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The odd power generalized Weibull-G power series class of 
distributions: properties and applications

Broderick Oluyede1, Thatayaone Moakofi2, Fastel Chipepa3

ABSTRACT

We develop a new class of distributions, namely, the odd power generalized Weibull-G power
series (OPGW-GPS) class of distributions. We present some special classes of the proposed
distribution. Structural properties, have also been derived. We conducted a simulation study
to evaluate the consistency of the maximum likelihood estimates. Moreover, two real data
examples on selected data sets, to illustrate the usefulness of the new class of distributions.
The proposed model outperforms several non-nested models on selected data sets.

Key words: Weibull-g distribution, power series, Poisson distribution, logarithmic distribu-
tion, maximum likelihood estimation.

1. Introduction

Existing distributions or a family of distributions cannot model all real lifetime data.
Thus, there is a need to modify them by adding one or more parameters to gain flexibility.
Some families of distributions available in the literature include the Weibull-G distribution
by Bourguignon et al. (2014), the odd generalized half-logistic Weibull-G family of distri-
butions by Chipepa et al. (2020a), the exponentiated generalized (EG) class of distributions
by Cordeiro et al. (2013), beta-G family by Eugene et al. (2002), new power generalized
Weibull-G family by Oluyede et al. (2021), the odd exponentiated half-logistic-G family of
distributions by Afify et al. (2017), to mention a few.

Several generalized distributions proposed in the literature involving the power series in-
clude the exponentiated generalized power series class of distributions by Oluyede et al.
(2020c), a new generalized Lindley-Weibull class of distributions by Makubate et al. (2020),
the exponentiated power generalized Weibull power series family of distributions by Al-
dahlan et al. (2019), Weibull-power series distributions by Morais and Barreto-Souza (2011),
complementary exponential power series by Flores et al. (2013), complementary extended
Weibull-power series by Cordeiro and Silva (2014), Burr XII power series by Silva and
Silva and Cordeiro (2015), extended Weibull-power series (EWPS) distribution by Silva et
al. (2013).
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In this paper, we propose a new class of distributions, namely the odd power generalized
Weibull-G power series (OPGW-GPS) class of distributions. An attractive feature about the
model is that the extra parameter introduced have the capability to control both the weights
at the tails of the density function. Also, the new class of distributions can model different
types of failure rate functions that are available in different areas like reliability, engineer-
ing and biological studies. The new proposed distribution offers more flexibility in data
modelling since the special cases exhibit more non-monotonic shapes for the hazard rate
function compared to the other power series reviewed in this paper. Furthermore, the new
class of distributions gives birth to more families of distributions by choosing any continu-
ous probability distribution as a baseline distribution G(x;ψ).

In a recent note, Moakofi et al. (2021) developed the odd power generalized Weibull-G
(OPGW-G) family of distributions. The cumulative distribution function (cdf) and proba-
bility density function (pdf) of the OPGW-G distribution are given by

F(x;α,β ,ψ) = 1− exp{1− (1+ t)β} (1)

and

f (x;α,β ,ψ) =
αβ (1+ t)β−1 exp{1− (1+ t)β}g(x;ψ)(

1−G(x;ψ)
)2

( G(x;ψ)

1−G(x;ψ)

)α−1

,

(2)

respectively, where t =
(

G(x;ψ)

1−G(x;ψ)

)α

, for α,β > 0 and parameter vector ψ. In this note,

we extend the OPGW-G family of distributions by compounding it with the power series
distribution.

Let N be a zero truncated discrete random variable having a power series distribution, whose
probability mass function (pmf) is given by

P(N = n) =
anθ n

C(θ)
,n = 1,2,3, ..., (3)

where C(θ) = ∑
∞
n=1 anθ n is finite, θ > 0 and {an}n≥1 a sequence of positive real numbers.

If we consider X(1) = min(X1,X2, ...,XN), then the cumulative distribution function (cdf)
and probability density function (pdf) of X(1)|N = n are defined by

FX(1)|N=n(x) = 1−
C(θS(x;ψ))

C(θ)
, (4)

and

fX(1)|N=n(x) =
θg(x;ψ)C′(θS(x;ψ))

C(θ)
, (5)
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where S(x;ψ) is the survival function of the baseline distribution and ψ is a vector of pa-
rameters from the baseline distribution g(x;ψ). The power series family of distributions
includes binomial, Poisson, geometric and logarithmic distributions Johnson et al. (1994).

The rest of the paper is organized as follows: In Section 2, we present the new model
and some of the statistical properties. We present some special cases of the proposed class
of distributions in Section 3. A simulation study is presented in Section 4 and applications
in Section 5, followed by concluding remarks.

2. The Model, Sub-Classes and Properties

In this section, we develop the new model, referred to as the odd power generalized
Weibull-G power series (OPGW-GPS) class of distributions. Some statistical properties,
including expansion of the density function, hazard rate function, quantile function, sub-
classes, moments, moment generating function and maximum likelihood estimation of model
parameters are derived. Details on the derivations of other statistical properties are given in
the Web-Appendix.

2.1. The Model

Using equation (4), the odd power generalized Weibull-G power series (OPGW-GPS)
class of distributions denoted by OPGW-GPS(α,β , θ , ψ) has cdf and pdf given by

FOPGW−GPS(x) = 1− C(θ(exp{1− (1+ t)β}))
C(θ)

, (6)

and

fOPGW−GPS(x) =
θαβ (1+ t)β−1g(x;ψ)(

1−G(x;ψ)
)2 exp{1− (1+ t)β}

( G(x;ψ)

1−G(x;ψ)

)α−1

×
C′ (θ [exp{1− (1+ t)β}]

)
C(θ)

, (7)

respectively, where t =
(

G(x;ψ)

1−G(x;ψ)

)α

, for α,β , θ , x > 0 and parameter vector ψ.

Table 1 below presents the special families of OPGW-GPS distribution when C(θ) is spec-
ified in equation (6).



92 Oluyede B., Moakofi T., Chipepa F.: The odd power generalized Weibull-G...

Table 1: Special Families of the OPGW-GPS Distribution

Distribution C(θ) an cdf

OPGW-G Poisson eθ −1 (n!)−1 1- exp(θ [exp{1−(1+t)β }])−1
exp(θ)−1

OPGW-G Geometric θ(1−θ)−1 1 1- (1−θ)(exp{1−(1+t)β })
(1−θ [exp{1−(1+t)β }])

OPGW-G Logarithmic − log(1−θ) n−1 1- log(exp{1−(1+t)β })
log(1−θ)

OPGW-G Binomial (1+θ)m −1
(m

n

)
1- (1+θ [exp{1−(1+t)β }])m−1

(1+θ)m−1

2.2. Regularity Condition

We use the Kullback-Leibler distance between densities fα , for α1 ̸= α2

D( f1, f2) =
∫

f (x|α1) log
(

f (x|α1)
f (x|α2)

)
dx > 0. Hence, we obtain

D( f1, f2) =
∫

f (x|α1)

(
log
[

α1

α2

]
+(α1 −α2) log

[ G(x;ψ)

1−G(x;ψ)

])
dx

=
∫

f (x|α1)

(
log
[

α1[1−G(x;ψ)](α1−α2)

α2[G(x;ψ)](α1−α2)

])
dx, (8)

therefore, D( f1, f2)> 0, for α1 ̸= α2 since log
[

α1[1−G(x;ψ)](α1−α2)

α2[G(x;ψ)](α1−α2)

]
> 0.

2.3. Quantile Function

Let X be a random variable with cdf defined by equation (6). The quantile function
QOPGW−GPS(u) is defined by FOPGW−GPS(QOPGW−GPS(u)) = u,0 ≤ u ≤ 1 so that the quantile
function of the OPGW-GPS class of distributions is given by

QOPGW−GPS(u) = G−1
[([(

1− log
(

C−1
[
C(θ)

(
1−u

)]
θ

)) 1
β

−1
]−1

α

+1
)−1]

. (9)

2.4. Expansion of Density

The pdf of the OPGW-GPS class of distributions is an infinite linear combination of
exponentiated-G distribution expressed as

fOPGW−GPS(x) =
∞

∑
m=0

wm+1gm+1(x;ψ), (10)
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where gm+1(x;ψ) = (m+ 1)
(

G(x;ψ)
)m

g(x;ψ) is the Exp-G distribution with power pa-
rameter (m+1) and

wm+1 =
∞

∑
j,k,i,l=0

∞

∑
n=1

(
j
k

)(
β (k+1)−1

i

)(
α(i+1)−1

l

)(
−(α(i+1)+1)+ l

m

)
× αβ (−1)k+l+mn j+1anθ n

C(θ) j!
1

m+1
.

(11)

2.5. Moments and Generating Function

If X follows the OPGW-GPS distribution and Y ∼ Exp−G(m+1), then using equation
(10) the pth raw moment, µ ′

p of the OPGW-GPS class of distributions is obtained as

µ
′
p = E(X p) =

∫
∞

−∞

xp f (x)dx

=
∞

∑
m=0

wm+1E(Y p),

where wm+1 is given by equation (11). The moment generating function (MGF) M(t) =
E(etX ) is given by:

MX (t) =
∞

∑
m=0

wm+1MY (t),

where MY (t) is the mgf of Y and wm+1 is given by equation (11).

2.6. Distribution of Order Statistics

Let X1,X2, ...,Xn be a random sample from OPGW-GPS class of distributions and sup-
pose X1:n < X2:n < ... < Xn:n denote the corresponding order statistics. The pdf of the kth

order statistic is given by

fk:n(x) =
n!

(k−1)!(n− k)!

∞

∑
m=0

n−k

∑
l=0

(
n− k

l

)
(−1)lhm+1gm+1(x;ψ), (12)

where gm+1(x;ψ) = (m+1)g(x;ψ)Gm(x;ψ) is an Exp-G with power parameter m+1 and
the linear component

hm+1 =
∞

∑
p, j,k,i,v=0

∞

∑
n,z=1

nandz,pθ z+n

Cz+1(θ)

(n+ z) j

j!

(
k+ l −1

p

)(
j
k

)(
β (k+1)−1

i

)
×

(
α(i+1)−1

v

)(
−(α(i+1)+1)+ v

m

)
(−1)p+k+m

αβ
1

m+1
.

(13)
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2.7. Rényi Entropy

In this subsection, Rényi entropy for OPGW-GPS class of distributions is derived. An
entropy is a measure of uncertainty or variation of a random variable. Rényi entropy by
Rényi (1961) is a generalization of Shannon entropy by Shannon (1951). Rényi entropy for
OPGW-GPS class of distributions is given by

IR(v) =
1

1− v
log
(

∞

∑
m=0

w∗e(1−v)IREG

)
, (14)

where IREG =
∫

∞

0 [(1+m/v)g(x;ψ)Gm/v(x;ψ)]vdx is Rényi entropy for an Exp-G distribu-
tion with power parameter (m/ν +1) and

w∗ =
∞

∑
j,k,i,l,m=0

∞

∑
n=1

dv,nθ v+n−1(
C(θ)

)v (v+(n−1)) j(αβ )v
(

j
k

)(
β (k+ v)− v

i

)
(−1)k+l+m

j!

×
(

α(i+ v)−1
l

)(
−(α(i+ v)+ v)+ l

m

)
1

(1+m/ν)v . (15)

Consequently, Rényi entropy for OPGW-GPS class of distributions can be obtained from Rényi en-
tropy of the Exp-G distribution.

2.8. Maximum Likelihood Estimation

We obtain the maximum likelihood estimates of the parameters of the OPGW-GPS class of dis-
tributions in this section. Let Xi ∼ OPGW −GPS(α,β ,θ ,ψ) and ∆ = (α,β ,θ ,ψ)T be the parameter
vector. The log-likelihood ℓ= ℓ(∆) based on a random sample of size n is given by

ℓ(∆) = n ln [θαβ ]+ (β −1)
n

∑
i=1

ln[1+ t]−n ln[C(θ)]+
n

∑
i=1

(1− (1+ t)β )

+ (α −1)
n

∑
i=1

ln

[
G(x;ψ)

1−G(x;ψ)

]
+

n

∑
i=1

ln
[
C′
(

θ

[
exp
(

1− [1+ t]β
)])]

+
n

∑
i=1

ln
[
g(x;ψ)

]
−2

n

∑
i=1

ln
[(

1−G(x;ψ)
)2
]
,

where t =
(

G(x;ψ)

1−G(x;ψ)

)α

. The maximum likelihood estimates of the parameters, denoted by

∆̂ is obtained by solving the nonlinear equation ( ∂ℓn
∂α

, ∂ℓn
∂β

, ∂ℓn
∂θ

, ∂ℓn
∂ψk

)T = 0, using a numeri-
cal method such as the Newton-Raphson procedure. The multivariate normal distribution
Nq+3(0,J(∆̂)−1), where the mean vector 0 = (0,0,0,0)T and J(∆̂)−1 is the observed Fisher
information matrix evaluated at ∆̂, can be used to construct confidence intervals and con-
fidence regions for the individual model parameters and for the survival and hazard rate
functions.
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3. Some Special Classes of the OPGW-GPS Class of Distributions

In this section, special classes of OPGW-GPS class of distributions are presented by
specifying the baseline distribution to be Weibull and log-logistic distributions, respectively.
We considered the power series distributions Poisson and Logarithmic for each selected
baseline distribution. The cdf and pdf of the Weibull distribution are given by G(x;λ ) =

1− exp
(
−xλ

)
and g(x;λ ) = λxλ−1 exp

(
−xλ

)
, for λ > 0, and x > 0. Furthermore, the

log-logistic distribution has cdf and pdf given by G(x;λ ) = 1−
(
1+ xλ

)−1
and g(x;λ ) =

λxλ−1
(
1+ xλ

)−2
, for λ > 0, and x > 0.

3.1. Odd Power Generalized Weibull-Weibull Poisson (OPGW-WP) Distribution

The cdf and pdf of the OPGW-WP distribution are given by

FOPGW−WP(x) = 1− exp(θ [exp{1− (1+ z)β}]−1)
exp(θ)−1

,

and

fOPGW−WP(x) = θαβ (1+ z)β−1

((
1− exp{−xλ}

)
exp{−xλ}

)α−1

exp{1− (1+ z)β}

× λxλ−1 exp{−xλ}
exp{−xλ}2

exp{θ [exp{1− (1+ z)β}]}
(exp(θ)−1)

,

respectively, where z =
( 1−exp{−xλ }

exp{−xλ }

)α , for α,β , λ and θ > 0.

Figure 1 shows the plots of pdfs and hrfs of the OPGW-WP distribution. The pdf can
take various shapes that include uni-modal, reverse-J, left skewed and right-skewed. Fur-
thermore, the hazard rate functions (hrfs) for the OPGW-WP distribution exhibit increasing,
reverse-J, bathtub, and upside bathtub shapes.
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Figure 1: Plots of the pdf and hrf for the OPGW-WP distribution

3.2. Odd Power Generalized Weibull-Weibull Logarithmic (OPGW-WLoG) Distribu-
tion

The cdf and pdf of the OPGW-WLoG distribution are given by

FOPGW−WLoG(x) = 1− log[1−θ(exp{1− (1+ z)β})]
log[1−θ ]

,

and

fOPGW−WLoG(x) = θαβ (1+ z)β−1
(

1− exp{−xλ}
exp{−xλ}

)α−1

exp{1− [1+ z]β}

× λxλ−1 exp{−xλ}
exp{−xλ}2

(1−θ [exp{1− (1+ z)β}])−1

− log[1−θ ]
,

respectively, for α,β , λ > 0 and 0 < θ < 1.

Figure 2 shows the plots of pdfs and hrfs of the OPGW-WLoG distribution. The pdf can
take various shapes that include uni-modal, reverse-J, left or right-skewed. Furthermore, the
hazard rate functions (hrfs) for the OPGW-WLoG distribution exhibit increasing, reverse-J,
bathtub, upside-down bathtub, and upside-down bathtub follwed by bathtub shapes.
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Figure 2: Plots of the pdf and hrf for the OPGW-WLoG distribution

3.3. Odd Power Generalized Weibull-Log-Logistic Poisson (OPGW-WLLoGP) Distri-
bution

The cdf and pdf of the OPGW-LLoGP distribution are given by

FOPGW−LLoGP(x) = 1− exp{θ [exp{1− (1+w)β}]}−1
exp(θ)−1

,

and

fOPGW−LLoGP(x) = θαβ (1+w)β−1
(

1− (1+ xλ )−1(
1+ xλ

)−1

)α−1

exp{1− (1+w)β}

× λxλ−1(1+ xλ )−2

(1+ xλ )−2

exp{θ [exp{1− (1+w)β}]}
exp{θ}−1

,

respectively, where w =
( 1−(1+xλ )−1

(1+xλ )−1

)α , for α,β ,λ and θ > 0.

Figure 3 shows the plots of the pdfs and hrfs of the OPGW-LLoGP distribution. The pdf
can take various shapes that include almost-symmetric, reverse-J, left or right-skewed. The
hazard rate functions (hrfs) for the OPGW-LLoGP distribution exhibit increasing, reverse-J,
bathtub and upside-down bathtub shapes.
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Figure 3: Plots of the pdf and hrf for the OPGW-LLoGP distribution

3.4. Odd Power Generalized Weibull-Log-Logistic Logarithmic (OPGW-LLoGLoG)
Distribution

The cdf and pdf of the OPGW-LLoGLoG distribution are given by

FOPGW−LLoGLoG(x) = 1− log[1−θ(exp{1− (1+w)β})]
log[1−θ ]

,

and

fOPGW−LLoGLoG(x) = θαβ (1+w)β−1
(

1− (1+ xλ )−1

(1+ xλ )−1

)α−1
λxλ−1(1+ xλ )−2

(1+ xλ )−2

× exp{1− (1+w)β} (1−θ [exp{1− (1+w)β}])−1

− log[1−θ ]
,

respectively, for α,β ,λ > 0 and 0 < θ < 1.

Figure 4 shows the pdfs of the OPGW-LLoGLoG distribution. The pdf can take various
shapes that include unimodal, reverse-J, left or right-skewed. Furthermore, the hazard rate
functions (hrfs) for the OPGW-LLoGLoG distribution exhibit increasing, reverse-J, bathtub,
upside-down bathtub, and upside-down bathtub follwed by bathtub shapes.
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Figure 4: Plots of the pdf and hrf for the OPGW-LLoGLoG distribution

4. Simulation Study

In this section, the performance of the OPGW-WP distribution is examined by conduct-
ing various simulations for different sizes (n=25, 50, 100, 200, 400, 800 and 1000 ) via the
R package. We simulate N = 1000 samples for the true parameters values given in Table 2.
The table lists the mean MLEs of the model parameters along with the respective bias and
root mean squared errors (RMSEs). The precision of the MLEs is discussed by means of
the following measures: mean, mean square error (MSE) and average bias.

The estimated parameter values in Table 2 indicate that the estimates are quite stable and,
more importantly, are close to the true parameter values for these sample sizes. The sim-
ulation study shows that the maximum likelihood method is appropriate for estimating the
OPGW-WP model parameters. In fact, the means of the parameters tend to be closer to the
true parameter values when n increases. The bias and RMSE for the estimated parameter,
say, θ̂ , are given by:

Bias(θ̂) =
∑

N
i=1 θ̂i

N
−θ , and RMSE(θ̂) =

√
∑

N
i=1(θ̂i −θ)2

N
,

respectively.

5. Inference

We present two real data examples in this section, to illustrate the importance of the
OPGW-WP distribution. We compared the OPGW-WP distribution to various models. We
estimate model parameters using the maximum likelihood estimation technique via the nlm
package in R Software (2014). Model performance was assessed using the Adequacy-



100 Oluyede B., Moakofi T., Chipepa F.: The odd power generalized Weibull-G...

Table 2: Monte Carlo Simulation Results for OPGW-WP Distribution: Mean, RMSE and
Average Bias

α = 0.5,β = 1.1,λ = 1.1,c = 1.1 α = 1.0,β = 1.0,λ = 1.0,c = 0.9
n Mean RMSE Bias Mean RMSE Bias

25 0.5335 0.9724 0.0335 1.0068 1.4337 0.0068
50 0.4575 0.4222 -0.0425 0.7489 0.7986 -0.2511
100 0.4224 0.2242 -0.0776 0.7243 0.5732 -0.2757

α 200 0.4464 0.1718 -0.0536 0.7645 0.4457 -0.2355
400 0.4505 0.1216 -0.0495 0.8235 0.3418 -0.1765
800 0.4662 0.0888 -0.0338 0.8991 0.2600 -0.1009

1000 0.4757 0.0779 -0.0243 0.9316 0.2332 -0.0684
25 0.8481 0.3930 -0.2519 0.7820 0.3946 -0.2180
50 0.8847 0.3324 -0.2153 0.8130 0.3100 -0.1870
100 0.9469 0.2894 -0.1531 0.8612 0.2648 -0.1388

β 200 1.0077 0.2298 -0.0923 0.9268 0.2081 -0.0732
400 1.0337 0.1653 -0.0663 0.9621 0.1488 -0.0379
800 1.0636 0.1172 -0.0364 0.9873 0.0951 -0.0127

1000 1.0737 0.0913 -0.0263 0.9907 0.0798 -0.0093
25 2.8782 2.0091 1.3782 3.0075 2.9668 2.0075
50 2.4305 1.4320 0.9305 2.5782 2.2024 1.5782
100 2.2442 1.1478 0.7442 2.1886 1.7264 1.1886

λ 200 1.9503 0.8102 0.4503 1.7452 1.1217 0.7452
400 1.8119 0.5772 0.3119 1.4616 0.7597 0.4616
800 1.6766 0.3879 0.1766 1.2337 0.4634 0.2337

1000 1.6274 0.3250 0.1274 1.1665 0.3893 0.1665
25 2.6701 2.6410 1.5701 2.9833 3.9787 2.0833
50 2.3715 1.8348 1.2715 2.5426 2.1073 1.6426
100 2.0826 1.7178 0.9826 2.2745 2.0097 1.3745

c 200 1.6754 1.3790 0.5754 1.7600 1.5762 0.8600
400 1.4741 0.9297 0.3741 1.4197 1.1446 0.5197
800 1.3180 0.6384 0.2180 1.1350 0.7098 0.2350

1000 1.2605 0.5092 0.1605 1.0595 0.5971 0.1595
α = 1.1,β = 1.5,λ = 0.9,c = 1.1 α = 1.0,β = 0.9,λ = 1.0,c = 0.9

25 0.9414 1.3843 -0.1586 0.8803 1.0931 -0.1197
50 0.8392 0.9418 -0.2608 0.7589 0.8029 -0.2411
100 0.8497 0.8119 -0.2503 0.7232 0.5468 -0.2768

α 200 0.8751 0.6733 -0.2249 0.7517 0.4154 -0.2483
400 0.9233 0.5315 -0.1767 0.8211 0.3367 -0.1789
800 1.0137 0.4518 -0.0863 0.8871 0.2439 -0.1129

1000 1.0340 0.4206 -0.0660 0.9209 0.2185 -0.0791
25 1.8679 0.7760 0.3679 0.6926 0.3115 -0.2074
50 1.7416 0.5930 0.2416 0.7050 0.2879 -0.1950
100 1.6756 0.4820 0.1756 0.7525 0.2565 -0.1475

β 200 1.6521 0.3916 0.1521 0.7895 0.2225 -0.1105
400 1.6211 0.3205 0.1211 0.8284 0.1683 -0.0716
800 1.5767 0.2530 0.0767 0.8686 0.1063 -0.0314

1000 1.5605 0.2270 0.0605 0.8756 0.0936 -0.0244
25 2.7571 2.7198 1.8571 2.6099 2.3171 1.6099
50 2.5146 2.3418 1.6146 2.3455 1.8754 1.3455
100 2.2513 2.0824 1.3513 1.9934 1.3621 0.9934

λ 200 1.8883 1.6188 0.9883 1.6985 0.9996 0.6985
400 1.5498 1.2004 0.6498 1.4514 0.7178 0.4514
800 1.2673 0.8589 0.3673 1.2390 0.4494 0.2390

1000 1.1892 0.7238 0.2892 1.1732 0.3883 0.1732
25 2.0189 4.2126 0.9189 2.7413 3.1552 1.8413
50 1.7098 2.4929 0.6098 2.6147 2.1555 1.7147
100 1.4663 1.0845 0.3663 2.3388 2.0413 1.4388

c 200 1.2365 0.7964 0.1365 2.0201 1.8711 1.1201
400 1.1102 0.7889 0.0102 1.6168 1.4018 0.7168
800 1.0299 0.5098 -0.0701 1.2507 0.8697 0.3507

1000 1.0471 0.4529 -0.0529 1.1567 0.7870 0.2567
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Model package in R software R Software (2014) and the following goodness-of-fit statis-
tics were considered: Cramer-von-Mises (W ∗) and Andersen-Darling (A∗), -2loglikelihood
(-2 log L), Akaike Information Criterion (AIC), Consistent Akaike Information Criterion
(AICC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (K-S) statistic (and
its p-value), and sum of squares (SS). The model with the smallest values of the goodness-
of-fit statistics and a bigger p-value for the K-S statistic is regarded as the best model.

The OPGW-WP distribution was compared to the following models: odd Weibull-Topp-
Leone-log-logistic Poisson (OW-TL-LLoGP), odd Weibull-Topp-Leone-log-logistic geo-
metric (OW-TL-LLoGG) and odd Weibull-Topp-Leone-log-logistic logarithmic (OW-TL-
LLoGL) by Oluyede et al. (2020b), exponentiated half-logistic-power generalized Weibull-
log-logistic (EHL-PGW-LLoG) by Oluyede et al. (2020a), odd exponentiated half-logistic-
Burr XII (OEHL-BXII) by Aldahlan and Afify (2018), exponentiated half-logistic odd
Weibull-Topp-Leone-log logistic (EHLOW-TL-LLoG) by Chipepa et al. (2020a), odd gen-
eralized half-logistic Weibull-Weibull (OGHLW-W) by Chipepa et al. (2020b), odd log-
logistic exponentiated Weibull (OLLEW) by Afify et al. (2018), Kumaraswamy odd Lindley-
log logistic (KOL-LLoG) by Chipepa et al. (2019) and Kumaraswamy-Weibull (Kw-W) by
Cordeiro et al. (2010). The pdfs of the non-nested models are

fOW−T L−LLoGP(x;α,λ ,γ,θ) =
2θγαλxλ−1(1+ xλ )−3[1− (1+ xλ )−2]γα−1

[1− (1− (1+ xλ )−2)γ ]α+1

× exp
{
−
[

[1− (1+ xλ )−2]γ

[1− (1− (1+ xλ )−2)γ ]

]α}

×
exp
(

θ

(
exp
{
−
[

[1−(1+xλ )−2]γ

[1−(1−(1+xλ )−2)γ ]

]α}))
exp(θ)−1

,

for α,λ ,γ,θ > 0,

fOW−T L−LLoGG(x;α,λ ,γ,θ) =
2(1−θ)γαλxλ−1(1+ xλ )−3[1− (1+ xλ )−2]γα−1

[1− (1− (1+ xλ )−2)γ ]α+1

× exp
{
−
[

[1− (1+ xλ )−2]γ

[1− (1− (1+ xλ )−2)γ ]

]α}

×

(
1−

(
θ

(
exp
{
−
[

[1− (1+ xλ )−2]γ

[1− (1− (1+ xλ )−2)γ ]

]α})))−2

,
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for α,λ ,γ > 0 and 0 < θ < 1,

fOW−T L−LLoGL(x;α,λ ,γ,θ) =
2θγαλxλ−1(1+ xλ )−3[1− (1+ xλ )−2]γα−1

[1− (1− (1+ xλ )−2)γ ]α+1

× exp
{
−
[

[1− (1+ xλ )−2]γ

[1− (1− (1+ xλ )−2)γ ]

]α}

×

(
1−
(

θ

(
exp
{
−
[

[1−(1+xλ )−2]γ

[1−(1−(1+xλ )−2)γ ]

]α})))−1

− log(1−θ)
,

for α,λ ,γ > 0 and 0 < θ < 1,

fEHL−PGW−LLoG(x;α,β ,δ ,c) = 2αβδ

[
1+
(

1− (1+ xc)−1

(1+ xc)−1

)α
]β−1

e

(
1−
[

1+
(

1−(1+xc)−1

(1+xc)−1

)α
]β
)

×
(
(1+ xc)−1

)−(α+3)

1+ e

(
1−
[

1+
(

1−(1+xc)−1

(1+xc)−1

)α
]β
)

−2

×

1− e

(
1−
[

1+
(

1−(1+xc)−1

(1+xc)−1

)α
]β
)

1+ e

(
1−
[

1+
(

1−(1+xc)−1

(1+xc)−1

)α
]β
)


δ−1

cxc−1
(

1− (1+ xc)−1
)α−1

,

for α,β ,δ ,c > 0,

fOEHLBXII (x;α,λ ,a,b) =
2αλabxa−1 exp(λ [1− (1+ xa)b])(1− exp(λ [1− (1+ xa)b]))α−1

(1+ xa)−b−1(1+ exp(λ [1− (1+ xa)b]))α+1 ,

for α,λ ,a,b > 0,

fEHLOW−T L−BXII (x;α,β ,δ ,λ ,γ) =
4αβδλγxλ−1(1+ xλ )−2γ−1[1− (1+ xλ )−2γ ]αβ−1

(1− [1− (1+ xλ )−2γ ]α )β+1

× exp(−t)
(
1+ exp(−t)

)−2
[

1− exp(−t)
1+ exp(−t)

]δ−1
,

where t =
[

[1−(1+xλ )−2γ ]α

1−[1−(1+xλ )−2γ ]α

]β

, for α,β ,δ ,λ ,γ > 0 (We obtain the EHLOW-TL-LLoG distribution

from the EHLOW-TL-BXII distribution by setting γ = 1),

fOGHLW−W (x;α,β ,λ ,γ) =
2αβλγxγ−1e−λxγ

(1− e−λxγ

)β−1 exp
{
−α

[
1−e−λxγ

e−λxγ

]β}
e−(β+1)λxγ

(
1+ exp

{
−α

[
1−e−λxγ

e−λxγ

]β})2
,
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for α,β ,λ ,γ > 0,

fOLLEW (x;α,β ,γ,θ) =
θβγxβ−1e−(x/α)β

[1− e−(x/α)β

]γθ−1(1− [1− e−(x/α)β

]γ )θ−1

αβ ([1− e−(x/α)β

]θγ +(1− [1− e−(x/α)β

]γ )θ )2
,

for α,β ,λ ,γ,θ > 0,

fKOL−LLoG(x;a,b,λ ,c) = ab
[

λ 2

(1+λ )

cxc−1

(1+ xc)−1 exp(−λ z)
]

×
[

1− λ +((1+ xc)−1)

(1+λ )((1+ xc)−1)
exp(−λ z)

]a−1

×

(
1−
[

1− λ +((1+ xc)−1)

(1+λ )((1+ xc)−1)
exp(−λ z)

]a)b−1

,

where z = (1−(1+xc)−1)
((1+xc)−1)

, a,b,λ ,c > 0, and

fKw−W (x;a,b,α,β ) = abα
β xβ−1e−(αx)β

(1− e−(αx)β

)a−1(1− (1− e−(αx)β

)a)b−1,

for a,b,α,β > 0.

Data analysis results are shown in Tables 3 and 4. A histogram of data, fitted densities and proba-
bility plots are shown in Figures 5 and 6.

5.1. Carbon Fibres Data

The data set consists of 66 observations on breaking stress of carbon fibres (Gba). The data set
was reported by Nichols and Padgett (2006). The observations are: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11,
3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97,
3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35,
2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59,
3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,
1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89,
2.88, 2.82, 2.05, 3.65.

The estimated variance-covariance matrix is
0.1944 −1.0502×10−3 −0.0340 −0.1122
−0.0010 3.7606×10−5 −0.0008 −0.0094
−0.0340 −8.5370×10−4 0.0629 0.2165
−0.1122 −9.4433×10−3 0.2165 4.2044


and the 95% confidence intervals for the model parameters are given by
α ∈ [1.1232±0.8643], β ∈ [0.0096±0.0120], λ ∈ [2.8341±0.4918] and θ ∈ [4.3616±4.0189].
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Table 3: MLEs and goodness-of-fit statistics

Estimates Statistics
Model α β λ θ −2log L AIC AICC BIC W ∗ A∗ K-S p-value

OPGW-WP 1.1232 0.0096 2.8341 4.3616 282.3 290.3 290.7 300.7 0.0629 0.3926 0.0609 0.8526
(0.4409) (0.0061) (0.2509) (2.0504)

α λ γ θ

OW-TL-LLoGP 6.3768 0.2383 4.3496 14.3196 282.6 290.6 291.0 301.0 0.0681 0.3966 0.0650 0.7924
(8.7731) (0.2573) (3.4799) (27.1783)

OW-TL-LLoGG 2.3977 0.5925 5.4260 3.0075 ×10−13 282.9 290.9 291.3 301.3 0.0725 0.4300 0.0636 0.8133
(5.9558) (1.0870) (6.9440) (2.0297)

OW-TL-LLoGL 3.0041 0.4891 4.6641 1.0180 ×10−10 282.8 290.8 291.2 301.2 0.0684 0.4186 0.0615 0.8438
(3.0503) (0.4251) (2.8576) (0.0010)

α β δ c
EHL-PGW-LLoG 1.2499 0.6264 2.6141 1.4037 286.8 294.8 295.2 305.2 0.1568 0.7964 0.1003 0.2664

(63.3087) (0.2445) (0.9515) (71.1000)
α λ θ -

OEHL-BXII 0.3078 0.0019 11.9671 0.4005 318.6 326.6 327.1 337.1 0.2041 1.4189 0.1301 0.0679
(0.0616) (0.0024) (0.0016) (0.0666)

b β δ c
EHLOW-TL-LLoG 3.8346 2.3341 1.3504 0.4819 282.4 290.4 290.8 300.8 0.0626 0.3766 0.0618 0.8392

(5.5094) (6.3418) (0.8344) (1.2822)
α β λ γ

OGHLW-W 2.4257 ×10−5 0.4640 18.7820 0.2151 287.0 295.0 295.4 305.4 0.0699 0.5971 0.0635 0.8141
(7.2507 ×10−6) (4.5353 ×10−3) (1.1192 ×10−4) (0.0122)

α β γ θ

OLLEW 3.4848 2.5562 0.6938 1.4692 282.4 290.4 290.8 300.8 0.0659 0.3865 0.0631 0.8208
(3.1200) (1.3638) (1.4331) (1.5554)

a b λ c
KOL-LLoG 2.1807 8.9816 0.2946 1.1641 282.6 290.6 291.0 301.0 0.0684 0.3994 0.0646 0.7982

(5.7138) (75.5774) (0.5355) (2.5688)
a b α β

Kw-W 73.5730 3.6270 ×103 109.0600 0.1408 282.9 290.9 291.3 301.3 0.0804 0.4446 0.0688 0.7313
(6.3506) (0.0017) (0.8936) (0.0063)
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Figure 5: Fitted pdfs and probability plots for carbon fibres data set

Table 3 shows results for the various models fitted for carbon fibres data set. From the given results,
we conclude that the OPGW-WP distribution is a good model compared to the selected models since
it has the lowest values for the goodness-of-fit statistics: −2logL, AIC, AICC, BIC, A∗, W ∗ and K-S
(and the largest p-value for the K-S statistic). Also, from fitted densities and probability plots shown
in Figure 5, we observe that the OPGW-WP model fit the data set better than the other models because
it has the lowest value for the SS statistic.
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5.2. Strengths of 1.5 cm Glass Fibres Data

The second data set represents strengths of 1.5 cm glass fibres. The data set was also analysed by
Bourguignon et al. (2014) and Chipepa et al. (2020c). The data are 0.55, 0.93, 1.25, 1.36, 1.49, 1.52,
1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76,
1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29,
1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67,
1.70, 1.78, 1.89.

The estimated variance-covariance matrix is
0.0318 −5.4363×10−4 −0.0540 −0.0432
−0.0005 9.0349×10−5 −0.0029 −0.0192
−0.0540 −2.9252×10−3 0.4700 0.4033
−0.0432 −1.9221×10−2 0.4033 7.5440


and the 95% confidence intervals for the model parameters are given by
α ∈ [0.4327±0.3500], β ∈ [0.0149±0.0186], λ ∈ [6.6097±1.3438] and θ ∈ [6.02271±5.3834].

Table 4: MLEs and goodness-of-fit statistics

Estimates Statistics
Model α β λ θ −2log L AIC AICC BIC W ∗ A∗ K-S p-value

OPGW-WP 0.43272 0.0149 6.6097 6.0271 25.3 33.3 34.0 41.9 0.1070 0.6061 0.1195 0.3298
(0.1786) (0.0095) (0.6856) (2.7466)

α λ γ θ

OW-TL-LLoGP 54.4878 0.0638 2.7087 488.4785 30.4 38.4 39.1 47.0 0.2382 1.3088 0.1527 0.1058
(12.3996) (0.0176) (0.0756) (0.5924)

OW-TL-LLoGG 4.7219 0.6701 3.5777 1.8173 ×10−9 31.1 39.1 39.8 47.7 0.2572 1.4103 0.1636 0.0686
(2.4099) (0.2953) (0.6537) (0.5338)

OW-TL-LLoGL 4.1499 0.7465 3.7542 5.2222 ×10−8 31.3 39.3 40.0 47.9 0.2634 1.4437 0.1642 0.0669
(3.0503) (0.4251) (2.8576) (0.0010)

α β δ c
EHL-PGW-LLoG 2.0377 0.6397 2.1273 1.7395 39.3 47.3 48.0 55.9 0.4178 2.2961 0.2077 0.0087

(0.2532) (0.1854) (0.6324) (0.2966)
α λ θ -

OEHL-BXII 0.3225 0.0030 11.8172 0.8356 50.3 58.3 59.0 66.9 0.2417 1.3747 0.1423 0.1558
(0.0670) (0.0036) (0.0075) (0.1347)

b β δ c
EHLOW-TL-LLoG 1.1293 0.1464 4.3716 7.8796 34.9 42.9 43.6 51.4 0.3373 1.8409 0.1868 0.0246

(0.7335) (0.0736) (1.0252) (3.8531)
α β λ γ

OGHLW-W 3.0734 ×10−5 0.5007 16.9910 0.4785 27.1 35.1 35.8 43.6 0.1372 0.7816 0.1284 0.2500
(3.2131 ×10−6) (2.1967 ×10−9) (6.4740 ×10−11) (6.2517 ×10−10)

α β γ θ

OLLEW 1.9920 8.7485 0.3021 1.6872 28.0 36.0 36.7 44.6 0.1864 1.0314 0.1320 0.2223
(0.2975) (3.9396) (0.2668) (0.7436)

a b λ c
KOL-LLoG 0.5532 25.4210 0.0038 5.9116 27.4 35.4 36.1 44.0 0.1507 0.8450 0.1293 0.2429

(0.0577) (6.0680 ×10−6) (0.0012) (0.0066)
a b α β

Kw-W 1.04695 641.1439 0.2009 5.5116 30.4 38.4 39.1 47.0 0.2372 1.3038 0.1522 0.1082
(3.9411) (0.0539) (0.0228) (20.5514)

Furthermore, from the results shown in Table 4, we conclude that the OPGW-WP distribution is indeed
a better model compared to several selected models since it is associated with the lowest values for all
the the goodness-of-fit statistics (and the largest p-value for the K-S statistic). We also observe from
Figure 6 that the OPGW-WP model fit the data set better than the other models that were considered.
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Figure 6: Fitted pdfs and probability plots for glass fibres data set
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Appendix

Useful expansions

exp
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