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ARFURIMA models: simulations of their properties  
and application 

Sanusi Alhaji Jibrin1, Rosmanjawati Abdul Rahman2 

ABSTRACT 

This article defines the Autoregressive Fractional Unit Root Integrated Moving Average 
(ARFURIMA) model for modelling ILM time series with fractional difference value in the 
interval of 1 𝑑 2. The performance of the ARFURIMA model is examined through 
a Monte Carlo simulation. Also, some applications were presented using the energy series, 
bitcoin exchange rates and some financial data to compare the performance of the 
ARFURIMA and the Semiparametric Fractional Autoregressive Moving Average 
(SEMIFARMA) models. Findings showed that the ARFURIMA outperformed the 
SEMIFARMA model. The study’s conclusion provides another perspective in analysing 
large time series data for modelling and forecasting, and the findings suggest that the 
ARFURIMA model should be applied if the studied data show a type of ILM process with 
a degree of fractional difference in the interval of 1 𝑑 2.  

Key words: interminable long memory, autocorrelation, fractional unit root integrated 
series, fractional unit root differencing, ARFURIMA model. 

1. Introduction

Long Memory (LM) is a statistical property that may arise in time series data. The
information of its occurrence in financial and economic variables can be exploited by 
investors and policy makers to predict equity prices, quantify market’s risk, inflation 
and economic growth of the country. There are past and recent works that have 
discovered degree of long memory also called fractional differencing value in the 
interval of 0 𝑑 1 (see Granger and Joyeux (1980), Hosking (1981), Ballie et al., 
(2014), Boubaker et al. (2016) and Pumi et al., (2019)).  
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Furthermore, according to Rahman and Jibrin (2018), when the ACF of time series 
exhibits decays more slowly and have fractional difference value in the interval of 1
𝑑 2, the series are said to be having an Interminable LM (ILM) process. In view of 
this, we need a family of models that can simulate a very strong dependent 
relationship (autocorrelation) between distance observations, at the same time being 
flexible enough to model both the integrated, 𝐼 1  and Fractional Unit Root 
Integrated (FURI), I(1 𝑑 2) process.  

The Autoregressive Fractional Unit Root Integrated Moving Average 
(ARFURIMA) model, suggested by Rahman and Jibrin (2019), provides a method for 
modelling FURI time series with fractional difference value in the interval of 1 𝑑
2. Therefore, in this paper, some of the basic properties of the ARFURIMA model 
were derived and presented as follows. In Section 2 we state the basic properties of the 
ARFURIMA(0,d,0) process. This is followed by the general ARFURIMA(p,d,q) family, 
its properties, and some special cases of ARFURIMA(p,d,q) in Section 3. A short 
introduction of SEMIFARMA(p,d,q)  model is given in Section 4. Then some 
simulations by using the ARFURIMA are carried out in Section 5 to assess its 
properties. Finally, its applications by using the energy series, Bitcoin exchange rate 
and financial data in are presented in Section 6. 

2.  Methodology 

Dolado and Marmol (1997) named the Data Generating Process (DGP) of 𝑦  to 
be Nonstationary Fractionally Integrated (NFI) process and defined it as: 

1 𝐿 𝑦 𝜀 ,                                                        (1)  
where d  , 𝜀 ~𝑖𝑖𝑑 0,𝜎  and 𝑑 is decomposed as 𝑑 ∝ 𝛿, where ∝
1,2,3, … … … and |𝛿| . In this case, 𝑑 can be in the range of 1 𝑑 ∞ while most 
time series usually have a fractional difference value, d, in the interval of 1 𝑑 2 
(see Gil-Alana et al., (2018) and Sabzikar et al. (2019)). However, Hurvich and Chen 
(2000) and Erfani and Samimi (2009) have highlighted the repercussion of over-
differencing including loss of information, negative values of differenced series, 𝑑

0.5 and estimation of complex models. In view of these, Rahman and Jibrin (2019) 
resolved that the possible highest value of fractional difference is in the interval of 1
𝑑 2. Also, this type of time series exhibits very slow decaying ACF, which is slower 
than usual decay seen in the literature of time series and LM analysis. Having said 
this, Rahman and Jibrin (2019) named the DGP of 𝑦  to be the FURI process and 
defined its operator as: 

1 𝐿 1 𝑑∗ 1 𝐿 𝑦 𝜀 ,                                      (2) 
where 𝑑∗ 𝑑 1, 0 𝑑∗ 1 and 1 𝑑 2. 

Details of the derivation and its R algorithm can be found in Rahman and Jibrin 
(2019).  
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2.1. The ARFURIMA(p,d,q) models 

In a similar way on how Granger and Joyeux (1980) and Hosking (1981) 
introduced ARFIMA model due to FI(d) process, Porte-Hudak (1990) introduced 
SARFIMA model due to seasonal FI(d) process and ARTFIMA model of 
Meerschaert et al. (2014) was introduced due to tempered FI(d) process. Rahman and 
Jibrin (2019) introduced the ARFURIMA model due to the FURI(d) processes. 
In order to obtain the ARFURIMA model, the lag representation of the proposed non 
power operator is incorporated as: 

𝜑 𝐿 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 𝜃 𝐿 𝜀 ,                               (3)  

where 𝜑 𝐿  and 𝜃 𝐿  are stationary and invertible. 𝐿 is the backward shift operator, 
𝜀  represents a white noise process and 1 𝐿 1 𝑑∗ 1 𝐿  is the proposed 
non-power operator. The operator fractionally differenced is a process that exhibits a 
very slow decaying (unusual decay) ACF. Here, 𝑑∗ 𝑑 1 such that 0 𝑑∗ 1 and 
1 𝑑 2 and both 𝑑∗ and d are the LM and ILM parameters respectively. The 
identification of the ARFURIMA(p,d,q) model followed the Box and Jenkins 
approach and  was discussed in detail in Rahman and Jibrin (2019).  

2.2.  The ARFURIMA(0,d,0) process 

The ARFURIMA(0,d,0) process was defined to be a discrete time series 𝑌 , 
which was presented as: 

     ∇ 𝑑∗∇ 1 𝐿 𝑌 𝜀          (4) 

where ∇ 1 𝐿 , 𝐿 is the backward-shift operator and 𝑌  represents the FURI series. 
The fractional differencing parameter 𝑑 was estimated by applying GPH (1983) semi-
parametric method defined by:   

ln 𝐼 𝜑 𝑎 𝑑 ln 4 sin 𝜀 ,                                  (5) 

where 𝑗 1, … ,𝑛, and 𝐼 𝜑 ∑ 𝑦 𝑒𝑥𝑝 𝑖𝜑 𝑡 was the periodogram at the 

frequency 𝜑 . The following theorems were some of the derived properties of 
𝜀 . 
Theorem 1 

For 0 𝑑∗ 1 such that 𝑑∗ 𝑑 1 and 1 𝑑 2, 𝑌  is  

a. stationary, causal and has infinite Moving Average (MA) function written as  

𝑌 𝜓 𝐿 𝜀 𝜓 𝐿 𝜀 𝜓 𝜀 .                                      6  
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The fractional differencing operator 1 𝐿 , 0 𝑑 1 in Granger and Joyeux 
(1980), Hosking (1981), Dolado and Marmol (1997), Meerschaert et al., (2014), 
Boubaker et al., (2016) and Pumi et al., (2019), is defined as an infinite binomial series 
expansion in powers of the backward-shift operator  

1 𝐿 𝑌 𝜓 𝐿 𝑌 𝜓 𝑌 ,                                         7  

where the coefficient, 𝜓 , is expanded by: 

𝜓
𝑘 𝑑 1

𝑘
Γi d

Γd Γi 1
, 𝑖 1,2, …                                     8  

However, 𝜓  can be expanded as:  
𝜓 𝐿 𝐿 𝑑∗ 𝐿 𝐿 .                                          9  

So, 
𝜓 ~ 1 𝐿 1 𝑑∗ 1 𝐿 ,                                                    10  

and hence, (6) can be re-written as:  

𝑌 𝜓 𝐿 𝜀 𝜓 𝐿 𝜀 𝐿 𝐿 𝑑∗ 𝐿  𝐿 𝜀 ,    11  

where 𝐿, 𝜀  and 𝑑∗is as defined in (4). Also,  

     ∑ |𝜓 | ∞                                                              (12) 

satisfied the causality condition, where it stated that 𝑌  depended on past residuals 
𝜀  and the dependency was gradually decreasing asymptotically for a long time.  

Proof. 

Using 𝑌 𝜓 𝐿 𝜀 , we have 𝜓 𝐿 𝐿 𝐿 𝑑∗ 𝐿 𝐿 . When 
1 𝑑 2, the expansion of 𝜓 𝐿  converged for |𝐿| 1 and so 𝑌  is stationary. 
The expansion of 𝐿 𝐿 𝑑∗ 𝐿 𝐿   resulted in (10) when 𝑛 → ∞, that 
was 𝐿 𝐿 𝑑∗ 𝐿 𝐿 ~ 1 𝐿 1 𝑑∗ 1 𝐿 .       
b. 𝑌  is invertible and has infinite AR function writen as: 

Φ 𝐿 𝑌 ∑ Φ 𝐿 𝑌 ∑ Φ 𝑌 𝜀 ,                              (13) 

where Φ  is defined similar to  𝜓   in (9) with the invertibility 

∑ |Φ | ∞                                                               (14) 
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Proof. 

The proof was similar to (a). 
c. The spectral density function of 𝑌  is 

𝑓 𝜆 ∑ 𝑒 𝛾 𝑘                                                    (15) 
where 𝛾 𝑘  was the autocovariance function of 𝑌 . 𝑓 ~|𝜆| 𝐶  described the pole 
at the zero frequency of the spectral density as 𝐶 0 and 1 𝑑 2.  

d. The autocovariance function of 𝑌  is 

𝛾 𝑘 𝐸 𝑌 𝑌
∗

∗ ,                                          (16) 

where 𝛾 ~𝐾 ,  1 𝑑 2 described the very slow decay in the autocorrelation 
function of 𝑌  as 𝑘 → ∞. 

Proof.  

Using  
𝛾 𝐸 𝑌 𝑌 𝑌 𝑌 𝑌 𝑑∗ 𝑌 𝑌  

                     𝛾 𝛾 𝑑∗ 𝛾 𝛾  

                                        𝛾 1 𝑑∗ 𝛾 𝑑∗𝛾 , 

and re-arranging the equation as 𝛾 1 𝑑∗ 𝑑∗𝛾 𝛾 , we get 𝛾 𝑑∗

𝑑∗𝛾 𝛾  and therefore,  

               𝛾
∗

∗ . 

e. The autocorrelation function of 𝑌  is 

           𝜌
∗

∗                                              (17) 

where 𝑑∗ is as defined in (4). 

Proof. 

Using   
𝛾 𝐸 𝑌 𝑌 𝑌 𝑌 𝑌 𝑑∗ 𝑌 𝑌  

          𝛾 𝛾 𝑑∗ 𝛾 𝛾  

                                                         𝛾 1 𝑑∗ 𝛾 𝑑∗𝛾 . 

Re-arranging the equation will get 𝛾 𝛾 1 𝑑∗ 𝑑∗𝛾 𝛾 . 
Therefore, 

𝛾
∗

∗ .                                                       (18) 

Therefore, (17) is resulted from substituting (16) and (18).  
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2.3.  The Nonstationary ARFURIMA(p,d,q) model 

Consider the stationary ARFURIMA(p,d,q) model, written as:  

𝜑 𝐿 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 𝜇 𝜃 𝐿 𝜀 ,                        19) 

where 𝜑 𝐿 1 𝜑 𝐿 𝜑 𝐿 ⋯ 𝜑 𝐿  and 𝜃 𝐿 1 𝜃 𝐿 𝜃 𝐿 ⋯
𝜃 𝐿 . For (19) to be stationary and invertible, each zero of 𝜑 𝐿  and 𝜃 𝐿  must be 
outside the unit circle respectively. Noticed that when 𝑑∗ 0, the ARFURIMA is 
reduced to the ARIMA model.  

Theorem 2 

The ARFURIMA(p,d,q) model as mentioned by (19) is  

a. stationary if 

𝑌 1 𝐿 1 𝑑∗ 1 𝐿 𝜑 𝐿 𝜃 𝐿 𝜀 .                          (20) 

b. It is invertible when 

  𝜑 𝐿 𝜃 𝐿 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 𝜀 .                              (21) 

c. Its spectral density function is given by 

𝑓 𝜔 1 𝐿 1 𝑑∗ 1 𝐿 𝑒 .                 (22) 

d. Then, the non-stationary ARFURIMA model can be represented as  

𝜑 𝐿 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 𝜐 𝜃 𝐿 𝜀                              (23) 

where  𝜐 is a constant. 

2.4.  Maximum Likelihood Estimation Method for ILM Model and Its Hybrid 

Consider series 𝑌 𝑦 , … ,𝑦 ʹ, where 𝑦 , … ,𝑦 was the FURI process. In order 
to obtain the estimates of the ARFURIMA, the series 𝑌 was filtered by the non-power 
operator, 𝜀 , where 

𝜀 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 .                                     (24) 
Following Kang and Yoon (2013), 𝜀  in equation (24) was assumed to be normal. 

The parameters of the ARFURIMA (p,d,q) model were estimated by using the 
Maximum Likelihood Estimation (MLE) and nonlinear optimization procedures. The 
maximized of the logarithm of the normal likelihood function was given in equation 
(25). 

ln 𝐿 𝜇,𝑑,𝜑,𝜃,𝜎 ln 2𝜋 ln|Σ| 𝑌ʹΣ 𝑌,                    (25) 
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where 𝑛 is the number of observations, Σ represents the n x n covariance matrix of 𝑌 
dependent on 𝜇,𝑑,𝜑,𝜃,𝜎  and |Σ|is the determinant of Σ. 

2.5.  The SEMIFARMA(p,d,q) model 

With reference to the Semiparametric Fractional Autoregressive Moving Average 
(SEMIFARMA) model by Beran and Feng (2002), we used the definition of the 
SEMIFARMA(p,d,q) model as:   

 
                          𝜑 𝐿 1 𝐿 1 𝐿 𝑌 𝜇 𝜃 𝐿 𝜀                                  (26) 

 
where 𝜇 is the mean of 𝑌 , 𝜑 𝐿 1 𝜑 𝐿 𝜑 𝐿 ⋯𝜑 𝐿 , 𝜃 𝐿 1 𝜃 𝐿
𝜃 𝐿 ⋯𝜃 𝐿 , 𝑚 and 𝑑 defined as 𝛿  𝑚  𝑑 such that 𝑑 ∈ 0.5,0.5  and 𝑚 ∈
0,1 . 

3.  Simulation properties of ARFURIMA (p,d,q) model  

This section discusses the simulation to assess the ILM, large sample, conceptual 
and unbiased properties of the ARFURIMA models. The simulated models are 
summarized in Table 1.  

Table 1.  Different models with their different selection of d,𝜑 𝜃  and 𝑛 

Model d 𝝋𝟏 𝜽𝟏 Sample size, n 

ARFURIMA(1,d,0) 1.1 
0.5 to 0.9 

- 6000 
ARIMA(1,1,0) 1 - 6000 

ARFURIMA(1,d,0) 

1.1,1.5,1.9 
-0.9,0.7,0,0.7,0.9 

- 6000 
ARFURIMA(1,d,0) - 375 

ARFURIMA(1,d,1) 0.4 0.6 375, 750, 1500,  
3000, 6000 

 
Referring to Figure 1, all the ACF indicate a very strong hyperbolic decay, 

implying evidence of ILM. Therefore, on average, all the simulated series are not 
stationary. Also, the degree of dependency between observations may produce 
fractional differencing value in interval of 1  𝑑  2.  
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Figure 1. ACF for simulated series using ARFURIMA (1,d,1) based on 𝜑 0.4, 𝜃 0.6, 𝑑
1.1,1.5,1.9  and sample size 𝑛  375, 750, 1500, 3000, 6000 . 

Table 2.  Autocorrelation of ARFURIMA (1,1.1,0) and ARIMA (1,1,0) process for different values 
of 𝜑 with n=6000 

 
k of ARFURIMA(1, 1.1, 0) k of ARIMA(1, 1, 0) 

k  0.5   0.6   0.7   0.8   0.9   0.5   0.6   0.7   0.8   0.9   

1 1 1 1 1 1 0.999 0.999 1 1 1 
2 0.999 0.999 1 1 1 0.998 0.998 0.999 1 1 
3 0.999 0.999 0.997 0.999 1 0.997 0.997 0.998 0.999 0.999 
4 0.999 0.999 0.996 0.999 0.999 0.995 0.995 0.997 0.999 0.999 
5 0.999 0.999 0.994 0.999 0.999 0.994 0.994 0.996 0.999 0.998 

 
The autocorrelation values of ARFURIMA (1,d,0) and ARIMA (1,1,0), as shown 

in Table 2, indicated a perfect relationship and strong dependency between 
observations. On the average, the dependence degrees captured by ARFURIMA was 
higher compared to the ARIMA models. Therefore, the simulations have provided 
adequate explanations about the quality of the proposed ARFURIMA model 
in simulating ILM and FURI series and thus proved the ILM properties of the model. 

Meanwhile, for 𝑘 3, the autocorrelation values of ARFURIMA (1,1.1,0) when 
𝜑 0.9, as shown, indicate that both the large theoretical fractional difference and 𝜑 
parameter value have influenced the degree of dependence among the simulated 
series. Also, for 𝑘 3, the autocorrelation values of ARFURIMA (1,d,0) for 𝑑 1.9 
and 𝜑 0.9, as shown in Table 3, was perfect indicating that the large theoretical 
fractional difference and 𝜑 parameter value has influenced the degree of dependence 
among the simulated series. Meanwhile, by comparing Table 3 and 4, the occurrence 
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of perfect autocorrelations among simulated series with 𝑛 6000 was found higher 
compared to 𝑛 375. This implied the existence of large sample size properties of 
the ARFURIMA model.  

Table 3. Autocorrelation of the ARFURIMA (1,d,0) process for various values of 𝑑 and 𝜑 , with 
n=6000 

k  d  0.9    0.7    0   0.7   0.9   
1  

 
1.1 

0.999 0.999 0.999 0.999 0.999 
2 0.999 0.999 0.999 0.999 0.999 
3 0.999 0.999 0.997 0.999 0.999 
4 0.998 0.999 0.996 0.999 0.999 
5 0.997 0.999 0.994 0.999 0.999 
1  

 
1.5 

0.999 0.999 0.999 1 1 
2 0.999 0.999 0.999 0.999 1 
3 0.999 0.999 0.999 0.999 1 
4 0.999 0.999 0.999 0.999 0.999 
5 0.998 0.999 0.999 0.999 0.999 
1  

 
1.9 

0.999 0.999 0.999 1 1 
2 0.999 0.999 0.999 1 1 
3 0.999 0.999 0.999 0.999 1 
4 0.998 0.999 0.999 0.999 0.999 
5 0.998 0.998 0.999 0.999 0.999 
 
The results of the simulation for ARFURIMA(p,d,q) with various settings 

mentioned in Table 1 showed that means and variances of all the estimated 
ARFURIMA models confirmed and supported the assumption that the residuals are 
normally distributed since all the means are zero with variances in the interval of 
0.5 𝜎 1.2 specifically for  𝑛 1000. Again, this proves the large sample and 
also the conceptual properties of the proposed ARFURIMA model. The authors can 
be contacted for a complete result of these simulations. 

4.  The application 

This section presents the application of the proposed ARFURIMA model by using 
data of energy series, bitcoin exchange rates and some financial data. 

4.1.  Data  

The description of nine series of data consisted of energy prices series, bitcoin 
exchanged rates, a financial index and few currencies exchange rates, which are 
displayed in Table 4. As shown in Figure 1-3, the time series plots of the studied series 
exhibited nonlinearity deterministic trends. All the ACF showed a very slow decay 
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in the long term with positive autocorrelations, which provided evidence of the LM 
process. In view of this, there exists LM in the studied series, and it can be described 
as an ILM. On average, all the nine series are not stationary.  

Table 4.  Daily Time Series Used for Analysis 

S/No. Type of Data Abbreviation Sample Size Date 

1 Brazil Diesel Distributors BRLLTR 
Prices  BDDP 3915 26/01/04 - 

25/01/19 

2 Dubai Crude Oil Prices DBCP 3896 26/01/04 - 
25/01/19 

3 WTI Crude Oil Prices WTCP 3896 26/01/04 - 
25/01/19 

4 Bitcoin to 1000 Euro Exchange Rate BEUR 1056 15/12/14 - 
31/12/18 

5 Bitcoin to 1000 Pound Exchange Rate BPOU 1056 15/12/14 - 
31/12/18 

6 Bitcoin to 1000 US Dollar Exchange 
Rate 

BDOL 1056 15/12/14 - 
31/12/18 

7 ATHEX Composite Index ATIN 7891 03/10/98 - 
31/12/18 

8 Kuwait Dinar to US Dollar Exchange 
Rate KUSD 5196 01/02/99 - 

31/12/18 

9 
Uruguay Peso to UK Pound Exchange 
Rate   UUKP 5196 

01/02/99 - 
31/12/18 

Source: datastream of Thomson Reuters and Morgan Stanley Capital International (MSCI). 

Table 5 presented the descriptive statistics, serial correlation, and normality test 
for the nine series. It showed that the mean for the Brazil Diesel, Dubai and WTI price 
each is 2.05, 71.97 and 71.06 respectively. Meanwhile, the standard deviation, which 
measured the variability or volatility of bitcoin exchange rate for each Euro, British 
pound sterling, United State (U.S) dollar and Japan Yen is 1.68, 2.32 and 1.50 
respectively. The skewness and kurtosis for all the series indicated non-normality. 
Similarly, the Ljung-Box Q-statistic at lag 50 and Jarque-Bera statistic showed that for 
all the studied series, the null hypotheses of no serial correlation and normality were 
rejected at the 0.05 significance level respectively.   

In testing and estimating the LM, the bandwidth was chosen between 0 and 1 
(GPH, 1983). Hurvich et al. (1998) suggests that the best bandwidth (bw) is 0.8, 
however, Baillie and Morana (2012) uses 0.6 and as for this study, we considered the 
bw as 0.5, the average of all possible fractional values in interval 0 𝑑 1. For the 
purpose of comparison, we also produced the estimations based on the bw suggested 
in Baillie and Morana (2012) and Hurvich et al. (1998) and results were presented 
in Table 6. The GPH and LWE confirmed the incidence of ILM at level among the 
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studied series. The null hypothesis of no ILM was rejected due to the p-values are less 
than the significant level of 0.05. Besides, notice that the two estimators, GPH and 
LWE with bandwidth of 0.5 and 0.8 respectively, produced inconsistent results at level 
series, with 0 𝑑 1 and 1 𝑑 2. Also, on average, the GPH produced higher 
fractional differencing values that can adequately eliminate the unwanted noise 
signals across the nine series.  
 

 
 

Figure 1.  Time Series Plot and ACF for Brazil Diesel, Dubai and WTI Crude Oil Prices  (in Dollar 
per barrel) 

Consequently, we suggest that using GPH estimator with a bandwidth equal to 
0.5 will produce an adequate fractional differencing value. The adequate fractional 
differencing value would eliminate the deterministic trend and help in producing 
a series with less variability. Table 7 presents standard errors of the means of the 
series. The series were differenced using the 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 , 1 𝐿 𝑌  
and 1 𝐿 ∝ 𝑌  operators or fractional filters of Rahman and Jibrin (2019), Granger 
and Joyuex (1981) and Dolado and Marmol (1997) respectively.  

Note that the filters of Dolado and Marmol (1997) and Beran and Feng (2002), shown 
in the last two columns respectively, produced almost the same standard errors and 
can be considered to be similar to the current operator used in this study.  
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(a) Plot of Daily Dubai Crude Oil Prices
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(a) Plot of Daily WTI Crude Oil Price
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A comparison of the standard errors of the mean produced by these three 
differenced series have shown evidence of a better performance of the fractional unit 
root difference filter, in which it gave the most minimum standard errors of mean  
compared to the other two filters. Although the KUSD series indicated that the three 
filters produced the same standard error, there is a reason to believe that the fractional 
unit root differenced filter procedure used in this study for fractionally differencing 
FURI time series was the most appropriate among the three filters because it has 
reduced the volatility, dependency and linearity structures in all the considered series.  

 

 
 

Figure 2.  Time Series Plot and ACF for Daily Bitcoin Exchange Rate to 1000 Euro, USD and USP 

4.2.  Models identification 

The AIC values for ARFURIMA and SEMIFARMA models were presented 
in Table 8 and 9 respectively. The best model according to the least AIC value 
(the values were bold) was identified for each series among the candidate models of 
ARFURIMA and SEMIFARMA.  
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4.3.  Estimation, diagnostic tests and forecast 

In this section, the estimated parameters of the mean model ARFURIMA and 
SEMIFARMA for each studied series are presented. 

4.3.1.  Estimation of the ARFURIMA and SEMIFARMA Model 

The results of the estimated parameters of both models ARFURIMA(1,d,1) and 
SEMIFARMA(1,d,1) for each series and their log-likelihood values are reported 
in Table 10. All the parameters of the ARFURIMA models were found significant due 
to their minimum standard errors. Furthermore, the ARFURIMA had larger log-
likelihood values compared to the SEMIFARMA model, implying that the 
ARFURIMA have fitted the data well. Also, the proposed non power operator 
in ARFURIMA had successfully eliminated large inherent noise signals in all the 
considered series.  

 

 

 

Figure 3.  Time Series Plot and ACF for Daily ATHEX Index, Kuwait, and Uruguay Exchange Rate 
to USD and UKP 
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Table 5.  Descriptive Statistics 

Variables Minimum Maximum Mean SD Skewness Kurtosis Q-Test (50) JB Test 

BDDP 1.22 3.40 2.05 0.49 0.76 -0.30 185894.69*** 387.62 

DBCP 22.79 140.56 71.97 26.17 0.31 -1.08 177008.13*** 250.34 

WTCP 26.19 145.31 71.06 22.88 0.38 -0.66 170140.41*** 162.49 

BEUR 0.06 6.58 1.78 1.68 0.67 -0.93 46627.64*** 117.96 

BPOU 0.07 8.51 2.34 2.32 0.75 -0.89 47436.33*** 132.84 

BDOL 0.05 5.59 1.60 1.50 0.65 -0.98 47423.24*** 115.83 

ATIN 269.45 6633.90 1825.10 1334 1.15 0.40 382594.01*** 1793.57 

KUSD 0.26 0.31 0.29 0.01 -0.48 -0.70 250067.39*** 310.36 

UUKP 17.36 56.03 36.10 9.71 -0.43 -0.59 248247.15*** 237.57 

Notes: SD=Standard Deviation, the Jarque–Bera test corresponds to the test statistic for the null 
hypothesis of normality in the distribution of sample data. The Ljung–Box statistic, Q(n), check for 
serial correlation of the series up to the nth order.  

Table 6.  Tests and Estimation of ILM and LM 
Average bw, 

bw=0.5 
BM (2012), 

bw=0.6 
H (1998), 

bw=0.8 
Average of 
bw, bw=0.5 

BM (2012), 
bw=0.6 

H (1998), 
bw=0.8 

Energy Data LWE GPH 
BDDP 1.1202(0.000) 1.1202(0.000) 0.9945(0.000) 1.1182(0.000) 1.1182(0.000) 1.0077(0.000) 
DBCP 1.2667(0.000) 1.0885(0.000) 1.0170(0.000) 1.2613(0.000) 1.0983(0.000) 1.0469(0.000) 
WTCP 1.2348(0.000) 1.0635(0.000) 1.0095(0.000) 1.2294(0.000) 1.0582(0.000) 1.0220(0.000) 
BEUR 1.1463(0.000) 0.9809(0.000) 1.0011(0.000) 1.2872(0.000) 1.0002(0.000) 1.0257(0.000) 
BPOU 1.1756(0.000) 0.9940(0.000) 1.0061(0.000) 1.3156(0.000) 1.0229(0.000) 1.0187(0.000) 
BDOL 1.1832(0.000) 1.0019(0.000) 1.0074(0.000) 1.3150(0.000) 1.0275(0.000) 1.0215(0.000) 
ATIN 1.1695(0.000) 1.0750(0.000) 1.0775(0.000) 1.1738(0.000) 1.0592(0.000) 1.0229(0.000) 
KUSD 1.2580(0.000) 1.1486(0.000) 0.9875(0.000) 1.2523(0.000) 1.1376(0.000) 0.9858(0.000) 
UUKP 1.1184(0.000) 1.0682(0.000) 0.9816(0.000) 1.1020(0.000) 1.1112(0.000) 0.9751(0.000) 

Note: p-values are in parenthesis (.), bw denotes the bandwidth for the LWE and GPH tests. BM is 
Bailie and Morana, meanwhile H is Hurvich) 

Table 7.  Standard Errors of the Mean for Fractional Unit Root and Fractional Differenced of the 
Studied Series 

Variables 𝟏 𝑳 𝟏 𝒅∗ 𝟏 𝑳 𝒀𝒕 𝟏 𝑳 𝒅𝒀𝒕 𝟏 𝑳 ∝ 𝜹𝒀𝒕 
BDDP 0.00015 0.00027 0.00028 
DBCP 0.01926 0.02633 0.02842 
WTCP 0.02036 0.02657 0.02830 
BEUR 0.00226 0.00343 0.00366 
BPOU 0.00291 0.00442 0.00476 
BDOL 0.00191 0.00284 0.00306 
ATIN 0.36372 0.47519 0.48515 
KUSD 0.00001 0.00001 0.00001 
UUKP 0.00405 0.00573 0.00582 
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Table 8.  AIC Values for ARFURIMA(p,d,q) Models 

Variables ARFURIMA(1,d,0) ARFURIMA(1,d,1) ARFURIMA(2,d,0) 

BDDP -25616.84 -25618.43 -25616.48 

DBCP 11716.44 11584.88 11607.83 

WTCP 12444.65 12379.17 12378.06 

BEUR -2618.18 -2639.72 -2627.75 

BPOU -2111.12 -2150.71 -2130.78 

BDOL -2998.07 -3038.86 -3019.29 

ATIN 77220.03 77208.76 77212.13 

KUSD -66159.66 -66206.75 -66369.59 

UUKP 1915.799 1905.627 1916.047 
 

Table 9.  AIC Values for SEMIFARMA(p,d,q) Models 

Variables SEMIFARMA(1,d,0) SEMIFARMA(1,d,1) SEMIFARMA(2,d,0) 

BDDP -24550.76 -24573.65 -24564.02 

DBCP 14170.81 14007.84 14071.67 

WTCP 14589.55 14473.07 14507.58 

BEUR -1870.80 -1918.11 -1880.35 

BPOU -1283.53 -1345.28 -1297.33 

BDOL -2173.91 -2237.29 -2189.36 

ATIN 80076.43 79966.76 80018.9 

KUSD -65401.79 -65787.28 -65691.27 

UUKP 3066.39 3017.78 3050.02 
 

Table 10.  Estimation of ARFURIMA(p,q) and SEMIFARMA(p,q) with their Log-likelihood Values 

Variables Candidate Models 𝝋𝟏 𝝋𝟐 𝜽𝟏 Log-Likelihood 
BDDP ARFURIMA(1,d,1) 0.09(0.0003) ------- 0.27(0.0005) 12813.22 

SEMIFARMA(1,d,1) 0.41(0.0821) ------- -0.54(0.0757) 12290.81 
DBCP ARFURIMA(1,d,1) -0.09(0.0003) ------- 0.53(0.0007) -5788.442 

SEMIFARMA(1,d,1) 0.24(0.0412) ------- -0.62(0.0345) -7031.430 
WTCP ARFURIMA(2,d,0) -0.37(0.0006) -0.14(0.0004) ------- -6185.031 

SEMIFARMA(1,d,1) 0.40(0.0532) ------- -0.68(0.0443) −7263.33 
BEUR ARFURIMA(1,d,1) 0.13(0.0004) ------- 0.48(0.0007) 1323.859 

SEMIFARMA(1,d,1) 0.65(0.0568) ------- -0.87(0.0391) 963.440 
BPOU ARFURIMA(1,d,1) 0.13(0.0003) ------- 0.55(0.0007) 1079.354 

SEMIFARMA(1,d,1) 0.63(0.0531) ------- -0.88(0.0352) 676.159 
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Table 10.  Estimation of ARFURIMA(p,q) and SEMIFARMA(p,q) with their Log-likelihood Values 
(cont.) 

Variables Candidate Models 𝝋𝟏 𝝋𝟐 𝜽𝟏 Log-Likelihood 
BDOL ARFURIMA(1,d,1)    0.12(0.0004) ------- 0.54(0.0007) 1523.427 

SEMIFARMA(1,d,1) 0.61(0.0562) ------- -0.87(0.0383) 1121.097 
ATIN ARFURIMA(1,d,1)   0.59(0.0008) ------- 0.69(0.0008) -38600.380 

SEMIFARMA(1,d,1)  0.84(0.0202) ------- -0.90(0.0157) −39979.420 
KUSD ARFURIMA(2,d,0)   -0.12(0.0003) 0.2(0.0004) ------- 33188.790 

SEMIFARMA(1,d,1)  0.12(0.0265) ------- -0.62(0.0213) 32897.460 
UUKP ARFURIMA(1,d,1)   0.43(0.0007) ------- 0.59(0.0007)   -948.814 

SEMIFARMA(1,d,1)  0.68(0.0521) ------- -0.77(0.0454) −1504.901 

Note: standard errors are in ∙  except in the second column 

4.3.2.  The Diagnostic Test 

Tests based on the residual’s normality test of Jarque-Bera, the Ljung-Box and 
ARCH-LM tests were applied, and the results showed evidence of non-normality, 
serial correlation, and heteroscedasticity in both the ARFURIMA and SEMIFARMA 
models due to large statistic and p-values less than 0.05. However, a comparison of the 
statistics from the three tests showed that the ARFURIMA model performed better 
due to larger test statistic for each test. A table of this analysis can be provided by the 
author on request. 

4.3.3.  Forecasting accuracy 

The Mean Absolute Error (MAE), Mean Percentage Error (MPE) and Mean 
Absolute Percentage Error (MAPE) were used to evaluate the forecast performance. 
The results are presented in Table 11 and showed that the ARFURIMA model 
produced a better forecast with minimum MAE, MPE and MAPE.  

Table 11.  Forecasts Accuracy Values of ARFURIMA and SEMIFARMA Model 

Variables Candidate Models MAE MPE MAPE 

BDDP ARFURIMA(1,d,1) 0.001542 0.021271 0.063209 
SEMIFARMA(1,d,1) 0.001953 123.7131 149.1917 

DBCP ARFURIMA(1,d,1) 1.045593  -0.028338 1.598621 
SEMIFARMA(1,d,1) 1.046859 59.90192 193.3132 

WTCP ARFURIMA(2,d,0) 1.079942  -0.043681 1.625366 
SEMIFARMA(1,d,1) 1.084338 117.8703 221.0361 

BEUR ARFURIMA(1,d,1) 0.040129 1.028172 3.097527 
SEMIFARMA(1,d,1) 0.049917 108.1391 397.9863 
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Table 11.  Forecasts Accuracy Values of ARFURIMA and SEMIFARMA Model  (cont.) 

Variables Candidate Models MAE MPE MAPE 

BPOU ARFURIMA(1,d,1) 0.032087 1.044535 3.116316 
SEMIFARMA(1,d,1) 0.054838 49.77582 222.7510 

BDOL ARFURIMA(1,d,1)    0.006603  -0.923786 3.006184 
SEMIFARMA(1,d,1) 0.036540 89.33419 188.2536 

ATIN ARFURIMA(1,d,1) 11.91682  -0.039669 1.227970 
SEMIFARMA(1,d,1)    19.86253 72.46209 153.1615 

KUSD ARFURIMA(2,d,0) 0.000223  -0.000138 0.076933 
SEMIFARMA(1,d,1) 0.137226   800.8632 1001.293 

UUKP ARFURIMA(1,d,1) 0.007133 0.002391 0.568356 
SEMIFARMA(1,d,1)    0.296838   122.9570 154.4095 

 
Similarly, Diebold and Mariano (1995) accuracy tests indicated that the 

ARFURIMA was better in forecasting all the series at 0.05 level of significance. A table 
of this analysis can be provided by the author on request. 

5.  Conclusions 

In this work, we defined the family of the ARFURIMA (p,d,q) model and the 
stationarity, invertibility and basic properties of the models were derived and 
presented. The presented simulations studies confirmed superiority of the 
ARFURIMA over the ARIMA in simulating nonstationary and the FURI series and 
thus proved the ILM properties of the ARFURIMA model and its large sample 
properties too. Besides, some applications of the model were presented and further 
confirmed a better fit of the ARFURIMA compared to the SEMIFARMA model. 

In conclusion, this study provided another perspective in analysing large time 
series data for modelling and forecasting, and the findings suggested that the 
ARFURIMA model should be considered if the data show a type of the ILM process 
with a degree of fractional difference in the interval of 1 𝑑 2.  
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