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New polynomial exponential distribution:  
properties and applications 

Abdelfateh Beghriche1, Halim Zeghdoudi2, Vinoth Raman3,  
Sarra Chouia4 

ABSTRACT 

The study describes the general concept of the XLindley distribution. Forms of density and 
hazard rate functions are investigated. Moreover, precise formulations for several numerical 
properties of distributions are derived. Extreme order statistics are established using 
stochastic ordering, the moment method, the maximum likelihood estimation, entropies 
and the limiting distribution. We demonstrate the new family's adaptability by applying it 
to a variety of real-world datasets. 

Key words: exponential distribution, Xgamma distribution, Lindley distribution, quantile 
function stochastic ordering, maximum-likelihood estimation, XLindley distribution. 

1. Introduction

Statistical models can be used to describe and predict real-world events. In recent
years, a variety of distributions have been employed for data modelling in a variety of 
domains. Recent advances have centred on establishing new families that extend well-
known distributions while still allowing for a great deal of flexibility in data modelling 
in practice. Several distributions have been proposed in the statistical literature to 
modify lifetime data, including the Lindley, exponential, gamma, Weibull, Zeghdoudi, 
and Xgamma distributions. 
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In this paper, we investigate a new polynomial exponential family that includes the 
distributions of XLindley and Xgamma, as well as Zeghdoudi as special instances, 
to introduce a new family of single-parameter continuous distributions. The existing 
literature on modelling survival data, biological sciences, and actuarial sciences will 
benefit from this new family of distributions. 

Assume X is a random variable with values in the range [0, ∞], and the distribution 
of X depends on an indeterminate parameter θ with values in the range [0, ∞]. The 
distribution of X can be absolutely continuous or discrete. The distribution of X is a new 
one-parameter polynomial exponential family and the probability density function is 
expressed as 

𝑓 x, θ
,

∑ ,
! ;   𝑥, θ 0                                    (1) 

where 𝑃 𝑥,𝜃 ∑ 𝑎 , 𝑥  , and 𝑎 ,  depend on 𝑘 and θ. 

The following is the format of this research paper: 

Section 2 covers the survival and hazard rate functions, moments stochastic orders, 
mean deviations, extreme domain of attraction, constraint force estimate parameter, 
the Lorenz curve, and entropies of the new polynomial exponential distribution 
(NPED). Sections 3 and 4 look at estimating maximum likelihood distribution 
parameters and inferring a random sample from the XLindley and Xgamma 
distributions. Finally, various real-world applications demonstrate the superior 
performance of the XLindley and Xgamma distributions, two special examples of the 
(NPED) family, as compared to the exponential, Lindley, Zeghdoudi, and exponential 
distributions. 

2.  Statistical and reliability measures of some properties of NPED 
distribution 

We present some key statistical and reliability measures, as well as various NPED 
features, in this section. 

2.1.  Density and distribution functions  

The first derivative of 𝑓 : 

𝑓 x,θ , , ⋯ , , ,

∑ ,
! 0           (2) 

gives 1 2, ,...., nx x x  solutions. 
The NPED cumulative distribution function (CDF) is derived in (3). 

𝐹 x 1
∑ , ,

∑ ,
! ;  𝑥, θ 0                                       (3) 
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2.2.  Survival and hazard rate functions  

𝑆 x 1 𝐹 x
∑ , ,

∑ ,
!  ;   𝑥, θ 0                        (4) 

ℎ x
∑ ,

∑ , ,   ;   𝑥, θ 0                            (5) 

Let equation (4) and (5) be the survival and hazard rate function, respectively. 

 
Proposition 1. Let ℎ x be the hazard rate function of X . Then, ℎ x  is increasing 
for: 

𝑘 1 𝑚 2𝑘 𝑎 , 𝑎 , 0,𝑚 0, … … . ,2𝑛 1. 

Proof. According to Glaser (1980) and from the density function (2) we have: 

𝜌 𝑥
;

;

∑ ,

∑ ,
𝜃.                                    (6) 

After simple computations, we obtain: 

𝜌 𝑥
∑ ∑ , ,

∑ ,
𝜃                            (7) 

Which implies that ℎ x is increasing for: 

𝑘 1 𝑚 2𝑘 𝑎 , 𝑎 , 0,𝑚 0, … … . ,2𝑛 1 

2.3.  Moments and related measures 

The 𝑘  moment about the origin of 𝑁𝑃𝐸𝐷 is: 

𝐸 𝑋
∑ , !

∑ ,
! ; 𝑖 1,2, ….                                       (8) 

Corollary 1. Let 𝑋~𝑁𝑃𝐸𝐷 𝜃 , the mean of 𝑋 is: 

𝐸 𝑋
∑ , !

∑ ,
!    .                                                              (9) 

Theorem 1. Let 𝑋~𝑁𝑃𝐸𝐷 𝜃 , 𝑚𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 𝑋 and 𝜇 𝐸 𝑋 . Then, 𝑚𝑒 𝜇. 

Proof. According to the increasing of 𝐹 𝑋  for all 𝑥 and 𝜃. 

𝐹 𝑚𝑒
1
2
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and  
𝐹 𝜇 1 ℎ 𝜃 ∑

, , ∑ ,
!

. 

Note that 𝐹 𝜇 1. It is easy to check that 𝐹 𝑚𝑒 𝐹 𝜇 . At the other end 
we have 𝑚𝑒 𝜇. 

2.4.  Stochastic orders 

Definition 1. Consider two random variables X and Y. X is said to be smaller than 𝑌  in the:  
a)  Stochastic order 𝑋 ≺ 𝑌if   𝐹 𝑡 𝐹 𝑡 ,∀𝑡. 
b)  Convex order 𝑋 ≺ 𝑌 Nif for all convex functions Φ and provided expectation 

 exist,𝐸 Φ 𝑋 𝐸 Φ 𝑌 . 
c)  Hazard rate order 𝑋 ≺ 𝑌, if  ℎ 𝑡 ℎ 𝑡 ,∀𝑡. 
d)  Likelihood ratio order 𝑋 ≺ 𝑌, if  is decreasing in t.  

Remark 1. Likelihood ratio order⇒Hazard rate order⇒Stochastic order. 
If E (X) = E (Y), then convex order⇔stochastic order. 

Theorem 2. Let 𝑋 ~𝑁𝑃𝐸𝐷 𝜃 𝑖 1,2 be two random variables. If 𝜃 𝜃 , 
then 𝑋 ≺ 𝑋 ,𝑋 ≺ 𝑋 ,𝑋 ≺ 𝑋 . 

Proof. We have: 
∑ ,

!

∑ ,
! 𝑒 .                                       (11) 

For simplification, we use ln . Now, we can find 

ln 𝜃 𝜃 . 

To this end, if 𝜃 𝜃 ,, we have ln 0. This means that 𝑋 ≺ 𝑋 . Also, 
according to Remark 1 the theorem is proved. 

2.5.  Mean deviations 

These are two mean deviations: about Mean and Median, defined as: 
𝑀𝐷 |𝑥 𝜇|𝑓 𝑥 𝑑𝑥 and 𝑀𝐷 |𝑥 𝑚𝑒|𝑓 𝑥 𝑑𝑥  respectively, 
where         𝜇 𝐸 𝑋  and 𝑚𝑒 𝑀𝑒𝑑𝑖𝑎𝑛 𝑋 .  

The measures 𝑀𝐷  and 𝑀𝐷  can be computed using the following simplified 
formulas: 

𝑀𝐷 2𝜇𝐹 𝜇 2 𝑥𝑓 𝑥 𝑑𝑥 
𝑀𝐷 𝜇 2 𝑥𝑓 𝑥 𝑑𝑥 
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2.6.  Extreme domain of attraction 

As to the extreme value stability, the 𝐹 is in the Gumbel extreme value domain 
of attraction, that is, there exist two sequences 𝑎  and 𝑏 of real numbers 
such that for any 𝑥𝜖𝑅, we have 

lim
 →

𝑃 ,

,
𝑥 lim

→
𝐹 𝑎 , 𝑥 𝑏 , 𝑒                  (12) 

This follows from Formula 1.2.4 in theorem 1.2.1 (Laurens de Haan, Ana Ferreira 
(2006)) since we have 

lim
→

1 𝐹 𝑡 𝑥𝑓 𝑡
1 𝐹 𝑡

lim
→

𝑓 𝑡 𝑥𝑓 𝑡
𝑓 𝑡

 

              lim
→

∑ ,

∑ ,
𝑒                                             (13) 

(Such formula is called  -variation). Then, 𝐹  lies in the Gumbelextreme domain 
of attraction. In his case, 𝑓 𝑡 . 

So, for (as in the invoked theorem)      𝑎 , 𝑓 𝐹 1

     and   𝑏 , 𝐹 1 , we have: 

lim
→

𝐹 𝑎 , 𝑥 𝑏 , 𝑒  

2.7.  Estimation of the Stress-Strength Parameter and Lorenz curve 

Because it evaluates the system performance, the stress-strength parameter (R) is 
crucial in the reliability analysis. Furthermore, R indicates the likelihood of a system 
failure; the system breaks when the applied stress exceeds its strength, i.e. 

 𝑅 𝑃 𝑋 𝑌 . Here, 𝑋~𝑁𝑃𝐸𝐷 𝜃 , denotes the strength of a system subject to 
stress Y, and 𝑌~𝑁𝑃𝐸𝐷 𝜃 ,, X and Y are independent of each other. In our case, the 
stress-strength parameter R is given by: 

𝑅 𝑃 𝑋 𝑌 𝑆 𝑦 𝑓 𝑦 𝑑𝑦 

∑ , , ∑ 𝑎 , y 𝑒 𝑑𝑦

∑ 𝑎 ,
! ∑ 𝑎 ,

!  



100                                                                                A. Beghriche et al.: New polynomial exponential… 

 

 

The Lorenz curve is a well-known way of describing income and wealth 
distributions. The graph of the ratio is the Lorenz curve for a positive random 
variable 𝑋. Against 𝐹 𝑥 with the properties 𝐿 𝑝 𝑝, 𝐿 0 0and 𝐿 1 1. If 
𝑋 represents annual income, 𝐿 𝑝  is the proportion of total income that accrues to 
individuals with the 100%𝑝 lowest incomes. 

If all individuals earn the same income then 𝐿 𝑝 𝑝 for all 𝑝. The area between 
the line 𝐿 𝑝 𝑝 and the Lorenz curve can be used to calculate income inequality or, 
more broadly, the variability of 𝑋. The Lorenz curve is well known for the exponential 
distribution and is given by: 

𝐿 𝑝 𝑝 𝑝 1 𝑝 log 1 𝑝  

For the 𝑁𝑃𝐸𝐷 distribution in (3), 

𝐸 𝑋 𝑋⁄ 𝑥 𝐹 𝑥 ∑ 𝑎 ,
! ∑ , ,

∑ ,
!

             (14) 

2.8.  Entropies 

It is commonly understood that entropy and information can be used to calculate 
the degree of uncertainty in a probability distribution. However, many correlations 
have been created based on the features of entropy. 
The entropy of a random variable 𝑋 is a measure of the uncertainty's variation. The 
entropy of Rényi is defined as: 

𝐽 𝛾
1

1 𝛾
log 𝑓 𝑥 𝑑𝑥  

where 𝛾 0  and 𝛾 1. For the 𝑁𝑃𝐸𝐷 distribution in (2), note that for 𝛾 integer we 
have: 

𝑓 𝑥 𝑑𝑥
∑ 𝑎 , 𝑥 𝑒 𝑑𝑥

∑ 𝑎 ,
!  

∑ 𝑏 , 𝛾 𝑥 𝑒 𝑑𝑥

∑ 𝑎 ,
!  

where: 𝑥 𝑒 𝑑𝑥 Γ 𝑘𝛾 1, 𝑥𝛾𝜃  and 𝑏 , 𝛾  in function 
𝑎 ,  and 𝛾. Now, the Rényi entropy is given by: 

𝐽 𝛾 log
∑ ,

!

∑ ,
!                                      (15) 
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2.9. Estimation and inference 

Let 𝑋 , … …𝑋  be a random sample of 𝑁𝑃𝐸𝐷. The ln-likelihood function 
𝑙𝑛𝑙 𝑥 ;𝜃  is given by: 

𝑙𝑛𝑙 𝑥 ; 𝜃 𝑛𝑙𝑛ℎ 𝜃 ∑ ln ∑ 𝑎 , 𝑥 𝜃 ∑ 𝑥           (16) 

The derivative of 𝑙𝑛𝑙 𝑥 ; 𝜃  with respect to 𝜃 is: 

𝑙𝑛𝑙 𝑥 ;𝜃
𝑑𝜃

𝑛ℎ 𝜃
ℎ 𝜃

𝑝 𝑥 ,𝜃
𝑝 𝑥 ,𝜃

𝑥  

The Method of Moments (MoM) and Maximum Likelihood (ML) estimators of the 
parameter are the same after using 𝑵𝑷𝑬𝑫 (16), and they may be found by solving the 
following non-linear equation: 

ℎ 𝜃
ℎ 𝜃

1
𝑛

𝑝 𝑥 ,𝜃
𝑝 𝑥 ,𝜃

�̅� 0 

where:  

ℎ 𝜃
𝑑ℎ 𝜃
𝑑𝜃

 𝑎𝑛𝑑 𝑝 𝜃
𝑑𝑝 𝜃
𝑑𝜃

 

ℎ 𝜃 ∑ !
𝑎 , 𝑘 1 𝑎 , 𝜃 ∑ ,

,
�̅� 0                    (17) 

Although this equation is difficult to answer, we can consider a specific scenario 

in which, 𝑝 𝑥 ,𝜃 2 𝜃 𝑥  𝑎𝑛𝑑 ℎ 𝜃 . This case will be studied 
in Section 3. 

3.  XLindley distribution and some properties 

In this section, we present the XLindley (XL) distribution, which belongs to the new 
polynomial exponential family of distributions. 

A random variable X is said to possess an XL distribution if it has the following 
form: 

𝑓 𝑥; 𝜃 𝑒         𝑥,𝜃 0                                    (18) 

Note that the XL distribution is a member of the new polynomial exponential 
family where 𝑛 1,𝑎 , 2 𝜃,𝑎 , 1using formula (1). Therefore, the mode of 
XL is given by 

𝑚𝑜𝑑𝑒 𝑋  𝑓𝑜𝑟  𝑥, 0 𝜃 √2 1                            (19) 
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We can find easily the CDF of the XL distribution 

𝐹 𝑥; 𝜃 1 1 𝑒         𝑥,𝜃 0                             (20) 

 

  
Figure.1.  Plots of the density function for some 

parameter values of 𝜃 
Figure.2. Plots of the cumulative function for 

some parameters values of 𝜃 

 

3.1.  Survival and hazard rate function 

For a continuous distribution, the survival function and the failure rate (hazard 
rate) functions are defined as: 

𝑆 𝑥; 𝜃 1 𝐹 𝑥;𝜃 1 𝑒       𝑥,𝜃 0                    (21) 

ℎ 𝑥;𝜃
;

;
        𝑥,𝜃 0                          (22) 

Let equation (21) and (22) be the survival and hazard rate function, respectively. 

 
Proposition 2. Let XLh be the hazard rate function of X. Then, XLh  is increasing. 
Proof. According to Glaser (1980) and from the density function (18): 

𝜌 𝑥
𝑓 𝑥

𝑓 𝑥;𝜃
𝑥𝜃 𝜃 2𝜃 1

𝑥 𝜃 2
 

 
It follows that: 

𝜌 𝑥
1

𝑥 𝜃 2
 

Imply that XLh is increasing. 
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3.2.  Moments and related measures 

The 𝑟  moment about the origin of the XLindley distribution can be obtained as: 

𝜇 𝐸 𝑋 𝑥 𝑓 𝑥 𝑑𝑥 

𝑥
𝜃 2 𝜃 𝑥

1 𝜃
𝑒 𝑑𝑥 

𝜃
1 𝜃

𝑥 2 𝜃 𝑥 𝑒 𝑑𝑥 

Finally, using gamma integral and little algebraic simplification, we get a general 
expression for the 𝑟  factorial moment of XL distribution as: 

𝜇
!                                                (23) 

The first four moments can be derived by substituting 𝑟 1; 2; 3 and 4 in (23), and 
then using the relationship between moments about origin and moments about mean, 
the first four moments about origin of the XL distribution may be obtained as follows: 

𝜇
𝜃 2𝜃 2

1 𝜃 𝜃
1 𝜃 1

1 𝜃 𝜃
1
𝜃

1
1 𝜃 𝜃

 

𝜇
2 𝜃 2𝜃 3

1 𝜃 𝜃
 

𝜇
6 𝜃 2𝜃 4

1 𝜃 𝜃
 

𝜇
24 𝜃 2𝜃 5

1 𝜃 𝜃
 

Let 𝑋~𝑋𝐿 𝜃 , the mean, variance for X be: 

𝜇 𝐸 𝑋                                                 (24) 

𝐸 𝑋
2 𝜃 2𝜃 3

1 𝜃 𝜃
 

𝜇 𝑉𝑎𝑟 𝑋
1 𝜃 4𝜃 6𝜃 1

1 𝜃 𝜃
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3.3.  Estimation of parameter 

3.3.1.  Maximum Likelihood Estimation (MLE) 

Let 𝑋 ~𝑋𝐿 𝜃 , 𝑖 1, … . . ,𝑛 be 𝑛 random variables, the 𝑙𝑛-likelihood function, 
𝑙𝑛𝑙 𝑥 ;𝜃  is: 

𝐿 𝜃 ∏ 2 𝜃 𝑥 𝑒 ∑                  (25) 

The logarithm of the likelihood function is: 

𝑙𝑛𝑙 𝑥 ; 𝜃 2𝑛𝑙𝑜𝑔𝜃 2𝑛𝑙𝑜𝑔 𝜃 1 𝑙𝑜𝑔 2 𝜃 𝑥 𝜃 𝑥  

𝑙𝑛𝑙 𝑥 ; 𝜃 2𝑛 𝑙𝑜𝑔𝜃 𝑙𝑜𝑔 𝜃 1 ∑ 𝑙𝑜𝑔 2 𝜃 𝑥 𝜃 ∑ 𝑥      (26) 

The derivatives of 𝑙𝑛𝑙 𝑥 ;𝜃  with respect to 𝜃 are: 
𝑙𝑛𝑙 𝑥 ;𝜃

𝛿𝜃
0 

𝛿𝑙𝑛𝑙 𝑥 ; 𝜃
𝛿𝜃

2𝑛
𝜃

2𝑛
1 𝜃

1
2 𝜃 𝑥

𝑥  

𝛿𝑙𝑛𝑙 𝑥 ;𝜃
𝛿𝜃

2
𝜃

2
1 𝜃

1
𝑛

1
2 𝜃 𝑥

𝑋 

; ∑ 𝑋                                   (27) 

To obtain the MLE of 𝜃:𝜃  we can maximize equation (27) directly with respect 
to𝜃, or we can solve the non-linear equation ;

0. Note that 𝜃  cannot be 
solved analytically; numerical iteration techniques, such as the Newton-Raphson 
algorithm, are thus adopted to solve the logarithm of the likelihood equation for which 
(27) is maximized. 

3.3.2.  Method of Moments Estimation (MME) 

Let 𝑋 be the sample mean, equating sample mean and population mean 𝐸 𝑋 , 

𝐸 𝑋 ∑                                                         (28) 

When we plug in the expression of 𝐸 𝑋  from equation (24) and solve the equation 
for 𝜃, we get 

𝑋
1 𝜃 1

1 𝜃 𝜃
𝜃 2𝜃 2
𝜃 2𝜃 𝜃
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We obtain equation of 3rd degree 𝑋𝜃 𝜃 2𝑋 1 𝜃 𝑋 2 2 0. We 
take the real part for the solution 

𝜃 2𝑋 1

                                             (29) 

 

3.4.  Simulation 

The behaviour of the estimators for a finite sample size (𝑛) is investigated in this 
subsection. A simulation study consisting of the following steps is being carried out 
N=10000 times for selected values of 𝜃,𝑛 , where 𝜃 0.05; 0.25; 1; 2; 5 and 𝑛
20; 50; 100. 

 Generate 𝑈  Uniform (0; 1),    𝑖 1, … . . ,𝑛. 
     Generate 𝑌  Exponential 𝜃 , 𝑖 1, … . . ,𝑛. 
     Generate 𝑍  Lindley 𝜃 , 𝑖 1, … . . ,𝑛. 
 If 𝑈 𝑝 𝜃 , then set 𝑋 𝑌  otherwise, set 𝑋 𝑍 ,  𝑖 1, … . . ,𝑛 

𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑖𝑎𝑠 𝜃
1
𝑁

𝜃 𝜃 . 

And the average square error: 

 𝑀𝑆𝐸 𝜃
1
𝑁

𝜃 𝜃  

 

Table 1.  Average bias of the estimator 𝜃 

Bias 𝜃 0.05 𝜃 0.25 𝜃 1 𝜃 2 𝜃 5 

𝑛 20 0.00131 0.01002 0.0456 0.2451 0.7512 
𝑛 50 0.00095 0.0124 0.0106 0.1162 0.1421 
𝑛 100 0.00011 0.00251 0.0122 0.0423 0.0506 

 

Table 2.  The average square error of the estimator 𝜃 

MSE 𝜃 0.05 𝜃 0.25 𝜃 1 𝜃 2 𝜃 5 

𝑛 20 1,03.10-6 0.000113 0.00236 0.0654 0.6177 
𝑛 50 2, 55.10-7 0.000214 0.000162 0.01233 0.03135 
𝑛 100 1,04.10-8 1.34.10-5 0.000216 0.00184 0.00301 
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Table 1 and 2 show the outcomes of the simulation. The simulation analysis yielded 
the following conclusions: 

 for some given value of 𝜃, the average of bias of 𝜃 and the mean square error of 
𝜃 decrease as the sample size n increases, 

 the mean square error (MSE) gets higher and following a similar way for larger 
value of 𝜃 as we mentioned before. 

3.5.  Application and goodness of fit 

Data set 1: Survival times (in months) of 94 Sierra Leone individuals infected with 
Ebola virus. It is available at https://apps.who.int/gho/data/node.ebola-sitrep. In table 3, 
we compare the Lindley (LD), Zeghdoudi, exponential, XGamma, and XL distributions 
using data set 1. 

Table 3.   Comparison between LD, XG, ZD, Exp and XL distributions. 

Survival time 
m=3.17 , s=2.095 

Obsfreq LD  
𝜃 0.522 

Xgamma 
𝜃 0.689 

ZD 
𝜃 0.852 

Exp  
𝜃 0.315 

XL 
𝜃 0.467 

[0,2] 45 38. 262 37. 652 30. 339 43. 937 41. 028 
[2,4] 22 28. 164 27. 197 37.27 23. 4 25. 855 
[4,6] 17 15. 075 16. 342 17.743 12. 463 13. 984 
[6,8] 7 7. 1187 7. 7769 6.1658 6. 6375 6. 9986 

[8,10] 3 3. 1423 3. 2015 1.828 3. 5351 3. 3409 
Total 94 94 94 94 94 94 
 2 - 2. 7899 3. 2040 14.236 1. 8619 1. 6446 

4.  Exponential-gamma (𝟑, 𝜽) (X gamma ) distribution and its applications 

In this section, we give an overview on Exponential-gamma Eg (𝜽) (X gamma ) 
distribution (see Subhradev (2016)), which is a member of the NPED. A random 
variable X is said to possess Eg(𝜽) distribution if it has the following form: 

𝑓 𝑥;𝜃 1 𝑥  𝑒         𝑥,𝜃 0                              (30) 

Note that the Eg distribution is a member of the NPED family where: 
𝑛 2,𝑎 , 1,𝑎 , 0,𝑎 , , using formula (1). 

Therefore, the mode of Eg (𝜽) distribution is given by: 

𝑚𝑜𝑑𝑒 𝑋 √  𝑓𝑜𝑟  0 𝜃                                          (31) 

We can find easily the CDF of the Eg (𝜽) distribution: 

𝐹 𝑥;𝜃 1 𝑒         𝑥,𝜃 0                              (32) 
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Figure 3.  Plots of the density function for some 
parameters values of 𝜃 

Figure4. Plots of the cumulative function for 
some parameters values of 𝜃    

4.1.  Survival and hazard rate function 

For a continuous distribution, the survival function and failure rate (hazard rate) 
functions are defined as: 

𝑆 𝑥; 𝜃 1 𝐹 𝑥;𝜃 𝑒          𝑥,𝜃 0                 (33) 

4.2.  Moments and related measures 

The 𝑟  moment about the origin of the Eg (𝜽) distribution can be obtained as: 

𝜇 𝐸 𝑋
!                                           (34) 

where 𝑎 𝑎 𝑟 for 𝑟 1,2,3, … ..with 𝑎 0 and 𝑎 2. In particular, 

𝜇
𝜃 3

𝜃 𝜃 1
𝑀𝑒𝑎𝑛 𝑋 𝜇 

𝜇
2 𝜃 6
𝜃 𝜃 1

, 𝜇
6 𝜃 10
𝜃 𝜃 1

, 𝜇
24 𝜃 15
𝜃 𝜃 1

 

It is to be noted that, for the exponential distribution with parameter 𝜃, the 𝑟  
order moment about origin is  

𝜇
𝑟!
𝜃

 
The 𝑗  order central moment of the Eg (𝜽) is 

𝜇 𝐸 𝑋 𝜇 ∑ 𝑗
𝑟
𝜇 𝜇 . In particular, 
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𝜇 var(X) 𝜎  

𝜇
2 𝜃 15𝜃 9𝜃 3

𝜃 1 𝜃
 

𝜇
3 5𝜃 88𝜃 310𝜃 288𝜃 177

𝜃 1 𝜃
 

4.3. Estimation of parameter 

Let 𝑋 ~𝐸𝑔 𝜃 distribution, 𝑖 1, … . . ,𝑛 be 𝑛 random variables. The 𝑙𝑛-likelihood 
function, 𝑙𝑛𝑙 𝑥 ; 𝜃  is: 

𝐿 𝜃 𝑓 𝑥 :𝜃
𝜃 1 𝑥 𝑒

1 𝜃
 

The logarithm of the likelihood function is: 

log 𝐿 𝑥 ;𝜃 2𝑛𝑙𝑜𝑔𝜃 𝑛𝑙𝑜𝑔 1 𝜃 ∑ log 1 𝑥 𝜃𝑥      (35) 

The derivatives of log 𝐿 𝑥 ;𝜃 with respect to 𝜃 are: 

𝛿𝐿
𝛿𝜃

2𝑛
𝜃

𝑛
1 𝜃

𝑥

2 1 𝑥
𝑥  

We get the likelihood equation as a system of nonlinear equations in 𝜃 by setting 
the left side of the above equation to zero. The MLE of 𝜃 in this system is obtained by 
solving it in 𝜃. It is simple to calculate numerically using a statistical software tool such 
as the 𝑛𝑙𝑚package in R programming with arbitrary initial values. 

The Fisher information about 𝜃,I(𝜃), is 

𝐼 𝜃 𝐸
𝜕
𝜕 𝜃

𝑙𝑛𝑓 𝑋,𝜃 𝐸
2
𝜃

1
1 𝜃

𝑥
4

1

1 𝑥
 

𝐸                                                                    (36) 
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Then the asymptotic 100 1 𝛼 % confidence interval for 𝜃 is given by 𝜃

𝑧
√

. 

4.4.  Simulation 

Table 4.  Average bias and MSE of the estimator 𝜃 

θ n Bias MSE 
1 50 -0.00086 3.65 05e  

100 0.00040 1.56 05e  
500 1.32 05e  8.56 08e  

1.5 50 -0.000061 2.64 05e  
100 -0.00063 3.34 05e  
500 -3.92 06e  7.63 09e  

1.85 50 0.00174 0.000153 
100 0.00090 8.61 05e  
500 0.000168 1.4097 05e  

4.5.  Data analysis and applications 

Application of the Eg distribution is illustrated in two examples. 
Data set 2: The data set is taken from Klein and Berger. It shows the survival data on 
the death times of 26 psychiatric inpatients admitted to the University of Iowa hospitals 
during the years 1935-1948. 

Table. 5.  The survival data on the death times of psychiatric inpatients. 

1 1 2 22 30 28 32 11 14 36 31 33 33 
37 35 25 31 22 26 24 35 34 30 35 40 39 

To evaluate the data, we used three different distributions: ED, EED, and Eg 
distributions. Table 6 shows the estimated unknown parameters, as well as the 
accompanying Kolmogorov-Sminrov (K-S) test statistic and LogL values for three 
alternative models. 

Table 6.  The estimates, K-S test statistic and 𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 for the data set 2 

Model Estimates K-S LogL 
ED 𝜃 0.0378 0.377 -112.321 
EED 𝑎 1.797, 𝑏 0.052 0.318 -109.998 
Eg 𝜃 0.0105 0.3146 -104.611 

We present the p-value, corresponding Akaikes Information Criterion (AIC) 
(see Akaike, H. (1974) and Bayesian Information Criterion (BIC) in the following table 7. 
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Table 7.  The p-value, AIC and BIC  of the models on the base data set 1 

Model p-value AIC BIC 
ED 0.001 224.264          225.518 

EED 0.011 221.974          224.490 
Eg 0.057 211.171          212.429 

Table 6 provides the fitted distributions' parameter MLEs and log likelihood values, 
while table 7 shows the AIC, BIC, and p-value values. Tables 6 and 7 show that the 
Eg (θ) distribution is a strong rival to the other distributions chosen to suit the dataset 
here. 

Data set 3: Chen (Gupta R. D. and Kundu D. (1999)) gave type-II censoring data of 
samples with complete unit failures: 0.29, 1.44, 8.38, 8.66, 10.20, 11.04, 13.44, 14.37, 
17.05, 17.13, and 18.35. Table 8 shows the estimated unknown parameters, as well as 
the accompanying Kolmogorov-Smirnov (K-S) test statistic and Log L values for three 
alternative models. 

Table 8.  The estimates, K-S test statistic and log-likelihood for the data set 2 

Model Estimates K-S LogL 
ED 𝜃 0.091 0.3622 -40.432 

EED 𝑎 1.355,𝑏 0.109 0.3183 -38.523 
Eg 𝜃 0.237 0.251 -35.642 

We present the p-value, corresponding AIC and BIC for the data set in 2 in Table 9. 

Table 9.  The p values , (AIC) and (BIC) of the models based on the data set 3 

Model p-value AIC BIC 
ED 0.098 76.635 77.033 

EED 0.172 78.093 78.889 
Eg 0.462 72.504 72.902 

The parameter MLEs and log-likelihood values of the fitted distributions are shown 
in table 8, and the values of AIC, BIC, and p-values are shown in Table 9. Tables 8 and 
9 show that the Eg (θ) is a strong rival to the other distributions employed to suit the 
dataset here. 

5. Conclusions 

We have suggested a family of distributions with only one parameter in this paper. 
Moments, distribution function, characteristic function, failure rate, stochastic order, 
maximum likelihood approach, and method of moments were among the properties 
studied. 
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The Lindley and Zeghdoudi distributions lack the flexibility needed to examine and 
model many forms of data related to lifetime data and survival analysis. The 𝑁𝑃𝐸𝐷 
distribution, on the other hand, is adaptable, straightforward, and simple to use. The 
novel distribution was used to evaluate two real data sets and was compared to existing 
distributions (Lindley, exponential, Zeghdoudi, Exponential Exponential and 
Xgamma). The comparison's findings support the 𝑁𝑃𝐸𝐷 distribution's quality 
adjustment. We anticipate that our new distribution family will entice many additional 
life data, reliability analysis, and actuarial science applications. 

We can employ a more general distribution with two parameters in future 
experiments, and  

𝑓 𝑥,𝜃 ℎ 𝜃 𝑝 𝑥,𝜃 𝑐𝑜𝑠𝜃exp 𝜃𝑥  

where ℎ 𝜃  is real-valued functions on 0,∞ , and where 𝑝 𝑥,𝜃 𝑏 𝜃 𝑥 . 
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