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Regression model of water demand for the city of Lodz  
as a function of atmospheric factors 

Czesław Domański1, Robert Kubacki2

ABSTRACT 

One of the Sustainable Development Goals (Goal 6) set by the United Nations is to provide 
people with access to water and sanitation through sustainable water resources 
management. Water supply companies carrying out tasks commissioned by local 
authorities ensure there is an optimal amount of water in the water supply system. The aim 
of this study is to present the results of the work on a statistical model which determined 
the influence of individual atmospheric factors on the demand for water in the city of 
Lodz, Poland, in 2010-2019. In order to build the model, the study used data from the 
Water Supply and Sewage System Company (Zakład Wodociągów i Kanalizacji Sp. z o.o.) 
in the city of Lodz complemented with data on weather conditions in the studied period. 
The analysis showed that the constructed models make it possible to perform a forecast of 
water demand depending on the expected weather conditions. 

Key words: water demand, atmospheric factors, regression model. 

1. Introduction

As the global climate changes and the urban population continues to grow, water
resources in many of the world's cities are likely to be under increasing stress from 
reduced water supply and increased demand (Bates et al., 2008).  

There have been several studies investigating the role of weather and climate 
variables in municipal water consumption (e.g. Balling and Gober, 2006; Ghiassi et al., 
2008). 

Previous studies used maximum and minimum temperatures and precipitation as 
explanatory variables to estimate water consumption. In addition, the interactions 
among different weather and climate variables that influence water use are not well 
understood (Praskievicz and Chang, 2009).  
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The aim of this study is an attempt to verify the hypothesis as to whether weather 
factors can better describe the phenomenon of water demand for the city of Lodz, 
Poland. Water is needed by everyone. Correctly predicting its demand is important to 
achieve two opposing objectives. Firstly, its quantity should be sufficient to satisfy the 
city's needs. Secondly, it should not be wasted. The data obtained clearly show that 
daily water demand varies from day to day, week to week and month to month. This 
is compounded by trends related to changing behaviour of the population and other 
users of the water supply system. In this study it was possible to obtain the total 
number of cubic metres pumped per day into the system. Data on individual 
consumers (households, industry, education, health) are only available in an 
aggregated form. Nevertheless, when reading this study, we should be aware that 
households are responsible for the consumption of 69% of the total volume of water 
in the city.  

2.  Regression models 

2.1. Multiple regression 

A multiple regression model is written as: 

 𝑦௜ ൌ β଴ ൅ ∑ 𝑥௜௝𝛽௝
ௗ
௝ୀଵ ൅ 𝜀௜ ,   𝑖 ൌ 1,2, …𝑛, 𝑥 ∈ 𝑹ௗ       𝜀௜~𝑁ሺ0,𝜎ଶሻ,  (1) 

where β଴ corresponds to the intercept,  βଵ, … ,βௗ correspond to the model 
coefficients, 𝑥௜  to the observation/measurement data, and ε to the residuals. 

The objective function for the residual sum of squares is written as 

 ℒ ൌ ∑ 𝜀௜
ଶ௡

௜ୀଵ ൌ ∑ ሺ𝑦௜ െ 𝑓ሺ𝑥௜;𝛽ሻሻଶ
௡
௜ୀଵ ,  (2) 

By plugging in the regression model equation from above we get 

 ℒ ൌ ∑ ሺ𝑦௜ െ β଴ ൅ ∑ 𝑥௜௝𝛽௝
ௗ
௝ୀଵ ሻଶ௡

௜ୀଵ , (3) 

where n corresponds to the number of observations and d corresponds to the number 
of features of the data set (Walesiak and Gatnar, 2009). 

 𝑅𝑀𝑆𝐸 ൌ  ට
∑ ሺ௣௥௘ௗ೔ି௢௕௦೔ሻమ
೙
೔సభ

௡
 (4) 

The RMSE is the square root of the sum of the squared difference between the 
observed and predicted values, normalized by the number of observations 𝑛. 

The lower RMSE the better the model fits the data (Géron, 2017). 
Overfitting reduces the generalization properties of a model. When there are 

many correlated variables in a linear regression model, their coefficients can become 
poorly determined and exhibit high variance; hence, the values of the coefficients 
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become huge. A wildly large positive coefficient on one variable can be canceled by 
a similarly large negative coefficient on its correlated cousin. By imposing a size 
constraint on the coefficients, this problem is alleviated (Harrington, 2012). 
Regularization methods constrain the model parameters in some way and thus are 
suitable to prevent overfitting. 

In many regularization models an additional term is added to the optimization 
function for the optimal parameter estimates 𝛽መ௢௣௧. 

 𝛽መ௢௣௧ ൌ 𝑎𝑟𝑔min‖𝒚 െ 𝑿𝛽‖ଶ ൅ 𝜆𝑔ሺ𝛽ሻ      (5) 

where 𝑔 is a function of the coefficients 𝛽, which encourages the desired properties of 
𝛽, and 𝜆 is a regularization parameter. 

2.2. Ridge regression 

Ridge regression, sometimes referred to as ℒଶ - regularized regression, is a 
method to shrink the regression coefficients by imposing a penalty on their size. The 
Ridge regression uses a squared penalty on the regression coefficient vector β 
(Patterson and Gibson, 2018). 

 𝛽ோோ ൌ arg  min‖𝒚 െ 𝑿𝛽‖ଶ ൅ 𝜆‖𝛽‖ଶ      (6) 

Here, λ ൐ 0 is a regularization parameter that controls the amount of shrinkage: 
the larger the value of λ ൐ 0, the greater the amount of shrinkage. The coefficients are 
shrunk toward zero but do not reach zero. If 𝜆 → 0 the parameter estimates 𝛽ோோ 
approach the parameter estimates of the least-square solution 𝛽௅ௌ. 

 𝐶𝑎𝑠𝑒 𝜆 → 0 ∶ 𝛽ோோ → 𝛽௅ௌ  (7) 

 𝐶𝑎𝑠𝑒 𝜆 → ∞ ∶ 𝛽ோோ → 0ሬ⃗   (8) 

We can solve the ridge regression problem using exactly the same procedure as 
for least squares, 

 ℒ ൌ ‖𝒚 െ 𝑿𝛽‖ଶ ൅ 𝜆‖𝛽‖ଶ ൌ ሺ𝒚 െ 𝑿𝛽ሻ்ሺ𝒚 െ 𝑿𝛽ሻ ൅ 𝜆𝛽்𝛽     (9) 

First, take the gradient of ℒ with respect to β and set to zero, 

 𝛻ℒ ൌ െ2𝑿்𝒚 ൅ 2𝑿்𝑿𝛽 ൅ 2𝜆𝛽 ൌ 0   (10) 

Then, solve for β to find that 

 βୖୖ ൌ ሺ𝐗୘𝐗 ൅ λ𝐈ሻିଵ𝐗୘𝐲, (11) 

where 𝐈 corresponds to the identity matrix. 
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2.3. LASSO regression 

The LASSO (least absolute shrinkage and selection operator), also referred to as 
ℒଵ-regularized regression, is a shrinkage method like the ridge regression, with subtle 
but important differences. The LASSO estimate is defined by 

 β௅஺ௌௌை ൌ arg min‖𝐲 െ 𝐗β‖ଶ ൅ λ‖β‖      (12) 
where 
 λ ൐ 0, (13)
 ‖β‖ ൌ ∑ หβ୨ห

ୢ
୨ୀଵ  (14) 

The LASSO method performs both regularization and variable selection. During 
the LASSO model fitting process only a subset of the provided features is selected for 
the use in the final model. The LASSO forces certain coefficients to be set to zero, 
effectively choosing a simpler model that does not include those coefficients. 
In contrast to the ridge regression, which can be solved analytically, numerical 
optimization (e.g. coordinate descent) is warranted to find the solution for the LASSO 
regression (Grus, 2018). 

The degree of regularization depends on the regularization parameter 𝜆. Thus, 
it is useful to evaluate the regression function for a sequence of 𝜆. 

3.  Reference data  

For the water demand analysis, data obtained from the Water Supply and 
Sewerage Works in the city of Lodz were used. The data from the period 2010-2019 
included the amount of water injected into the water supply system each day. The set 
contains 3652 observations. Weather data obtained from www.ogimet.com were used 
as explanatory variables. The data contain a summary of the weather condition for all 
weather stations available on the website. Data from the station closest to the place of 
water intake for the city of Lodz were used for the study. The features comprising the 
weather description included: temperature (maximum, minimum, average), dew 
point temperature, humidity, wind direction, intensity and gust, atmospheric 
pressure, precipitation, cloud cover, sunshine, horizontal visibility and snow cover. 
Weather data can be obtained free of charge, but obtaining a complete set of data 
required writing a program in VBA to retrieve data cyclically after 50 observations. 

4.  The model estimation  

Raw data on pumping volumes and weather factors were combined and subjected 
to preliminary analysis. Missing data were filled in. Filling in data gaps to preserve as 
many observations as possible for modelling concerned only weather data. 
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In addition, this concerned, e.g. the amount of snowfall during holiday periods, which 
were marked with a "-" and were replaced with a value of 0. From the preliminary 
observation of the data it can be concluded that the amount of water pumped to the 
water supply systems in the city of Lodz is decreasing every year. The variable 
describing YEAR takes the values 1, 2, 3, ..., 10 for successive years of observation 
2010, 2011, 2012, ..., 2019. Moreover, it was possible to observe that the amount of 
pumped water changes depending on the month. The lowest average value of pumped 
water per month is observed in August. For this purpose, a set of zero-one variables 
was created for each month of the year with August omitted to prevent collinearity 
between the variables. Also for the days of the week it was observed that the average 
amounts of pumped water differ. On Sundays, on average, the least water is pumped 
into the system. This resulted in dedicated zero-one variables describing the days of 
the week except Sundays. When observing the outlier variables, it was possible to 
observe that the lowest amounts of pumped water fall on public holidays. For this 
purpose, the variable SWIETO was created, which takes the value 1 if the following 
holidays were celebrated on that day: 1st of January, Easter and Easter Monday 
(movable holidays), 1st and 3rd of May, 15th of August, 1st and 11th of November, 
25th and 26th of December. 

Other variables used to build the models are presented in Table 1. 

Table 1. Other variables used to estimate the models 

Variable name Description 
T_MAX maximum temp. obs. over a 24h period for a given weather station 
T_MIN minimum temp. obs. over a 24h period for a given weather station 
T_AVG average temp. obs. over a 24h period for a given weather station 
DEW_POINT dew point – temp. below which water vapour starts condensing. 

Expressed in degrees Celsius 
HUMIDITY humidity of the air; it takes values from 0 to 100 
WIND_SPEED wind speed (km/h) 
WIND_GUST wind gusts (km/h) 
ATM_PRESSURE atmospheric pressure, at sea level (hPa) 
PRECIPITATION total precipitation in the last 24 hours (mm) 
CLOUD_COVER total cloud cover 
CLOUD_LOW low cloud cover 
SUNSHINE number of hours of sunshine in the last 24 hours (hours) 
VISIBILITY visibility expressed in km 
SNOW total snowfall in centimetres in the last 24 hours 
T_MAX4 zero-one variable taking value 1 for a max. temperature greater than 

29 degrees Celsius 
HOLIDAY_M1 zero-one variable with value 1 if the day before was a holiday 
HOLIDAY_M2 a zero-one variable with value of 1 if there was a holiday two days before 

Source: own calculations. 
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The dataset was split into two subsets. The 2019 data were left as a test set (it was 
not used in any of the model building stages). Data from 2010-2018 were used for 
model estimation. 

Five competing predictive models were built. The first containing only intercept. 
The second model with explanatory variables produced only from calendar and 
holiday variables. The third model was enriched with weather variables. The fourth 
model used type-one regularization (ridge regression) and the fifth model with type-
two regularization (lasso regression). The use of regularisation methods still ensures 
an easy interpretation of the results while reducing the variance of the random 
component. 

All estimated models were compared with a common measure of RMSE. 
The results for the first model with intercept are presented in Table 2. 

Table 2. Estimated parameter of model (1) with intercept 

Parameter Estimate Std. error P(>|t|) 

(Intercept) 111 150 159.3 <2E-16 

Source: own calculations. 

All estimated parameters in other models are statistically significant and the sign 
of the estimate is as expected. 

RSME measure was used to compare the forecasting performance of the models. 
The calculated RMSE values for the learning set and the test set for all models are 
shown in Table 3. 

Table 3. The calculated RMSE values for the learning set and the test set in the constructed models 

Model Train RMSE Test RMSE 

Model 1 (Intercept) 9127 8318 

Model 2 (Calendar & Holiday) 6083 8899 

Model 3 (Weather) 5608 7892 

Model 4 (Ridge regression) 5326 7258 

Model 5 (Lasso regression) 5329 7294 

Source: own calculations. 

Comparing the data presented in Table 4, we can conclude that model 1 predicts 
water demand better than model 2. The inclusion of weather variables in model 
3 improves RSME on both the learning set and the test set. Even better results are 
obtained when using regularization methods (lasso and ridge). Finally, model 4 (ridge 
regression) was selected as the best model. 

The results for the fourth model (ridge regression) are presented in Table 4. 
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Table 4. Estimated parameters of model (4) – ridge regression 

Parameter Description Estimate 
(Intercept) (Intercept) 80767.520942 
YEAR Year -2147.757928 
JANUARY January 9010.219430 
FEBRUARY February 10145.548916 
MARCH March 10397.937947 
APRIL April 8995.271739 
MAY May 7495.161123 
JUNE June 8566.800711 
JULY July 1604.157143 
SEPTEMBER September 5924.705100 
OCTOBER October 8775.879775 
NOVEMBER November 9511.791982 
DECEMBER December 10101.703019 
HOLIDAY Holiday -11239.859751 
MO Monday 4687.873426 
TU Tuesday 5558.797385 
WE Wednesday 5992.229451 
TH Thursday 6114.855399 
FR Friday 5087.399054 
SA Saturday 4227.928486 
T_MAX Max. temperature -209.509809 
T_MIN Min. temperature -215.081234 
T_AVG Avg. temperature 1098.767247 
DEW_POINT Dew point -554.396231 
HUMIDITY Humidity 70.395127 
WIND_SPEED Wind speed -26.091345 
WIND_GUST Wind gust -7.264865 
ATM_PRESSURE Atmospheric pressure 20.991359 
PRECIPITATION Precipitation -31.693193 
CLOUD_COVER Cloud cover -474.172728 
CLOUD_LOW Low Cloud cover 46.187129 
SUNSHINE Sunshine -14.184110 
VISIBILITY Visibility 121.005270 
SNOW Snow 259.730182 
T_MAX4 1 if temp. exceeds 29 Celsius degrees 4266.155406 
HOLIDAY_M1 Holiday (day before) -6052.783226 
HOLIDAY_M2 Holliday (2 days before) -3259.093499 

Source: own calculations. 
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The best performance of the objective function in the ridge regression model was 
obtained for parameter 𝜆 ൌ 0.1. 𝑅ଶ coefficient in this model is 0.6594. 

Best 𝜆 estimation, which minimizes the residuals (difference between 
observations and predicions), was achieved by recalculating 100 models with different  
values of  𝜆. 

In Figure 1 we observe calculated mean square error values for selected log ሺ𝜆ሻ values. 

 
Figure 1.  Mean square error values for log ሺ𝜆ሻ values used in the ridge regression model 

5. Conclusions 

This study examined the relation between daily weather variables and water use in 
the city of Lodz, Poland. Similar to previous studies, we found that maximum daily 
temperature is a good predictor of water demand. We also found that holidays are 
significant in decreasing the water demand. Moreover, like wind speed is a good 
predictor of water demand. It is likely that higher wind speed increases evaporation of 
water, which induces a cooling effect and thus decreases daily water consumption. 
Together, all these variables explain between 65% of the variations in the city of Lodz. 
Relatively similar results (up to 61% of the variations explained) were achieved by 
other authors using ARIMA model (Praskievicz and Chang, 2009).  

Further models will also incorporate non-climatic variables such as 
sociodemographic, prices or structural variables (Zhang and Brown, 2005), which 
provide our models with greater explanatory power.  
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