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Interval shrinkage estimation of the parameter
of exponential distribution in the presence of outliers under

loss functions

Parviz Nasiri1

ABSTRACT

In this paper, we studied estimators based on an interval shrinkage with equal weights point
shrinkage estimators for all individual target points θ̄ ∈ (θ0,θ1) for exponentially distributed
observations in the presence of outliers drawn from a uniform distribution. Estimators ob-
tained from both shrinkage and interval shrinkage were compared, showing that the estima-
tors obtained via the interval shrinkage method perform better. Symmetric and asymmetric
loss functions were also used to calculate the estimators. Finally, a numerical study and
illustrative examples were provided to describe the results.

Key words: interval information, mean square error, shrinkage estimator, exponential dis-
tribution, uniform distribution, outliers, Linex loss function.

1. Introduction

We are interested in working on an exponential distribution due to its various applica-
tions in life testing in case we encounter some outliers. Suppose (X1,X2, ...,Xn)is a random
sample of size n whose k out of n observations seem to be outliers and taken from a uniform
distribution. Studying previous works shows that Epstein and Sobel (1954) obtained the
minimum variance unbiased estimator (MVUE) for scale parameter and location param-
eter of exponential distribution. Bhattacharia and Srivastava (1974) work on a shrinkage
estimator for scale parameter. Stein (1956) proposes non-sample information in shrinkage
estimation. The shrinkage estimation contents are an innovative combination of classical es-
timators of parameter and a guess value for it, which is called a shrinkage target. Based on
Hawkins (1980) an outlier is an observation that deviates so much from other observations
and it might have been generated by a different procedure. Dixit and Nasiri (2001) estimate
parameters of exponential distribution in the presence of outliers generated from uniform
distribution. Nasiri and Jabbari (2009) discuss estimation of parameters of the general-
ized exponential distribution in the existence of outliers. Finally, Golosnoy and Liesenfeld
(2011) obtain an interval for shrinkage estimators. Based of this review, we show that the
interval shrinkage estimator does better than another estimator. This paper is in some way
related to the investigation by Nasiri and Ebrahimi (2019), whenever now we consider the
outliers generated from uniform distribution.
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The LINEX loss function was introduced by Varian (1975), and several others including
Zellner (1986), Basu and Ebrahimi Rojo (1987) and Soliman (2000), who have used this
loss function in different estimation and prediction problems. The LINEX loss function is
given by:

L(∆) = ea∆ −a∆−1, a ̸= 0,

With ∆ = θ̂

θ
, where θ̂ is an estimate of θ and a represents the shape parameter of the

loss function. The behaviour of the LINEX loss function changes with the choice of a.
Particularly, if a is close to zero (see Pandey (1997)), this loss function is almost equivalent
to the Squared Error Loss Function(SELF) and therefore almost symmetric.

In shrinkage estimation when θg, a guess value of θ is available, the shrinkage estimator
and its properties following Thompson (1968) is defined as

θ̂sh = θg +ω(θ̂ −θg), 0 ≤ w < 1 (1)

To find ω we have to consider MSE of estimator as:

MSE(θ̂sh) = E[θ̂sh −θ ]2

In equation (1), to obtain MSE(θ̂sh), we consider θ̂sh as the shrinkage estimator, that
is θ̂sh = θg +ω(θ̂ − θ), where 0 ≤ ω < 1 and θg is our guess from parameter space (see
Thompson 1968). Hence, MSE(θ̂sh) = E(θ̂sh −θ)2 = E(θg +ω(θ̂ −θg)−θ)2, so

MSE(θ̂) = E[θg +ω(θ̂ −θg)−θ ]2 (2)

= E[ω(θ̂ −θ)+(ω −1)(θ −θg)]
2

= ω
2MSE(θ̂ ,θ)+(ω −1)2 ∗ (θ −θg)

2 +2ω(ω −1)(θ −θg)E(θ̂ −θ)

=
ω2θ 2

n
+(ω −1)2(θ −θg)

2, (3)

Now, we have to minimize the MSE,

dMSE(θ̂sh)

dω
=

2ωθ 2

n
+2(θg −θ)2(ω −1) = 0, (4)

ω
∗ =

(θg −θ)2

θ 2

n +(θg −θ)2
, (5)

So the shrinkage estimator is given by

θ̂sh = θg +[
(θg −θ)2

θ 2

n +(θg −θ)2
](θ̂ −θg) (6)
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and

MSE(θ̂sh) = [θ̂sh −θ ]2

= E[θg +B1(θ̂ −θg)−θ ]2

= B1
2MSE(θ̂)+(1−B1)

2(θg −θ)2,

where

B1 =
(θg −θ)2

θ 2

n +(θg −θ)2
. (7)

In Section 2, we have obtained the joint distribution of (X1,X2, ...,Xn) in the presence
of k outliers. In Section 3, 4 and 5 we deal with the shrinkage estimator with the presence
of outliers, a feasible interval shrinkage estimator and an interval shrinkage estimator under
LINEX loss function. In Section 6, we compare the MSE and LINEX risk of the interval
shrinkage estimators.

2. Joint distribution of (X1,X2, ...,Xn) with presence of outliers

Let X1,X2, ...,Xn be n non-negative continuous random variables such that for a given
combination (i1, i2, ..., in−k) of the integers (1,2, ...,n), the following conditions hold:

a) The random variables Xi1 ,Xi2 , ...,Xin−k are independent, each having the probability
density function f (x).

b) The remaining random variables are also independent, each having the probability
density function g(x).

c) The two sets of the random variables are also independent.
d) Further, it is assumed that the combinations (i1, i2, ..., in−k) of the integers (1,2,3, ...,n)

are chosen at random with equal probability [c(n,k)]−1 for each combination, where

c(n,k) =
n!

k!(n− k)!

The joint density of X1,X2, ...,Xn is given as (See Dixit and Nasiri (2001))

f (x1,x2, ...,xn) =
n

∏
i=1

f (xi) ∑
(i1,i2,...,in−k)

k

∏
j=1

[c(n,k)]−1 g(xi j)

f (xi j)

Dixit and Nasiri (2001) consider estimation of parameters of an exponential distribution
in the presence of outliers generated from a uniform distribution. So, if we have random
variables (X1,X2, ...,Xn) such that k of them are a distribution with pdf f1(x;θ)

f1(x;θ) =
1
θ
,0 < x < θ , (8)
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and the remaining (n− k) random variables are distributed with pdf f2(x;θ) function

f2(x;θ) =
1
θ

e−
x
θ ,x > 0,θ > 0, (9)

then the joint distribution of (X1,X2, ...,Xn) is

f (x1,x2, ...,xn;θ) =

[
k!(n− k)!

n!

]−1 n

∏
i=1

f2(xi,θ)
∗

∑
k

∏
j=1

f1(xA j ;θ)

f2(xA j ;θ)
, (10)

where
∗

∑ =
n−k+1

∑
A1=1

n−k+2

∑
A2=A1+1

...
n

∑
Ak=Ak−1+1

.
For f1(x;θ) and f2(x;θ), f (x1,x2, ...,xn;θ) is

f (x1,x2, ...,xn;θ) =
k!(n− k)!

n!
e
−∑xi

θ

θ n−k

∗

∑
k

∏
j=1

1
θ

I(0,θ)(xA j)

e
−xA j

θ

=
k!(n− k)!

n! θ n e
−∑xi

θ

∗

∑
k

∏
j=1

I(0,θ)(xA j)

e
−xA j

θ

=
k!(n− k)!

n! θ n e
−∑xi

θ

∗

∑
k

∏
j=1

e
xA j

θ I(0,θ)(xA j),

For k = 1 ; f (x1,x2, ...,xn;θ) = 1
nθ n e

−∑xi
θ ∑

n
A1=1 e

xA1
θ I(θ − xA1).

For k= 2 ; f (x1,x2, ...,xn;θ)= 2
n(n−1)θ n e

−∑xi
θ ∑

n−1
A1=1 ∑

n
A2=A1+1 e

xA1
+xA2
θ I(xA1−θ) I(xA2−θ).

Dixit (1987), based on the joint distribution

f (x1,x2, ...,xn) =
n

∏
j=1

g(xi j)

f (xi j)
[C(n,k)]−1

show that the marginal distribution of Xi is given by

h(xi) =
k
n

g(xi)+
n− k

n
f (xi)
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Hence,

f (x;θ) =
k
n

f1(x;θ)+
n− k

n
f2(x;θ)

=
k
n

1
θ

I(0,θ)(x)+
n− k
nθ

e
−x
θ I(0,∞)(x), (11)

So we have

E(X̄) =
1
n

n

∑
i=1

E(Xi) = E(X) =
k
n

∫
θ

0

1
θ

x dx+
n− k

n

∫
∞

0

1
θ

xe−
x
θ dx =

(2n− k)θ
2n

V (X̄) =
(

1− 2k
3n

+
k2

4n2

)
θ 2

n
, (12)

It is easy to show that

θ̂ =
2n

2n− k
X̄ . (13)

which is unbiased with expectation and variance as:

E(θ̂) = θ and V (θ̂) = A2C
θ 2

n
, (14)

where A = 2n
2n−k and C =

(
1− 2k

3n +
k2

4n2

)
.

Note: The sample size n and the number of outliers k are given parameters. But in the
actual application, k is unknown and should be estimated. One of the methods is that k
can be selected by evaluating the likelihood for different values of k choosing the one that
maximizes the likelihood.

3. Feasible interval shrinkage estimator

In 2011, Golosnoy and Liesenfeld (2011) show the shrinkage estimator towards the
interval θ ∈ [θ0,θ1]⊂ R for unbiased conventional sample estimator of θ̂ with E(θ̂) = θ is
given by

θ̃sh =θ̂ +

√
V (θ̂)

θ − θ̂

θ1 −θ0

[
arctan

(
θ1 −θ√

V (θ̂)

)
−arctan

(
θ0 −θ√

V (θ̂)

)]

+
V (θ̂)

2(θ1 −θ0)
ln
(V (θ̂)+(θ1 −θ)2

V (θ̂)+(θ0 −θ)2

)
, (15)
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and

E(θ̃sh) = θ̂ +
V (θ̂)

2(θ1 −θ0)
ln
[V (θ̂)+(θ1 − θ̂)2

V (θ̂)+(θ0 − θ̂)2

]
, (16)

for E(θ̂) = θ , we have

θ̃sh = θ̂ +
V (θ̂)

2(θ1 −θ0)
ln
[V (θ̂)+(θ1 − θ̂)2

V (θ̂)+(θ0 − θ̂)2

]
. (17)

For different values of lower and upper bound of the interval, when θ1 is far from θ0

or V (θ̂) approaches zero, the MSE(θ̂) decreases. Furthermore, if θ̂ is considered as the
median of the interval, θm = (θ0 +θ1)/2, then (θ1 − θ̂) = θ1−θ0

2 and (θ0 − θ̂) = θ0−θ1
2 . In

this case, the equation(16) can be written as:

θ̃sh = θ̂ +
V (θ̂)

2(θ1 −θ0)
ln
[V (θ̂)+ (θ1−θ0)

2

4

V (θ̂)+ (θ0−θ1)2

4

]
= θ̂ +

V (θ̂)

2(θ1 −θ0)
ln(1) = θ̂ ,

θ̃sh approaches θ̂ .

Note that the expectation and variance of θ̃sh is not easy since θ̃sh is not linear θ̂ . Golos-
noy and Liesenfeld (2011) suggest to find θ̃sh by using the first order Taylor expansion
around the median point θm. We also define θd = (θ1 −θ0)/2, so the equation would be as
follows:

θ̃sh = θm +(θ̂ −θm)
∂ θ̂(θm)

∂ θ̂
+

(θ̂ −θm)
2

2
∂ 2θ̂(θm)

∂ θ̂ 2
= 0

where

∂ θ̂(θm)

∂ θ̂
= 1+

V (θ̂)

θ1 −θ0

(
θ0 − θ̂

V (θ̂)+(θ0 − θ̂)2
+

θ1 − θ̂

V (θ̂)+(θ0 − θ̂)2

)
,

and

∂ 2θ̂(θm)

∂ θ̂ 2
= 0.
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The resulting estimator is

θ̃sh = θ̂

1− V (θ̂)

V (θ̂)+

((
θ1−θ0

2

)2
)
+θm

V (θ̂)

V (θ̂)+

((
θ1−θ0

2

)2
)

We also define θd = θ1−θ0
2 , so the equation would be as follows:

˜̃
θ sh = θ̂

[
1− V (θ̂)

V (θ̂)+θ 2
d

]
+θm

V (θ̂)

V (θ̂)+θ 2
d

. (18)

For V (θ̂)

V (θ̂)+θ 2
d

is constant, its variance is equal zero. So, we can easily show that

E(˜̃θ sh) = θ − (θ −θm)
V (θ̂)

V (θ̂)+θ 2
d

,

and

V (
˜̃
θ sh) =V (θ̂)

(
1− V (θ̂)

V (θ̂)+θ 2
d

)2
.

Let 1− V (AX̄)

V (AX̄)+θ 2
d
= B2 then

˜̃
θ sh = AB2X̄ +(1−B2)θm,

so

MSE(˜̃θ sh) = E
(˜̃

θ sh −θ

)2

= E
(

B2AX̄ +(1−B2)θm −θ

)2

= E
(

B2(AX̄ −θ)+B2θ +(1−B2)θm −θ

)2

= E
(

B2(AX̄ −θ)+(1−B2)θ +(1−B2)θm

)2

= E
(

B2(AX̄ −θ)+(1−B2)(θ −θm)
)2

= B2
2MSE(θ̂Sh−outlier)+(1−B2)

2(θ −θm)
2,

resulting

MSE(˜̃θ sh)≤ MSE(θ̂Sh−outlier).
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4. Interval shrinkage estimation under LINEX loss function

In decision theory and quality assurance filed, loss functions are used to reflect the
monetary loss or economic loss caused by deterioration of the product characteristics from
the target quality. However, Berger (1985) even emphasized that the loss function should
be bounded and concave, because the loss function also mimics the negative of the utility,
whereas the squared-error loss, Taguchi quadratic loss in quality control, or absolute error
loss is unbounded and even disturb the convexity. In some decision problems, some types
of asymmetric losses are proposed. One of the most eminent examples is LINEX, which
was proposed by Varian (1975) and populated by Zellner (1986).

Consider LINEX loss function for ˜̃θ
L(∆) = ea∆ −a∆−1, ∆ =

˜̃
θ

θ
.

which

∆ =
˜̃
θ

θ
=

AB2

θ
X̄ +(1−B2)

θm

θ
.

where A = 2n
2n−k , B2 = 1− V (AX̄)

V (AX̄)+θ 2
d

. In this case the risk under LINEX loss function is

obtained by

R = E(L(∆)) = E(ea∆ −a∆−1) = E(ea∆)−aE(∆)−1

where

aE(∆) = aE

˜̃θ
θ

=
a
θ

E(˜̃θ) = a
θ

E(AB2X̄ +(1−B2)θm)

=
aAB2

θ
E(X̄)+(1−B2)

θm

θ

=
aAB2

θ

(
2n− k

2n
θ

)
+(1−B2)

θm

θ

=
aAB2(2n− k)

2n
+(1−B2)

θm

θ

E(ea∆) = E
(

e
aθ̃

θ

)
= E

(
e

a
θ
(AB2X̄+(1−B2)θm)

)
= e

a(1−B2)θm
θ E

(
e

aAB2X̄
θ

)
= e

a(1−B2)θm
θ E

(
e

aAB2
nθ

(X1+X2+...+Xn)
)

= e
a(1−B2)θm

θ E
(

e
aAB2

θ
X1e

aAB2
θ

X2 ...e
aAB2

θ
Xn
)
= e

a(1−B2)θm
θ

[
E
(

e
aAB2

nθ
X
)]n

such that
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E
(

e
aAB2

nθ
X
)
=

k
n

∫
θ

0

1
θ

e
aAB2

nθ
xdx+

n− k
n

∫
∞

0

1
θ

e
aAB2

nθ
xe

−x
θ dx

=
k

nθ

[
nθ

aAB2
e

aAB2
nθ

x|θ0
]
+

n− k
nθ

∫
∞

0
e−
(

1− aAB2
n

)
x
θ dx

=
k

nθ

[
nθ

aAB2
e

aAB2
nθ − nθ

aAB2

]
=

n− k
nθ

(
nθ

n−aAB2

)

=
k

aAB2
e

aAB2
n − k

aAB2
+

n− k
n−aAB2

Hence,

R = e
a(1−B2)θm

θ

[
k

aAB2
e

aAB2
2 − K

aAB2
+

n− k
n−aAB2

]n

− aAB2(2n− k)
2n

+(1−B2)
θm

θ
−1

5. Numerical Study

To compare the performance of mean square error (MSE) and LINEX risk of the interval

shrinkage estimator ˜̃θ sh , we carry out simulation study using R software and the results are
shown in Tables 1 to 4. The shape parameter takes different values. Samples were generated
with sizes n = 10(10)(50) using of R software. The MSE and LINEX loss function of
the interval shrinkage estimator decrease when the sample size increases. Meantime, for
k = 1,n= 9 means that one sample is generated from the uniform distribution and 9 samples
are generated from the exponential distribution. Here, the number of replicated cases is
N = 1000. In cases of a =−0.01 and a = 0.01, they are very close to each other. It is also
worth mentioning, based on the results of Tables 1 and 2, when the value of "a" tends to
zero, the results are the same.

Table 1. k = 1, θ = 4, θg = 3.2, θ0 = 3.7, θ1 = 4.2

a=-1 a=-0.25 a=-0.01

n MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh)

10 0.0082 0.0054 0.0082 0.0008 0.0077 0.0012
20 0.0042 0.0052 0.0055 0.0007 0.0060 0.0011
30 0.0037 0.0048 0.0043 0.0007 0.0060 0.0011
40 0.0027 0.0039 0.0030 0.0006 0.0033 0.0013
50 0.0027 0.0038 0.0025 0.0005 0.0023 0.0013
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Table 2. k = 2, θ = 4, θg = 3.2, θ0 = 3.7, θ1 = 4.2

a=-1 a=-0.25 a=-0.01

n MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh)

10 0.0012 0.0024 0.0021 0.0004 0.0013 0.0019
20 0.0016 0.0021 0.0017 0.0003 0.0016 0.0014
30 0.0015 0.0029 0.0017 0.0003 0.0017 0.0013
40 0.0019 0.0029 0.0017 0.0004 0.0017 0.0010
50 0.0016 0.0049 0.0016 0.0004 0.0017 0.0017

Table 3. k = 1, θ = 4, θg = 3.2, θ0 = 3.7, θ1 = 4.2

a=0.01 a=0.25 a=1

n MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh)

10 0.0083 0.0013 0.0082 0.0024 0.0082 0.0006
20 0.0058 0.0013 0.0046 0.0020 0.0052 0.0005
30 0.0044 0.0010 0.0041 0.0024 0.0043 0.0004
40 0.0029 0.0013 0.0032 0.0024 0.0028 0.0003
50 0.0026 0.0015 0.0026 0.0016 0.0026 0.0002

Table 4. k = 2, θ = 4, θg = 3.2, θ0 = 3.7, θ1 = 4.2

a=0.01 a=0.25 a=1

n MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh)

10 0.0025 0.0005 0.0017 0.0005 0.0018 0.0002

20 0.0018 0.0010 0.0017 0.0010 0.0016 0.0002

30 0.0017 0.0017 0.0017 0.0014 0.0015 0.0002

40 0.0016 0.0016 0.0016 0.0013 0.0015 0.0004

50 0.0018 0.0018 0.0015 0.0012 0.0017 0.0001

6. Practical Example

In order to illustrate the methodology proposed in this paaper, we consider, Nelson
(1982) concerning the data on time to break-down of an insulating fluid between electrodes
at a voltage of 34 KV (Kilo-Volts). Data are as follows:
0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50 7.35 8.01 8.27 12.06 31.75 32.52 33.91
36.71 72.89

In the initial evaluation, one-sample Kolmogorov-Smirnov test results show that the data
follow an exponential distribution. Figures 1 and 2 have been reported to be checked for the
presence of outlier’s data. Figure 1 shows the presence of one outlier. Investigation of this
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result is based on theoretical and interval shrinkage estimation. Here, to find the number of
outliers or k, we consider θ ∈ (14,15) and based on the sample information
n = 19 , ∑

19
i=1 xi = 272.82 ; x̄ = 14.35895. Note that in Table 5, to determine the value of k

we have

V̂ (
˜̃
θ) = V̂ (θ̂)

(
1− V̂ (θ̂)

V̂ (θ̂)+θ 2
d

)

such that

V̂ (θ̂) =

[
2n

2n− k

]2(
1− 2k

3n
− k2

4n2

)
θ̂ 2

n

According to the estimator of V̂ (
˜̃
θ), it can be said that the increase in the value of k

is greater than the increase in the estimator. But by rotating the value of the maximum
likelihood, the value of k is determined.

Table 5.

k ˜̃
θ sh V (

˜̃
θ sh) ∑

∗ L(˜̃θ |x)
0 14.49682 0.0055031 1 5.790283×10−31

1 14.50518 0.0051386 19.29345 5.879082×10−31∗

2 14.51281 0.0047826 172.2583 5.831662×10−31∗

3 14.51969 0.00443596 943.3984 5.635563×10−31

4 14.52582 0.00409897 3540.8260 5.287464×10−31

According to the results of Table 5, the likelihood function with respect to k is maxi-

mized when k is equal to 1. So, the number of outliers is 1 and ˜̃θ sh = 14.51281.

7. Conclusion

In an experimental situation, many a time an experimenter comes across some of the
observations which are far removed from the main body of the data and hence are outliers.
In this paper, shrinkage and interval shrinkage estimators are discussed for the first time
with the presence of outliers generated from a uniform distribution and it is shown that
the interval shrinkage estimator is better than the shrinkage estimator. Using different loss
functions can also improve the performance of the estimator. It may be mentioned that
the proposed method can be extended for Bayesian interval shrinkage estimation and other
positive data distribution as well as for the presence of outliers from other distributions.
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Figure 1. Exponential Q-Q Plot

Figure 2. Frequency Distribution
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