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Estimating the population mean using a complex sampling 
design dependent on an auxiliary variable

Arijit Chaudhuri1, Sonakhya Samaddar2

ABSTRACT

In surveying finite populations, the simplest strategy to estimate a population total with-
out bias is to employ Simple Random Sampling (SRS) with replacement (SRSWR) and the
expansion estimator based on it. Anything other than that including SRS Without Replace-
ment (SRSWOR) and usage of the expansion estimator is a complex strategy. We examine
here (1) if from a complex sample at hand a gain in efficiency may be unbiasedly estimated
comparing the ”rival population total-estimators” for the competing strategies and (2) how
suitable model-expected variances of rival estimators compete in magnitude as examined
numerically through simulations.

Key words: Des Raj and symmetrized Des Raj estimator and associated variance, Hansen-
Hurwitz estimation and variance, Hartley-Ross, Horvitz-Thompson, Lahiri-Midzuno-Sen,
Murthy, Rao-Hartley-Cochran procedures vis-a-vis SRSWOR and SRSWR.
AMS Subject classification: 62 DO5.

1. Introduction

Stratifed SRSWOR is supposed to outperform unstratified SRSWOR because the con-
ventional unbiased estimator of the population mean in the former has a variance as a func-
tion of the ’Within Sum of Squares’ contrasted with the latter involving the ’Total Sum of
Squares’ if the strata are well constructed and maybe, effectively controlled Between strata
variability. Using the survey data from a stratified SRSWOR it is well known vide Cochran
(1977) and JNK Rao (1961) how the gain in stratification may duly be estimated vis-a-vis
unstratified SRSWOR.

It is our interest to extend this approach covering a few competitive pairs of strategies in
each of which it is difficult to work out plausible variance formulae in closed form illustrated
in Section 2 below.

Covering pairs of sampling strategies for estimating population totals when variance
formulae are available for unbiased estimators, we intend to examine how more compli-
cated complex strategies may be justified from the efficiency gaining point of view vis-a-vis
SRSWR and SRSWOR as the basic procedures by postulating simplified regression models
thereby working out their model-based expected values of the variances of rival unbiased
estimators for the population total.

Details are given in the Section 3 below.
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A comparative study by simulations is presented in Section 4. Comments are also stated
there.

To our knowledge the literature covers no follow-up of JNK Rao’s (1961) approach treat-
ing any other strategies. Our Section 2 below is a novel exercise removing this deficiency
taking account of several worthy alternatives. Secondly, considering a simple special case
of Fairfield Smith’s (1938) popular super-population model and bringing several useful and
popular sampling strategies under this umbrella we, as a novelty, study, by simulation, how
the numerical model-expected design variances of unbiased estimators of finite population
totals (or means) for complex and simple sampling strategies fare among each other.

2. Estimating Gain in Efficiency

2.1. (PPSWOR, Des Raj Estimator) strategy versus (SRSWOR, Expansion Estimator)

Suppose y is a variable of interest taking values yi for the respective units i of a finite
population U = (1, . . . , i, . . . ,N), with a total Y = ∑

N
i=1 yi.

Let positive values xi of another positively correlated variable x be all known for the
units i of U, with a total X = ∑

N
i=1 xi and pi =

xi
X be the unit-wise normed size measures. X ,

Y denote the population means of x and y.
Probability proportional to size measures xi (PPS) without replacement (PPSWOR)

sample selection method is implemented by selecting a number, say, n(≥2) units from U
ordered as the 1st ,2nd , . . . ,nth, namely i1, i2, . . . , i j, . . . , in with respective probabilities

pi1,
pi2

1− pi1
, . . . ,

pi j

1− pi1 − . . .− pi j−1

j = 1,2, . . . ,n.

Then, Des Raj’s unbiased estimator for Y is

tD =
1
n
(t1 + t2 + . . .+ tn)

with

t1 =
yi1

pi1
,

t2 = yi1 +
yi2

pi2
(1− pi1), . . . ,

t j = yi1 + yi2 + . . .+
yi j

pi j
(1− pi1 − pi2 − . . .− pi j−1), j = 1,2, . . . ,n.

The formula for the exact variance of tD is given by Roychoudhury (1957). But its
closed form expression is pretty complicated. Nevertheless, an unbiased estimator for V (tD)
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is given by Des Raj(1956) as

v(tD) =
1

2n2(n−1)

n

∑
j=1

n

∑
k=1,k ̸= j

(t j − tk)2

which is pretty simple in form.
Suppose a PPSWOR sample chosen as above is at hand as s = (i1, i2, . . . , in) along with

the values yi1,yi2, . . . ,yin.
Suppose we consider a comparable strategy composed of an SRSWOR sample sWOR of

size n and the expansion estimator based on it as

Ny =
N
n ∑

i∈sWOR

yi

with variance

VSWOR(Ny) =
(N −n)N2

Nn(N −1)

N

∑
i=1

(yi −Y )2

where y denotes the sample mean.
Then, an unbiased estimator for this is derived as follows: We have

V (tD) = E(t2
D)−Y 2

So an unbiased estimator for Y 2 is

Ŷ 2 = t2
D − v(tD) . . .(2.1)

Also an unbiased estimator for ∑
N
1 y2

i is tD(y2), which is tD as above with every y in tD
replaced by corresponding y2. So, an unbiased estimator for V (Ny) is

v1 =

(
1
n
− 1

N

)
N2

N −1

[
tD(y2)− Ŷ 2

N

]
. . .(2.2)

with Ŷ 2 as given in (2.1).
Then G1 = v1 − v(tD) unbiasedly estimates gain in efficiency of (PPSWOR,tD) over

(SRSWOR,Ny).

2.2. (PPSWOR, Symmetrized Des Raj Estimator) versus (SRSWOR, Expansion Esti-
mator)

Given the ordered sample as in section (2.1) as s= (i1, i2, . . . , in) and Des Raj’s estimator
tD = tD(s) based on this ordered s, let s∗ be the set of all samples obtained by permuting the
n units in s in all possible n! ways and

p(s∗) = ∑
s→s∗

p(s),
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writing ∑s→s∗ to denote the sum over all possible samples in the set s∗. Then

t∗SD = t∗SD(s
′) =

∑s→s∗ p(s)tD(s)
∑s→s∗ p(s)

= t∗SD(s),

say, for any member s′ in set s∗ is the ’Symmetrized Des Raj’ estimator for Y. Also, it is
well known, vide (Chaudhuri(2010), p19) that

V (t∗SD(s)) =V (tD(s))−E(tD − t∗SD)
2.

Hence, an unbiased estimator for V (t∗SD) is

v(t∗D) = v(tD)− (tD − t∗SD)
2.

If the survey data (s′,yi|i ∈ s′) are at hand, an unbiased estimate for VSWOR(Ny) follows
as

v2 =

(
1
n
− 1

N

)
N2

(N −1)

[
t∗SD(y

2)− (Ŷ 2)′

N

]
. . .(2.3)

Writing t∗SD(y
2) as t∗SD(s

′) with each yi in t∗SD(s
′) replaced by y2

i and

(Ŷ 2)′ = (t∗SD(s
′))2 − v2(t∗SD) . . .(2.4)

2.3. (Lahiri-Midzuno-Sen sampling with Ratio Estimator) versus (SRSWOR, Expan-
sion Estimator)

Lahiri-Midzuno-Sen’s (1951, 1952, 1953) or LMS sample is selected by choosing on
the first draw from U a unit i with selection probability pi followed by an SRSWOR in (n-1)
draws from the remaining (N-1) units excluding the first chosen unit i from U.

Then, tR = X y
x is the exact unbiased ratio estimator for Y based on such a sample, with

x denoting the sample mean of x.

Vide Chaudhuri(2010) an exactly unbiased estimator of variance of tR is

v(tR) =
N

∑
N

∑
i< j=1

ai j
Isi j

∑i∈s pi

(
N −1
n−1

− 1
∑i∈s pi

)
;

here s is the LMS sample of size n, and

Isi j =

{
1 i, j ∈ s
0 otherwise

and

ai j = pi p j

(
yi

pi
−

y j

p j

)2

;
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also πi = the inclusion probability of i in an LMS sample is given by

πi =
N −n
N −1

pi +
n−1
N −1

and

πi j =
N −n

(N −1)(N −2)
(pi + p j)+

(n−2)(n−1)
(N −1(N −2))

is the inclusion probability of i and j in an LMS sample of size n. So, an unbiased estimator
of V (Ny) from the LMS sample is

V̂SWOR(Ny) = v3 =

(
1
n
− 1

N

)
N2

(N −1)

[
∑
i∈s

y2
i

πi
− 1

N
(t2

R − v(tR))

]

because
V (tR) = E(t2

R)−Y 2

and Y 2 is unbiasedly estimated by t2
R −v(tR). So, v3 −v(tR) unbiasedly estimates the gain in

efficiency of (LMS,tR) over (SRSWOR,Ny)

2.4. (SRSWOR,Hartley-Ross estimator) versus (SRSWOR, Expansion estimator)

Based on an SRSWOR s of size n an unbiased estimator for Y given by Hartley and
Ross (1954) is

ŶHR = N
[

r+
(

N −1
N

)(
n

n−1

)
1
X
(y− rx)

]
= N [r+ c(y− rx)] ,

say, writing r = 1
n ∑i∈s

yi
xi and x, y are sample means of x and y and X is the population mean

of x.
An unbiased estimator for V (ŶHR) is given by

v(ŶHR) = (ŶHR)
2 −

[
N
n ∑

i∈s
y2

i +
N(N −1)
n(n−1) ∑ ∑

i̸= j∈s
yiy j

]

because for SRSWOR πi =
n
N ∀i and πi j =

n(n−1)
N(N−1) ∀i ̸= j

An unbiased estimator for V (Ny) from an SRSWOR s of size n is

v4 =

(
1
n
− 1

N

)
N2

(n−1) ∑
i∈s

(yi − y)2.

So v4 − v(ŶHR) tells us how much we may gain in efficiency on using ŶHR rather than
Ny.

In Section 3 below we consider situations when for complex surveys variances of unbi-
ased estimators for Y have manageably elegant forms.



44 A. Chaudhuri, S. Samaddar: Estimating the population mean using a complex ...

3. How under a simple model expected variances fare relative to each
other

Model

We assume that
yi = βxi + εi, i ∈U = (1,2,3, . . . ,N)

Here β is an arbitrary unknown constant which determines y’s dependence on x’s. x′is
are auxilliary variables which are known for all population units. ε ′i s are error terms with
zero mean and some common variance τ2, which is also not fixed.
Every expectation that we have taken in the upcoming Sections 3.1 to 3.9 are based on the
above mentioned model.

This model is a simple special case of the well-known popular Fairfield Smith’s (1938)
super-population model under which the model-variance of εi is τ2xγ

i for i=1,2,...,N. In the
literature most strategies are treated utilizing this model and the literature on comparison
among model expected variances of design- unbiased estimators of finite population to-
tals (or means) is rather vast. But in this paper we may draw attention to the following
few, namely the text by Sarndal, Swensson and Wretman (1992) and a few papers in peer-
reviewed journals namely by JNK Rao and Bayless, D.L. (1969), JNK Rao and Bayless,
D.L. (1970), TJ Rao (1967) and Chaudhuri and Arnab (1979). The last-mentioned paper,
Chaudhuri and Arnab (1979), is worthy of attention because in it, expressing Model- (Fair-
field Smith’s)- expected variances of ratio estimator based on LMS scheme by E1, that of
Rao-Hartley-Cochran estimator by E2 and that of Horvitz-Thompson estimator based on an
IPPS sample by E3, it is shown that
(i) E1 < E2 < E3 if γ < 1,
(ii) E1 > E2 > E3 if γ > 1 and
(iii) E1 = E2 = E3 if γ = 1.

3.1. Strategy 1: (SRSWR, Expansion Estimator)

For SRSWR in n draws from population of size N the expansion estimator Ny is unbi-
ased for Y = ∑

N
i=1 yi with variance

V (Ny) =
N2

n
σ

2 =
N
n

N

∑
i
(yi −Y )2; σ

2 =
1
N

N

∑
1
(yi −Y )2.

Under a model its expected value is

E (V (Ny)) =
N
n

E

[
N

∑
i=1

(yi −Y )2

]

E denotes generically a model-based expectation operator.
Then

E (V (Ny)) =
N(N −1)

n

[
τ

2 +β
2Sxx

]
= (srswr)
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where

Sxx =
1

N −1

N

∑
i=1

(xi −X)2.

3.2. Strategy 2: (SRSWOR,Ny)

We have in this case

V (Ny) =
N2(N −n)
Nn(N −1)

N

∑
i=1

(yi −Y )2.

And thus,

E (V (Ny)) =
N(N −n)

n
(τ2 +β

2Sxx) = (srswor).

3.3. Strategy 3: (PPSWR, Hansen-Hurwitz Estimator tHH )

The Hansen Hurwitz estimator (1943) is given by

tHH =
1
n

n

∑
r=1

yr

pr
,

with
yr=y-value for the unit chosen on r-th draw
pr=probability of the unit being chosen on r-th draw

V (tHH) =
1
n

[
N

∑
1

y2
i

pi
−Y 2

]

with

E (V (tHH)) =
τ2

n

(
NX

N

∑
1

1
xi
−N

)
= (ppswr).

3.4. Strategy 4: (PPSWR, Horvitz-Thompson Estimator

For PPSWR sampling in n draws the inclusion-probabilities are

πi = 1− (1− pi)
n

πi j = 1− (1− pi)
n − (1− p j)

n +(1− pi − p j)
n.

Following Chaudhuri and Pal (2003) the Horvitz & Thompson’s (1952) estimator (HTE),
tHT = ∑i∈s

yi
πi

based on a PPSWR sample s in n draws has the variance

V (tHT )PPS =
N

∑
N

∑
i< j

(πiπ j −πi j)

(
yi

πi
−

y j

π j

)2

+
N

∑
1

y2
i

πi
αi
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with αi = 1+ 1
πi

∑ j ̸=i πi j −∑
N
1 πi. Then

E (V (tHT )PPS) = β
2

[
N

∑
1

x2
i

πi
+∑∑

i̸= j
xix j

πi j

πiπ j
−X2

]

+ τ
2

(
N

∑
1

1
πi

−N

)
+β

2
N

∑
1

αi
x2

i
πi

+ τ
2

N

∑
1

αi

πi
= (ppswrht).

3.5. Strategy 5: (SRSWR,HTE)

For SRSWR in n draws the inclusion-probabilities are

πi = 1− (
N −1

N
)n

πi j = 1−2(
N −1

N
)n +(

N −2
N

)n.

For the HTE based on SRSWR in n draws the variance is

V (tHT )SRS =
N

∑
N

∑
i< j

(πiπ j −πi j)

(
yi

πi
−

y j

π j

)2

+
N

∑
1

y2
i

πi
αi

with

E (V (tHT )SRS) = β
2

[
N

∑
1

x2
i

πi
+∑∑

i̸= j
xix j

πi j

πiπ j
−X2

]

+ τ
2

(
N

∑
1

1
πi

−N

)
+β

2
N

∑
1

αi
x2

i
πi

+ τ
2

N

∑
1

αi

πi
= (srswrht).

3.6. Strategy 6: (SRSWR, N times the mean of the sampled distinct units only

From Chaudhuri (2010, pp. 35-36)we know that the sample mean of the distinct units
in a sample s chosen by SRSWR in n-draws is unbiased for the population mean Y and the
expansion estimator given by N multiplied by this mean yd , say, Ŷd = Nyd has the variance

V (Ŷd) = N2

[
1
N

N

∑
i=1

(
j

N

)n−1

− 1
N

]
S2

writing S2 = 1
(N−1) ∑

N
i=1(yi −Y )2 and so

E (V (Ŷd)) = N2

[
1
N

N

∑
1

(
j

N

)n−1

− 1
N

]
(τ2 +β

2Sxx) = (srswrd)
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writing Sxx =
1

N−1 ∑
N
1 (xi −X)2.

3.7. Strategy 7: (Rao-Hartley-Cochran Sampling, Rao-Hartley-Cochran Estimator)

A sample of size n by Rao-Hartley-Cochran (RHC(1962)) scheme is taken by choosing
from the population first a sample of N1 units by SRSWOR, then a sample of size N2 from
the remaining (N −N1) units of the population and successively and similarly, finally an
SRSWOR of size Nn keeping N1 +N2 + . . .+Nn = N and for the sake of efficiency taking
Ni =

[N
n

]
for i = 1,2, . . . ,k and the last (n-k) of these NiFLs as

[N
n

]
+1 with the restriction

N1 +N2 + . . .+Nn = N. Such a choice is uniquely possible. For the parts of the population
so constructed, the values of pi are noted and

Qi = pi1 + . . .+ piNi

for the i-th pair or group is noted.
Then, writing ∑n as the sum over these n pairs or groups and ∑n ∑n as the sum over the

distinct pairs of these groups follows the RHC’s unbiased estimator for Y as

tRHC = ∑
n

yi j

pi j
Qi

on taking independently across these n groups just one unit say labelled ij from the i-th
group denoting the associated y value as yi j. Then, it follows that

V (tRHC) =
∑n N2

i −N
N(N −1) ∑

n
∑
n

pi p j

(
yi

pi
−

y j

p j

)2

.

Also,

E (V (tRHC)) =

(
∑n N2

i −N
)

N −1
τ

2

(
X

N

∑
1

1
xi
−1

)
= (rhc).

3.8. Strategy 8: (An Inclusion Probability Proportional to size (IPPS or πPS) sam-
pling, Horvitz-Thompson Estimator

The Horvitz Thompson estimator based on a sample s of size (of distinct unit) n is
tHT = ∑i∈s

yi
πi

and πi = npi, i ∈ Population

V (tHT ) = ∑∑
i< j

(πiπ j −πi j)

(
yi

πi
−

y j

π j

)2

and

E (V (tHT )) =
Nτ2

n

(
X

N

∑
1

1
xi
−n

)
= (ippsht).
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3.9. Strategy 9: Lahiri-Midzuno-Sen (LMS) sampling Scheme, Horvitz-Thompson
Estimator (HTE)

For the sample s of size n for the LMS scheme, the HT estimator is tHT = ∑i∈s
yi
πi

with
the variance

V (tHT ) = ∑∑
i< j

(πiπ j −πi j)

(
yi

πi
−

y j

π j

)2

with

πi =
(N −n)
(N −1)

pi +
(n−1)
(N −1)

and

πi j =
(N −n)(n−1)
(N −1)(N −2)

(pi + p j)+
(n−1)(n−2)
(N −1)(N −2).

It follows that

E (V (tHT )LMS) = β
2

[
N

∑
1

x2
i

πi
+∑∑

i ̸= j
xix j

πi j

πiπ j
−X2

]
+ τ

2

(
N

∑
1

1
πi

−N

)
= (lmsht).

4. A numerical study by Simulation

4.1. Simple Model yielding x,y values

Model: Let yi = βxi + εi i ∈ U = (1,2 . . . ,N) with β an arbitrarily chosen positive
constant; xiFLs are independently generated from distribution function

F(x) = 1− e−
1
10 x, x > 0.

The choice of x was from such a distribution mainly because we wanted to use positive
values of explanatory variables keeping in mind the application of such a model in real life.
The mean of 10 was taken to choose values with considerably moderate values.

εiFLs are independently randomly generated from the Normal distribution N(0,1) for i =
1,2, . . . ,N.

Also, we take β = 2.3, 1.6, and 3.6 and N = 23. Using these different values of β we
generated three sets of values which shall be treated as population. The generated values
with β = 2.3 are reported in Table 1.
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Table 1: Table of Population values
Sl.No x y Sl.No x y

1 7.55 18.15 13 12.38 28.41
2 11.82 27.25 14 44.24 100.37
3 1.46 1.36 15 10.55 23.84
4 1.40 3.84 16 10.35 23.42
5 4.36 9.97 17 18.76 43.09
6 28.94 66.42 18 6.55 16.16
7 12.30 26.81 19 3.37 8.51
8 5.40 11.93 20 5.88 13.37
9 9.57 22.41 21 23.65 54.13

10 1.47 4.74 22 6.42 15.46
11 13.91 31.88 23 2.94 7.32
12 7.62 17.91

Throughout this paper we shall use only these three sets of (x,y)-values whenever needed
for illustrations as the finite population values of x and y. For the material presented in
sections 2.1-2.4 we intend to use the values generated as given above to illustrate the realized
magnitudes of estimated gains in efficiencies of pairs of competing strategies. For this, from
the population of N=23 sets of (x,y)-values samples of size n=7 are chosen by appropriately
defined procedures. The findings are presented in Section 4.2 below in specified tables.

In order to present numerical illustrations for the materials covered in Sections 3.1
through 3.9 we use the x-values of three generated populations mentioned above for the
population of size N=23 but β values are differently taken and εi’s are supposed to have
a constant model variance τ2 which are variably taken for illustration. On every occasion
a sample of size n is illustrated with the value 7 but y-values are accordingly supposed to
be generated yielding the specified model-expected variances illustrated in tables in Section
4.3 below.

4.2. Numerical study of material in Sections 2.1-2.4

For the purpose of presentation of materials covered in Sections 2.1-2.4, we have chosen
10 separate and independent samples each of size 7 from different populations generated as
mentioned above. We worked on deriving the estimated variances and tabulated them below
side by side.
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Table 2: Estimated variances given in Sections 2.1-2.4 for samples of size n=7 from the
(x,y)

v(tD) v1 v(t∗SD) v2 v(tR) v3 v(ŶHR) v4
i ii iii iv v vi vii viii

1806.07 4908.88 1718.08 2418.30 325.73 15196.67 5219.82 25418.88
1.76 3291.07 1.31 395.99 31.21 7845.60 24429.38 18072.16
7.57 12883.59 7.54 1097.78 509.82 2496.31 10429.85 45723.08
3.58 19646.11 2.72 1854.53 35.15 3269.31 5805.09 6658,41

39.77 6404.84 39.74 2163.54 6.49 411.98 22844.20 4321.82
315.56 4776.37 315.49 4321.30 39.93 2237.48 11985.97 5815.61
9.85 6366.44 9.18 3045.95 18.25 1476.29 860.27 2640.17

324.63 3685.89 324.49 5052.97 117.28 4474.86 4470.89 7616.78
3152.35 1301.71 3147.20 8209.40 8.76 344.86 35946.81 6572.70

15.29 5249.95 11.14 2583.30 239.06 21144.43 2014.46 42327.04

Comments

From the values of the estimated variances we may say that (i) (PPSWOR, tD) is substan-
tially more gainful in efficiency over (ii) (SRSWOR, Expansion Estimator) both of which
are much inferior to (iii) (PPSWOR, Symmetrized Des Raj Estimator). For the sample size
n=7 we had to obtain 7! = 5040 Des Raj estimates. But with powerful statistical software it
did not cost us much time.

Compared to (vi) (SRSWOR,Ny) the strategy (v) (LMS, Ratio Estimator) is enormously
more gainful as it should be because a size variable is employed. Compared to (viii)
(SRSWOR,Ny), (vii) (SRSWOR, Hartley-Ross Estimator) is also more gainful, but pre-
sumably because an auxiliary size-measure is employed.

4.3. Numerical study of material in Sections 3.1-3.9

Using the values of xi from three different populations and variously choosing β and
τ2 explained in Section 4.1, we present below in Table 3, 4 and 5 the values of the model
expected variances of various unbiased estimators for a finite population total of a variable
y of interest based on samples taken according to various schemes.
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Table 3: Ten values for each of the model-expected variances for first population
SRSWR SRSWOR PPSWR PPSWR SRSWR SRSWR RHC IPPS LMS

Ny Ny tHH HT E HT E Nyd RHC HT E HT E
(β ,τ2) (srswr) (srswor) (ppswr) (ppswrht) (srswrht) (srswrd) (rhc) (ippsht) (lmsht)
(0.1,5) 434.55 316.03 815.49 1051.10 448.74 388.17 609.19 716.92 298.45

(0.1,10) 795.98 578.89 1630.98 2073.27 805.91 711.03 1218.4 1433.83 564.18
(0.2,2) 437.05 317.85 326.20 524.57 509.11 390.41 243.68 286.77 237.13

(0.2,10) 1015.33 738.42 1630.98 2160.04 1080.6 906.97 1218.4 1433.83 662.31
(0.5,5) 2189.4 1592.29 815.49 1745.31 2646.19 1955.74 609.19 716.92 1083.45
(1.5,2) 16596.34 12070.07 326.16 6917.12 20744.01 14825.12 243.68 286.77 7465.73
(2.5,5) 46060.8 33498.76 815.49 19100.64 57582.57 41145.02 609.19 716.92 20708.61

(2.5,10) 46422.23 33671.62 1630.98 20122.81 57939.74 41467.87 1218.34 1433.83 20974.35
(2.5,25) 47506.51 34550.19 4077.44 23189.33 59011.27 42436.44 3046 3584.59 21771.56

(3,2) 65951.66 47964.85 326.19 26441.87 82547.43 58913.06 243.68 286.767 29544.03

Table 4: Ten values for each of the model-expected variances for second population
SRSWR SRSWOR PPSWR PPSWR SRSWR SRSWR RHC IPPS LMS

Ny Ny tHH HT E HT E Nyd RHC HT E HT E
(β ,τ2) (srswr) (srswor) (ppswr) (ppswrht) (srswrht) (srswrd) (rhc) (ippsht) (lmsht)
(0.1,5) 421.76 306.74 827.45 1045.82 436.46 376.75 618.14 728.88 298.43

(0.1,10) 783.19 569.59 1654.91 2063.89 793.64 699.61 1236.28 1457.76 557.62
(0.2,2) 385.92 280.67 330.98 518.18 460.03 344.73 247.26 291.55 215.02

(0.2,10) 964.20 701.24 1654.91 2147.11 1031.51 861.30 1236.27 1457.76 639.33
(0.5,5) 1869.84 1359.89 827.45 1711.52 2339.40 1670.29 618.14 728.88 946.09
(1.5,2) 13720.30 9978.4 330.98 6648.23 17982.88 12256.02 247.26 291.55 6234.14
(2.5,5) 38071.79 27688.57 827.45 18354.19 49912.75 34008.62 618.14 728.88 17287.6

(2.5,10) 38433.21 27951.43 1654.91 19372.27 50269.93 34331.48 1236.27 1457.76 17552.79
(2.5,25) 39517.50 28740 4137.27 22426.51 51341.45 35300.05 3090.69 3644.41 18348.37

(3,2) 54447.49 39598.17 330.98 25371.23 71502.90 48636.65 247.26 291.55 24618.34

Table 5: Ten values for each of the model-expected variances for third population
SRSWR SRSWOR PPSWR PPSWR SRSWR SRSWR RHC IPPS LMS

Ny Ny tHH HT E HT E Nyd RHC HT E HT E
(β ,τ2) (srswr) (srswor) (ppswr) (ppswrht) (srswrht) (srswrd) (rhc) (ippsht) (lmsht)
(0.1,5) 433.82 315.50 2637.29 3664.84 441.64 387.52 1970.15 2538.72 298.03

(0.1,10) 795.25 578.36 5274.58 7307.63 798.82 710.38 3940.30 5077.44 565.04
(0.2,2) 434.14 315.74 1054.91 1545.29 480.75 387.81 788.06 1015.49 230.89

(0.2,10) 1012.43 736.31 5274.59 7373.77 1052.24 904.38 3940.31 5077.44 658.11
(0.5,5) 2171.27 1579.11 2637.29 4193.92 2468.95 1939.54 1970.15 2538.72 1042.59
(1.5,2) 16433.17 11951.39 1054.92 6417.29 19148.91 14679.36 788.06 1015.49 7087.09
(2.5,5) 45607.53 33169.11 2637.29 17421.07 53151.72 40740.12 1970.15 2538.72 19656.68

(2.5,10) 45968.96 33431.97 5274.58 21063.87 53508.89 41062.98 3940.30 5077.44 19923.69
(2.5,25) 47053.24 34220.54 13186.47 31992.25 54580.42 42031.55 9850.76 12693.61 20724.72

(3,2) 65298.96 47490.15 1054.92 21297.84 76167.01 58330.01 788.06 1015.49 28027.93
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Comments

Among the strategies (srswr) (SRSWR, Ny), (srswor) (SRSWOR, Ny) and (srswrd)
(SRSWR,Nyd), as anticipated (srswor) fares best and (srswrd) in between the other two.
Moreover (srswrht) (SRSWR, tHT ) fares worse than all these three. Between the (ppswr)
(PPSWR, tHH ) and the (rhc) RHC strategy, the latter performs better for every (β , τ2) pair
as it should. Interestingly, (ppswrht) (PPSWR, tHT ) fares worse than both.

(ippsht) (IPPS, tHT ) strategy fares competitively against (lmsht) (LMS, tHT ), the latter
poorer as τ2 is taken higher. Interestingly, they are found competitive against all four strate-
gies with equal probability sampling making no use of size measures.

Most interestingly, the (rhc) RHC strategy fares by far the best among all the strategies
under our competition here for almost all choices of our (β , τ2)’s.

5. Discussions

The present work has clearly two distinct aspects. One of them is extending the well-
known approach of comparing the classical stratified sampling strategy with the correspond-
ing unstratified one in terms of the two variance estimates from the stratified sample at hand
on identifying the Des Raj estimator combined with PPSWOR, the symmetrized Des Raj
estimator with PPSWOR, the Hartley-Ross estimator based on SRSWOR and the mean of
values of distinct sample units in SRSWR versus the over-all sample mean in SRSWR and
the expansion estimator in SRSWOR as the situations when easy variance estimator for-
mulae are easy to derive. The other being on observing that the first aspect can be impres-
sively clarified through simulated illustrations, following it through an appeal to simulated
illustrations also to compare model-based expectations of exact design variances of pairs
of well-known unbiased estimators of population totals citing several complex and simple
sampling strategies.

6. Conclusions

(i) In the first case in Section 5, as expected, the complex strategies numerically outper-
form the respective simpler ones. Thus, it is vindicated that to go for the complex alterna-
tives is lucrative rather than to remain complacent about the simpler alternatives.
(ii) In the second case of Section 5, for various alternative pairs relative performances of
model-expected variances are comparatively demonstrated in Section 4.3. The Rao-Hartley-
Cochran (1962) strategy for our illustrated numerical situation is demonstrated to fare as the
most effective strategy. But from this it cannot be claimed that one should always go for
this in practice. Respective performances are well illustrated in Section 4.3 of course. We
cannot make general conclusions beyond our illustrated example of course.



STATISTICS IN TRANSITION new series, March 2022 53

Acknowledgement

The authors gratefully acknowledge two referee’s recommendations that led to this im-
proved version over an earlier one.

References

Bayless, D. L. and Rao, J. N. K., (1970). An empirical study of stabilities of estima-
tors and variance estimators in unequal probability sampling (n=3or 4), Jour. Amer.
Stat.Assoc. 65, pp. 1645–1667.

Chaudhuri, A., (2010). Essentials of survey sampling, Prentice Hall of India, New Delhi.

Chaudhuri, A. and Arnab, R., (1979). On the relative efficiencies of sampling strategies
under a super-population model, Sankhya, Ser. C. 41, pp. 40–43.

Cochran, W., G., (1977). Sampling Techniques. John Wiley and Sons. New York.

Des Raj, (1956). Some estimators in sampling with varying probabilities without replace-
ment, Jour. Amer. Stat. Assocn. 51, pp. 269–284.

Hansen, M. H. and Hurwitz, W. N., (1943). On the theory of sampling from finite popula-
tions, Ann. Math. Stat, 14, pp. 333–362.

Hartley, H. O. and Ross, A., (1954). Unbiased ratio estimators, Nature, 174, pp. 270–271.

Horvitz, D. G. and Thompson, D. J., (1952). A generalization of sampling without replace-
ment from a finite universe, Jour. Amer. Stat. Assoc., 47, 663–685.

Lahiri, D. B., (1951). A method of sample selection providing unbiased ratio estimates,
Bull. Int. Stat. Inst. 33(2), pp. 133–140.

Midzuno, H., (1952). An Outline of the theory of sampling systems, Annals. Inst. Stat.
Math, 1, pp. 149–156.

Murthy, M. N., (1957). Ordered and unordered estimators in sampling without replace-
ment, Sankhya, 18, pp. 379–390.

Rao, J. N. K., (1961). On the estimate of variance in unequal probability sampling, Annals.
Inst. Stat. Math, 13, pp. 57–60.



54 A. Chaudhuri, S. Samaddar: Estimating the population mean using a complex ...

Rao, J.N.K. and Bayless, D. L., (1969). An empirical study of the stabilities of estimators
and variance estimators in unequal probability of two units per stratum, Jour. Amer.
Stat. Assoc. 64, pp. 540–549.

Rao, J. N. K., Hartley, H. O., Cochran, N.G., (1962). On a simple procedure of unequal
probability sampling without replacement, Jour. Roy. Stat. Soc. B. 24, pp. 482–491.

Rao, T. J., (1967). On the choice of a strategy for a ratio method of estimation, Jour.
Roy.Stat.Soc. B. 29, pp. 392–397.

Roychoudhury, D. K., (1957). Unbiased sampling design using information provided by
linear function of auxiliary variate, Chapter 5, thesis for Associateship of Indian Sta-
tistical Institute, Kolkata.

Sarndal. C. E., Swensson, B and Wretman, J., (1992). Model Assisted Survey Sampling,
Springer Verlag, Heidelberg.

Sen, A. R., (1953). On the estimator of the variance in sampling with varying probabilities,
J. Ind. Soc. Agri. Stat. 5(2), pp. 119–127.

Smith, H. F., (1938). An empirical law describing heterogeneity in the yields of agricultural
crops, Jour. Agri. Sci. 28, pp. 1–23.


