, such as for exam-
ple the two-part tari�, may be su�cient to reach a full market equilibrium and maintain business
sustainability for the platform. Sometimes, two-part tari�s guarantee socially optimal outcomes.
A necessary condition for maximization of welfare in a dynamic setting is to keep momentary
demand constantly at a maximal level (one). This condition translates to the quickest user base
development and technically can be achieved only if all potential users receive positive utility from
entering. Pricing strategies that yield maximal momentary demand can be considered as a dy-
namic variant of insulation tari�s (Weyl, 2010). In static models it does not make sense to use
�xed fees in the equilibrium, because they can be 'averaged into' the interaction fees. In dynamic
models, �xed fees play a very important role in convergence to the equilibrium. Membership fees
allow for initial subsidization without a need to adjust the price scheme on a later stage. On the
other hand, our benchmark strategy composed only of interaction fees was incapable of solving a
failure-to-launch problem.

Fourth, a platform can use time-varying pricing strategies and even adjust prices continuously.
Continuous price adjustment strategy might have a practical relevance in algorithmic trading for
example. Intuitively, if the menu costs are negligible, strategies that introduce inter-temporal price
discrimination are more pro�table compared to their time-invariant counterparts. The continuous
adjustment strategy ensures that a platform minimizes the cost of subsidies while keeping a mo-
mentary demand at a maximal level.

Lastly, our examples point to a clear trade-o� between pro�tability of the platform and the
level of social welfare determined, as shown in Tab. 1. A platform will prefer an organic growth at
a slower pace, while from the welfare perspective, it is desirable if users enjoy su�cient subsidies
in order to activate full strength of network externalities as soon as possible.

Dynamic models cast a light on the evolution of multi-sided markets. With regards to the
proposed framework the recommended directions of future research would be to: (i) explore the
proposed model with more examples of pricing strategies under di�erent conditions (ii) perform
dynamic optimization for simple special cases of preference heterogeneity and (iii) introduce com-
peting platforms to study splitting vs tipping equilibria.
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Appendix

A - Proof of the existence theorem

The thesis of the theorem 1 is equivalent to the existence of solution (NB ; NS) 2 [0; 1] � [0; 1]
of the system (4) for each price scheme (pB ; pS ; PB ; PS) 2 R

4. For any speci�ed price scheme
(pB ; pS ; PB ; PS) demand functions ND

S (NB); N
D
B (NS) are well de�ned. The graphs of these func-

tions can be presented on a joint plot as curves9:

I = f(NB ; NS) � R
2 : NB = ND

B (NS)g;

II = f(NB ; NS) � R
2 : NS = ND

S (NB)g:

The intersection of both curves gives a set of solutions for the considered system. Each solution
from this set determines an equilibrium for a speci�ed price scheme if it has both coordinates from
[0; 1]. Hence, to prove the theorem it is su�cient to show that the intersection of both curves and
a unit cube is non-empty.

Let us point out, that the curve I is included in ([0; 1] � R) � R
2, and analogously the curve II

is included in (R� [0; 1]) � R
2. In consequence, the intersection of both curves is included in the

intersection of those two sets, which is [0; 1]� [0; 1], because:

([0; 1]� R) \ (R� [0; 1]) = [0; 1]� [0; 1]:

Therefore, it is su�cient to prove that the curves I; II have non-empty intersections i.e. I\II 6= ;.

Let � : R2 ! R
2 be the transformation of a plane determined by the following formula:

�(x; y) = (x�ND
B (y); y): (18)

The image of the curve I in the transformation � is the vertical axis of a standard coordinate
system:

�(I) = �(f(NB ; NS) � R
2 : NB = ND

B (NS)g) = f(NB �NB ; NS) � R
2g = 0� R:

The next step of the proof is to show that � is continuous. Let (x; y) be any speci�ed point from
a two-dimensional plane. We will show that for every � > 0 there exists � > 0 such that, for all
(x0; y0) satisfying jj(x; y)� (x0; y0)jj < � we have jj�(x; y)��(x0; y0)jj < �, where jj jj is the standard
euclidean norm.

jj�(x; y)��(x0; y0)jj = jj(x�ND
B (y); y)� (x0�ND

B (y0); y0)jj = jj(x�ND
B (y)�x0+ND

B (y0); y� y0)jj

After applying twice the triangle inequality we get:

jj(x�ND
B (y)� x0 +ND

B (y0); y � y0)jj �

�jj(x�ND
B (y)� x0 +ND

B (y0)jj+ jy � y0j �

�jx� x0j+ jND
B (y)�ND

B (y0)j+ jy � y0j:

Since ND
B (x) is a continuous function, we can �nd �1 > 0, such that for all y0 satisfying jy�y0j < �1

there is jND
B (y) �ND

B (y0)j < �
3 . Obviously, every 0 < � < �1 satis�es this condition, therefore we

can take � < �
3 . For all x

0 such that jx� x0j < � we have:

jx� x0j+ jND
B (y)�ND

B (y0)j+ jy � y0j < 2� +
�

3
< �:

If jj(x; y) � (x0; y0)jj < � then we have jx � x0j < � and jy � y0j < �. This implies that jj�(x; y) �
�(x0; y0)jj < � and the function �(x; y) is continuous.

The curve II is an image of the continuous transformation  (x) : x 7!; ND
S (x), what implies

that �(II) = �( (R)) is a curve as well, because the composition of a continuous functions � �  

9Let us clarify that we use a word 'curve' for an image of an interval (not necessarily bounded) produced by
continuous transformation.
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maintains continuity. Let us denote the standard projection of a plane into the axis NB by �NB
.

The projection is continuous, so in consequence, the image of �(II) is the curve included in the
horizontal axis NB . This implies that �(II) is an interval (or a line if not bounded).

The last step is to prove that 0 2 �(�(II)). Let us consider points (x1; y1) = (2; ND
S (2)) 2 II

and (x2; y2) = (�2; ND
S (�2)) 2 II. We have:

jj�(�(x; y))� �(x; y)jj = jj�(x; 0)� (x; 0)jj = jjx�ND
B (y)� xjj = jjND

B (y)jj � 1;

so for k 2 f1; 2g:

jj�(�(xk; yk))� (xk; yk)jj � jj�(�(xk; yk))� (xk; 0)jj = jj�(�(xk; yk))� �(xk; yk)jj � 1;

what implies that �(�(x1; y1)) � 1 and �(�(x2; y2)) � �1.

�(�(II)) is an interval, including points �(�(x1; y1));�(�(x2; y2)), so it includes 0 as well. There-
fore ��1(��1(0)) \ II 6= 0.

Let us consider (N�
B ; N

�
S) 2 �

�1(��1(0))\ II. The condition �(N�
B ; N

�
S) 2 ��1(0) is equivalent

to the condition N�
B �N

D
B (N�

S) = 0. Consequently, (N�
B ; N

�
S) 2 I. The considered point (N�

B ; N
�
S)

is included in I and II as well, so it is included in their intersection. In consequence, this point is
the solution of the considered system, i.e. Nash equilibrium in the strategic game G(pB ;pS ;PB ;PS).
�

B - Runge-Kutta method (4th order)

Let us introduce the Runge-Kutta method. This algorithm has been used in the paper to ap-
proximate solutions of Cauchy problems, composed of the ordinary di�erential equation and initial
condition. Palczewski (2004) argues that for 4th order Runge-Kutta scheme, the cost-to-accuracy
ratio is the best possible.

Let ordinary di�erential equation have a form x = f(t; x). The interval, on which the solution is
approximated will be denoted by [t0; tend]. Let the initial condition be speci�ed by x(t0) = x0.
For an established number of steps n the algorithm splits the interval [t0; tend] into n sub-intervals
with a length equal to h = tend�t0

n
and calculates approximated value of the solution in the end

point of each.

Let us present the scheme in C language, with the assumption that we have already declared values
of variables n; x_0; t_0; t_end and function f(t; x):

double x[], t[], h, K1, K2, K3, K4, K5;

x[0]=x_0;

t[0]=t_0;

h=(t_end-t_0)/n;

for(k=0; k<n + 1; k++){

K1 = f(t[k], x[k]);

K2 = f(t[k] + h/2, x[k] + (h/2)*K1);

K3 = f(t[k] + h/2, x[k] + (h/2)*K2);

K4 = f(t[k] + h, x[k] + h*K3);

x[k+1] = x[k] + (h/6) * (K1 + 2*K2 + 2*K3 + K4);

t[k+1] = t[k] + h;

}

The resulting table x[ ] contains approximated values of the solution x(t) in points of form tk =
t0 + kh, k 2 Z, speci�ed in t[ ]. In the literature another variants of this scheme can be found,
with di�erent values of constants K1;K2;K3;K4;K5.
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