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Selecting the Best when Selection is Hard∗

Mikhail Drugov,† Margaret Meyer‡ and Marc Möller§

August 17, 2022

Abstract

In dynamic promotion contests, where performance measurement is noisy and
ordinal, selection can be improved by biasing later stages in favor of early leaders.
Even in the worst-case scenario, where noise swamps ability differences in determin-
ing relative performance, optimal bias is i) strictly positive; ii) locally insensitive to
changes in the heterogeneity-to-noise ratio. A close relationship with expected opti-
mal bias under cardinal information helps explain this surprising result. Properties
i) and ii) imply that the simple rule of setting bias as if in the worst-case scenario
achieves most of the potential gains in selective efficiency from biasing dynamic
rank-order contests.

Keywords: Dynamic Contests; Selective Efficiency; Bias; Learning; Promotions.
JEL classification: D21, D82, D83, M51.

1 Introduction

Assigning productive resources or decision-making authority to the most able individuals

constitutes a source of economic gains, whose importance becomes most apparent in the

face of dramatic success or failure. For instance, the passing of the UK premiership

from Neville Chamberlain to Winston Churchill, rather than to Lord Halifax, during the

early years of Word War II brought to an end the British policy of appeasement and has

been credited as a major contributor to the Allied victory (Roberts, 2018). Conversely,

the infamous decline of Kodak has been attributed to the appointment of CEO Kay

∗We thank Paul Klemperer, Dmitry Ryvkin and participants of the 2021 Transatlantic Theory Work-
shop, the 8th Annual Conference on “Contests: Theory and Evidence” and the 2022 Conference on
Mechanism and Institution Design for valuable comments. All errors are our own.

†New Economic School and CEPR, mdrugov@nes.ru.
‡Nuffield College and Department of Economics, Oxford University, and CEPR, mar-
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Whitmore, who was criticized for lacking the visionary foresight of his rival, Phil Samper,

concerning the emergence of digital photography (Oren, 2019). Family businesses and

monarchies are further examples where the allocation of power on the basis of bloodline

rather than talent has frequently led to collapse.

In modern organizations and societies, selection of the best frequently takes the form of

a multi-stage contest in which the winners of earlier stages may be given an advantage at a

later stage. For example, consulting or law firms may assign their most effective mentors

to the best-performing juniors, thereby improving these juniors’ chances of becoming

partners. Similarly, in academia, well-publishing assistant professors may be awarded

research grants or teaching reductions, which may increase their future output and hence

their probability of obtaining tenure. An important question in such a setting is how large

an advantage, or bias, should be granted to early winners, when the goal is to maximize

selective efficiency, i.e., the expected ability of those who are promoted.

The problem of choosing bias optimally for selection is complicated by the fact that

performance measurement is often constrained to be ordinal rather than cardinal. More-

over, performance rankings typically provide only a noisy measure of ability, and the

degree of randomness can be substantial due to the complexity of the underlying task.1

Finally, skills that can make an important difference at the next higher level—such as lead-

ership style or managerial vision—may have only little impact on current performance.2

Consequently, in many practically relevant cases, selection is hard, in that external ran-

dom factors (performance shocks or measurement errors) are of large magnitude relative

to the differences in abilities that determine agents’ relative performance.

Consider what we will term the worst-case scenario, where selection is hardest, be-

cause the ratio of the heterogeneity in agents’ abilities to the scale of the noise tends

to zero. In this scenario, intuition may suggest that organizations should refrain from

the use of bias altogether, because bias then tends to be assigned entirely on the basis

of luck rather than evidence of ability. Our starting point is the observation that this

intuition is incomplete. It neglects the fact that the optimal size of bias depends not only

on the informativeness of the (early) stages before bias is introduced, but also on how

bias impacts the informativeness of the (later) stages in which bias is actually employed.

Section 2 presents a stylized model of a two-agent, two-stage selection contest, capable

of capturing the resulting trade-off. Individual performance, at each stage, is the sum

of an agent’s time-invariant, unobservable ability, multiplied by a stage-specific weight,

1Lazear (2000) documents that for managers, piece rates are employed ten times less frequently than
for operatives, and attributes this difference to the difficulty of measuring managerial performance.

2Hansen et al. (2021) report the increasing relevance of social skills in top managerial positions and
emphasize the importance of designing mechanisms to facilitate the match between firms and executives.
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and a transitory noise component, identically distributed across stages. The organization

observes the ordinal ranking of performances at each stage and can assign an additive bias

to the first-stage winner’s performance in the second stage. The organization’s problem is

to choose the size of the bias to maximize the expected productivity of the winner of the

final stage, where productivity is an arbitrary increasing function of an agent’s ability.

Generally, optimal bias favors the first-stage winner and is such that, if the first-

stage loser just managed to achieve a second-stage draw despite the bias against him, the

organization would be indifferent as to which agent to select. Optimal bias thus strikes a

balance between the informativeness of the ordinal first-stage ranking and the marginal

second-stage outcome (a draw). Yet, as we illustrate in Section 3, the impact on optimal

bias of a change in the ratio of the heterogeneity in agents’ abilities to the scale of the noise

can be complex. Despite this complexity, we demonstrate that, under mild assumptions,

optimal bias satisfies two striking properties in the limit as the heterogeneity-to-noise ratio

goes to zero: (1) optimal bias remains positive; and (2) optimal bias is locally insensitive

to the ratio of heterogeneity to noise.

To provide further insight into these properties of optimal bias, Section 4 considers

the counterfactual situation in which relative performance information was cardinal rather

than ordinal. In this case, the second-stage bias could be conditioned on the first-stage

margin of victory. If, for example, the stage-specific weights attached to abilities are

equal, then the optimal bias would advantage the first-stage winner by exactly the first-

stage margin of victory. We show that, in the worst-case scenario, the optimal bias under

ordinal information (characterized in Section 3) equals an appropriately-defined average

of the optimal cardinal biases, as the margin of victory varies. Because a positive cardinal

bias would be necessary to offset any non-zero margin of victory, optimal ordinal bias must

thus also be positive. Moreover, in the worst-case scenario, expected optimal cardinal bias,

just like optimal ordinal bias, would be locally insensitive to the heterogeneity-to-noise

ratio.

In Section 5, we turn our attention from the properties of optimal bias towards its

performance, by leveraging the limiting results in Section 3. These results imply that the

positive value of optimal bias in the worst-case scenario is a second-order approximation

for the optimal bias when the heterogeneity-to-noise ratio is small. We prove that as a

consequence, the organization’s payoff from setting bias as if in the worst-case scenario

is a fifth-order approximation for its maximized payoff when noise is large relative to

heterogeneity. This analytical result thus suggests that the simple heuristic of setting bias

as if selection is hardest may perform well even when selection is only moderately hard.

We confirm this conjecture by showing that, for an important family of distributions,
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containing normally and uniformly distributed noise as special cases, a large fraction of

the potential gains in selective efficiency, for a wide range of values of the heterogeneity-

to-noise ratio, are captured by setting bias at the level that would be optimal in the

worst-case scenario.

To highlight the informational role of bias in improving selective efficiency in dynamic

contests, our main model suppresses agents’ effort incentives. Section 6 shows that the

properties of optimal bias for selection are robust to allowing agents to choose efforts

strategically. We assume that performance is additive in effort and that each agent’s

only informational advantage relative to the organization is the private observation of his

effort. In the unique equilibrium, in each stage agents choose equal efforts. Efforts thus

have no effect on the informativeness of either stage about relative abilities, so all of our

conclusions about the impact of bias on selective efficiency remain valid.

Related literature The use of biases—also called “handicaps” or, when additive, “head

starts”—is a popular topic in the contest literature. However, the focus has been on the

influence of bias on effort incentives, rather than on selection. Starting with Lazear and

Rosen (1981) and O’Keeffe, Viscusi and Zeckhauser (1984), it has been recognized that

biases are useful in “leveling the playing field” and creating “competitive balance” among

heterogeneous competitors when the organizer aims to maximize the total effort of the

participants (see also, e.g., Meyer, 1992; Schotter and Weigelt, 1992; Fain, 2009; Epstein,

Mealem and Nitzan, 2011; Franke et al., 2013).3 In dynamic settings, biases may mitigate

the “momentum”, or “dynamic discouragement”, effect, which arises from an imbalance

in accumulated wins or losses (Barbieri and Serena, 2022).

Despite the importance of contests as mechanisms to select the most-able or highest-

value individuals, little attention has been paid to the role of bias in enhancing selective

efficiency. Besides the early contribution of Meyer (1991), the few exceptions we are

aware of include Kawamura and Moreno de Barreda (2014), who show that biasing an

all-pay auction with ex ante identical bidders may increase the likelihood of awarding the

object to the highest-value bidder, and Drugov and Ryvkin (2017), who provide several

similar results for noisy contests. Our paper builds on Meyer (1991), who provides the

basic insight that bias favoring early winners can improve selective efficiency. Our focus

instead is on the properties and performance of optimal bias.

3More recent literature such as Drugov and Ryvkin (2017) and Fu and Wu (2020) highlights the limits
of the “leveling the playing field” argument beyond the most popular contest models.
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2 Model

We consider an organization consisting of a risk-neutral principal and two agents i ∈
{A,B} with differing abilities. Agents’ abilities ai are assumed to be identically dis-

tributed on {a, a + h}.4 The parameter h > 0 captures the degree of potential hetero-

geneity in agents’ abilities. The principal needs to select one of the agents for promotion.

The principal’s choice is complicated by the fact that abilities are not observable and that

performance information is noisy and only ordinal rather than cardinal.

To capture the dynamic nature of selection processes, we assume that the principal

observes the agents’ relative performance during two stages. In each stage t ∈ {1, 2}, the
performance of agent i, pi,t, is the sum of the agent’s time-invariant ability ai, multiplied

by a stage-specific weight λt, and a time-varying random component ϵi,t. That is,

pi,t ≡ λtai + ϵi,t.

Variation in λt over time can capture variation across stages in the impact of ability on

performance.

The principal identifies the agent with the higher performance pi,1 as the winner of

the first stage, with ties broken randomly. In the second stage, the principal may assign

a bias β ∈ ℜ to the winner of the first stage. Having won the first stage, agent i then

becomes the winner of the second stage if pi,2+β > pj,2. If agent i wins the second stage,

he is promoted, and the principal’s payoff is given by Π(ai), where Π is an increasing

function measuring the productivity of the promoted agent in the new job.

Since stage outcomes depend only on the performance differentials between agents,

the distribution of the difference in the noise terms, ∆ϵt ≡ ϵA,t − ϵB,t ∈ ℜ, is a key

primitive of our model. We assume that ∆ϵt is i.i.d. across stages. Denote its support by

[−z, z] (where z may be infinite), its cdf by G, and its density by g.

Assumption 1 (i) g is symmetric around 0; (ii) g is strictly log-concave, i.e., ln g is

strictly concave; (iii) g is twice differentiable on (−z, z); (iv) limy→z L(y) = ∞, where

L(y) ≡ −g′(y)

g(y)
.

The symmetry of g captures the idea that the only source of asymmetry between agents

is their (initially unknown) difference in abilities and the explicit second-stage bias; it is a

weaker assumption than agents’ shocks being i.i.d. Log-concavity of g is equivalent to the

4All of our propositions about selection remain valid when ai = a+ hαi, where the joint distribution
of (αi, αj) is symmetric with respect to the two components but otherwise arbitrary.
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monotone likelihood ratio property in this setting; it guarantees that, in either stage, the

larger the performance-difference, between agents A and B, pA,t − pB,t, the higher is the

likelihood that A’s ability exceeds B’s, relative to the likelihood that B’s ability exceeds

A’s. The assumption that log-concavity is strict implies that L is strictly increasing. It is

technical and ensures, together with the remaining two assumptions, that the principal’s

problem is well-behaved.

The principal’s problem is to choose the size of the bias β to maximize the expected

productivity of the promoted agent. Given our distributional assumptions, this objective

is equivalent to maximizing selective efficiency, S(β, h), defined as the probability of

promoting the more able agent, conditional on agents’ abilities being different.5

The key parameter h > 0, capturing the degree of potential heterogeneity in agents’

abilities, has a broader interpretation as the ratio of agents’ heterogeneity to the scale of

noise. To see this, introduce a scaling transformation ∆ϵt → σ∆ϵt, with σ > 1, which

makes the difference in the noise terms more dispersed: The cdf becomes G(∆ϵt
σ
), the pdf

1
σ
g(∆ϵt

σ
), and the support [−σz, σz]. If the underlying heterogeneity in abilities is H, then

G(λ1H
σ

) is the probability that the more able agent wins the first stage. It depends on H

and σ only through the heterogeneity-to-noise ratio h ≡ H
σ
. A large part of our analysis

will focus on the limit as h → 0, where the scale of noise becomes large relative to the

agents’ heterogeneity.

3 Optimal bias

The selective efficiency S(β, h) of the dynamic contest is the probability with which,

conditional on agents’ abilities being different, the more able agent wins the final stage.

Given that the first stage is unbiased, the probability that the more able agent wins the

first stage is G(λ1h). In contrast, given any non-zero value of bias β, the more able agent’s

probability of winning the second stage depends on the first-stage outcome. If the more

able agent won the first stage, then his chance of winning the second stage is G(λ2h+β),

whereas if he lost his chance of winning is G(λ2h− β). Overall, selective efficiency is

S(β, h) = G(λ1h)G(λ2h+ β) + [1−G(λ1h)]G(λ2h− β). (1)

5One can show that a randomly assigned first-stage bias does not increase selective efficiency, as long
as the contest is non-discriminatory, in that the size of the second-stage bias cannot condition on the
first-stage winner’s identity. We thus abstract from the possibility that bias is assigned in both stages.
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Differentiating with respect to β and rearranging leads to the following first-order condi-

tion for the optimal bias:
G(λ1h)

1−G(λ1h)
=

g(λ2h− β)

g(λ2h+ β)
. (2)

The ratio on the left-hand side, which is larger than one, is the relative likelihood that

the first-stage winner is the more able agent rather than the less able one. The higher

this likelihood ratio, the more informative is the first-stage ranking about agents’ relative

abilities. The ratio on the right-hand side is also a likelihood ratio: It is the relative

likelihood that a draw in the second stage (pi,2 + β = pj,2) arises when the more able

agent is disadvantaged by the bias compared to when the bias advantages this agent. The

higher this likelihood ratio, the more informative a signal is a second-stage draw about

the relative ability of the first-stage loser—who managed to achieve a draw despite being

handicapped by the bias.

For β = 0, the right-hand side equals one, so a second-stage draw is uninformative.

Moreover, given the strict log-concavity of g, as the size of the bias increases, a second-

stage draw becomes a strictly stronger signal about the relative ability of the first-stage

loser. It thus follows from Assumption 1 that the first-order condition (2) has a unique

solution, β∗(h), which maximizes selective efficiency. Optimal bias strikes a balance be-

tween the informativeness of the ordinal ranking from stage one and that of the marginal

outcome (a draw) in stage two. More precisely, optimal bias is such that, if the principal

were to observe a draw in stage two, she would be indifferent about which agent to pro-

mote. Accordingly, optimal bias is increasing (decreasing) in λ1 (λ2), the sensitivity of

performance in stage one (stage two) to ability.

Though the logic behind the optimal level of bias is clear, the dependence of β∗(h) on

the heterogeneity-to-noise ratio h can be complex, because a fall in h reduces both sides

of (2): It lowers both the informativeness of a first-stage win and, by log-concavity, the

informativeness of a second-stage draw about the relative ability of the first-stage loser,

for any given level of bias. The complex dependence of β∗(h) on h is illustrated in Figure

1. The left-hand panel plots the density functions for the family of exponential power

distributions with mean 0 and shape parameter α > 1. These density functions are (see,

e.g., Evans, Hastings and Peacock, 2003)

g(∆ϵt;α) =
α

2Γ( 1
α
)
exp(−|∆ϵt|α), (3)

and for all α > 1, they satisfy Assumption 1. For α = 2, g(∆ϵt;α) is a normal distribution

with variance 1
2
; as α → ∞, g(∆ϵt;α) approaches a uniform distribution with support

[−1, 1]; and as α → 1, g(∆ϵt;α) approaches a Laplace distribution with scale parameter

7



1. The right-hand panel plots the optimal bias β∗(h) as a function of h, for λ1 = λ2 = 1.

Despite the myriad possibilities illustrated, two regularities are suggested by the plots.

First, even as h gets small, optimal bias remains positive for all members of the family.

Second, as h gets small, optimal bias appears to become locally insensitive to h.

Figure 1: Optimal bias for the family of exponential power distributions with
mean 0 and shape parameter α > 1. The left-hand panel plots the density function
and the right-hand panel plots the optimal bias, as h varies, for λ1 = λ2 = 1.

Proposition 1 shows that these regularities hold in general.

Proposition 1 For all λ1, λ2 > 0, in the worst-case scenario where the heterogeneity-to-

noise ratio h tends to zero, optimal bias satisfies the following two properties:

(i) Optimal bias β∗
0 ≡ limh→0 β

∗(h) is strictly positive and satisfies

L(β∗
0) = 2

λ1

λ2

g(0). (4)

(ii) Optimal bias is locally insensitive to the heterogeneity-to-noise ratio:

lim
h→0

dβ∗(h)

dh
= 0.

At first sight, the fact that optimal bias remains strictly positive, even as the scale

of the noise swamps the heterogeneity in abilities, may seem counterintuitive, because

when h tends to 0, the first-stage ranking becomes uninformative about relative abilities.

This argument resonates well with the frequently raised concern that dynamic selection
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contests may be skewed in favor of the most lucky rather than the most able.6 However,

this reasoning neglects the fact that, as h tends to 0, a second-stage draw also becomes

uninformative about the relative ability of the first-stage loser, for any level of bias. For-

mally, as h tends to 0, both sides of (2) approach 1. Part (i) of Proposition 1 characterizes

optimal bias as h tends to 0 by equating the rates at which the informativeness of the two

stages tend to zero as h gets small. Since L is a strictly increasing function, L(0) = 0, and

the right-hand side of (4) is positive, the limiting value of optimal bias must be positive.

Part (ii) of Proposition 1 shows that, as h tends to 0, changes in h have no first-order

effect on the size of optimal bias. In Section 5, we prove that as a consequence, the

organization’s payoff from setting β = β∗
0 is a fifth-order approximation for its maximized

payoff when h is small. We also show numerically that the simple heuristic of setting bias

as if in the worst-case scenario captures a large fraction of the potential gains from bias,

for a wide range of values of the heterogeneity-to-noise ratio.

4 A counterfactual: cardinal information

To provide further intuition for Proposition 1, in this section we consider the counter-

factual situation where the organization has access to stage-one relative performance

information that is cardinal, rather than ordinal.7 Second-stage bias can then condition

on the first-stage margin of victory k ≡ |pA,1 − pB,1|. The optimal bias based only on

ordinal information, β∗(h), can be thought of, loosely, as a form of average of the optimal

cardinal biases βcard(k, h) as the margin of victory k varies. Proposition 2 below, which

mirrors Proposition 1, makes this intuition precise for the worst-case scenario where the

heterogeneity-to-noise ratio h tends to 0.

The properties of optimal bias given stage-one cardinal relative performance informa-

tion are particularly transparent when performance in the two stages is equally sensitive

to ability, that is, λ1 = λ2. Here, it is optimal to select the agent with the higher total

performance over the two stages. This optimal selection rule can be implemented by bias-

ing the second-stage contest in favor of the stage-one winner by exactly k, the stage-one

margin of victory. Hence, the optimal cardinal bias is

βcard(k, h) = k, ∀k, h. (5)

6For example, Deaner, Lowen and Cobley (2013) provide evidence for the fact that, due to repeated
selection within cohorts of matching age, professional hockey players with dates of birth during the first
half of the year are over-represented in the NHL.

7Choosing bias optimally in the second stage allows the organization to use ordinal second-stage
information as efficiently as if it could observe cardinal relative-performance information in this stage.
The same is true in the setting of Section 3.
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For this case, it is easy to understand why as the heterogeneity-to-noise ratio h goes to

0, expected optimal cardinal bias satisfies the same two properties satisfied by optimal

ordinal bias. First, given (5), expected optimal cardinal bias is just the expected stage-

one margin of victory, which, as h → 0, approaches E[|∆ϵ1|] > 0. Second, an increase in

h raises the expectation of k when the better agent wins but lowers it when the better

agent loses, and as h → 0, these two effects cancel out, thus making E[βcard(k, h)], just

like β∗(h), locally insensitive to h in this limit.

Proposition 2 shows that this parallel between the properties of optimal ordinal and

cardinal bias remains intact even when λ1 ̸= λ2:

Proposition 2 For all λ1, λ2 > 0, when cardinal information is available, in the worst-

case scenario where the heterogeneity-to-noise ratio h tends to zero,

(i) Expected optimal cardinal bias is strictly positive:

lim
h→0

E[βcard(k, h)] > 0.

(ii) Expected optimal cardinal bias is locally insensitive to the heterogeneity-to-noise

ratio:

lim
h→0

dE[βcard(k, h)]

dh
= 0.

(iii) Optimal biases under ordinal and cardinal information are related according to:

L(β∗
0) = E[L(βcard

0 (k))],

where βcard
0 (k) ≡ limh→0 β

card(k, h).

Part (iii) characterizes the precise relationship between ordinal and cardinal biases in

the worst-case scenario. In each case, the principal sets the bias so that she would be

indifferent whom to promote after a tie, which pins down the likelihood ratio L at the

optimal bias. Under ordinal information, the principal must consider all possible margins

of victory and set the bias in an “average” way—making expected likelihood ratios at

optimal ordinal and cardinal biases equal. When the noise distribution is normal, so L

is linear, expected biases are equal: β∗
0 = E[βcard

0 (k)]. Part (iii) thus provides further

perspective on why optimal ordinal bias remains positive even as the noise swamps the

heterogeneity in abilities.
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5 A simple heuristic for setting bias

Proposition 1 implies that the positive value of optimal bias in the worst-case scenario,

β∗
0 , is a second-order approximation for the optimal bias, β∗(h), when the heterogeneity-

to-noise ratio is small. A striking consequence is that, for small h, selective efficiency

when β = β∗
0 and selective efficiency when β = β∗(h) are equal up to order four :

Proposition 3 For all λ1, λ2 > 0,

S(β∗(h), h) = S(β∗
0 , h) +O(h5).

Proposition 3 strongly suggests that the simple heuristic of setting bias as if selection

is hardest may perform well even when selection is only moderately hard. We substan-

tiate this conjecture by showing that, for the family of exponential power distributions

introduced in Section 3, a large fraction of the potential gains in selective efficiency, for

a wide range of values of the heterogeneity-to-noise ratio, are captured by setting bias at

the level that would be optimal in the worst-case scenario.

If second-stage bias is unavailable, then when λ1 = λ2, selective efficiency in the

two-stage contest is the same as with only one stage—since if the two stages are won by

different agents, it is an optimal rule to select the winner of the first stage. More generally,

i.e., when λ1 ̸= λ2, the optimal selection rule without bias promotes the winner of the

more informative stage, making selective efficiency equal to the maximum of G(λ1h) and

G(λ2h). Define the gain in selective efficiency from using bias β, relative to using no bias,

as

∆(β, h) ≡ S(β, h)−max{G(λ1h), G(λ2h)}. (6)

Note that ∆(β, h) is bounded above by 1
2
. The gain in selective efficiency when bias is

optimally calibrated to h is ∆(β∗(h), h), while the gain under the simple rule of setting

bias equal to β∗
0 is ∆(β∗

0 , h).

The maximum potential gain from using bias, ∆(β∗(h), h), is largest when perfor-

mance in the two stages is equally sensitive to ability (λ1 = λ2). Raising min{λ1, λ2}, hold-
ing max{λ1, λ2} fixed, raises ∆(β∗(h), h) because two-stage selective efficiency, S(β∗(h), h),

increases while one-stage selective efficiency, max{G(λ1h), G(λ2h)}, is unchanged. More-

over, raising max{λ1, λ2}, holding min{λ1, λ2} fixed, lowers ∆(β∗(h), h) because it in-

creases max{G(λ1)h,G(λ2h)} more than S(β∗(h), h). Since the maximum potential gain

from bias is greatest when λ1 = λ2, it is natural to focus, at least initially, on this case.

For the exponential power family of densities (3) with shape parameter α > 1, optimal

bias in the worst-case scenario is readily calculated and given by β∗
0 = {λ1/[λ2Γ(

1
α
)]}

1
α−1 .
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Figure 2 plots, for various values of α, λ1 and λ2, ∆(β∗(h), h) (solid curves) and ∆(β∗
0 , h)

(dashed curves) as h varies.

Figure 2: Gain in selective efficiency due to bias. The top panels plot the optimal
bias and the bottom panels plot ∆(β∗(h), h) (solid curves) and ∆(β∗

0 , h) (dashed curves),
defined in (6), as h varies, for various values of the shape parameter α, λ1 and λ2.

Figure 2 substantiates the conjecture that setting bias equal to its value β∗
0 in the

worst-case scenario captures a very large fraction of the potential gains in selective effi-

ciency. Focusing first on the middle column (λ1 = λ2 = 1), this is true independently of

the shape parameter α and holds for a wide range of values of the heterogeneity-to-noise

ratio h. Although optimal bias β∗(h) can be increasing, decreasing, or non-monotone in

h, Proposition 1 guarantees that there exists a range of h over which β∗(h) exhibits rather

limited variation, with the consequence (Proposition 3) that over this range, ∆(β∗
0 , h) very

closely approximates ∆(β∗(h), h). The extremely good overall performance of the heuris-

tic of setting bias equal to β∗
0 arises because this range of h, broadly speaking, contains

the range of h values for which bias matters: Once h becomes very large, even ∆(β∗(h), h)

declines rapidly, because a single-stage unbiased contest is already very effective at iden-

tifying the more able agent.

As explained above, the importance of choosing bias wisely declines as the difference
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in informativeness of the two contest stages grows. Figure 2(left) shows that for λ1 =
4
3
, λ2 = 1, the heuristic of setting bias equal to β∗

0 continues to perform extremely well; this

reflects the even more pronounced insensitivity of β∗(h) with respect to h. Figure 2(right)

shows that for λ1 = 1, λ2 = 4
3
, this heuristic also performs well, except for densities g

approaching the uniform distribution (large α). The weaker performance of the heuristic

for this one case reflects the relatively rapid decrease in β∗(h) with h, which results in

β∗
0 being significantly too large once h exceeds 1. Strikingly, Figure 2, both for equal

and unequal values of λ1 and λ2, shows that with normally distributed noise (α = 2),

the optimal bias is particularly insensitive to h. Consequently, with normally distributed

noise, the heuristic of setting bias as if in the worst-case scenario performs exceptionally

well over the whole range of heterogeneity-to-noise ratios.

6 Efforts

To highlight the role of bias in improving selective efficiency, we have so far suppressed

agents’ effort incentives. We now show that the properties of optimal bias for selection

are robust to allowing agents to choose efforts strategically in each stage.

Let the performance of agent i in stage t be given by

pi,t = λtai + ei,t + ϵi,t,

where ei,t is agent i’s privately chosen effort in stage t. Consistent with our assumption

that all heterogeneity between agents is captured by the parameter h, we assume that

agents attach the same value (normalized to 1) to receiving the promotion after stage two

and that, within each stage, agents have identical, strictly convex costs of effort, ct(ei,t).
8

We assume that agents enter the dynamic contest no better informed about their abilities

than the organization and receive only ordinal information about their performance. The

organization chooses the stage-two bias β in favor of the stage-one winner to maximize

the contest selective efficiency, taking into account the induced equilibrium effort choices.

Proposition 4 When performance is additive in effort and each agent’s only informa-

tional advantage relative to the organization is his private choice of efforts,

(i) There is a unique pure-strategy equilibrium. In this equilibrium, both in the first and

in the second stage, agents choose identical efforts.

8It is well known that sufficient convexity of effort cost functions ensures that second-order conditions
for utility maximization are satisfied.
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(ii) The bias that maximizes selective efficiency is the same as in the model without

efforts, i.e., it is given by (2) and satisfies the properties in Proposition 1.

In the second stage, the agents are no longer symmetric: The first-stage winner is both

more likely to be more able and is advantaged by the bias. Yet, since efforts affect the

contest outcome only through the difference between them, the marginal return to effort is

the same for the two agents, so the second-stage efforts of the first-stage winner and loser

are equal. In the first stage, since the agents are ex ante symmetric, there exists a pair of

identical efforts that are best responses to each other. Furthermore, our proof shows that

unequal stage-one efforts could not be best responses. Since equilibrium effort choices by

the agents are identical within each stage, efforts have no effect on the informativeness

of either stage of the contest about relative abilities. The bias that maximizes selective

efficiency is thus the same as in the model without efforts.

7 Conclusion

Our characterization of optimal bias in dynamic contests where selection is hard is of

both theoretical and practical value. It shows why bias should continue to be used, even

as the role of luck relative to ability in determining whom bias should favor grows very

large, and it illuminates the forces that determine optimal bias in this limit. Moreover,

the limiting properties of optimal bias explain why, even in environments where selection

is only moderately hard, the simple heuristic of setting bias as if selection is hardest

performs strikingly well.

While we provided conditions under which our results are robust with respect to the

introduction of efforts, an open issue is how selective efficiency and optimal bias are influ-

enced by incentives when agents enter the contest better informed than the organization

about their abilities. More able agents might then be inclined to exert higher or lower

first-stage effort because they attach a larger or a smaller value to the prospect of being

advantaged by bias in the second stage. Bias could thus affect selective efficiency not only

directly, via the informational channel highlighted by our analysis, but also indirectly, via

its influence on incentives.

Appendix

Proof of Proposition 1

The optimal second-stage bias maximizes selective efficiency S(β, h) in (1). Subindices

denote partial derivatives.
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Part (i) For any h > 0, Assumption 1 ensures that the first-order condition Sβ(β, h) =

0 uniquely determines the optimal bias β∗(h):

Sβ(β
∗(h), h) = G (λ1h) g (λ2h+ β∗(h))− (1−G (λ1h)) g (λ2h− β∗(h)) = 0.

However, limh→0 Sβ(β, h) = 0 ∀β. Characterizing β∗
0 ≡ limh→0 β

∗(h) requires totally

differentiating Sβ(β
∗(h), h) with respect to h, setting it equal to 0, and letting h → 0.

Total differentiation yields

Sβh(β
∗(h), h) + Sββ(β

∗(h), h)
∂β∗(h)

∂h
, (7)

where limh→0 Sββ(β, h) = 0 ∀β (since limh→0 Sβ(β, h) = 0 ∀β). Hence, (7) and Assump-

tion 1(i) imply that β∗
0 solves

lim
h→0

Sβh(β
∗(h), h) = Sβh(β

∗
0 , 0) = 2λ1g(0)g(β

∗
0) + λ2g

′(β∗
0) = 0, (8)

which gives (4). Since Assumptions 1(i) and 1(iii) guarantee L(0) = 0, β∗
0 > 0.

Part (ii) Evaluating limh→0
∂β∗(h)

∂h
requires totally differentiating (7) with respect to

h, setting it equal to 0, and letting h → 0. Total differentiation of (7) yields

Sβhh(β
∗(h), h) + 2Sββh(β

∗(h), h)
∂β∗(h)

∂h
+ Sβββ

(
∂β∗(h)

∂h

)2

+ Sββ(β
∗(h), h)

∂2β∗(h)

∂h2
, (9)

where limh→0 Sβββ(β, h) = 0 ∀β (since limh→0 Sββ(β, h) = 0 ∀β). Assumption 1 im-

plies that limh→0 Sβhh(β, h) = 2λ2
1g

′(0)g(β) = 0 ∀β, and that limh→0 Sββh(β
∗(h), h) =

2λ1g(0)g
′(β∗

0)+λ2g
′′(β∗

0), which is negative by (4). Hence, (9) implies that limh→0
∂β∗(h)

∂h
=

0.

Proof of Proposition 2

Part (i) Given the observed first-stage margin of victory k ≥ 0, the principal chooses

β to maximize Scard(β, k, h), the probability of promoting the more able agent, conditional

on agents’ abilities being different. Conditional on abilities being different, the probability

of margin of victory k is g(k − λ1h) when the stronger agent wins and g(k + λ1h) when

the weaker agent wins. Hence

Scard(β, k, h) = g(k − λ1h)G(λ2h+ β) + g(k + λ1h)G(λ2h− β).
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The first-order condition is

Scard
β (β, k, h) = g(k − λ1h)g(λ2h+ β)− g(k + λ1h)g(λ2h− β) = 0 (10)

which, by Assumption 1, uniquely determines the optimal cardinal bias βcard(k, h) as a

strictly increasing function of k, equal to 0 for k = 0. Since limh→0 Sβ(β, k, h) = 0 ∀β, k,
characterizing βcard

0 (k) ≡ limh→0 β
card(k, h) requires totally differentiating Scard

β (βcard(k, h), k, h)

with respect to h, setting it equal to 0, and letting h → 0. Steps paralleling the proof of

Proposition 1(i) show that βcard
0 (k) solves limh→0 S

card
βh (β, k, h) = 0, which yields

L(βcard
0 (k)) =

λ1

λ2

L(k). (11)

By Assumption 1, L(0) = 0 and L(k) > 0 ∀k > 0. Hence, βcard
0 (k) > 0 ∀k > 0.

To compute E[βcard(k, h)], denote by q0∆a the prior probability that aA − aB = ∆a ∈
{−h, 0, h}. Since aA and aB are identically distributed,

q0−h = q0h. (12)

The unconditional density of k on its support [0, z + λ1h] is

2q0hg(k − λ1h) + 2q0hg(k + λ1h) + 2q00g(k). (13)

Hence

E[βcard(k, h)] = 2

∫ z+λ1h

0

βcard(k, h)
[
q0hg(k − λ1h) + q0hg(k + λ1h) + q00g(k)

]
dk

= 2q0h

∫ z

−λ1h

βcard(v + λ1h, h)g(v)dv + 2q0h

∫ z+2λ1h

λ1h

βcard(v − λ1h, h)g(v)dv

+ 2q00

∫ z

0

βcard(k, h)g(k)dk, (14)

Since 2q0h + q00 = 1,

lim
h→0

E[βcard(k, h)] = 2

∫ z

0

βcard
0 (v)g(v)dv.

Since βcard
0 (k) > 0 ∀k > 0, limh→0E[β

card(k, h)] > 0.

Part (ii) Totally differentiating (14) with respect to h and letting h → 0 yields

lim
h→0

dE[βcard(k, h)]

dh
= 2

∫ z

0

∂βcard(v, 0)

∂h
g(v)dv, (15)
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since the two integrals involving the derivative of βcard with respect to its first argument

cancel out when h → 0. Steps paralleling the proof of Proposition 1(ii) then show that

∀k, limh→0
∂βcard(k,h)

∂h
= 0, so (15) equals 0.

Part (iii) Given (4) and (11), we need only show that E[L(k)] = 2g(0). As h → 0,

(13) converges to 2g(k) on support [0, z]. Hence

E[L(k)] =
∫ z

0

L(k)2g(k)dk = −2

∫ z

0

g′(k)dk = 2g(0),

using g(z) = 0, which is implied by Assumption 1(iii).

Proof of Proposition 3

The proposition claims that

lim
h→0

dn

dhn
[S(β∗(h), h)− S(β∗

0 , h)] = 0 for n = 1, 2, 3, 4.

Under Assumption 1(i), as h → 0, the following partial derivatives of S(β∗(h), h) go

to 0 ∀β: Sβ, Sββ, Sβββ, Sββββ, Shh, and Sβhh. Also, limh→0 Sβh(β
∗(h), h) = 0 and

limh→0 β
∗′(h) = 0, by Proposition 1(i) and 1(ii). The claim is verified by totally dif-

ferentiating S(β∗(h), h)− S(β∗
0 , h) n times, for n = 1, 2, 3, 4, and taking h → 0.

Proof of Proposition 4

Part (i) Denote by superscripts W and L the cases when agent A won and lost,

respectively, the first stage. Define ∆e1 = eA,1 − eB,1, ∆eW2 = eWA,2 − eWB,2, and ∆eL2 =

eLA,2 − eLB,2. Define qW∆a(∆e1) (respectively, qL∆a(∆e1)) as the posterior probability that

aA − aB = ∆a, given A won (respectively, lost) the first stage and given ∆e1.

Step 1 We first show that in stage two, the agents exert the same effort. In case W ,

A’s and B’s second-stage utilities are, respectively,

qWh (∆e1)G
(
h+ β +∆eW2

)
+ qW0 (∆e1)G

(
β +∆eW2

)
+ qW−h(∆e1)G

(
−h+ β +∆eW2

)
− c2

(
eWA,2

)
qWh (∆e1)G

(
−h− β −∆eW2

)
+ qW0 (∆e1)G

(
−β −∆eW2

)
+ qW−h(∆e1)G

(
h− β −∆eW2

)
− c2

(
eWB,2

)
.

By Assumption 1(i), the marginal return to effort is the same for A and B, so e∗WA,2 = e∗WB,2.

An analogous argument shows e∗LA,2 = e∗LB,2.

Step 2 By Assumption 1(i) and condition (12), if ∆e1 = 0, then e∗WA,2 = e∗LA,2. We now

show that if eA,1 > eB,1, then e∗WA,2 > e∗LA,2.
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Given e∗WA,2 = e∗WB,2 and e∗LA,2 = e∗LB,2, e
∗W
A,2 and e∗LA,2 satisfy, respectively,

qWh (∆e1)g(h+ β) + qW0 (∆e1)g(β) + qW−h(∆e1)g(−h+ β) = c′(e∗WA,2)

qLh (∆e1)g(h− β) + qL0 (∆e1)g(−β) + qL−h(∆e1)g(−h− β) = c′(e∗LA,2). (16)

Given Assumption 1(i), the difference between the left-hand sides in (16) is

[qWh (∆e1)−qL−h(∆e1)]g(h+ β) + [qW−h(∆e1)− qLh (∆e1)]g(−h+ β)

+ [qW0 (∆e1)− qL0 (∆e1)]g(β). (17)

To complete Step 2, we show that (17) is strictly positive which, combined with (16),

implies that e∗WA,2 > e∗LA,2.

Assumption 1(ii) implies that, for ∆e1 > 0,

qWh (∆e1)− qL−h(∆e1) < 0 and qW−h(∆e1)− qLh (∆e1) > 0. (18)

We now show that for ∆e1 > 0, qW0 (∆e1)− qL0 (∆e1) > 0. Assumption 1(i) and condition

(12) give

qW0 (∆e1) > qL0 (∆e1) ⇐⇒ qW0 (∆e1) > qW0 (−∆e1)

⇔ G(∆e)

q0h[(G(h+∆e1) +G(−h+∆e1)] + q00G(∆e1)
>

G(−∆e)

q0h[(G(h−∆e1) +G(−h−∆e1)] + q00G(−∆e1)

⇐⇒ 2G(∆e1) > G(h+∆e1) +G(−h+∆e1). (19)

Assumptions 1(i) and 1(ii) imply (a) strict convexity of G on [−z, 0] and (b) strict con-

cavity on [0, z]. If −h +∆e1 ≥ 0, (19) follows from (b). Otherwise, (a) and (b) together

imply

G(h+∆e1) +G(−h+∆e1) < G(h+∆e1) +

(
2∆e1

h+∆e1

)
G(0) +

(
h−∆e1
h+∆e1

)
G(−h−∆e1)

= 2

(
h

h+∆e1

)
G(0) + 2

(
∆e1

h+∆e1

)
G(h+∆e1)

< 2G(∆e1).

Returning to (17), Assumption 1(i) and 1(ii) imply that g(h+β) < g(β) and g(h+β) <

g(−h + β). Also, the three differences in posteriors in square brackets sum to 0. Hence

the inequality qW0 (∆e1)− qL0 (∆e1) > 0, combined with those in (18), implies that (17) is

strictly positive.
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Step 3 The overall utility of agent A is

q0h[G (h+∆e1)
(
G
(
h+ β + e∗WA,2 − e∗WB,2

)
− c2

(
e∗WA,2

))
+ (1−G (h+∆e1))

(
G
(
h− β + e∗LA,2 − e∗LB,2

)
− c2

(
e∗LA,2

))
]

q00[G (∆e1)
(
G
(
β + e∗WA,2 − e∗WB,2

)
− c2

(
e∗WA,2

))
+ (1−G (∆e1))

(
G
(
−β + e∗LA,2 − e∗LB,2

)
− c2

(
e∗LA,2

))
]

q0−h[G (−h+∆e1)
(
G
(
−h+ β + e∗WA,2 − e∗WB,2

)
− c2

(
e∗WA,2

))
+ (1−G (−h+∆e1))

(
G
(
−h− β + e∗LA,2 − e∗LB,2

)
− c2

(
e∗LA,2

))
]− c1 (eA,1)

A change in eA,1 does not affect e∗WB,2, e
∗L
B,2, or β, because it is unobservable, and the local

effect via the induced changes in e∗WA,2 and e∗LA,2 is zero by the envelope theorem. Using

e∗WA,2 = e∗WB,2, e
∗L
A,2 = e∗LB,2, Assumption 1(i), and condition (12), the marginal benefit of eA,1

simplifies to

q0h [g (h+∆e1) + g (−h+∆e1)]
{
G (h+ β)− c2

(
e∗WA,2

)
−
[
G (h− β)− c2

(
e∗LA,2

)]}
+ q00g(∆e1){G(β)− c2

(
e∗WA,2

)
−
[
G (−β)− c2

(
e∗LA,2

)]
}. (20)

Analogously, for agent B the marginal benefit of eB,1 becomes

q0h [g (h−∆e1) + g (−h−∆e1)]
{
G (h+ β)− c2

(
e∗LB,2

)
−
[
G (h− β)− c2

(
e∗WB,2

)]}
+ q00g(∆e1){G(β)− c2

(
e∗LB,2

)
−
[
G (−β)− c2

(
e∗WB,2

)]
}. (21)

By Assumption 1(i) and Step 1, the difference between (20) and (21) has the sign of

c2(e
∗L
A,2) − c2(e

∗W
A,2), which by Step 2 is negative when eA,1 − eB,1 > 0. But eA,1 − eB,1 >

0 implies c′1(eA,1) − c′1(eB,1) > 0, so such efforts cannot be optimal for both agents.

Analogously, eA,1 < eB,1 would also yield a contradiction. Hence, equilibrium requires

equal first-stage efforts: e∗A,1 = e∗B,1. These are unique since with ∆e1 = 0, (20) and (21)

are independent of the common level of e1.

Part (ii) Since agents’ equilibrium efforts are identical within each stage, efforts have

no effect on the informativeness of either stage about relative abilities. The bias that

maximizes selective efficiency is thus the same as that characterized in Section 3.
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