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Abstract

Hundreds of studies have shown that air pollution affects health in the very

short-run. This played a key role in setting air quality standards. Yet, estimated

effect sizes can vary widely across studies. Analyzing the results published in epi-

demiology and economics, we find that publication bias and a lack of statistical

power could lead some estimates to be inflated. We then run real data simula-

tions to identify the design parameters causing these issues. We show that this

exaggeration may be driven by a small numbers of exogenous shocks, instruments

with limited strength or sparse outcomes. Other literatures relying on comparable

research design could also be affected by these issues. Our paper provides a prin-

cipled workflow to evaluate and avoid the risk of exaggeration when conducting

an observational study.
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1 Introduction
From extreme events such as the London Fog of 1952 to the development of sophis-

ticated time-series analyses, a vast epidemiology literature of more than 600 studies

has established that air pollution induces adverse health effects on the very short-term.

Increases in the concentration of several ambient air pollutants have been found to be

associated with small increases in daily mortality and emergency admissions for res-

piratory and cardiovascular causes (Schwartz 1994, Samet et al. 2000, Le Tertre et al.

2002, Bell et al. 2004, Liu et al. 2019). Based on these results, environmental protection

and public health agencies have designed policies such as air quality alerts to mitigate

the burden of air pollution. Obtaining accurate estimates is therefore crucial as they

are directly used to implement and update policies.

With this objective in mind, researchers in economics and epidemiology have re-

cently used causal inference methods to improve on the standard epidemiology litera-

ture that relied on associations (Dominici and Zigler 2017, Bind 2019). Newly obtained

results confirm the short-term health effects of air pollution (Schwartz et al. 2015;

2018, Deryugina et al. 2019). Yet, causal estimates are up to an order of magnitude

larger than what would have been predicted by the standard epidemiology literature.

Reviewing the causal inference literature, we find that the median of the ratio of Two-

Stage Least-Squares (2SLS) to "naive" Ordinary Least-Squares (OLS) estimates is 3.8,

as shown in the top panel of Figure 1. This discrepancy could arguably be explained

by the fact that instrumental variable strategies remove omitted variable bias, reduce

attenuation bias caused by classical measurement error in air pollution exposure or

target a different causal estimand.

Our literature review however suggests an alternative but complementary expla-

nation based on publication bias and low statistical power. The bottom left panel of

Figure 1 reveals that large standardized effect sizes are only found in imprecise stud-
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Figure 1: Suggestive Evidence of Publication Bias, Power and Exaggeration Is-
sues in the Causal Inference Literature.

Notes: In the top panel, we plot the ratios of the 2SLS estimate to the corresponding "naive" OLS one
(same health outcome and air pollutant). Out of the 72 ratios obtained, we exclude 7 outliers with
extremely large ratios that distort the graph. The orange line represents the median and is equal to 3.8.
In the bottom left panel, we display 382 standardized effect sizes against the inverse of their standard
error, a measure of precision. Both axes are on a log10 scale. In the bottom right panel, following
Brodeur et al. (2020), we plot the weighted distribution of the 537 t-statistics. The weights are equal to
the inverse of the number of tests displayed in the same table multiplied by the inverse of the number
of tables in the article. The dashed orange line represents the 5% significance threshold.

ies. This pattern is often indicative of publication bias. Among imprecise studies, those

that found an effect size large enough to be statistically significant—at least 2 standard

errors away from 0 at the 5% significance level—were more likely to be published

(Brodeur et al. 2016; 2020). Studies with low precision therefore produce inflated es-

timates in the presence of publication bias (Ioannidis 2008, Gelman and Carlin 2014).

2
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The bottom right panel of Figure 1 confirms the presence of a publication bias in this

literature as the mass of the t-statistics distribution is larger at the 5% statistical signif-

icance threshold. While many other literatures do suffer from exaggeration issues, the

consequences of low statistical power are particularly salient in studies on the short-

term health effects of air pollution since their signal-to-noise ratio is often low (Peng

et al. 2006, Peng and Dominici 2008).

In this paper, we analyze the consequences and determinants of low statistical

power in studies on the short-term health effects of air pollution. We first tackle this

question by gathering a unique corpus of 668 articles based on associations and 36

articles that rely on causal inference methods. For each of these studies, we run sta-

tistical power calculations to assess whether the design of the study would be robust

enough to capture the true effect if it was smaller than the observed estimate (Gelman

and Carlin 2014, Ioannidis et al. 2017, Lu et al. 2019, Timm 2019). Yet, these calcu-

lations rely on hypotheses about the true effect of the treatment and do not enable to

understand the causes of low power. Using real data from the US National Morbidity,

Mortality, and Air Pollution Study (Samet et al. 2000), we therefore implement sim-

ulations to identify the characteristics of research designs that drive their statistical

power and the inflation of statistically significant estimates (Altoè et al. 2020, Gelman

et al. 2020, Black et al. 2022). We finally provide a principled workflow to evaluate the

risk of exaggeration along with a list of concrete recommendations to improve studies

designs.

Our analysis of estimates published in the epidemiology and causal inference liter-

atures show that, reassuringly, many studies are robust to low statistical power issues.

These studies could recover effect sizes that are equal to 3/4 of the obtained estimate.

However, a quarter of studies is likely to suffer from important exaggeration issues.

Their estimated effect sizes are probably at least inflated by a factor of 1.4. Better in-

formed guesses of true effect sizes suggest that exaggeration issues might be even more

3
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widespread.

Our simulation results help understand why some studies face statistical power is-

sues. We first show that, regardless of the identification strategy used, a very large

number of observations is needed to reach a sufficient statistical power. Air quality

alerts being rare, observations close to the air pollution threshold are scarce. Regres-

sion discontinuity designs exploiting these alerts are bound to rely on small samples

and often produce inflated estimates. Second, we find that the use of public trans-

portation strikes or thermal inversions as exogenous shocks on air pollution can be

problematic. Even if these studies can have large sample sizes, the number of shocks

sometimes represents less than 1% of the observations. The variation available for

identification is therefore small, leading to exaggeration, even for large true effect

sizes. Third, we show that the average daily count of cases of the health outcome is

a key driver of statistical power. Estimated effects of air pollution on the elderly or

children can be exaggerated since there are few daily hospital admissions or deaths for

these groups.

By quantifying the respective influence of parameters affecting the power of stud-

ies, we fill an important gap in the literature on the acute health effects of air pollution.

There was a lack of guidance on how to design an observational study to avoid low

power issues, except for generalized additive models used in the standard epidemiol-

ogy literature (Winquist et al. 2012). While our simulations focus on health effects,

our conclusions could be extended to studies with similar designs but investigating

the impacts of air pollution on different outcomes such as criminality, cognitive skills

and productivity (Herrnstadt et al. 2021, Ebenstein et al. 2016, Adhvaryu et al. 2022).

More broadly, we expect studies focusing on settings with small effect sizes, a limited

number of exogenous shocks or of cases in the count outcome to also be subject to

power and exaggeration issues.

Our paper makes three main contributions. First, it contributes to a growing litera-

4
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ture using retrospective power calculations to assess power and exaggeration issues in

various fields (Ioannidis 2008, Gelman and Carlin 2014, Ioannidis et al. 2017, Ferraro

and Shukla 2020, Stommes et al. 2021, Arel-Bundock et al. 2022). These meta-analyses

help understand the recent replication crises in medicine, psychology and experimen-

tal economics (Button et al. 2013, Open Science Collaboration 2015, Camerer et al.

2018). Our analysis complements the literature by showing the existence of such is-

sues for a major branch of health and environmental economics. The algorithm we

developed to automatically review the epidemiology literature is readily available to

evaluate power issues in other fields reporting point estimates and confidence intervals

in plain text.

Second, existing meta-analyses do not usually discuss the determinants of the lack

of power they describe. By simulating all research designs used in the literature on

the short-term health effects of air pollution, we are able to overcome this key limi-

tation. Our analysis complements three recent articles using simulations to evaluate

power issues in analyses of state-level public policies on mortality outcomes (Schell

et al. 2018, Griffin et al. 2021, Black et al. 2022). These studies focus on event-study

designs and treatment effects happening on medium to long time scales. On the con-

trary, our simulations gauge the capacity of reduced-form, instrumental variable and

regression discontinuity designs to estimate very short-run effects in the context of

high-frequency data.

Third, our study provides a reproducible workflow to evaluate and address power

issues when running an observational study. Compared to psychology (Altoè et al.

2020), researchers in economics lack concrete recommendations to evaluate and un-

derstand the causes of low power issues. Before carrying out the study, we suggest

to build simulations using existing datasets to evaluate how the performance of the

research design evolves with key parameters. Once the analysis is completed, we rec-

ommend to run and report a retrospective power analysis to assess whether the design
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used would have recovered the true effect if it was in fact smaller than the one esti-

mated. To ease the adoption of these tools, all replication and supplementary materials

are available on the project’s website.

In the following section, we implement a simple simulation exercise to show why

statistically significant estimates exaggerate true effect sizes when studies have low sta-

tistical power. In section 3, we present our retrospective analysis of the literature. In

section 4, we detail our simulation procedure to replicate empirical strategies. We dis-

play the simulation results in section 5 and provide specific guidance on study design

in section 6.

2 Background on Statistical Power, Exagger-

ation and Type S Error
In a seminal paper, Gelman and Carlin (2014) point out that statistically significant

estimates suffer from a winner’s curse in under-powered studies. These estimates can

largely overestimate true effect sizes or can even be of the opposite sign. In this section,

we implement a simple simulation exercise to illustrate these two seemingly counter-

intuitive issues.

2.1 Illustrative Example

We simulate an experiment in which a mad scientist is able to increase the concentra-

tion of fine particulate matter (PM2.5) to estimate the short-term effects of air pollution

on daily non-accidental mortality. The experiment takes place in a major city over the

366 days of a leap year. The scientist increases the concentration of particulate mat-

ter by 10 µg/m3—a large shock equivalent to a one standard deviation increase in the

concentration of PM2.5. Concretely, the scientist implements a complete experiment

6
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where they randomly allocate half of the days to the treatment group and the other

half to the control group. They then measure the treatment effect of the intervention

by computing the average difference in means between treated and control outcomes.

They find a treatment effect of 4 additional deaths that is statistically significant at the

5% level. The statistical significance of the estimate fulfills the scientist expectations.

Table 1: Science Table of the Experiment.

Day Index Yi(0) Yi(1) τi Ti Yobs
i

1 122 124 +2 1 124
2 94 96 +2 1 96
3 96 98 +2 0 96
...

...
...

...
...

364 96 97 +1 0 96
365 98 98 +0 0 98
366 143 144 +1 1 144

Notes: This table displays the potential outcomes,
the unit-level treatment effect, the treatment status
and the observed daily number of non-accidental
deaths for 6 of the 366 daily units in the scientist’s
experiment.

Contrary to the scientist, we know the true effect of the experiment since we created

the data. In Table 1, we display the pair of potential outcomes of each day, Yi(Ti = 0)

and Yi(Ti = 1). Yi(Ti) represents the daily count of non-accidental deaths and Ti the

treatment assignment, equal to 1 for treated units and 0 otherwise. We first simulate

the daily non-accidental mortality counts in the absence of treatment (i.e., the Y (0)

column of Table 1), by drawing 366 observations from a negative binomial distribution

with a mean of 106 and a variance of 402. We chose these parameters to approximate

the distribution of non-accidental mortality counts in a large European city. We then

define the counterfactual distribution of mortality by adding, on average, 1 extra death

(i.e., the Y (1) column of Table 1). We then define the counterfactual distribution of

mortality by adding the treatment effect, drawn from a Poisson distribution (i.e., the

Y (1) column of Table 1). We choose its parameter to increase the number of death by

7
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1 on average1.

Following the fundamental problem of causal inference, the daily count of deaths

the scientist observes is given by the equation: Y obs
i = Ti × Yi(1) + (1− Ti)× Yi(0). Con-

sidering that the assignment of the treatment was random, how can the statistically

significant estimate found by the scientist be 4 times larger than the true treatment ef-

fect size? Replicating the experiment a large number of times explains this apparently

puzzling result.

2.2 Defining Statistical Power, Exaggeration ratio and Type S error

Figure 2: Replicating 10,000 Times the Experiment.

Notes: In Panel A, blue and red dots represent the point estimates of the 10,000 iterations of the ran-
domized experiment ran by the mad scientist. Red dots are statistically significant at the 5% level while
blue dots are not. The black solid line represents the true average effect of 1 additional death.

1In relative terms, the treatment effect size we set represents a 1% increase in the health outcome.
The magnitude of this hypothetical effect is larger than the one found in a recent and large-scale study
based on 625 cities. Liu et al. (2019) estimated that a 10 µg/m3 increase in PM2.5 concentration was
associated with a 0.68% (95% CI, 0.59 to 0.77) relative increase in daily all-causes mortality.

8
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In Figure 2, we plot the estimates of 10,000 iterations of the experiment. Even if

there is a large variation in the effect size of estimates, their average is reassuringly

equal to the true treatment effect of 1 additional death. We can however see that esti-

mates close to the true effect size would not be statistically significant at the 5% level.

In a world without publication bias, several replications of this experiment would

recover the true treatment effect. Unfortunately, despite recent changes in scientific

practices and editorial policies, non-statistically significant estimates and replication

exercises remain not valued enough (Brodeur et al. 2020). In a world with publication

bias, statistically significant estimates are more likely to be made public. Out of the

10,000 simulation estimates, about 800 are statistically significant at the 5% level. The

statistical power of the experiment, which is the probability to reject the null hypothesis

when there is actually an effect, is equal to 8%. The scientist was therefore lucky to get

a statistically significant estimate.

With such a low statistical power, statistically significant estimates are however

not informative for the treatment of interest. Two metrics, the average type M (mag-

nitude) error and the probability to make a type S (sign) error help assess the negative

consequences of a lack of statistical power. The exaggeration ratio, or expected Type

M error, is defined as the ratio of the absolute values of the statistically significant es-

timates over the true effect size (Gelman and Carlin 2014). With a statistical power of

8%, the scientist could expect their statistically significant estimates to be inflated on

average by a factor of 5! We also notice in Figure 2 that a non-negligible fraction of sta-

tistically significant estimates are of the wrong sign: this proportion is the probability

of making a type S error (Gelman and Carlin 2014). In this experiment, a statistically

significant estimate has a 8% probability of being of the wrong sign!

Formally, the statistical power of a test is the probability of rejecting the null hy-

pothesis H0 : β = 0, where β is the true effect of the estimand of interest. For β̂, a

normally distributed unbiased estimate of β with a standard error σ , the power of the

9
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null hypothesis test at the 5% is equal to Φ
(
−1.96− β

σ

)
+ 1 −Φ

(
1.96− β

σ

)
, where Φ is

the cumulative distribution function of the standard normal distribution. It increases

with β, the true value of the effect and with the precision of the estimate, i.e., when

σ decreases. The exaggeration ratio is E

(
|β̂|
|β|

∣∣∣∣∣ β,σ , |β̂|/σ > 1.96
)

and the probability to

make a type S error is given by Pr
(
β̂
β < 0

∣∣∣∣∣ β,σ , |β̂|/σ > 1.96
)
. Zwet and Cator (2021)

and Lu et al. (2019) derive closed-form expressions for these quantities. They show

that both the exaggeration ratio and the probability of type S error decrease with β

and the precision of the estimate.

To obtain statistically significant estimates that are informative of the true value of

the effect size, the scientist would need to improve the design of their study in order

to increase its statistical power.

3 Retrospective Analysis of the Literature
In this section, we first describe how we run a retrospective analysis of the standard

epidemiology and causal inference literatures. We then assess to what extent they

could suffer from low statistical power issues.

3.1 Our Approach

The formulas for power, exaggeration ratio and type S error described in the previ-

ous section all depend on the true magnitude of the estimand of interest. The true

effect is however never observed in a given study. We can overcome this limitation

using a retrospective power analysis. Essentially, it addresses the following question:

would the design of our study be reliable enough to retrieve the true effect if it was in

fact smaller than the obtained estimate? A retrospective power analysis can be con-

sidered as a thought-experiment in which we would exactly replicate the study many

times under the assumption that the true effect is different from the observed estimate.
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Concretely, Gelman and Carlin (2014) propose to run simulations in which we draw

many estimates from the asymptotic distribution of the estimator, a normal distribu-

tion with mean equal to the hypothesized true effect and a standard deviation equal

to the standard error we obtained in our study. The statistical power is the proportion

of sampled estimates that are statistically significant at the 5% level. The exaggeration

ratio is computed as the average ratio of the values of statistically significant estimates

over the assumed true effect size. The probability to make a type S error is the pro-

portion of significant estimates that are of the opposite sign of the true value. In our

project, we use the R package retrodesign developed by Timm (2019) that implements

the closed-form analogue of these simulations (Lu et al. 2019).

To get a general overview of power issues in the standard epidemiology and causal

inference literatures, we first carry out the same retrospective analysis for each study.

What proportion of studies would have a design reliable enough to retrieve an effect

size equal to 3/4 of the obtained estimate? On average, by what factor would statis-

tically significant estimates be inflated? For a subset of studies, we then make more

elaborate guesses about potential true values of the effect sizes.

3.2 Standard Epidemiology Literature

Hundreds of papers have been published on the short-term health effects of air pollu-

tion in epidemiology, medicine and public health journals. A large fraction of articles

rely on Poisson generalized additive models, which allow to flexibly adjust for the tem-

poral trend of health outcomes and for non-linear effects of weather parameters. This

literature spans over 20 years and has replicated analyses in a large number of settings,

providing crucial insights on the acute health effect of air pollution.

To gather a corpus of relevant articles, we use the following search query on PubMed

and Scopus:

’TITLE(("air pollution" OR "air quality" OR "particulate matter" OR "ozone"’,
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’OR "nitrogen dioxide" OR "sulfur dioxide" OR "PM10" OR "PM2.5" OR’, ’ "carbon

dioxide" OR "carbon monoxide")’, ’AND ("emergency" OR "mortality" OR "stroke" OR

"cerebrovascular" OR’, ’"cardiovascular" OR "death" OR "hospitalization")’, ’AND

NOT ("long term" OR "long-term")) AND "short term"’

We retrieve the abstracts of 1834 articles. We then extract estimates and confidence in-

tervals from these abstracts using regular expressions (regex). Our algorithm detects

phrases such as “95% confidence interval (CI)” or “95% CI” and looks for numbers

directly before this phrase or after and in a confidence interval-like format. We illus-

trate the outcome of this procedure (in blue) using one sentence of a randomly selected

article from this literature review (Vichit-Vadakan et al. 2008):

“The excess risk for non-accidental mortality was 1.3% [95% confidence interval

(CI), 0.8–1.7] per 10 µg/m3 of PM10, with higher excess risks for cardiovascular

and above age 65 mortality of 1.9% (95% CI, 0.8–3.0) and 1.5% (95% CI, 0.9–2.1),

respectively.”

Using this method, we retrieve 2666 estimates from 784 abstracts. We then read these

abstracts and filter out articles whose topic falls outside of the scope of our litera-

ture review. Our corpus is thus composed of 668 articles for which we detect 2155

estimates. Importantly, the set of articles considered is limited to those displaying

confidence intervals and point estimates in their abstracts. We also build regex queries

to retrieve other information about the articles such as the air pollutant and health

outcome studied, the length of the study and the number of cities considered.

Based on this subset of articles, we first implement a retrospective power analysis

to evaluate whether a study could recover an effect size equal to 3/4 of the obtained

estimate. We carry out this analysis for the 1982 estimates that are statistically sig-

nificant. In Figure 2, we display the power and exaggeration curves for each result

describing how these quantities vary with the hypothetical true effect sizes. The blue

lines represent the medians. If the true effect size was equal to 3/4 of the obtained
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Figure 3: Power and Exaggeration Curves for the Epidemiology Literture.

Notes: Each gray line is a power curve or an exaggeration curve of a statistically significant result pub-
lished in the epidemiology literature. The blue lines are the median values. For visual clarity, we drop
results for which exaggeration ratios were too large.

estimate, 57% of the studies would have a power above the conventional 80% target

used in randomized controlled trials. The median exaggeration ratio would be 1.1 and

type S error would not be an issue. These figures however hide a lot of heterogeneity

across studies. For one quarter of studies, the exaggeration would be higher than 1.4.

We therefore try to apprehend the sources of this heterogeneity.

We find that inference issues do not depend on the health outcome and the air

pollutant studied. Health science journals appear to be more prone to power issues

than other journals. Researchers seem to be aware that they should work with large

sample size as they often carry out multi-city studies. They also sometimes explicitly

state that they investigate non-accidental mortality causes to increase statistical power

since the average daily count is higher than for more specific death causes. Yet, the

proportion of low power studies has been stagnating since the 1990s, revealing that

practices regarding statistical power have not evolved. Even more worryingly, we find

that in recent years, more and more articles display very large exaggeration ratios.
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Figure 4: Distribution of Exaggeration Ratios for Studies in Shah et al. (2015)’s
Meta-Analysis.

Notes: Each blue line is the exaggeration ratio of a statistically significant estimate retrieved from Shah
et al. (2015)’s meta-analysis. We use the meta-analysis estimates as true effect sizes in the retrospective
power calculations. Orange lines are the medians. We remove extreme exaggeration ratio for visual
clarity: the median for O3 is 13.4.

Finally, we expand our review of the standard epidemiology literature by focusing

on a set of 54 studies gathered by Shah et al. (2015) on the effects of several air pol-

lutants on mortality and emergency admission for stroke. For each of these studies,

we run retrospective power calculations to evaluate their ability to retrieve the meta-

analysis estimates. This approach is recommended by Gelman and Carlin (2014) and

Ioannidis et al. (2017) to make more informed guesses about potential true effect sizes.

63% of studies in Shah et al. (2015) have a statistical power below 80%. The median

exaggeration ratio of statistically significant estimate is equal to 1.6. In Figure 4, we

plot, for each air pollutant, the distribution of the exaggeration ratios (blue lines) and

their medians (orange lines). The median exaggeration varies a lot by air pollutant,

from 1 for PM2.5 up to 13.4 for O3 (the median is not displayed for visual clarity).

More informed guesses about true effect sizes confirm that exaggeration is common in

the standard epidemiology literature.

14

Institute for Replication I4R DP No. 11

17



3.3 Causal Inference Literature

We used an extensive search strategy on Google Scholar, IDEAS, and PubMed to re-

trieve studies that (i) focus on the short-health effects of air pollution on mortality and

morbidity outcomes, and (ii) rely on a causal inference methods2. In the Appendix

A.1, we display the list of the 36 articles that match our search criteria. For each study,

we retrieved the method used by the authors, which health outcome and air pollutant

they consider, the point estimate and the standard error. We coded the main specifi-

cations but also those on heterogeneous effects by age categories. Half of the studies

report more than 11 results.

Figure 5: Statistical Power and Exaggeration Curves of Causal Inference Studies.

Notes: Each gray line is a power curve or an exaggeration curve of a statistically significant result pub-
lished in the causal inference literature. The blue lines are the median values. For visual clarity, we
drop results for which exaggeration ratios were too large.

To evaluate potential statistical power issues in this literature, we first proceed ex-

actly as for the standard epidemiology literature. In Figure 5, we plot the power and

exaggeration curves for 186 specifications which results are statistically significant at

2We excluded the very recent literature on the effects of air pollution on COVID-19 health outcomes
as we wanted to gather a relatively homogeneous corpus of studies.
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the 5% level. If the true effect size of each study was equal to 3/4 of the obtained es-

timate, the median power would be 62% and the median exaggeration ration would

be 1.3. Only 30% of studies would have a power greater than 80%. Figure 5 also

shows that there is a wide heterogeneity in the robustness of studies to statistical power

issues—some of them are relatively well powered while others run quickly into large

exaggeration issues. For instance, one quarter studies would, on average, exaggerate

the true effect sizes by a factor greater than 1.5. This pattern may help explain why

very large effect sizes are sometimes observed in the causal inference literature.

We also supplement this general retrospective analysis with another exercise where

we take as true effect sizes the estimates that would be predicted using non-causal in-

ference methods. We focus here on instrumental variable strategies since they are the

most common design in the causal inference literature. The discrepancy between OLS

and 2SLS estimates is often explained by a combination of omitted variable bias and

attenuation bias due to classical measurement error in air pollution exposure. It can

also come from the fact that the causal estimand targeted by the naive and instru-

mental variable strategies are not the same if treatment effects are heterogeneous. We

are however lacking evidence on the contribution of each explanation the discrepancy

between non-causal and causal estimates. If we believe that omitted variable and at-

tenuation biases are negligible, low power issues could be a part of the story.

We analyze 98 instrumental variables results for which we could retrieve the cor-

responding naive regression results. We take the OLS estimates as the true effect sizes

in the 2SLS specifications. In Figure 6, we display the distribution of the statistical

power and the average exaggeration ratio of instrumental variable results. The median

power is equal to 8.4%. This results in large exaggeration ratios: half of the studies

would overestimate true effect sizes by a factor of at least 4.5. Such an inflation of

statistically significant estimates could partially close the gap between instrumented

and non-instrumented estimates.
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Figure 6: Distribution of Power and Exaggeration Ratio for Instrument Variable
Designs, Assuming that the Naive OLS Estimates Are the True Effect Sizes.

Notes: For 98 statistically significant 2SLS estimates, we define the true values of effect size as the corre-
sponding OLS estimates. Each blue line represents either the statistical power (%) or the exaggeration
factor of a study’s result. Orange lines are the median of the two metrics. For visual clarity, we do not
display three extreme exaggeration ratios.

4 ProspectiveAnalysis of Causal InferenceMeth-

ods
The review of the standard epidemiology and causal literatures shows that some arti-

cles produce inflated estimates on the short-term health effects of air pollution. This

analysis however does not allow us to clearly identify which parameters of a study

influence its statistical power. We therefore implement a prospective analysis to over-

come this limitation (Gelman and Carlin 2014, Altoè et al. 2020, Black et al. 2022). We

run Monte-Carlo simulations based on real-data to emulate the main empirical strate-

gies found in the literature. We use real data to avoid the difficult task of modeling the

long-term and seasonal variations in health outcomes but also the specific effects of

weather variables such as temperature. In this section, we describe how we implement
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these simulations. We start by presenting the causal identification strategies used to

measure the acute health effects of air pollution. We then briefly describe the data we

rely on and finally detail how we implement our simulations.

4.1 Research Designs to Measure the Short-Term Health Effects of

Air Pollution

Several empirical strategies have been implemented to estimate the short-term health

effects of air pollution. In our simulations, we try to simulate the main ones existing in

the literature. We consider a setting where data on air pollution, weather parameters,

and health outcomes are aggregated at the daily-city level.

Standard regression approach. The standard strategy consists in directly estimating

the dose-response between an air pollutant and an health outcome. In the epidemi-

ology literature, researchers often rely on Poisson generalize additive models where

they regress the daily count of an health outcome on an air pollutant concentration,

while flexibly adjusting for weather parameters, seasonal and long-term variations.

We approximate the workhorse model used by epidemiologists using linear models

estimated via ordinary least squares:

Yc,t = α + βPc,t +Wc,tλ+Ctγ + εc,t

where c is the city index and t the daily time index. Yc,t is the daily count of cases

of an health outcome and Pc,t the average daily concentration of an air pollutant and

εc,t an error term. The parameter β captures the short-term effect of an increase in the

air pollutant concentration on the health outcome. To address confounding issues, the

model adjusts for a set of weather covariates, Wc,t, and calendar indicators Ct.
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Instrumental variable (IV) approach. The standard strategy could be prone to omit-

ted variable bias and measurement error. A growing number of articles therefore

exploits exogenous variations in air pollution. Most causal inference papers rely on

instrumental variable designs where the concentration of an air pollutant is instru-

mented by thermal inversions (Arceo et al. 2016), wind patterns (Schwartz et al. 2018,

Deryugina et al. 2019), extreme natural events such as sandstorms or volcano erup-

tions (Ebenstein et al. 2015, Halliday et al. 2019), or variations in transport traffic

(Moretti and Neidell 2011, Knittel et al. 2016, Schlenker and Walker 2016). This ap-

proach can be summarized with a two-stage model where the first stage is:

Pc,t = δ+θZc,t +Wc,tη +Ctκ+ ec,t

where Zc,t is the instrumental variable. The second stage is then:

Yc,t = α + βP̂c,t +Wc,tλ+Ctλ+ εc,t

where P̂c,t is the exogenous variation in an air pollutant predicted by the instrument.

The causal effect measured by this approach is a weighted average of per-unit causal

responses to an increase in the concentration of an air pollutant (Angrist and Imbens

1995).

Reduced-form approach. A subset of articles directly estimates the relationship be-

tween the health outcome and exogenous shocks to air pollution. For instance, articles

using this approach exploit public transport strikes or thermal inversion as exogenous

shocks (Bauernschuster et al. 2017, Jans et al. 2018, Godzinski et al. 2019, Giaccherini

et al. 2021):

Yc,t = α + βDc,t +Wc,tλ+Ctγ + εc,t
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where Dc,t is a dummy equal to 1 when city c is affected by a shock at time t and 0

otherwise. The parameter β captures an intention-to-treat effect.

Regression-discontinuity design (RDD) approach. The last empirical strategy found

in the literature measures the effects of air quality alerts with a regression-discontinuity

design (Chen et al. 2018). In this approach, the following model is estimated for obser-

vations within an air pollution concentration bandwidth around the air pollution alert

threshold:

Yc,t = α + β1{Pc,t > P
(a)
c }+Wc,tλ+Ctγ + εc,t

where P (a)
c is the air pollution alert threshold for city c. We restrict our simulations to

the case of sharp RDD. This model estimates the intention-to-treat effect of air quality

alerts. It can both capture the effect of a subsequent decrease in air pollution caused

by traffic restriction policies and inhabitants’ avoidance behavior.

4.2 Data

Our simulation exercises are based on a subset of the US National Morbidity, Mortal-

ity, and Air Pollution Study (NMMAPS). The dataset is publicly available and has been

used in several major studies of the early 2000s to measure the short-term effects of

ambient air pollutants on mortality outcomes (Peng and Dominici 2008). Specifically,

we extract daily data on 68 cities over the 1987-1997 period. It corresponds to 4,018

observations per city, for a total sample size of 273,224 observations. We select ob-

servations on the average temperature (C°), the standardized concentration of carbon

monoxide (CO), and mortality counts for several causes. We focus on CO as it is the

air pollutant measured in most cities over the period. Less than 5% of carbon monox-

ide concentrations and average temperature readings are missing in the initial data

set. We impute them using the chained random forest algorithm implemented in the

20

Institute for Replication I4R DP No. 11

23



missRanger package (Mayer 2019).

4.3 Simulations Set-Up

General procedure. Our simulation procedure therefore follows 7 main steps:

1. Randomly draw a study period and a sample of cities.

2. For instrumental variable, reduced-form and regression-discontinuity designs,

randomly allocate days to exogenous shocks/air quality alerts.

3. Modify the health outcome to add a treatment effect that will try to recover.

4. Estimate the model.

5. Store the point estimate of interest and its standard error.

6. Repeat the procedure 1000 times.

7. Compute the proportion of statistically significant estimates at the 5% level (the

power), the average of the absolute value of significant estimates over the true

effect size (the exaggeration ratio), and the proportion of significant estimates of

the opposite sign of the true effect (the probability to make type S error).

Modeling assumptions. To only capture the specific issues arising due to low statis-

tical power, we build our simulations such that (i) they meet all the required assump-

tions of empirical strategies and (ii) make it easier—compared to real settings—to re-

cover the treatment effect. For all research designs, the treatment we add to the data

is not biased by unmeasured confounders nor measurement errors. For instrumental

variable and reduced-form strategies, we only simulate binary and randomly allocated

exogenous shocks (e.g. the occurrence of a thermal inversion). For the regression dis-

continuity approach, we only model sharp designs where an air quality alert is always

activated above a randomly chosen threshold. Our models always retrieve on average

the true value of the treatment effect we set in the data.
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Two approaches for simulating research designs. For the reduced-form and regres-

sion discontinuity designs, we follow the Neyman-Rubin causal framework by simu-

lating all potential outcomes (Rubin 1974). We consider that the health outcome value

recorded in the NMMAPS dataset corresponds to the potential outcome Yc,t(0). To

create the counterfactuals Yc,t(1), we add a treatment effect drawn from a Poisson dis-

tribution whose parameter corresponds to the magnitude of the treatment. We then

randomly draw the treatment indicators Tt,c for exogenous shocks or air quality alerts.

For reduced-form strategies, the treatment status of each day is drawn from a Bernoulli

distribution with parameter equal to the proportion of exogenous shocks desired. For

air pollution alerts, we randomly draw a threshold from a uniform distribution and

select a bandwidth such that it yields the desired proportion of treated observations.

We finally express the observed values Yobs of potential outcomes according to the

treatment assignment: Yobsc,t = (1-Tc,t)×Yc,t(0) + Tc,t×Yc,t(1).

To simulate standard regression and the instrument variable strategies, we rely on

a model-based approach. For the standard regression strategy, we first estimate the

following statistical model on our data:

Yc,t = α + βZc,t +Wc,tλ+Ctγ + εc,t

We then predict new observations of a Yc,t using the estimated coefficients of the model

(β̂, λ̂, and γ̂) and by adding noise drawn from a normal distribution with variance

equal to that of the residuals ε̂c,t (Peng et al. 2006). We modify the slope of the dose-

response relationship by changing the value of the air pollution coefficient β. For the

instrumental variable strategy, we use the same method as for the standard regression

approach but first modify observed air pollutant concentrations Pc,t according to the

desired effect size θ of the randomly allocated instrument:

P̃c,t = Pc,t +θZc,t
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We draw the allocation of each day to an exogenous shock from a Bernoulli distribution

with parameter equal to the proportion of exogenous shocks. We then estimate a two-

stage least squares model (2SLS) and modify the coefficient for the effect of the air

pollutant on an health outcome. We finally generate the fake observations of the health

outcome by combining the prediction from the modified 2SLS model and noise drawn

a normal distribution with variance equal to that of the residuals.

Varying parameters. To understand which parameters affect statistical power issues,

we modify one aspect of the research design while keeping other parameters constant.

We study the influence of four main parameters. First, we vary the sample size by

drawing a different number of cities and changing the length of the study period. Sec-

ond, we consider different effects size of air pollution or of an exogenous shock on the

health outcome. Third, we allocate increasing proportions of exogenous shocks/air

quality alerts. Fourth, we vary the number of cases in the outcome by considering

different health outcomes.

4.4 Simulation of Case Studies.

The simulations described above help explore the effect of each parameter on statistical

power issues. Yet, the resulting set of parameters considered may not be perfectly

representative of actual studies. We therefore calibrate our simulations to reproduce

three papers published in the literature.

5 Results
In this section, we first describe how statistical power evolves with the treatment effect

size, the number of observations, the proportion of exogenous shocks and the aver-

age count of the health outcome. We then show that statistical power issues can be
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substantial for actual parameter values found in the literature.

5.1 Evolution of Power, Exaggeration Ratio and Type S Error with

Study Parameters

We analyze how statistical power, exaggeration ratio and type S error are affected by

the value of different study parameters. To do so, we set baseline values for these

parameters and vary the value of each of them one by one. This enables us to get

a sense of the impact of each parameter, other things being equal. We consider the

following baseline parameters:

• A large sample size of 100,000 observations (2500 days × 40 cities),

• A 1% effect size, the order of magnitude found in the most precise studies of

the literature. A one standard deviation in air pollution or an exogenous shock

increases the health outcome by 1%,

• 50% of observations are subject of an exogenous shock. For air pollution alerts

analyzed with regression discontinuity designs, we choose a smaller proportion

of treated units: 10%,

• The health outcome is the total daily number of non-accidental deaths. It is the

health outcome with the largest average number of counts (average daily mean

of 23 cases).

For all statistical models, we adjust for temperature, temperature squared, city and

calendar (weekday, month, year, month×year) fixed effects. We also repeat the simula-

tions for a smaller sample size of 10,000 observations.
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Sample Size

In Figure 7, we recover the well-known increasing relationship between the number

of observations and statistical power. Conversely, type-M error decreases with the

number of observations.

Figure 7: Evolution of Power and Exaggeration with Sample Size.

Notes: The other parameters are set to their baseline values: a true effect size of 1%, 50% of observa-
tions subject to an exogenous shock for instrumental variable and reduced-form designs, and the health
outcome is the total number of non-accidental deaths.

This result comes from the fact that the variance of usual estimators decreases

with the number of observations. For instance, in the homoskedastic case of the OLS,

β̂
d→ N (β,E[XX′]−1σ2/n), where n is the number of observations, β̂ the OLS estimate

of β, the parameter of interest associated with X. As the variance decreases, the sta-

tistical power increases. As the variance decreases, the statistical power increases and

exaggeration decreases (Zwet and Cator 2021, Lu et al. 2019).
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We also find that statistical power and exaggeration issues can arise even for a large

number of observations. For a sample size of 40,000 observations, the instrumental

variable strategy only has a statistical power of 54% and overestimates the true effect

by a factor of 1.4. On the contrary, the standard regression strategy is much less prone

to power issues than the instrumental variable strategy. This is explained by the fact

that the variance of the two stage least-square estimator is larger than the variance of

the ordinary least square estimator. In our simulations, the probability to make a Type

S error is null For all identification methods and sample sizes.

Effect Size

Figure 8: Evolution of Power and Exaggeration with Effect Size.

Notes: The other parameters are set to their baseline values: a sample size of 100,000, 50% of observa-
tions subject to an exogenous shock for instrumental variable and reduced-form designs, and the health
outcome is the total number of non-accidental deaths.

In Figure 8, we retrieve another familiar result: the larger the effect size, the larger
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the power. As expected based on Zwet and Cator (2021) and Lu et al. (2019)’s re-

sults, we also find that the exaggeration ratio decreases with the true effect size. Even

for our large baseline sample size, statistical power issues appear for effect sizes rou-

tinely found in the epidemiology literature. For instance, for our instrumental variable

strategy and an effect size of 0.5%, the average exaggeration ratio is about 1.7. As for

results on sample sizes, standard regression and reduced-form strategies are less prone

to power issues, even for small effect sizes.

Proportion of Exogenous Shocks

The link between the proportion of exogenous shocks and statistical power might be

less widely known. In Figure 9, we show that statistical power increases with the

proportion of treated units for instrumental variable, regression discontinuity and

reduced-form designs. Conversely, the average exaggeration ratio increases as the pro-

portion of exogenous shocks decreases.

As in the case of randomized controlled trials, the precision of studies will be max-

imized when half of the observations are exposed to the treatment of interest. The

variance of the average treatment effect estimator (ATE) is σ2/[n × p(1 − p)] where σ

is the standard deviation of the outcome in the treated and control groups and p the

proportion of treated units. This variance increases when p departs from 0.5. Another

way to interpret this result is to consider that a small number of exogenous shocks

limits the variation that can be leverage to identify the effect of interest. When the

proportion of shocks decreases, the variance of the treatment variable decreases and

therefore the variance of the estimator increases. A similar reasoning can be applied

to IV strategies.

In practice, air pollution alerts, thermal inversion or transportation strikes are gen-

erally rare events. In some studies, they represent less than 5% of the observations.

With a dataset of 10,000 observations, our simulations return an average exaggeration
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Figure 9: Evolution of Power and Exaggeration with the Proportion of Exogenous
Shocks.

Notes: The other parameters are set to their baseline values: a true effect size of 1% and the health
outcome is the total number of non-accidental deaths. The proportion of exogenous shocks corresponds
to the fraction of days in the sample that are allocated to the treatment.

ratio of 2.7 for the reduced-form strategy. Despite large sample sizes, air pollution

studies exploiting few exogenous shocks might be particularly prone to exaggeration

issues.

Average Count of Cases of the Health Outcome

Subgroup analyses are routinely carried out in the literature to evaluate the acute

health effects of air pollution on children or the elderly. Yet, the average count of

cases can also critically affect statistical power as shown in Table 2. For instance, in

a setting with only a few deaths per day, a 1% increase in the number of deaths will

rarely cause additional deaths. The effect will be more difficult to detect. To simulate
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Table 2: Evolution of Power and Exaggeration with the Average Number of Daily
Cases of Health Outcomes.

Non-Accidental Respiratory COPD

Number of Cases 23 2 0.3
Statistical Power (%) 90 16 7.5
Exaggeration Ratio 1 2.4 5.9

Notes: This table displays the average number of cases, the power and the
exaggeration ratio for three health outcomes: non-accidental deaths, respi-
ratory deaths, and chronic pulmonary deaths for individuals aged between
65 and 75. These figures are obtained for the instrumental variable design
with a sample size of 100,000 and 50% of observations subject to an exoge-
nous shock. The instrument variable increases the air pollutant concentra-
tion by 0.5 standard deviation. A one standard deviation increase in the in-
strumented air pollutant leads to 1% relative increase in the health outcome
considered.

situations with various number of cases, we consider three different outcome variables,

with different counts of cases: the total number of non-accidental deaths (daily mean '

23), the total number of respiratory deaths (daily mean ' 2) and the number of chronic

obstructive pulmonary disease (COPD) cases for people aged between 65 and 75 (daily

mean ' 0.3). Using baseline parameters and in the case of the large dataset, we find

that statistical power is close to 100% when for a 1% increase in the total number

of non-accidental deaths. However, statistical power drops when the average count

of cases decreases. For instance, the instrumental variable strategy has only 16% of

statistical power to detect a 1% increase in respiratory deaths. The average exaggera-

tion ratio is then equal to 2.4. For chronic obstructive pulmonary deaths—the health

outcome with lowest number of cases—the situation is even worst, the average exag-

geration ratio reaches 5.9. When focusing on subgroups such as children or the elderly,

one can expect to find larger effect sizes as those populations are more vulnerable to

air pollution. While these larger effect sizes attenuate exaggeration concerns, the lower

number of cases exacerbates them. It creates a trade-off for power issues.
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Issues Specific to the Instrumental Variable Design

In the case of instrumental variable strategies, statistical power is affected by the

strength of the instrument. In our simulations, we consider a binary instrument (e.g.,

the occurrence of a thermal inversion or a public transport strike). We define its

strength as the standardized effect size of the instrument on the air pollutant con-

centration. A strength of 0.2 means that the instrument increases the concentration by

0.2 standard deviation.

Figure 10: Evolution of Power and Exaggeration with the Strength of the Instru-
mental Variable.

Notes: The true effect size is a 1% relative increase in the health outcome. The health outcome used in
the simulations is the total number of non-accidental deaths. Half of the observations are exposed to
exogenous shocks. The strength of the instrumental variable is defined as its effect in standard deviation
on the air pollutant concentration.

As shown in Figure 10, we find that statistical power collapses and exaggeration soars

when the instrument’s strength decreases. Importantly, this issue even arises for large

first-stage F-statistics. In our simulations based the large data set with 100,000 obser-

vations, an instrumental variable’s strength of 0.2, and an effect size of 1%, we find an

average F-statistics of 1278. The statistical power is however only 23% and the aver-

age exaggeration ratio 2. A large F-statistic could therefore hide a weak instrumental

variable that results in a low statistical power and large exaggeration.
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The relationship between IV strength and exaggeration comes from the fact that the

variance of the 2SLS estimator decreases with the correlation between the instrument

and the instrumented variable. In the homoskedastic case, the asymptotic variance of

the 2SLS estimator is
(
E[XZ ′]E[ZZ ′]−1

E[ZX ′]
)−1

σ2, where σ2 is variance of the error,

X the endogenous variable and Z the instrument. When E[XZ ′] and E[ZX ′] decrease,

the variance of the estimator increases. Zwet and Cator (2021) and Lu et al. (2019)

show that as the variance of a normally distributed estimator increases, the statistical

power decreases and exaggeration increases.

5.2 Case Studies

The previous simulation results help understand how the various parameters influence

the statistical power of studies. Yet, these parameters may not perfectly represent

actual studies as we made several conservative assumptions: relatively large sample

size, proportion of treated units, average outcome counts and instrumental variable

strength. For each research design, we therefore consider a realistic set of parameters

based on an example from the literature. We then vary the value of key parameters. As

we are working with different data, we cannot exactly reproduce the level of precision

found in the articles considered. Our goal is not to claim that the estimates produced

by a particular article are inflated, but instead to understand how low power issues

could arise for representative parameter values.

Public Transportation Strikes

Public transportation strikes are unique but rare positive shocks to air pollution as

individuals use their cars to reach city centers. Even in a large data set, with several

cities and a long study period, the proportion of affected days might be very small. For

instance, Bauernschuster et al. (2017) investigate the effect of public transportation

strikes on air pollution and emergency admission in the five biggest German cities

31

Institute for Replication I4R DP No. 11

34



over a period of 6 years. Despite a sample size of 11,000, there are only 57 1-day

strikes during the study period (0.5% of days are actually treated). The authors find

that children hospitalizations for breathing issues increase by 34% (SE=8%) on strike

days. On average, 0.22 children per day go to the hospital for breathing issues.

We simulate a similar design with our own data. We first randomly sample 2200

observations for five cities and then vary (i) the proportion of exogenous shocks from

0.5% up to 10%, and (ii) the treatment effect size from a 4% increase up to a 34%

increase. We focus on elderly mortality due to chronic obstructive pulmonary disease

since it has an average daily count of 0.29 cases.

Figure 11: Evolution of Power and Exaggeration for Public Transportation Strikes
Designs.

Notes: Each panel displays the average value of a metric (power, exaggeration, and standard error) for
varying proportions of exogenous shocks and effect sizes. The average standard error of simulations is
the raw standard error divided by the mean number of cases of the health outcome. For each combina-
tion of parameters, we ran 1000 simulations.

In Figure 11, we display our simulation results. The first panel from the left shows

that both large effect sizes and a large proportion of exogenous shocks are required

to reach adequate power. In the middle panel, we show that a proportion of 0.5% of

exogenous shocks is associated with very large exaggeration ratios, from 2.2 for a true

effect size of 34% up to 14 for one of 4%. Power issues fade for a combination of a

proportion of exogenous shocks above 5% and effect sizes above 17%. In the right
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panel, we plot the average standard error of the estimates, expressed as a fraction

of the average of the health outcome. The standard error of Bauernschuster et al.

(2017)’s is 8%. In our simulations, we recover that specific precision for a proportion of

exogenous shocks of 5%. In that case, a true effect size of 34% would not yield inflated

estimates. However, if effect sizes are actually smaller and more representative of those

found in the literature, the exaggeration would be consequential.

This simulation exercise shows that exaggeration is likely to arise in practice since

the proportion of exogenous shocks is low. It occurs even when true effect sizes are

relatively large.

Air Pollution Alerts

Air pollution alerts are also rare events. Their effects are estimated using regression

discontinuity designs that restrict the analysis to observations closed to the air quality

threshold. As a consequence, the effective sample size may be particularly small. For

instance, Chen et al. (2018) investigate the effects of air quality alerts on emergency

department visits in Torento, over the 2003-2012 period. While the nominal sample

size is 3652, the effective one is only 143 (100 control days and 43 treated days). Only

1.2% of observations are treated. The authors find that eligibility to air quality (the

intention-to-treat effect) approximately reduces emergency visits for asthma by 8%

(SE=3.8%). The average daily count of cases of their health outcome is 26.

We approximate the setting of Chen et al. (2018) using our data. We first sam-

ple one city for a time period of 3652 days and randomly allocate the treatment. We

then repeat the process varying the proportion of alerts and effect sizes. Our outcome

variable is the total number of non-accidental deaths since it has a daily mean of 23.

Figure 12 displays the simulations results. As in Figure 11, a combination of large

effect sizes and many air quality alerts is needed to avoid low power issues. We get

a precision similar to Chen et al. (2018) for a proportion of air quality alerts of 3%.

33

Institute for Replication I4R DP No. 11

36



Figure 12: Evolution of Power and Exaggeration for Air Quality Alerts Designs.

Notes: Each panel display the average value of a metric (power, exaggeration, and standard error) for
varying proportions of exogenous shocks and effect sizes. The average standard error of simulations is
the raw standard error divided by the mean number of cases of the health outcome. For each combina-
tion of parameters, we ran 1000 simulations.

For an effect size of 4%, the average exaggeration ratio is equal to 2.6. In that case,

the average average of statistically significant estimates is 10%, which is similar to the

effect size found by Chen et al. (2018).

Unless true effect sizes are very large, air quality alert designs produce inflated

estimates in realistic settings.

Instrumenting Air Pollution

Finally, we investigate the most commonly used strategy in the causal inference litera-

ture, the instrumental variable design. Several studies rely on very large datasets and

exploit changes in weather patterns as sources of exogenous variations. For instance,

Schwartz et al. (2018) instrument PM2.5 concentration with planetary boundary layer,

winds speed, and air pressure. Once the effects of seasonal and other weather pa-

rameters are accounted for, the combination of their instruments explains 18% of the

variation in PM2.5 concentration. They find that a 10 µg/m3 increase in PM2.5 leads to

a 1.5% (SE=0.22%) increase in daily non-accidental mortality. There are on average 23

daily deaths in their dataset of 591,570 observations (135 cities with a length of study
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of approximately 4382 days).

In our simulations, we assess how the strength of the instrumental variable affects

power issues for several health outcomes. We consider a binary instrumental variable

and vary its effect on air pollution concentration from a 0.1 to a 0.5 standard deviation

increase. The 18% correlation in Schwartz et al. (2018) corresponds to a 0.4 standard

deviation increase in our case (Lipsey and Wilson 2001). We assume that half of the

observations are exposed to exogenous shocks. We set an effect size corresponding to

a 1.5% relative increase in three health outcomes with different average number of

cases: non-accidental mortality (mean cases of 23), respiratory mortality (mean of 2),

and chronic obstructive pulmonary mortality of elderly (mean of 0.3). Our data set

being smaller than the one used in Schwartz et al. (2018), we only run simulations for

a sample size of 100,000.

In Figure 13, we see in the top-left panel that power reaches satisfactory level for

large instrumental variable strengths but only for non-accidental causes. For respira-

tory and elderly mortality, exaggeration can be substantial even for large IV strength.

While our sample size is large, it is smaller than the one in Schwartz et al. (2018). As

a consequence, our simulations only have a precision close to theirs for an instrumen-

tal variable strength of 0.5 and non-accidental mortality. Yet, our simulations high-

light that important exaggeration issues can arise in realistic settings, even for large IV

strength. The bottom-right panel of Figure 13 confirms the result found in the simu-

lations of the previous section: a large first stage F-statistic can be a poor indicator of

statistical power issues. For instance, for non-accidental mortality and an IV strength

of 0.1, the F-statistic is equal to 320 but the exaggeration factor is 2.6, with an asso-

ciated power is 16%. Importantly, as the F-statistic does not vary with the number of

cases in the outcome it can all the more hide important power issues.
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Figure 13: Evolution of Power and Exaggeration for Instrumental Variable De-
signs.

Notes: Each panel display the average value of a metric (power, exaggeration, standard error, and first-
stage F-statistic.) for varying proportions of exogenous shocks and effect sizes. The average standard
error of simulations is the raw standard error divided by the mean number of cases of the health out-
come. For each combination of parameters, we ran 1000 simulations.

6 Discussion
Growing evidence shows that a large share of results published in economics might

be exaggerated due to low statistical power and a publication bias towards statistical

significance (?Ioannidis et al. 2017, Brodeur et al. 2020, Ferraro and Shukla 2020).

Although this issue appears to be increasingly acknowledged, guidance to tackle it is
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still lacking in applied economic research (Altoè et al. 2020, Black et al. 2022). In

this paper, we fill this gap by implementing a principled workflow to assess if and

understand why estimates published in a particular literature could be inflated.

Our retrospective analysis showed that most studies in the standard epidemiology

and causal inference literatures are not likely to suffer from substantial exaggeration

issues. However, about a quarter of published results may be inflated. As a robustness

exercise when carrying out a study, we recommend to systematically run retrospective

calculations to gauge the risk of exaggeration. They are easy to implement and force us

to evaluate if our research design enables us to confidently estimate a credible range of

effect sizes. In Appendix A.2, we illustrate this approach by considering the example of

Deryugina et al. (2019). Yet, a retrospective analysis does not help understand which

parameters of the research design influence statistical power and exaggeration.

Our prospective analysis based on real-data simulations overcomes this limitation

and leads to issue four warnings. First, sample size matters for all causal inference

methods. It is particularly problematic in the case of regression-discontinuity designs

applied to air pollution alerts. Second, reduced-form analyses exploiting exogenous

shocks such as transport strikes often rely on too few events and can therefore pro-

duce inflated effects. Third, although it is well-known that two-stage least square es-

timates are inherently less precise than ordinary least squares, we show that it also

makes instrumental variable strategies more prone to exaggeration issues. In cases

where omitted variable and attenuation biases might be of little concern, the benefits

of using an instrumental variable strategy could be questioned. In a companion paper,

we explore the trade-off between targeting an unbiased estimate with causal inference

methods and exaggerating effect sizes due to low power issues (Bagilet and Zabrocki-

Hallak 2022). In that paper, we show how tools such as quantitative bias analyses can

help position ourselves with respect to this trade-off (Oster 2019, Rosenbaum 2020,

Cinelli and Hazlett 2020). Fourth, for all research designs, exaggeration is driven by
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the average count of the health outcome. Many articles investigate the acute effects

of air pollution for specific groups such as children and the elderly. In such settings,

there is an actual risk of exaggeration, even for large sample sizes.

These results highlight the importance of implementing prospective simulations

before running an observational study. Fake-data can be simulated from scratch or

simulations can build on datasets used in other studies. In our replication material,

we provide a template to run such simulations to ease the adoption of this practice.

On top of these specific recommendations, we should not forget that published

estimates only suffer from exaggeration in the presence of publication bias. The causal

inference literature would therefore benefit from adopting a different view towards

statistically insignificant results (Ziliak and McCloskey 2008, Wasserstein and Lazar

2016, McShane et al. 2019). It currently dichotomizes evidence according to the 5%

significance threshold, disregarding non-significant results (Greenland 2017). Instead,

if results were published regardless of their significance, the resulting distribution

would be centered around the true effect (Hernán 2022). To replace the null hypothesis

testing framework, we recommend to focus on confidence intervals and to interpret the

range of effect sizes supported by the data (Amrhein et al. 2019, Romer 2020).

Qualifying estimates as "statistically significant" does not acknowledge the actual

uncertainty that should be computed and embraced to better help policy-makers eval-

uate the adverse effects of air pollution. Prospective and retrospective power analyses

can help design better studies and improve the interpretation of their results.
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A Appendix

A.1 List of Studies Included in the Causal Inference Literature

We display below studies included in the retrospective analysis of the causal inference

literature. We group them by research designs:

Instrumental Variable Design: Moretti and Neidell (2011), Ebenstein et al. (2015),

Schwartz et al. (2015), Arceo et al. (2016), He et al. (2016), Knittel et al. (2016), Schlenker

and Walker (2016), Sheldon and Sankaran (2017), Schwartz et al. (2017), Zhong et al.

(2017), Barwick et al. (2018), Hanlon (2018), Schwartz et al. (2018), Halliday et al.

(2019), Deryugina et al. (2019), Cheung et al. (2020), Fan and Wang (2020), He et al.

(2020), Giaccherini et al. (2021), Godzinski and Suarez Castillo (2021), Guidetti et al.

(2021), Kim (2021), Liu and Ao (2021), Xia et al. (2022)

Reduced-Form Design: Bauernschuster et al. (2017), Jans et al. (2018), Jia and Ku

(2019), Godzinski et al. (2019)

Regression Discontinuity Design: Chen et al. (2018), Fan et al. (2020), Anderson

et al. (2022)

Event-Study Design: Mullins and Bharadwaj (2015), Simeonova et al. (2021)

Matching Design: Baccini et al. (2017), Forastiere et al. (2020)

A.2 Implementing a Retrospective Power Analysis

We explain here how we can easily implement a retrospective power analysis once a

study is completed. In a flagship publication, Deryugina et al. (2019) instrument PM2.5

concentrations with wind directions to estimate its effect on mortality, health care use,
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and medical costs among the US elderly. They gathered 1,980,549 daily observations at

the county-level over the 1999–2013 period; it is one of the biggest sample sizes in the

literature. When the authors instrument PM2.5 with wind direction, they find that “a

1 µg/m3 (about 10 percent of the mean) increase in PM2.5 exposure for one day causes

0.69 additional deaths per million elderly individuals over the three-day window that

spans the day of the increase and the following two days”. The estimate’s standard

error is equal to 0.061. In Figure A.1, we plot the statistical power, the inflation factor

of statistically significant estimates and the probability that they are of the wrong sign

as a function of hypothetical true effect sizes.

Figure A.1: Power, Type M and S Errors Curves for Deryugina et al. (2019).

Notes: In each panel, a metric, such as the statistical power, the exaggeration ratio or the probability to
make a type S error, is plotted against the range of hypothetical effect sizes. The "IV" label represents
the value of the corresponding metric for an effect size equal to Deryugina et al. (2019)’s two-stage least
square estimate. The "Epidemiology" label stands for the estimate found in Di et al. (2017), which is the
epidemiology article most similar to Deryugina et al. (2019). The " Naive OLS" label corresponds to the
estimate found by Deryugina et al. (2019) when the air pollutant is not instrumented.

The estimate found by Deryugina et al. (2019) represents a relative increase of

0.18% in mortality. We labeled it as "IV" in Figure A.1. Is this estimated effect size

large compared to those reported in the standard epidemiology literature? We found

a similar article to draw a comparison. Using a case-crossover design and conditional

logistic regression, Di et al. (2017) find that a 1 µg/m3 increase in PM2.5 is associated
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with a 0.105% relative increase in all-cause mortality in the Medicare population from

2000 to 2012. The effect size found by Deryugina et al. (2019) is larger than this esti-

mate labeled as "Epidemiology" in Figure A.1. If the estimate found by Di et al. (2017)

was actually the true effect size of PM2.5 on elderly mortality, the study of Deryugina

et al. (2019) would have enough statistical power to perfectly avoid type M and S er-

rors. Now, suppose that the true effect of the increase in PM2.5 was 0.095 additional

deaths per million elderly individuals—the estimate the authors found with a "naive"

multivariate regression model. The statistical power would be 34%, the probability to

make a type S error could be null but the overestimation factor would be on average

equal to 1.7. Even with a sample size of nearly 2 million observations, Deryugina et al.

(2019) could make a non-negligible type M error if the true effect size was the naive

ordinary least square estimate. Yet, the authors could argue that their instrumental

variable strategy leads to a higher effect size as it overcomes unmeasured counfound-

ing bias and measurement error. Besides, for effect sizes down to 0.182 additional

deaths per million elderly individuals (a 0.05% relative increase), their study has a

very high statistical power and would not run into substantial type M error. A retro-

spective analysis is thus a very convenient way to think about the statistical power of

a study to accurately detect alternative effect sizes.
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