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A new extension of Odd Half-Cauchy Family of
Distributions: properties and applications with regression

modeling

Subrata Chakraburty1, Morad Alizadeh2, Laba Handique3,
Emrah Altun4, G. G. Hamedani5

ABSTRACT

The paper proposes a new family of continuous distributions called the extended odd half
Cauchy-G. It is based on the T −X construction of Alzaatreh et al. (2013) by consider-
ing half Cauchy distribution for T and the exponentiated G(x;ξ) as the distribution of X .
Several particular cases are outlined and a number of important statistical characteristics of
this family are investigated. Parameter estimation via several methods, including maximum
likelihood, is discussed and followed up with simulation experiments aiming to asses their
performances. Real life applications of modeling two data sets are presented to demonstrate
the advantage of the proposed family of distributions over selected existing ones. Finally,
a new regression model is proposed and its application in modeling data in the presence of
covariates is presented.

Key words: T −X method; regression; simulation; estimation

1. Introduction

Following the T −X construction of Alzaatreh et al. (2013), Cordeiro et al. (2017) pro-
posed a new generator of continuous probability distribution by considering Half-Cauchy
for T and exponentiated G (Lehmann alternative-I) for X . They called the family general-
ized odd Half-Cauchy (GOHC-G(α,ξ)) and investigated its properties and applications.
In the present paper we introduce a new ganerator called extended half Cauchy family
of distribution following the same construction by considering exponentiated G (Lehmann
alternative-II) for X and T following Half-Cauchy with probability density function (pdf)
q(t) = 2

π(1+t2)
, t > 0, where G(x;ξ) is the cumulative distribution function (cdf) of the base-

line distribution with parameter vector ξ. Now, following Alzaatreh et al. (2013) we define
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the proposed extended odd Half-Cauchy-G with the cdf

F(x;α,ξ) =
∫ 1−Ḡ(x;ξ)α

Ḡ(x;ξ)α

0

2
π(1+ t2)

dt =
2
π

arctan
[

1− Ḡ(x;ξ)α

Ḡ(x;ξ)α

]
, (1)

where x∈R and α > 0 is a parameter. The proposed family is denoted as shortly EOHC-G(α,ξ).

The pdf corresponding to (1) is given by

f (x;α,ξ) =
2α g(x;ξ) Ḡ(x;ξ)−α−1

π

[
1+

{
1− Ḡ(x;ξ)−α

}2
] =

2α g(x;ξ) Ḡ(x;ξ)α−1

π

[
Ḡ(x;ξ)2α +

{
1− Ḡ(x;ξ)α

}2
] , (2)

where g(x;ξ) = d
dx G(x;ξ) is the baseline pdf. Henceforth, a random variable X with density

function (2) is denoted by X ∼ EOHC-G(α,ξ).

It should be noted that for α = 1 both GOHC-G(α,ξ) and EOHC-G(α,ξ) reduce to the
odd half-Cauchy (OHC) family. Otherwise for α < 1, EOHC-G(α,ξ) >st GOHC-G(α,ξ)

and for α > 1 EOHC-G(α,ξ) <st GOHC-G(α,ξ). As such the two families give rise to
diffrent sets of distributions as special case for α ̸= 1.

For convenience we shall use G(x) = G(x;ξ), f (x) = f (x;α,ξ), etc.

The EOHC-G family is related to some distributions as stated below. Let X ∼EOHC-
G(α,ξ). Then, we have the following results.

1. If Y = Ḡ(X ;ξ)−α , then FY (y) = 2
π

arctan(y−1) and fY (y) = 2
π

1
1+(1−y)2 , y > 1.

2. If Y = Ḡ(X ;ξ)−α −1, then Y ∼ HC(0,1) with pdf fY (y) = 2
π

1
1+y2 , y > 0.

3. If Y = Ḡ(X ;ξ)α , then FY (y) = 2
π

arctan( 1−y
y ), 0 < y < 1.

The hazard rate function (hrf) of X is

h(x;α,ξ) =
2α g(x;ξ) Ḡ(x;ξ)α−1

π

[
Ḡ(x;ξ)2α +

{
1− Ḡ(x;ξ)α

}2
][

1− 2
π

arctan
{

Ḡ(x;ξ)−α −1
}] . (3)

1.1. Useful relation with the exponentiated class

Based on the following result of Gradshtyn and Ryzhik (2007) page 61, for x > 0,

arctan(x) =
π

2
−

∞

∑
i=0

(−1)i

(2 i+1)x2 i+1 .

We can derive the following mixture representation of the cdf and pdf of EOHC-G:
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F(x) =
2
π

arctan
[

1− Ḡ(x)α

Ḡ(x)α

]
= 1− 2

π

∞

∑
i=0

(−1)i Ḡ(x)α(2i+1)

(2 i+1)(1− Ḡ(x)α)2i+1

= 1− 2
π

∞

∑
i, j=0

(−1)i+ j
(
−2 i−1

j

)
Ḡ(x)α(2i+1)+α j

2 i+1
. (4)

Hence F(x) can be expressed as an infinite mixture of the exponentiated G(x) (Lehmann
alternative-II). Again

F(x) = 1− 2
π

∞

∑
i, j,k=0

(−1)i+ j+k
(
−2 i−1

j

)(
α(2i+1)+α j

k

)
G(x)k

2 i+1

= 1−
∞

∑
k=0

γk G(x)k =
∞

∑
k=0

νk G(x)k, (5)

where

γk =
2
π

∞

∑
i, j=0

(−1)i+ j+k
(
−2 i−1

j

)(
α(2i+1)+α j

k

)
2 i+1

,

ν0 = 1− γ0 and νk =−γk for k ≥ 1

Thus F(x) is seen as an infinite mixture of G(x)k, which is the exponentiated G(x)
distribution. Consequently, it is easy to verify that

f (x) =
∞

∑
k=0

νk(k+1)g(x)G(x)k

=
∞

∑
k=0

νkhk+1(x), (6)

where Hk+1(x) = G(x)k+1, hk+1(x) = d
dx Hk+1(x) = (k+1)G(x)k g(x) and h1(x) = g(x).

The rest of the paper is organized as follows. A few special cases are presented in
Section 2. Important properties like quantile function (qf), moments and moment generating
function (mgf) are presented in Section 3. In Section 4 maximum likelihood estimation and
its performance assessment via simulation is presented. Some other estimation methods
and their performance through simulation is presented in Section 5. In Section 6, a new
regression model is presented. In Section 7, data modelling applications with and without
covariate are presented. The paper ends with a concluding section.
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2. Sub-models of EOHC-G family

2.1. The EOHC-Burr XII (EOHC-BXII) distribution

Considering the BurrXII distribution (Burr, 1942) with pdf and cdf given by g(x) =
λβxλ−1(1+ xλ )−β−1, x > 0 and G(x) = 1− (1+ xλ )−β , λ > 0 and β > 0 the pdf and cdf
of EOHC-BXII distribution are given respectively by

f EOHC_BXII(x;α,λ ,β ) =
2αλβxλ−1 (1+ xλ

)−αβ−1

π

[(
1+ xλ

)−2αβ
+
{

1−
(
1+ xλ

)−αβ
}2

] , x > 0, (7)

FEOHC_BXII(x;α,λ ,β ) =
2
π

arctan
[(

1+ xλ

)αβ

−1
]
, x ≥ 0. (8)

Figure 1 shows the plots of the pdf and hazard of EOHC-BXII distribution for selected
parameter values.

2.2. The EOHC-Fr (EOHC-Fr) distribution

Let g(x) and G(x) be the pdf and cdf of the Frechet distribution, given as g(x) =
βθ β x−β−1 exp(−(θ/x)β ) and G(x) = exp(−(θ/x)β ), x ≥ 0, β > 0,θ > 0 respectively.
Then, the pdf and cdf of the EOHC-Fr distribution are

f EOHC_F(x;α,β ,θ) =
2αβθ β x−β−1 exp(−(θ/x)β )

[
1− exp(−(θ/x)β )

]α−1

π

[[
1− exp(−(θ/x)β )

]2α
+
[
1−

[
1− exp(−(θ/x)β )

]α
]] , (9)

and

FEOHC_F(x;α,β ,θ) =
2
π

arctan
[[

1− exp(−(θ/x)β )
]−α

−1
]
, x ≥ 0, (10)

respectively.
Figure 2 shows the plots of pdf and hazartd of EOHC-Fr distribution for some selected

parameters.

3. Properties of EOHC-G family

3.1. Quantile function and random sample generation

For a U ∼ Uniform(0,1) we can generate X ∼ EOHC-G by inverting (1) as

x = QG


[
1+ tan(π u

2 )
] 1

α −1[
1+ tan(π u

2 )
] 1

α

;ξ

 , (11)
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Figure 1: Plots of pdf and hazard for EOHC-BXII.
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where QG(·) = G−1(·) is the baseline qf. The quantiles of the EOHC-G distributions for any
baseline distribution can be obtained by (11). For instance, when u = 1/2, we obtain the
median of the baseline distribution. Additionally, we can generate random variables from
any baseline distribution using the given quantile function, in (11).

3.2. Moments

Let Yk+1 ∼exp-G(k+ 1) with pdf hk+1(x) = (k+ 1)g(x)G(x)k. An expression for the
nth moment of X can be obtained using equation (6) as

µ
′
n = E(Xn) =

∞

∑
k=0

νk E(Y n
k+1). (12)

Another expression for µ ′
n can be derived from equation (6) using the qf QG(u) of the

baseline distribution G as

µ
′
n =

∞

∑
k=0

(k+1)νk τn,k , (13)

where τn,k =
∫

∞

−∞
xn G(x)k g(x)dx =

∫ 1
0 QG(u)n ukdu. τn,k is the (n,k)th probability weighted

moment (PWM) of G. Thus, the moments of the EOHC-G distribution can be expressed in
terms of the PWMs of G.

For integer values of n, let µ
′
n = E(Xn) and µ = µ

′
1 = E(X), then one can also find the

nth central moment of the EOHC-BXII distribution as

µn = E(X −µ)n =
n

∑
i=0

(
n
i

)
µ

′
i (−µ)n−i. (14)

Using the first four moments of the EOHC-BXII distribution, we obtain the skewness
and kurtosis of the EOHC-BXII distribution. Figure 3 shows the behaviour of skewness and
kurtosis of the EOHC-BXII distribution.

3.3. Moment generating function

Lemma 1: The condition for F(x) to have a mgf is that G(x) also has a mgf.
Proof: Let m = inf{x|G(x)≥ 0.5}, then

MX (t) =
∫

∞

−∞

etx f(x)dx =
∫

∞

−∞

etx 2
π

g(x) Ḡ(x)α−1

Ḡ(x)2α +[1− Ḡ(x)α ]2
dx

≤
∫

∞

−∞

etx 2
π

g(x)
Ḡ(x)2α +[1− Ḡ(x)α ]2

dx

=
∫ m

−∞

etx 2
π

g(x)
Ḡ(x)2α +[1− Ḡ(x)α ]2

dx+
∫

∞

m
etx 2

π

g(x)
Ḡ(x)2α +[1− Ḡ(x)α ]2

dx.
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Figure 3: Skewness and Kurtosis for EOHC-BXII.

The second integral above is finite and the first integral is not greater than∫
∞

m
etx 2

π

g(x)
Ḡ(x)2α

dx.

For x < m, we have Ḡ(x)≥ 0.5, so that

∫
∞

m
etx 2

π

g(x)
Ḡ(x)2α

dx <
22α+1

π

∫
∞

m
etx g(x)dx < ∞.

Thus, MX (t)< ∞.

Corollary 1: Using (6), the mgf of M(t) = E[exp(t X)] of X is

M(t) =
∞

∑
k=0

νk Mk+1(t), (15)

where Mk+1(t) is the mgf of Yk+1 ∼ exp−G(k+1). Alternatively, using equation (15) we
can write

M(t) =
∞

∑
k=0

(k+1)νk ρ(t,k), (16)

where

ρ(t,k) =
∫

∞

−∞

et x G(x)k g(x)dx =
∫ 1

0
exp{t QG(u)} ukdu.
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4. Maximum likelihood estimation

Let x = (x1,x2, ...,xr) be a random sample from EOHC-G family with parameter vector
η = (α, ξ). The log-likelihood function is

ℓ= ℓ(η) = r log
2α

π
+

r

∑
i=1

log [g(xi,ξ)) ]+(α −1)
r

∑
i=1

log [Ḡ(xi,ξ) ]

−
r

∑
i=1

[
log Ḡ(xi,ξ)

2α −{1− Ḡ(xi,ξ)
α }2].

The simultaneous solution of the partial derivatives of the log-likelihood gives the max-
imum likelihood estimators (MLEs) of the parameter of the EOHC-G family for a given
baseline distribution. Unfortunately, it is not possible because of the non-linear structures
of these derivatives. In this case, we prefer to maximize the log-likelihood function using
the iterative algorithms. It can be done by statistical software such as R, Matlab or Python.
Here, we use the R software to do this. The standard errors of the parameters are obtained
based on the observed information matrix.

4.1. Performance evaluation of MLE

The MLEs of the parameters of the EOHC-BXII distribution are investigated based on
the simulation study. The selected true parameter values are (α,λ ,β ) = (1.5,2,1) . The
used sample size is from n = 20 to n = 100. The simulation is replicated r = 200 times. The
MLEs are obtained as (α̂i, λ̂i, β̂i). We compute the biases and mean squared errors for each
sample size by using the below equations

Biasrθ̂ =
1
r

r

∑
i=1

(θ̂i −θi)andMSErθ̂ =
1
r

r

∑
i=1

(θ̂i −θi)
2
, forθ = (α,λ ,β ).

The simulation results are plotted in Figures 4 and 5, which shows that the biases and
mean square errors are near the zero for all parameters. These results confirms that the
MLEs of the parameters of the EOHC-BXII distributions are unbiased and consistent.

5. The other estimation methods

Several estimation methods can be used to estimate the unknown model parameters.
Here, we focus on four different estimation methods. These are briefly summarized in the
rest of this section. See Dey et al. (2018) for detailed information on these estimation
methods. Note that, {ti:n; i = 1,2, ...,n} are order statistics and F is the distribution function
of EOHC-BXII.
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Figure 4: Bias of α̂, β̂ , λ̂ versus r for EOHC-BXII when (α,β ,λ ) = (1.5,1,2).
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5.1. Least square and weighted least square estimators

Swain et al. (1988) introduced the estimation methods for least square (LSE) and
weighted least square estimators (WLSE). These estimators are easily obtained by mini-
mizing the following functions:

SLSE(α,ξ) =
n

∑
i=1

(
F(ti:n;α,ξ)− i

n+1

)2

and

SWLSE(α,ξ) =
n

∑
i=1

(n+1)2(n+2)
i(n− i+1)

(
F(ti:n;α,ξ)− i

n+1

)2

5.2. Cramér–von–Mises estimator

Choi and Bulgren (1968) introduced the method for the Cramér-von-Mises Estimator
(CME), which is obtained by minimizing the following function

SCME(α,ξ) =
1

12n
+

n

∑
i=1

(
F(ti:n;α,ξ)− 2i−1

2n

)2

.

5.3. Anderson-Darling and right-tailed Anderson-Darling estimators

Anderson-Darling estimators (ADEs) and right-tailed Anderson Darling estimators, shortly
denoted as (RTADEs), were introduced by Anderson and Darling (1952) and Macdonald
(1971), respectively. The ADEs for the EOHC-BXII distribution can be obtained by mini-
mizing the below function

SADE(α,ξ) =−n− 1
n

n

∑
i=1

(2i−1){logF(ti:n;α,ξ+ logF(ti:n+1−i;α,ξ},

where F (·) = 1−F (·).

5.4. Simulation

Again, EOHC-BXII distribution is used to investigate the difference between the estima-
tion methods given in the above section. The true parameter vector is (α,λ ,β ) = (1.5,2,1)
and the sample size is n = 30,35, · · · ,300. The simulation is replicated r = 100 times. The
results are plotted in Figure 6.

The following results are obtained.

• For estimating α , AD method has the minimum amount of bias.

• For estimating λ , with small sample size, CVM method and for large sample size,
AD has the minimum amount of bias.

• For estimating β , AD method has the minimum amonut of bias.
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Figure 6: Bias of α̂ versus n when α = 1.5; Bias of β̂ versus n when β = 1 ; Bias of λ̂

versus n when λ = 2; MSE of α̂ versus n when α = 1.5 ; MSE of β̂ versus n when β = 1;
MSE of λ̂ versus n when α = 2
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• For estimating α , with small sample size, CVM method and for large sample size,
LSE has the minimum amount of MSE.

• For estimating λ , with small sample size, CVM method and for large sample size,
AD has the minimum amount of MSE.

• For estimating β , with small sample size, CVM method and for large sample size,
AD has the minimum amount of MSE.

6. The log-EOHC-Fr regression model

Consider the EOHC-Fr distribution with three parameters given in (9) and let X be a
random variable with EOHC-Fr distribution. Using the transformation Y = log(X) and the
re-parametrizations β = 1/σ and θ = exp(µ), the pdf of Y is

f (y) =
2α

σ
exp

{
−
( y−µ

σ

)}
exp

{
−exp

{
−
( y−µ

σ

)}}(
1−

[
exp

{
−exp

{
−
( y−µ

σ

)}}])−α−1

π

[
1+

{
1−

(
1−

[
exp

{
−exp

{
−
( y−µ

σ

)}}])−α
}2

] ,

(17)
where y ∈ ℜ. The parameter µ ∈ ℜ represents the location of Y and the parameter σ > 0 is
treated as a scale parameter and α > 0 is the shape parameter. The density in (17) is referred
as the Log-EOHC-Fr (LEOHC-Fr) distribution and denoted as Y ∼ LEOHC-Fr(α,µ,σ).
The survival function of (17) is

S (y) = 1− 2
π

arctan

[
1−

(
1−

[
exp

{
−exp

{
−
( y−µ

σ

)}}])α(
1−

[
exp

{
−exp

{
−
( y−µ

σ

)}}])α

]
, (18)

Now, we introduce a new parametric regression model to analyze the lifetimes of indi-
viduals with covariates. To do this, the identity link function is used to link the covariates
to location of the response variable. Let yi be a response variable that follows the den-
sity in (17) and v⊺i = (vi1, . . . ,vip) be a explanatory variable vector. We consider the below
location-scale regression model

yi = v⊺i β +σzi, i = 1, . . . ,n, (19)

where yi has density function (17), β = (β1, . . . ,βp)
⊺, and σ > 0, α > 0 are unknown

parameters.
The unknown parameters of the LEOHC-Fr are obtained by means of MLE method.

The response variable is defined as yi = min{log(xi), log(ci)}. The quantities log(xi) and
log(ci) represent the log-lifetimes and log-censoring times, respectively. We define two
sets to represents the log-lifetimes and log-censoring times. These are F and C. The set F
contains the log-lifetimes and C contains the log-censoring times. The general equation for
the log-likelihood function on the model in (19) is given by

l(Θ) = ∑
i∈F

log[ f (yi)]+∑
i∈C

log[S(yi)]
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where Θ = (α,σ ,β⊺), li(τ) = log[ f (yi)] and l(c)i (Θ) = log[S(yi)], f (yi). Replacing
f (yi) with (17) and S(yi) with (18) in the above equation, the log-likelihood function of the
LEOHC-Fr regression model is

ℓ(Θ) = r log
( 2α

σ

)
− ∑

i∈F
zi− ∑

i∈F
exp(zi)

+(−α −1) ∑
i∈F

log(1− [exp{−exp{−zi}}])

− ∑
i∈F

logπ

[
1+

{
1− (1− [exp{−exp{−zi}}])−α

}2
]

+ ∑
i∈C

log
(

1− 2
π

arctan
[

1−(1−[exp{−exp{−zi}}])α

(1−[exp{−exp{−zi}}])α

])
,

. (20)

where zi = (yi − µi)/σ , and r is the number of uncensored observations. The MLE of the
parameter vector, ℓ(Θ) is obtained by direct maximization of (20) using the optim function
of R software.

6.1. Residual analysis

Two types of the residuals are considered to study the residual analysis of the LEOHC-Fr
regression model.

6.1.1 Martingale residual

The martingale residuals for LEOHC-Fr model is (see Fleming and Harrington, 1994,
for details)

rMi =

 1+ log
(

1− 2
π

arctan
[

1−(1−[exp{−exp{−zi}}])α

(1−[exp{−exp{−zi}}])α

])
if i ∈ F,

log
(

1− 2
π

arctan
[

1−(1−[exp{−exp{−zi}}])α

(1−[exp{−exp{−zi}}])α

])
if i ∈C,

(21)

where zi = (yi −µi)/σ .

6.1.2 Modified deviance residual

The interpretation of the martingale residuals is not easy since it is not symmetrically
distributed around zero. Therefore, the modified deviance residual was proposed by Th-
erneau et al. (1990) to remove the lack of the martingale residuals. The modified deviance
residual for LEOHC-Fr model is

rDi =

{
sign(rMi){ −2 [rMi + log(1− rMi)]}

1/2, if i ∈ F,
sign(rMi){ −2rMi}

1/2, if i ∈C,
(22)

where rMi is the martingale residual.
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7. Real life applications

7.1. Modelling without covariates

Two different real-life data sets are considered here to study the suitability of the distri-
butions from EOHC-G(α,ξ) family in comparison with some existing distributions taking
BurrXII distribution as the baseline distribution. We have used AIC (Akaike Information
Criterion), BIC (Bayesian Information Criterion), CAIC (Consistent Akaike Information
Criterion) and HQIC (Hannan-Quinn Information Criterion) for selecting the best model.
The figures of fitted densities and the fitted cdf’s presented alongside the corresponding
observed histograms and ogives for visual checking.

Here we have considered Burr-XII as the baseline distribution in the EOHC-G fam-
ily and compared it with the following important extensions of Burr-XII model including
GOHC-BXII.

1. BXII distribution:

f (x) = λβxλ−1
(

1+ xλ

)−β−1
,λ > 0, β > 0, x > 0.

2. MOBXII distribution (Arwa Y. Al-Saiari et al., 2014):

f (x) =
λ βα xλ−1

(
1+ xλ

)−β−1[
1− (1−α)

(
1+ xλ

)−β
]2 , α > 0, λ > 0, β > 0,x > 0.

3. TLBXII distribution (Hesham and Soha, 2017):

f (x) = 2αλβxλ−1
(

1+ xλ

)−2β−1 [
1− (1+ xα)−2β

]α−1
,

α > 0, λ > 0, β > 0, x > 0.

4. KwBXII distribution (Paranaiba et al., 2013):

f (x) =
abλ β xλ−1(
1+ xλ

)β+1

[
1−

(
1+ xλ

)−β
]a−1

×

{
1−

[
1−

(
1+ xλ

)−β
]a}b−1

,

a > 0, b > 0, λ > 0, β > 0, x > 0.

5. BBXII distribution (Paranaiba et al., 2011):

f (x) =
λ β

B(a,b)
xλ−1

(
1+ xλ

)−β (b+1)
[

1−
(

1+ xλ

)−β
]a−1

,

a > 0, b > 0, λ > 0, β > 0, x > 0.
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6. BEBXII distribution (Mead, 2014):

f (x) =
λ β α

B(a,b)
xα−1

(
1+ xλ

)−β−1
[

1−
(

1+ xλ

)−β
]aα−1

×{
1−

[
1−

(
1+ xλ

)−β
]α}b−1

,

a > 0, b > 0, α > 0, λ > 0, β > 0, x > 0.

7. FBBXII distribution (Paranaiba et al., 2011):

f (x) =
λ β α−λ

B(a,b)
xλ−1

[
1+

( x
α

)λ
]−βb−1

{
1−

[
1+

( x
α

)λ
]−β

}a−1

,

a > 0, b > 0, α > 0, λ > 0, β > 0, x > 0.

8. FKwBXII distribution (Paranaiba et al., 2013):

f (x) =
abλ β xλ−1[

1+
( x

α

)λ
]β+1

[
1−

(
1+

( x
α

)λ
)−β

]a−1

×

{
1−

[
1−

(
1+

( x
α

)λ
)−β

]a}b−1

,

a > 0, b > 0, α > 0, λ > 0, β > 0, x > 0.

9. GOHC-BXII distribution (Cordeiro et al., 2017):

f (x;α,λ ,β ) =
2αλβxλ−1 (1+ xλ

)−β−1
[
1−

(
1+ xλ

)−β
]α−1

π

[[
1−

(
1+ xλ

)−β
]2αβ

+
{

1−
[
1−

(
1+ xλ

)−β
]α}2

] ,
α > 0, λ > 0, β > 0, x > 0.

In the first application, we work with the survival times (in days) of 72 guinea pigs
infected with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). It is used
also by Shibu and Irshad (2016). The second data set is obtained from Hinkley, (1977). It
consists of thirty successive values of March precipitation (in inches) in Minneapolis/St
Paul. We have presented the descriptive statistics of the data sets I, and II in Table 1.
Findings of the data fitting in Tables 2, 3,4, 5. The total time on test (TTT) plot proposed
by Aarset (1987) is drawn to get information about the shape of the hazard of a given data
set. If the resulting shape of the TTT plot is a straight diagonal line, is of convex shape
and concave shape then the corresponding hazard is constant, decreasing and increasing
respectively. The TTT plots for the data sets considered here are presented in Figure 7 and
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Figure 7: TTT Plots of data I and II from right to left

Table 1: Descriptive Statistics for the data set I, and II

n Min. 1st Qu. Third Qu. Mean Median Max. Variance Skewness Kurtosis
72 0.1 1.08 2.30 1.85 1.56 7.00 1.44 1.79 4.16
30 0.32 0.92 2.09 1.67 1.47 4.75 1.00 1.03 0.93

indicate that the all the three data sets are increasing hazard rate.
In Tables 2-5 the MLEs with standard errors of the parameters for all the fitted the mod-

els, their AIC, BIC, CAIC and HQIC for the data sets I and II are presented respectively.
From these tables it is evident that for both the data sets considered here the EOHC-BXII
distribution with lowest AIC, BIC, CAIC, HQIC turned out to be the best model. More-
over, the plots of estimated pdf against the observed histograms and the estimated cdf of
EOHC-BXII against empirical cdfs in Figures 8 and 9 reveal that the proposed distribution
provides closest fit to both the data sets. It may be mentioned that the proposed three param-
eter distribution has even outperformed the four and five parameter extensions considered
here.

7.2. Modelling with covariates

Yousof et al. (2018) introduced the Log-odd log-logistic-Fréchet (LOLL-Fr) regression
model and analysed the Stanford heart transplant data set. The same data set was also ana-
lyzed by Korkmaz et al. (2020). Now, we use the same data set to illustrate the importance
of the LEOHC-Fr regression model and compare its performance with a regression model
of Yousof et al. (2018), LOLL-Fr regression. The data set can be found in an R pack-
age, p3state.msm. The sample and censoring rate are 103 and 27%, respectively. The aim
of the study is to analyze the survival times of individuals, say (yi) with covariates: v1-
year of acceptance to the program; v2- age of patient (in years); v3- previous surgery status
(1 = yes,0 = no); v4-transplant indicator (1 = yes,0 = no). The model in (23) is considered
and fitted by two models: LEOHC-Fr and LOLL-Fr regression models.

yi = β0+β1vi1 +β2vi2 +β3vi3 +β4vi4 +σzi , (23)
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Table 2: MLEs, standard errors, confidence interval (in parentheses) for the data set I

Model α̂ â b̂ λ̂ β̂

BXII
(λ ,β )

· · · · · · · · · 3.102 0.465

(0.538)
(2.05,4.16)

(0.077)
(0.31,0.62)

MOBXII
(α,λ ,β )

8.989 · · · · · · 2.259 1.533

(4.587)
(0,17.97)

(0.864)
(0.57,3.95)

(0.907)
(0,3.31)

TLBXII
(α,λ ,β )

1.796 · · · · · · 2.393 0.488

(0.915)
(0.002,3.59)

(0.907)
(0.62,4.17)

(0.244)
(0,0.97)

KwBXII
(a,b,λ ,β )

· · · 14.105 7.424 0.525 2.274

(10.805)
(0,35.28)

(11.850)
(0,30.65)

(0.279)
(0,1.07)

(0.990)
(0.33,4.21)

BBXII
(a,b,λ ,β )

· · · 2.555 6.058 1.800 0.294

(1.859)
(0,6.28)

(10.391)
(0,26.42)

(0.955)
(0,3.67)

(0.466)
(0,1.21)

BEBXII
(α,a,b,λ ,β )

0.572 1.876 2.991 1.780 1.341

(0.325)
(0,1.21)

(0.094)
(1.69,2.06)

(1.731)
(0,6.38)

(0.702)
(0.40,3.16)

(0.816)
(0,2.94)

FBBXII
(α,a,b,λ ,β )

1.655 0.621 0.549 3.398 1.381

(0.436)
(0.81,4.48)

(0.541)
(0,1.68)

(1.011)
(0,2.53)

(2.785)
(0,8.86)

(2.312)
(0,5.91)

FKwBXII
(α,a,b,λ ,β )

1.475 0.588 0.308 3.399 2.131

(0.361)
(0.76,2.18)

(0.442)
(0,1.42)

(0.314)
(0,0.92)

(2.082)
(0,7.47)

(1.833)
(0,5.72)

GOHCBXII
(α,λ ,β )

1.828 · · · · · · 1.981 0.987

(1.170)
(0,4.12)

(0.899)
(0.21,3.74)

(0.643)
(0,2.24)

EOHCBXII
(α,λ ,β )

0.491 · · · · · · 3.126 0.998

(0.017)
(0.45,0.52)

(0.462)
(2.22,4.03)

(0.136)
(0.73,1.26)
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Table 3: AIC, BIC, CAIC, HQIC values for the data set I

Model AIC BIC CAIC HQIC
BXII
(λ ,β )

209.60 214.15 209.77 211.40

MOBXII
(α,λ ,β )

209.74 216.56 210.09 212.44

TLBXII
(α,λ ,β )

211.80 218.63 212.15 214.52

KwBXII
(a,b,λ ,β )

208.76 217.86 209.36 212.38

BBXII
(a,b,λ ,β )

210.44 219.54 211.03 214.06

BEBXII
(α,a,b,λ ,β )

212.10 223.50 213.00 216.60

FBBXII
(α,a,b,λ ,β )

206.80 218.20 207.71 211.30

FKwBXII
(α,a,b,λ ,β )

206.50 217.90 207.41 211.00

GOHCBXII
(α,λ ,β )

206.66 213.50 207.01 209.36

EOHCBXII
(α,λ ,β )

205.96 212.80 206.31 208.66
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Figure 8: Plots of the observed histogram and estimated pdfs for the BXII, MOBXII, ,TL-
BXII, KwBXII, BBXII,BEBXII, FBBXII, FKwBII and EOHCBXII and observed ogive and
estimated cdf EOHCBXII for data set I from right to left



STATISTICS IN TRANSITION new series, December 2021 95

Table 4: MLEs, standard errors, confidence interval (in parentheses) for the data set II

Model α̂ â b̂ λ̂ β̂

BXII
(λ ,β )

· · · · · · · · · 3.255 0.687

(0.645)
(1.99,4.52)

(0.137)
(0.41,0.95)

MOBXII
(α,λ ,β )

5.205 · · · · · · 2.121 1.666

(8.599)
(0,22.05)

(1.041)
(0.08,4.16)

(1.295)
(0,4.20)

TLBXII
(α,λ ,β )

3.949 · · · · · · 1.420 0.977

(5.685)
(0,15.09)

(1.019)
(0,3.42)

(0.904)
(0,2.75)

KwBXII
(a,b,λ ,β )

· · · 34.377 30.999 0.292 3.006

(109.591)
(0,249.17)

(63.785)
(0,156.01)

(0.368)
(0,1.01)

(4.298)
(0,11.43)

BBXII
(a,b,λ ,β )

· · · 39.029 15.796 0.389 1.645

(6.983)
(0,25.34)

(10.693)
(0,36.75)

(0.028)
(0.33,0.44)

(0.176)
(1.30,1.98)

BEBXII
(α,a,b,λ ,β )

1.000 15.563 7.818 0.617 1.388

(1.232)
(0,3.41)

(22.109)
(0,58.89)

(13.299)
(0,33.88)

(0.421)
(0,1.44)

(0.667)
(0,2.69)

FBBXII
(α,a,b,λ ,β )

26.693 3.925 58.407 0.889 0.925

(9.938)
(7.21,46.17)

(4.717)
(0,13.17)

(11.969)
(34.94,81.86)

(0.521)
(0,1.91)

(0.237)
(0.46,1.39)

FKwBXII
(α,a,b,λ ,β )

1.929 0.612 0.771 3.344 2.532

(0.668)
(0.62,3.24)

(0.144)
(0.32,0.89)

(0.823)
(0,2.38)

(1.396)
(0.61,6.08)

(1.077)
(0.42,4.64)

GOHCBXII
(α,λ ,β )

4.641 · · · · · · 1.124 2.177

(8.491)
(0,21.28)

(0.951)
(0,2.98)

(2.345)
(0,6.77)

EOHCBXII
(α,λ ,β )

0.432 · · · · · · 2.730 1.347

(0.174)
(0.09,0.77)

(0.570)
(1.61,3.84)

(0.098)
(1.15,1.53)
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Table 5: AIC, BIC, CAIC, HQIC values for the data set II

Model AIC BIC CAIC HQIC
BXII
(λ ,β )

88.50 91.30 88.94 89.38

MOBXII
(α,λ ,β )

87.28 91.48 88.20 88.60

TLBXII
(α,λ ,β )

86.62 90.82 87.54 87.94

KwBXII
(a,b,λ ,β )

86.16 91.76 87.76 87.92

BBXII
(a,b,λ ,β )

87.14 92.74 88.74 88.90

BEBXII
(α,a,b,λ ,β )

87.26 94.26 89.76 89.46

FBBXII
(α,a,b,λ ,β )

87.36 94.36 89.86 89.56

FKwBXII
(α,a,b,λ ,β )

87.14 94.14 89.64 89.34

GOHCBXII
(α,λ ,β )

84.78 88.98 85.70 86.12

EOHCBXII
(α,λ ,β )

84.42 88.62 85.34 85.74
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Figure 9: Plots of the observed histogram and estimated pdfs for the BXII, MOBXII, ,TL-
BXII, KwBXII, BBXII,BEBXII, FBBXII, FKwBII and EOHCBXII and observed ogive and
estimated cdf EOHCBXII for data set II from right to left
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Table 6: MLEs of the parameters to Stanford Heart Transplant Data for LOLL-Fr and
LEOHC-Fr regression models with corresponding SEs, p-values and −ℓ, AIC and BIC
statistics.

Models
LOLL-Fr LEOHC-Fr

Parameters Estimate S.E. p-value Estimate S.E. p-value
α 2.078 0.790 - 24.344 49.796 -
σ 2.886 0.954 - 5.728 2.952 -
β0 1.252 0.561 0.025 9.661 6.964 0.165
β1 0.181 0.096 0.061 0.204 0.094 0.031
β2 -0.047 0.018 0.010 -0.052 0.018 0.004
β3 -0.151 0.501 0.763 0.206 0.484 0.670
β4 0.551 0.268 0.039 0.437 0.365 0.230
−ℓ 160.932 158.965

AIC 335.865 331.931
BIC 354.308 350.374

The results of the fitted regression models including the estimated parameters, stan-
dard errors and corresponding p-values as well as model selection criteria such as AIC and
BIC values are given in Table 6. As seen from the reported values of AIC and BIC, the
LEOHC-Fr regression model has lower values of these statistics than those of the LOLL-Fr
regression model. Therefore, we conclude that the LEOHC-Fr regression model is more ap-
propriate than the LOLL-Fr regression model for the data used. Additionally, the regression
parameters β1 and β2 are statistically significant since the p-values of these parameters are
less than 5% significance level.

7.2.1 Residual Analysis of LEOHC-Fr model

Figure 10 displays the residuals analysis results of the LEOHC-Fr model. These figures
reveal the applicability and accuracy of the fitted LEOHC-Fr model. Since all residuals are
in the plotted envelopes, there is no possible outlier.

8. Conclusion

T-X method is used to generate a new family of continuous distributions. Important
statistical properties are investigated. Different estimation methods are discussed to estimate
the unknown model parameters via comprehensive simulation studies. Applications of data
modelling with distribution fitting and regression modelling have shown favourable results
for distributions belonging to the proposed family.
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Figure 10: The results of residual analysis: (left) plot of the modified deviance residuals
and (right) its quantile-quantile plot
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