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Relationships for moments of the progressively Type-II right
censored order statistics from the power Lomax distribution
and the associated inference

Jagdish Saran', Narinder Pushkarna’, Shikha Sehgal’

ABSTRACT

In this paper, we establish several recurrence relations between single and product moments
of progressively Type-II right censored order statistics from the power Lomax distribution.
The relations enable the computation of all the single and product moments of progressively
Type-II right censored order statistics for all sample sizes n and all censoring schemes
(R, Ry, ..., Ryp),m < n,in asimple recursive manner. The maximum likelihood approach
is used for the estimation of the parameters and the reliability characteristic. A Monte Carlo
simulation study has been conducted to compare the performance of the estimates for
different censoring schemes.

Key words: progressively Type-II right censored order statistics, single moments, product
moments, recurrence relations, power Lomax distribution, maximum likelihood estimation.

Mathematics Subject Classification: 62G30; 62G05

1. Introduction

The Lomax distribution, proposed by Lomax (1954) was introduced originally for
modelling business data and has been widely applied in a variety of contexts. In lifetime
models, it is considered as an important model and belongs to the family of decreasing
failure rate. Bryson (1974) found that this distribution can be used as heavy tailed
alternative to the exponential, Weibull and gamma distributions.

Many authors constructed generalizations of the Lomax distribution. For example,
Ghitany et al. (2007) introduced the Marshall-Olkin extended Lomax distribution,
Abdul-Moniem and Abdel-Hameed (2012) introduced the exponentiated Lomax
distribution, Tahir et al. (2015) introduced the Weibull Lomax distribution, Al-Zahrani
and Sagor (2014) studied the Poisson Lomax distribution. Recently, Tahir et al. (2016)
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and Afify et al. (2016) introduced the Gumbel-Lomax distribution and the Transmuted
Weibull Lomax distribution, respectively, and studied their mathematical and statistical
properties.

A new extension of the Lomax distribution was proposed by Rady et al. (2016) as
three parameter power Lomax distribution, by considering the power transformation

X = Tl/ B, where the random variable (r.v.) T follows the Lomax distribution with
parameters a and A . Then the distribution of 7. v. X with three parameters , § and 4
is referred to as “power Lomax distribution”, where & and £ are the shape parameters
and A is the scale parameter of the distribution.

The probability density function (p.d.f.) of r.v. X following the power Lomax
distribution is given as

gy —(a+1)
f(x) = %xﬁ—l (1 +x7) , x>0,a,B,1>0. (1.1)

The corresponding cumulative distribution function (c.d.f.) is given by

—-a

8
F(x)=1—(1+x7) , x>0,ap1>0. (1.2)

The reliability (survival) function R (x) of the power Lomax distribution is given as

-a

B
R(x) = (1 +"7) . x>0,a,81>0, (1.3)

and the failure rate function (hazard function) of the power Lomax distribution is given

by

p-1
h(x) = % = affxﬁ ,  x>0,ap1>0. (1.4)

From Egs. (1.1) and (1.2), one can observe that the characterizing differential
equation for the power Lomax distribution is given as

af(1—F(x) = (x + x7F)f (). (1.5)

Note: For f = 1 in Eq. (1.1), the p.d.f. reduces to that of the Lomax distribution.

2. Progressively Type-II right censored order statistics

The progressive Type-II right censoring scheme is quite useful in reliability and
life-testing experiments because it allows the experimenter for items to be removed
before the termination of the experiment to save time and cost. The progressive
censoring scheme and associated inferential procedures have been discussed by several
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authors including Aggarwala and Balakrishnan (1996, 1998), Balakrishnan and
Aggarwala (2000), Cohen (1963, 1976, 1991), Cohen and Whitten (1988), Balakrishnan
and Sandhu (1995), Athar et al. (2014), Saran and Pushkarna (2001, 2014), Saran and
Pande (2012), Pushkarna et al. (2015) and Saran et al. (2018). The progressive censoring
scheme can be described as follows:

Let X3, X5, ..., X, be a sequence of independent and identically distributed (i.i.d.)
random variables representing failure times of n identical units placed on a life-test.
Under the progressively Type-II right censoring scheme, at the time of i*" failure (i =
1,2,..,m, where m < n),R; surviving items are removed at random from the
experiment, where Ry, R,, ..., R;, are fixed integers. In other words, if a censoring
scheme (R, Ry, ...,Ry,) is fixed such that immediately following the first failure,
R, surviving items are removed from the experiment at random; immediately following
the first failure after that point; i.e. after second observed failure, R, surviving items are
removed from the experiment at random; this process continues until, at the mt"
observed failure, R, items are removed from the experiment.

Thus, in this type of sampling, m failures are observed and

m m
Z R; items are progressively censored so thatn = m + Z R; . The withdrawal of
i=1 i=1

items may be seen as a model describing drop-outs of units due to failures, which have
causes other than the specific one under study. In this sense, progressive censoring
schemes are applied in clinical trials as well. The drop-outs of patients may be caused,
e.g. by personal or ethical decisions, and they are regarded as random withdrawals.

Let Xl(irll’iz""’Rm) < Xz(irll’flz""’Rm) < . <X,(,§,1,f?,i""’Rm), be the m ordered

observed failure times in a sample of size n from the Power Lomax distribution as
defined by (1.1), wunder the progressively Type-II right censoring

scheme (R{,R,, ..., Ry), m <n.
Then, the joint p.d.f. of Xl(ﬁrll':ﬁz""’Rm), Xéi}l‘f:f"" Rm) , ...,Xr(rﬁir'ff,i‘""R

(Balakrishnan and Sandhu (1995))

m) i given by

m
fra G o, %) = Aum = D | [ FG@0lt =PI,
i=1
0 < x; <xp <" < xXpy <0, (2.1)
where
Amn,m—-1)=nn—-R,—1)(n—R,—R,—2).(n—R;,— R, —— R, —m+1),

(2.2)
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f(x) and F(x) are given by (1.1) and (1.2), respectively. Here, note that all the factors
in A(n,m — 1) are positive integers. Also, it may be observed that the different factors
in

A(n,m — 1) represent the number of units still on test immediately preceding the
15¢,2n4 ., mt" observed failures, respectively.

Similarly, for convenience in notation, let us define forq = 0,1, ..., (p — 1),

Ap, ) =p(p—R,—D@-R —R,—2)..(p =R, — R, — =R, —q),

with all the factors being positive integers.

We shall denote the k' single moment of the i*" progressively Type-II right
censored order statistics, from (2.1), as

(R1Rz, R) 8 _ E [x RuRzrRm) k
im:n im:mn

= A(n,m—l)ff...jx{‘ﬁf(xt)[l—F(xt)]Rfdxt, 1<i<m<n, k=0,
t=1

0 < 21 <...<XApp< O (2.3)

and the (7,s)™ product moment of the i"and j'* progressively Type-1I right
censored order statistics from (2.1), as

(RyRay R) ™) _ E [{XgRl,RZ,...,Rm)}T {XgRl,RZ,...,Rm)}S]

i,j;mm im:n jm:n

=A(n,m— 1)f f f X[ x} ﬁf(xt)[l — F(x)]R dxy;
t=1

0 <xq<..<xp< 0
1<i<j<sm<nnrs =0 (24
where A(n, m — 1) is defined before.

In Sections 3 and 4, utilizing the characterizing differential Eq. (1.5), we have
derived recurrence relations for the single and the product moments of progressively
Type-II right censored order statistics from the power Lomax distribution. These
relations along with the recursive algorithm presented in Section 5 would enable one to
compute all the single and product moments of progressively Type-II right censored
order statistics for all sample sizes n and all censoring schemes (R, R, ..., Ry,), m <
n, in a simple recursive manner. In Section 6, for the estimation of the parameters and
the reliability characteristics, maximum likelihood approach is used. In Section 7,
Monte Carlo simulation study is conducted to compare the performance of the
estimates for different censoring schemes.
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3. Recurrence relations for single moments

In this section, we shall exploit the relation (1.5) to establish recurrence relations
for the single moments of progressively Type-II right censored order statistics from the
power Lomax distribution. The results are presented in the form of the following
theorems.

Theorem 3.1: For 2 < m < nand fork > 0,

(R1,RzyRyp) KA ap apB (R1+Rz+1,R3,..Rp) KA
1:7;1:712 - (k + ﬂ) (Rl + 1) (k + ﬁ) (Tl - Rl - 1)‘u1:1111—1:2n :
(K)
= AT, ()
andform=1,n=1,2,....and k = 0,
(n-1)*+B)  (nap _ (n=1)®
Hi:1m (m - 1) = [’1 Hi:1:n ] (3.2)
Proof: From (2.3), we have
(R1.Rz,,R) K+ + 2 Rk R
1:m:mn 1 mmn

=A(n,m—1)f f f f(xfw+/1x{‘)f(x1)[1—F(xl)]Rldx1
0

0<x;<X3..< X <O
X f(x)[1 = F(x)IR2 ... fOe)[1 — F(xp)1Fmdx, dxs ...dxpy,

=Alnm—-1 [ [ .. [10) I, f(xe)[1 — F(xp)]Re dx,, (3.3)

0<xy<x3 <o X< ©

where
X2

166) = [ (% 4 axk) FGe 1 = F) P,

0
X2

f x P (xl - Axll_ﬁ)f(xl)[l — F(x)]fdx;.
0

Making use of the relation (1 5), we have
1(x,) = aﬁj K+B-11 — F(xy) R+ tdx,.

Upon integrating by parts by treating xf th-1

[1-F (xl)]R1+1 for differentiation we have

for integration and

106) = gt %3 P11 = FG)1tt 4 Ry 4+ 1) [ 2P [0 = FOe)IRaf (e |
(3.4)
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Substituting the resultant expression of I (x;) from (3.4) in (3.3), we get

(R1.Rz,.wRyn) K+ Iy (R1.R2,esRr)
1mmn 1mmn

af R1+Ry+1,R3,...Ry) KA R1,R2,R3,...Rp) K5
= G | = R = DRI Ry D

which upon rearrangement yields the relation in (3.1).

)

Next, for m=1, n=1,2,... and k=0,

(k+B) (09]
W A" = 4G, 0) [ (e + 2 Gl - ),
0

n f P ey + 22 )1 = F )] Radixy

= nap f B - p )]t

ab’ (n-1)k+6)
(k + ,8) “1 1:n 4
which, upon rearrangements, yields the relation in (3.2).

Remark 3.1: It may be noted that the first progressively Type-II right censored order
statistic

(R1,R2,--»Rm)
Xl m:n

regardless of the censoring scheme employed. This is because no censoring has taken

is the same as the first usual order statistic from a sample of size n,

place before this time.

Theorem 3.2:For2<i<m—1m <nandk =0,
(R1,Rz,.Rp) K+ F) [1 B M

iim:mn (k +ﬁ)
|(n— R, — R, — ..~ R,
(k + ﬁ)
— l),ui(:liéflz:n’Ri_l’Ri+Ri+1+1'Ri+2""’Rm)(k+B)
—(Tl—Rl—RZ - "'_Ri—l_i
R1,Rz,Ri—2,Ri—1+Ri+1,Ri41,. Rpn) K+ P R1,R2,...R)
R N e R
(3.5)
Proof: From (2.3), we have
(Ry,RzyRi) KFE) (R1,Rz,sRyp)®
Ill Té TLZ l l Trll. TLZ
=An,m-1) f f f](xi—l'xi+1) T2 f ()1 - F(xt)]Rt dx;, (3.6)

t+i
0<x; < <x2q <Xjypq1 < <Xy
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where

JGeimn,%ian) = [ P (a4 2P )OI = FOIRidny . (37)

Xi—-1
Making use of the relation in (1.5), we have
i k+p—- .
JGeia xia) = a [ T = FOe)] Rt d (3.8)

B

Integrating by parts by treating x{( P71 for integration and  [1 — F (x;)]%i*for

differentiation, we have
J(xi—1, Xi41)

k . k .
= 2 [P~ P DI — 2P~ PO )]

R+ 1) [ 2P = FG)IRf (), | (3.9)
Substituting the resultant expression of J(x;_q,%;4+1) from (3.9) in (3.6) and
simplifying, leads to (3.5).
Likewise, the following recurrence relation can also be established.
Theorem 3.3: Form <nandk = 0,

(R1,Rzy.eRy) K+ P [aﬁ(Rm +1) . ]

mmmn (k +ﬁ)
(04 (k+pB)
=F+D fﬁ) [(n — Ry — Ry — o.m Ryp_y —m + 1) X p(FuRerRim=z Ryt R + DS ]
(k)
+ Az (3.10)

4. Recurrence relations for product moments

In this section, we shall exploit the relation (1.5) to establish recurrence relations
for the product moments, defined in Eq. (2.4), of progressively Type-II right censored
order statistics from the power Lomax distribution. The results are presented in the
form of the following theorems.

Theorem4.1: For1 <i<j<mm<mn, andr,s =0,

u(erRZ ----- Ryp)S*F) _ aﬂ(R] + 1)
i,jmmn (s +,B)
__aB N (RuRosoR iR 4R 41+ LRy Ren) T+
= _(s B [(n —-Ri—R,—..— R _])'ui,j:m—l:n
_(n_Rl_Rz_..._ ]_1_(]_1))
(Rl,Rz,...,R,-_Z,R]-_l+RJ-+1,RJ-+1,...,Rm)(r’sw)] _3 (RyRyysRy)™S)
i,j—1m—-1n lui,j:m:n '

(4.1)
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Proof: From (2.4), we have

(R1,RgeesRyy) S5 /1 (R1,R2,-sRy) ™)
i,jmmn l] mn

=A(n,m— l)f f fx[](xj_l,xjﬂ)ﬁf(xt)[l — F(x.)]Re dx,,

t#j
0<xy <o <xjoq < Xjpq <o < xApp<0

where
_ [Xj+1 _S+B-1 1-B Rj
J(xj—1,%j41) = ij_l X; (xj + Ax; )f(x]-)[l — F(xj)] 7 dx;.
Using (3.9), we get — -
+ +
G 1= g7 =27 1= Fg)]
]( ) (Zﬁ Xj+1
Xj—1,Xj41) = —>= ,
TETTGER | am+1) [ - )] ),
Xj-1

(4.2)

(4.3)

(4.4)

Substituting the resultant expression for J(xj_1,Xj41) from (4.4) in (4.2) and

simplifying, on using (2.4), we get

(R1,Rz,erRiy) TS HR) +Au (R1,Rz,.eR) ™)
i,jmmn l] mn

(s+8)

=i [ it F(x,-ﬂ)]’”’“f[f(xt)u—F(xmth

oy
0<xy <oor <xjoq < Xjyq <o < xApp< 0

An,m—1 s+ j+1 =
A D [ it r ) ] [t - Fala,

(s+8)
t+j

0<xy <o <xjog < Xjyq <o < xpy< 0
aB(R + 1) (R1,Rz)sR) TS*B)

s+ Humn

_ apA(n,m—1)
(s+8)
Ri+Riyq+1
f f f x{ ]S:f +1)] A f( 1+1)dx1+1 1_[ flx)[1 — F(xp)]Re dx,
t¢11+1

O0<xy < < xjog < Xjyq <o < X< 0
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_a/)’A(n,m—l)
G+A i
r s+/3 Rj-1+Rj+1 R
[ [ [ = POy g [ ] FGol - Faleax,
t=1
t#j-1,j

O<xy <o < xjog < Xjyq < o00 < Xpp< 00

aﬁ(R] + 1) (RI'RZ""'Rm)(r'S+B)

(S +ﬁ) 'ui,j:m:n
(RyRapRj_ 1R +R 31+ LR 4 g Ri) S HP
n-— Rl R2 T R _]) . .
(S + ﬁ) [( l}.m—l.n
_(n_Rl_RZ_..._R]‘_l

(r,s+pB)
(R1R2)oRj—2,Rj_1+Rj+ LR} 11,0 Rim)

— G =) u i
(rs+p)
+ (R + 1)) ]

i,j:mmn

which on rearranging the terms leads to (4.1).

Theorem4.2:Forl <i <m-—-—1land m<nandr,s =0,

(R1Rz,erRi) TS*E) [M B ]

immn (S +ﬁ)
a‘B R1,R2,..Rim—2,Rim—1+Rim+1)T5TB)
= G+A) [(Tl —Ri—Ry— ...~ Ry, —(m— 1)),15"1_12:"1_?”2 'm—1+Rm+1) ]
(GS)
b (4.5)

lmmn

Proof: The relation in (4.5) may be proved by following exactly the same steps as those
used in proving Theorem 4.1.

Remark 4.1: It may be noted that Theorem 4.1 holds even for j =i + 1, without

(R1.R2,sRm)™ _ (RyRz,Rpp) T+

altering the proof, provided we realize that y; ;"> = Womm

Remark 4.2: For the special case Ry = R, =+ =R,, =0 sothatm =n in which
case the progressively censored order statistics become the usual order statistics
X1 X2 s ooor Xy whose single moments are denoted by u(k) for1<i<n and
product moments are denoted by ,ul n ) for1<i< J < n, the recurrence relations

established in Sections 3 and 4 reduce to that of usual order statistics from Power Lomax
distribution.
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5. Recursive computational algorithm

Thomas and Wilson (1972) gave a computational method for obtaining single and
product moments of progressively Type-II right censored order statistics from an
arbitrary continuous distribution through a mixture form that expresses them in terms
of those of the usual order statistics from a sample of size n. Utilizing the knowledge of
recurrence relations obtained in Sections 3 and 4 in a systematic manner, along with
the mixture formula for missing moments, one can evaluate the moments of
progressively Type-II right censored order statistics from the power Lomax distribution
for all sample sizes and all censoring schemes (R4, R5, ..., R;,) in a simple recursive way.
The same has been demonstrated in the Sub- Sections 5.2 and 5.3.

First, we will derive the exact explicit forms for the single and product moments of
order statistics from a given random sample X4, X,, ..., X, from the power Lomax
distribution.

5.1. Exact expressions for single and product moments of order statistics from
power Lomax distribution

Let X1, X5, ..., X, be a random sample of size n from the power Lomax distribution
defined in (1.1) and let X;., < X,., < -+ < X,,.,, be the corresponding order statistics.
Then the probability density function (p.d.f.) of X;.,, (1 < i < n) is given by:

fin() = CenlFEOI 1 - FOI"'f(x), 0< x< oo, (5.1)

and the joint density function of X;., and Xj.,(1 < i < j < n) is given by
fiin (0, y) = CijnFOI T F () = FOV™ 1 [1 = FONI™ () f (%),

0<x < y<oo,

(5.2)
where f(x) and F (x) are given by (1.1) and (1.2), respectively, and
n! n!
Con =Tt — ™ T G DIG— - DI =Y
Then, the single moments of order statistics X;.,,(1 < i < n) are given by

W = E(xk) = [ x* fin(dx, k=12,... (5.3)

Similarly, the product moments of X;.,, and X;.,,(1 < i < j < n) are given by
W = E(XLX5) = 7 [0 X7y fipm(e y)dydx, 7,5 =12, . (5.4)
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Theorem 5.1: For the power Lomax distribution as given in (1.1) and for1 <i <
n,and k = 1,2,3, ..., we have

k k.
1+5)r la —%—

u(k) E(X-" —aA/BC Z( >( D (+ﬁ) (a+0m+a 3 oa)
un B Ln I'a+an+la+1—ai)

(5.5)

. . k
exists for the choice of @ and £ such that & > e

Proof: Using (5.1) and binomial expansion of [1 — (1 — F(x))]*"%, Eq. (5.3) can be

rewritten as
i-1

-1 3 .
W =160y (1)) 0t [ #1 = T,
=0 0
Substituting the values of f(x) and F(x) as given by (1.1) and (1.2), in the above

equation we get
—(a+an+la+1-ai)

i-1 o0
| — B
) _ i—1 af _ x
Him = Ci:nZ( I )(—1)17 xk+h1 1+— dx.
= 0

Simplifying the above integral we get the desired result as given by Eq.(5.5).

Theorem 5.2: For the power Lomax distribution as given in (1.1) and for 1 <i <j <
n,andr,s =1,2,3,..., and % € Z*, we have

S
-1j-i-1 B

ufrjs,z (r+s) Z Z Z( - 1) (] —i— 1) <S/[3>( -

=0 m=0 u=

r(1+E)r(a(a+1)+c—E)
r'(a(a+1)+c+1)

1
c
(5.6)
where
a=t+j—i—m—1,b=m+n—jandc=a(1+b)+u—%.
Proof: Using (5.2) and binomial expansion of [F (x)]~! in the powers of [1 — F(x)],
and binomial expansion of [F(y) — F(x)]’~*=! in the powers of [1 — F(x)] and [1 —

F(y)], Eq. (5.4) can be rewritten as
i—1Jj-i-1

=33 (70w
t=0 m=0
X f f x"yS [1—F(Qo)]* ™11 — F(y)]™" 7 f(x) f (y)dydx
0

= Cijmn T T (OO (=08 [7 7 [1 = F()]4f ()1 (x)dx,
(5.7)
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wherea=t+j—i—m—1,b=m+n—jand
L) = [ yS[1-FOIPf()dy. (5.8)

Substituting the values of f{y) and F(y) from (1.1) and (1.2),respectively in Eq.(5.8)
and simplifying we get
B¢
(1+%)

Cc

L) =ar 8 5E_ (1) (—1
where c = a(1 + b) +u—%.

(5.9)

Substituting the value of I; (x) from Eq. (5.9) in (5.7) and simplifying the expression
by putting the values of f(x) and F(x) as given by (1.1) and (1.2), we get the desired
result (5.6).

5.2. Recursive algorithm for single moments

Casel: Whenn =1,thenm =1

In this case, we have only one progressive censoring scheme R, = 0. Thus, from
Eq. (2.3) and using Eq. (5.5), we have for a > %and k=12,..,

k k
k Kk, F(l+9r(a—%
© Y _ , @® _ (k) _ kY — 3/, B B

E (X1:1:1) =gy =t = E(X¥) =a2’f r(a+D)
Using (5.10), ,uiol)(f) Vk=1,2,.. ,canDbe calculated.

Alternatively, these moments can also be obtained by using the recurrence relation

(5.10)

given in
Eq. (3.2) on putting n=1, i.e. by using the relation

@B _ gerpy _ AKEB)
i1 T Ha ~ = Bla—1) - k~“1:1-

CaseII: Whenn = 2,thenm = 1or 2
Subcase (i):m =1

We have only one progressive censoring scheme R; = 1, and in this case we have
from Eq. (3.2), on puttingn = 2,

(V&R (2ap _ (1)®
Hi1:2 (k+ﬁ - 1) - Anul;l;z ’ (511)
where
k k
O® _ w0 _ k) _ o, Ky TAPreap
1:1:2 — Hi12 = K = 2a W' (5.12)

(Obtained on putting i = 1and n = 2 in Eq. (5.5))
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Using Eq. (5.12) and the recurrence relation given by Eq. (5.11) (for values of

(k)
peZ*),Vk=12,.. ,and a > % ,ug:ll):z can be calculated.

Subcase (ii): m = 2

We have only one progressive censoring scheme R; = R, = 0, In this case we have

0,0 0,0 0,0 0,0
E (Xg;z;%) = Wiy = Ky, and E(XE:Z:%) = Wy = H3:o:

1:2:2 2:2:2
2 @) 2 (2)
0,0\" _ 00 _ (2) 0,0\ _ 00 _ (2)
Also, E (X1:2:2) =H122 = HpandE (XZ:Z:Z) = Hzz2 T Hap

and these values concerning ordinary order statistics can be evaluated using Eq. (5.5).

Case III: Whenn = 3,thenm =1or2or3
Subcase (i):m =1

We have only one progressive censoring scheme R; = 2, and in this case we have
from Eq. (3.2), on putting n = 3, we get

2)*+B) (3apB _ 2)®
P1:1:3 (m— 1) = A3 (5.13)
where
k k
@W _ ) _ () _ o Ky AprGap
1:1:3 — M3 = B3 = 3a ﬂw

(5.14)

(Obtained on putting i = 1and n = 3 in Eq. (5.5))
Using Eq. (5.14) and the recurrence relation given by Eq. (5.13) (for values of § €

®
Z"),Vk=1.2,..,and a > % '“5:21):3 can be calculated.

Subcase (ii): m = 2

We have only two progressive censoring schemes. One is R, = 1 and R, = 0 and
the otheris R; = 0and R, = 1.

Whean =1and RZ =0
On puttingn = 3,m =2, Ry = 1and R, = 01in (3.1), we get

(1,0)&+5) 2aB\ _ af (2P (1,00®
Hi:2:3 ( - k+ﬁ) T ok+p D113 - 1:2:3 (5.15)
(k+B) (k)
where :“81):3 can be calculated using (5.14), and ,uilzog = ,uiké) .

Using the recurrence relation given by Eq. (5.15) (for values of 8 € Z%),

(k+B)
,uilzog V k =1,2,..,can be calculated.
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Further, on using mixture formula, we have

1
1,0
“g:z:; = E [nu2:3 + :u3:3] and
ao® _1r o @
Hea3 =75 [:“2:3 + /‘3:3]-
" Q)
Proceeding in a similar manner M§120§ and ,uglzog Vk=
1,2, .... can be calculated.

WhenR1 = 0and RZ =1

In this case, we find that
E (X1(0213)) = u) = s E (Xéozls?) = W55 = ks
F(x(53) = i =3 and £ (5)" = w23 = w3
Other moments can be obtained similarly.
Subcase (iii): m = 3

We have only one progressive censoring scheme R; =0, R, = 0and R; = 0.In
this case

(0,0,00\ _ (0,0,0) _ (0,00)\ _ ,(000) _
E (X1:3:3 ) =3z =t E (X2:3:3 ) = Haz:3 = Haiz

2 @ 2 2
E(X(o,o,o)) _ (0,0,0) _'u(z) E(X(O,O,O)) _ (000 _ (2)

1:3:3 = Hy3:3 = Uiy 2:3:3 = Hp.3:3 = Uzzs
2 (2)
000\% _ 0003 (2
and E (X3:3:3 ) = U333 = U3z

All these values can be obtained by using the result given in Eq. (5.5) for ordinary
order statistics.

5.3. Recursive algorithm for product moments

To evaluate the moments of progressively Type-II right censored order statistics
from Power Lomax distribution, we have considered the case forr = s = 1.

Casel: Whenn =2 andm = 2
In this case we have only one progressive censoring scheme, ie. R; = R, = 0.
Thus, from Eq. (2.4), we have for a > %
ra+yre-yH\*
B B
Fa+1) ’

0,0) 1, (0,0 0,0 1
E(Xl(:Z:Z)XZ(:Z:Z)) = ”](.,2:2):2 = Hi22 = (”1!1)2 =|al /ﬁ

(cf. Arnold et al. (1992), Eqn. (5.3.10)).
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CaseIl: Whenn =3 andm = 2

We have only two progressive censoring schemes. One is R; = 1 and R, = 0 and
the otheris R; = 0 and R, = 1.

Whean =1and RZ =0

In this case we have

E (Xl(lzo??Xz(lzog) = /1;12’?2):3 = % (/11_2:3 + /11_3:3), from the mixture formula.

WhenR1 =0and Rz =1

In this case we have E (X1(021??X2(0213 ) = ,ug?z’:lz)ﬁ = lUq2:3-

CaseIII: Whenn = 3andm = 3

In this case we have only one progressive censoring scheme R; = R, = R3 =0
and

(0,0,0) ,(0,0,0)\ _ (0,0,0) _ (0,0,0) ,(0,0,0)\ _ (0,0,0) _
E (X1:3:3 X3:3:3 ) = Uip33 = H2s, B (X1:3:3 X333 ) = Hi3:3:3 = H1,33

(0,0,0)4(0,0,0)) _ , (000) _
and E (X2=3:3 X3:3:3 ) = HUy3:3.3 = H2,3:3.

Likewise, using Eq. (5.6) and recurrence relations for product moments as derived
in Section 4, one could proceed for higher values of m and all choices of
mand (R, R,, ..., R,y,).

6. Maximum Likelihood Estimators (MLEs)

Based on the observed sample x; < x, < - < x, from a progressively Type-II
censoring scheme, (Ry, Ry, ..., R;,), the likelihood function can be written as

L((l,ﬁ,l) = A(n,m - 1) H?Llf(xtla'ﬁl/l)[l - F(xtl a,‘B,A)]Rt;x >
0,a,6,1>0, (6.1)

where
A(n,m_ 1) = n(n _Rl - 1)(n_R1 _R2 - 2) (n_Rl _R2 - "'_Rm_1
—m+ 1),

and f(.) and F(.) are same as defined in (1.1) and (1.2), respectively. Therefore,
ignoring the additive constant the log-likelihood function is written as

log(L(a, B, /1)) = mlog(a) + mlog(B) — mlog(A) + (B — 1) Z log(x.)

t=1

xB
_ym (@R, + 1) + 1) log (1 +7f). 6.2)
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To compute the MLEs of the unknown parameters «, f and A, consider the three
normal equations:

m
dlog(L) m Z x.P _
By —;— t_1(1+Rt) lOg <1 +T —O,

’

dlog(L) m = = (a(1+Ry) + Dx.P log(x,)
=—+ ) log(x) — =0
B B ; t ; A+ xFP

and

)

dlog(L) ~ m N lixtﬁ(a'(l +R)+1) 0
o A AL A+ x,P B

whose solution provide the MLEs &, § and 1.

Once MLEs of «,fandA are obtained as @&, ﬁ and 1, the MLEs of
R(t) and h(t) can be obtained using invariance property of MLEs as

o\ -

- th
R(t) = 1+7 ,t >0 and

7. Simulation study

In this Section, a simulation study is conducted to observe the behaviour of the
proposed method for different sample sizes, different effective sample sizes and for
different censoring schemes. We have considered different sample sizes; n = 35,40,50;
different effective sample sizes; m = 20,25,30,35,40,50; different censoring schemes.
In all the cases we have useda =2, =1andA=2. For a given set of
n,m and a censoring scheme, using the algorithm proposed by Balakrishnan and
Sandhu (1995), a sample is generated. Using the sample, the MLEs of unknown
parameters @, S and A are computed based on the method proposed in Section 6.
Finally, with 1000 replications, using a program in R, the MLEs of
a,,A,R(t) and h(t)along with their average bias and mean square errors (MSEs) are
obtained. The average bias is reported within brackets against each estimate and the
results are presented in Tables 7.1, 7.2a and 7.2b.
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Table7.1. MLEs of a, 3 and A along with their Average Bias and MSE for different censoring
schemes, fora = 2, =1and A1 =2
n | m Censoring Scheme a J4 1 MSE(&)| MSE(B)| MSE(1)
35 |20 (3%0,5,3*0,5,3%0,5,8*0) 1.94181 1.03903 1.89249 | 0.35059 | 0.20826 | 0.31453
(-0.0582) | (0.03903) | (-0.1075)
35 (20 |(1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1, | 1.95704 1.04216 1.96635 | 0.36253 | 0.20725 | 0.34712
1,2*0) (-0.0429) | (0.04216) | (-0.0337)
35 (20 (15,19%0) 2.01236 1.01958 2.01264 | 0.33291 | 0.13837 | 0.33011
(0.01236) | (0.01958) | (0.01264)
35 (25 (5*0,5,7*0,5,11*0) 1.95215 1.02663 1.93115 | 0.32803 | 0.17725 | 0.30247
(-0.0478) | (0.02663) | (-0.0689)
35 (25 |(1,2,0,2,1,0,0,1,1,0,1,0,1, | 1.96322 1.02506 1.96717 | 0.32532 | 0.14379 | 0.31937
12*0) (-0.0368) | (0.02506) | (-0.0328)
35 |25 (10,24%0) 2.02428 1.01749 2.02533 | 0.30106 | 0.12965 | 0.32033
(0.02428) | (0.01749) | (0.02533)
35 |35 (35%0) 1.99586 1.00524 1.99661 | 0.19950 | 0.07522 | 0.20118
(-0.0041) | (0.00524) | (-0.0034)
40 |25 (5,4*0,5,7%0,5,11*0) 1.96951 1.01450 1.94261 | 0.31210 | 0.19161 | 0.29743
(-0.0305) | (0.0145) | (-0.0574)
40 |25 ((1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1,| 1.96329 1.02692 1.97827 | 0.30661 | 0.13456 | 0.30967
1,7*0) (-0.0367) | (0.02692) | (-0.0217)
40 |25 (15,24%0) 2.02742 1.02021 2.04453 | 0.28108 | 0.11671 | 0.29954
(0.02742) | (0.02021) | (0.04453)
40 |30 (3%0,5,10*0,5,15%0) 1.97058 1.02329 1.95472 | 0.30219 | 0.18862 | 0.30098
(-0.0294) | (0.02329) | (-0.0453)
40 |30 (1,2,1,2,1,0,0,1,1,0, 1, 1.95811 1.02032 1.97122 | 0.28149 | 0.12976 | 0.28352
19*0) (-0.0419) | (0.02032) | (-0.0288)
40 (30 (10,20%0) 1.99483 1.01458 1.99475 | 0.27662 | 0.12839 | 0.29211
(-0.0052) | (0.01458) | (-0.0052)
40 (40 (40%0) 1.99802 1.00227 1.99777 | 0.19019 | 0.05713 | 0.19717
(-0.0019) | (0.00227) | (-0.0023)
50 (25 (5,4%0,5,4*0,5,4*0,5,4*0,5,4*0) | 2.02323 0.99753 2.04855 | 0.28921 | 0.13003 | 0.25912
(0.02323) | (-0.0025) | (0.04855)
50 (25 (25,24*0) 2.00972 1.01253 2.03109 | 0.25413 | 0.11080 | 0.24879
(0.00972) | (0.01253) | (0.03109)
50 |30 (5,4*0,5,5%0,5,5*0,5,12%0) 1.99786 1.02274 2.02981 | 0.24142 | 0.12644 | 0.26907
(0.00214) | (0.02274) | (0.02981)
50 |30 (20,29%0) 2.01786 0.99015 2.02153 | 0.22832 | 0.12561 | 0.20991
(0.01786) | (-0.0099) | (0.02153)
50 (40 (8*0,5,8*0,5,22*0) 1.95692 1.01711 1.94165 | 0.21131 | 0.12675 | 0.25002
(-0.0431) | (0.01711) | (-0.0584)
50 |40 (10,39%0) 2.00875 1.01251 2.01141 | 0.20149 | 0.10939 | 0.19972
(0.00875) | (0.01251) | (0.01141)
50 |50 (50%0) 2.00123 1.00135 2.00191 | 0.12615 | 0.03927 | 0.16793
(0.00123) | (0.00135) | (0.00191)
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Table 7.2a. MLEs of R(t)and h(t) along with their Average Bias and MSE for different censoring
schemes, fora =2, =1,A=2andt =0.5

t=0.5R(t) =0.64;h(t) =0.8

n | m Censoring Scheme R(b) h(t) MSE(R(t)) | MSE(h(t))
351 20 (3*0,5,3*0,5,3*0,5,8*0) 0.63804 0.74962
(-0.002) (-0.0504) 0.01321 0.03465
35 | 20 | (1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1,1,2*0) 0.64294 0.76023
(0.00294) (-0.0398) 0.01327 0.03022
351 20 (15,19*0) 0.63772 0.75152
(-0.0023) (-0.0485) 0.01262 0.03349
35 | 25 (5%0,5,7*0,5,11%0) 0.64416 0.76376
(0.00416) (-0.0362) 0.01329 0.02173
35|25 | (1,2,0,2,1,0,0,1,1,0,1,0,1,12%0) 0.64215 0.75891
(0.00215) (-0.0411) 0.00981 0.02020
35| 25 (10,24*0) 0.64309 0.76364
(0.00309) (-0.0364) 0.00976 0.01964
35| 35 (35*0) 0.64043 0.79646
(0.00043) (-0.0035) 0.00512 0.01582
40 | 25 (5,4*0,5,7%0,5,11*0) 0.63524 0.75699
(-0.0048) (-0.043) 0.01236 0.03126
40 | 25 | (1,2,1,2,1,2%0,1,1,0,1,0,1,0,2,0,1,1,7*0) 0.64416 0.75361
(0.00416) (-0.0464) 0.01483 0.03212
40 | 25 (15,24*0) 0.63783 0.76114
(-0.0022) (-0.0389) 0.00933 0.02231
40 | 30 (3*0,5,10*0,5,15%0) 0.64176 0.76083
(0.00176) (-0.0392) 0.00940 0.02153
40 | 30 (1,2,1,2,1,0,0,1,1,0,1,19*0) 0.63668 0.75993
(-0.0033) (-0.0401) 0.00971 0.01987
40 | 30 (10,20*0) 0.64857 0.76648
(0.00857) (-0.0335) 0.01050 0.01901
40 | 40 (40*0) 0.63928 0.79685
(-0.0007) (-0.0032) 0.00425 0.01322
50 | 25 (5,4%0,5,4*0,5,4*0,5,4%0,5,4*0) 0.64424 0.77405
(0.00424) (-0.026) 0.01393 0.01874
50 | 25 (25,24%0) 0.63967 0.78257
(-0.0003) (-0.0174) 0.01009 0.01716
50 | 30 (5,4%0,5,5%0,5,5*0,5,12%0) 0.64205 0.78017
(0.00205) (-0.0198) 0.01006 0.01718
50 | 30 (20,29%0) 0.63367 0.77948
(-0.0063) (-0.0205) 0.00960 0.01872
50 | 40 (8%0,5,8*0,5,22*0) 0.64139 0.78965
(0.00139) (-0.0104) 0.01110 0.01482
50 | 40 (10,39%0) 0.63778 0.78342
(-0.0022) (-0.0166) 0.01211 0.01613
50 | 50 (50*0) 0.63994 0.79866
(-0.00006) | (-0.0013) 0.00303 0.01209
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Table 7.2b. MLEs of R(t)and h(t) along with their Average Bias and MSE for different censoring
schemes, fora =2, =1,A=2andt =2

t=2;R(t) =0.25;h(t) = 0.5

n | m Censoring Scheme R(b) h(t) MSE(R(t)) | MSE(h(t))
351 20 (3*0,5,3*0,5,3*0,5,8*0) 0.25230 0.51557
(0.0023) (0.01557) 0.00866 0.06067
35 | 20 | (1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1,1,2*0) 0.25098 0.51532
(0.00098) (0.01532) 0.00834 0.05801
351 20 (15,19*0) 0.24831 0.48845
(-0.0017) (-0.0116) 0.00902 0.04897
35| 25 (5*0,5,7*0,5,11*0) 0.24792 0.50292
(-0.0021) (0.00292) 0.00838 0.04923
35|25 | (1,2,0,2,1,0,0,1,1,0,1,0,1,12%0) 0.24803 0.50371
(-0.002) (0.00371) 0.00692 0.04810
35| 25 (10,24*0) 0.24672 0.50354
(-0.0033) (0.00354) 0.00689 0.04799
35| 35 (35*0) 0.24976 0.50102
(-0.00024) (0.00102) 0.00451 0.02815
40 | 25 (5,4*0,5,7%0,5,11*0) 0.24562 0.49653
(-0.0044) (-0.0035) 0.00767 0.03965
40 | 25 | (1,2,1,2,1,2%0,1,1,0,1,0,1,0,2,0,1,1,7*0) 0.25093 0.48032
(0.00093) (-0.0197) 0.00558 0.04365
40 | 25 (15,24*0) 0.24847 0.48964
(-0.0015) (-0.0104) 0.00621 0.04221
40 | 30 (3*0,5,10*0,5,15%0) 0.24863 0.49876
(-0.0014) (-0.0012) 0.00606 0.03932
40 | 30 (1,2,1,2,1,0,0,1,1,0,1,19*0) 0.24798 0.49721
(-0.002) (-0.0028) 0.00755 0.03123
40 | 30 (10,20*0) 0.24832 0.50176
(-0.0017) (0.00176) 0.00518 0.03078
40 | 40 (40*0) 0.24978 0.50090
(-0.0002) (0.0009) 0.00317 0.02120
50 | 25 (5,4%0,5,4*0,5,4*0,5,4%0,5,4*0) 0.24882 0.50387
(-0.0018) (0.00387) 0.00578 0.03821
50 | 25 (25,24%0) 0.25017 0.49536
(0.00017) (-0.0046) 0.00592 0.03729
50 | 30 (5,4%0,5,5%0,5,5*0,5,12%0) 0.24932 0.49674
(-0.0007) (-0.0033) 0.00503 0.03655
50 | 30 (20,29%0) 0.25102 0.48991
(0.00102) (-0.0101) 0.00499 0.03812
50 | 40 (8%0,5,8*0,5,22*0) 0.25091 0.50148
(0.00091) (0.00148) 0.00432 0.03556
50 | 40 (10,39%0) 0.24965 0.49839
(-0.0004) (-0.0016) 0.00341 0.03233
50 | 50 (50*0) 0.25009 0.50039
(0.00009) (0.00039) 0.00246 0.01109
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From Table 7.1, we observe that for complete samples, MLEs of «, f and A are very
nearly unbiased and can be regarded as good estimators. It is also observed that for
complete samples, as the sample size n increases the average MSE decreases. In
addition, the MSE generally decreases as the failure information m increases, and for
all the censoring schemes the MSE of the estimates is quite small and can be used in all
practical situations. Here one has to make a trade-off between the precision of the
estimation method and the cost of the experiment. Also, from Tables 7.2a and 7.2b, it
is observed that for the MLEs of R(t) and /(t), the MSE generally decreases as the failure
information m increases. In addition, for the complete samples, as the sample size n
increases the average MSE decreases.

8. Conclusion

Some recurrence relations between the single and the product moments of
progressively Type-II right censored order statistics from the power Lomax distribution
have been derived, which would assist us to compute the moments of progressively
Type-II right censored order statistics for every n and for different censoring
arrangements (Rq, Ry, ..., R;y), m < n. The recursive algorithm is presented with the
help of which the single and product moments of progressively Type-II right censored
order statistics from the power Lomax distribution can be easily obtained. Further, a
maximum likelihood approach is used to estimate the parameters of the power Lomax
distribution, which are further used to estimate the reliability characteristics. A Monte
Carlo method is used to simulate the data and to compare the performance of the
estimates for different censoring schemes.
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