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Unreported standard errors in meta-analysis

Nicholas T. Longford1

ABSTRACT

A study that would otherwise be eligible is commonly excluded from a meta-analysis when
the standard error of its treatment-effect estimator, or the estimate of the variance of the
outcomes, is not reported and cannot be recovered from the available information. This is
wasteful when the estimate of the treatment effect is reported. We assess the loss of informa-
tion caused by this practice and explore methods of imputation for the missing variance. The
methods are illustrated on two sets of examples, one constructed specifically for illustration
and another based on a published systematic review.

Key words: empirical Bayes, imputation, meta-analysis, missing value, sensitivity analysis.

1. Introduction

In a typical meta-analysis for comparing two treatments, A and B, there are H stud-
ies and for each study i we have an estimate θ̂i of the treatment effect θi , an estimate σ̂2

i
of the variance σ2

i of the outcomes and the within-treatment sample sizes niA and niB ,
from which the standard error of θ̂i , denoted by τi , can be easily estimated. For example,
when the subjects in study i are assigned to the treatments completely at random subject
to fixed sample sizes niA and niB , we have τ2

i = σ2
i (1/niA + 1/niB), and τ2

i is estimated
by τ̂2

i = σ̂2
i (1/niA + 1/niB). We assume that the estimators θ̂i and σ̂2

i are unbiased for
the respective targets θi and σ2

i , and that the variances σ2
iA and σ2

iB within the two treat-
ment groups coincide with σ2

i . The development presented here can easily be adapted for
heteroscedasticity because the key parameter we work with is the standard error τi and its
estimate. Note that τ̂i is not unbiased for τi , and neither is 1/τ̂2

i for 1/τ2
i , even when τ̂2

i
is unbiased for τ2

i ; see Longford (2010 and 2015) for a discussion of this issue in a wider
context.

For background to meta-analysis we refer to Rice, Higgins and Lumley (2018) and
references therein. Of historical importance is Glass (1976), credited with coining the term,
and Hedges and Olkin (1985), the first comprehensive account of statistical methods for
meta-analysis. Nowadays, meta-analysis is applied widely, in social and medical sciences in
particular, to pool information across studies in which identical or closely related parameters
are estimated.

Systematic reviews are a formalised approach to identifying studies suitable for meta-
analysis and related purposes; see Haidich (2010) for an introduction. The CONSORT
statement (Begg et al., 1996) and the STROBE initiative (von Elm et al., 2008) formulate
guidelines and standards for the conduct and presentation of such reviews and for reporting
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single case studies in a manner conducive to their use in future systematic reviews. They
are widely adopted today.

We are concerned with the setting in which an estimate of the sampling variance τ2
i is

not available for one or a few studies. We deal with the case of a single study for which
τ̂2

i is not available, but the proposed methods and conclusions carry over to meta-analysis
in which several studies have this deficiency. Our focus is on meta-analysis with only a
few studies, to which even a single study may contribute with a relatively large amount of
information, so we can ill-afford to discard it. We assume that the estimates θ̂i and the
sample sizes niA and niB are available for all studies.

There are two generic methods for dealing with missing values in an analysis. By list-
wise deletion, we apply the planned analysis to the units (studies in a meta-analysis) for
which we have complete information. This is wasteful because we discard some studies
even though we have their estimates θ̂i , and sometimes also the sample sizes ni and other
details. By imputation, we substitute a value for each missing data item. However well we
may estimate the missing values σ̂2

i (or τ̂2
i ), we overstate the precision of the estimator θ̂ of

the overall treatment effect θ because by treating the imputed values σ̃2
i (or τ̃2

i ) on par with
the corresponding estimates we pretend to have more information than was in fact collected.
Multiple imputation (Rubin, 2004) addresses this deficiency in a principled way, although
it entails some complexities in our context.

Various forms of sensitivity analysis can hone in on the range of plausible values of the
complete-data estimator of the average treatment effect. For outcomes with values in a finite
range, imputation of extreme values is an obvious starting point. For an improvement of this
method, see Gamble and Hollis (2005). Publication bias is another issue related to missing
values. It concerns studies that were conducted but their results were not published. For a
landmark contribution to this topic, see Duval and Tweedie (2000). Rothstein, Sutton and
Borenstein (2005) is an authoritative edited volume dedicated to this subject. See Lin and
Chu (2018) for a recent contribution.

Our problem relates to a study published with incomplete information. On the one hand,
we want to rescue such a study for the meta-analysis by using all the available data; on the
other hand, we want to reflect in the statements we make the loss due to the incompleteness.
In brief, we want to be ‘honest’ in our inferential statements.

We explore two general approaches, modelling and sensitivity analysis. In Section 3,
we specify an empirical Bayes model for the variances σ2

i and impute a random draw from
the approximated conditional distribution of the missing variance σ2

H+1 . This imputation is
replicated (independently repeated) several times, to generate a set of plausible completions
of the dataset. We assume that the study-specific treatment effects coincide; θi = θ for all
studies i. In Section 3.2 we discuss random-effects meta-analysis (DerSimonian and Laird,
1986), in which this assumption is relaxed and the treatment effects θi are a random sample
from an unknown distribution.

In Section 4, we apply a method motivated by sensitivity analysis, in which we consider
a plausible range of values of σ2

i , or τ2
i , and evaluate the corresponding estimates of the

overall effect θ and standard errors of θ̂ . Section 5 applies the methods to a meta-analysis
with complete information, in which the standard error of one study is masked. Section
6 discusses some peripheral issues; they include elicitation of the information about the
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Table 1: Examples of sets of five studies included in a meta-analysis, with the sampling
variance estimate τ̂2

i not available for one study.

Case A Case B Case C

Study (i) θ̂i τ̂2
i ni θ̂i τ̂2

i ni θ̂i τ̂2
i ni

1 0.467 0.260 80 0.617 0.260 80 0.567 0.260 80
2 0.082 0.365 46 0.232 0.365 46 0.182 0.365 46
3 0.384 0.229 102 0.534 0.229 102 0.484 0.229 102
4 0.163 0.282 66 0.313 0.282 66 0.263 0.282 66
5 0.691 ? 92 0.691 ? 92 0.621 ? 92

missing value(s) and exploiting the information about the mean-variance relationship of the
outcomes.

Table 1 presents three examples, A, B and C, of study results for meta-analysis, each
with H + 1 = 5 studies, on which we illustrate the methods we develop. In each example,
all five studies have two treatment arms, with equal variances and equal sample sizes within
the arms of each study; σ2

iA = σ2
iB = σ2

i and niA = niB = 1
2 ni , i = 1, . . . ,5. The quintets of

sample sizes ni and the quartets of estimates of τ2
i are the same across the three cases, only

the sets of estimates differ.
By back-calculating the within-treatment variance estimates we can check that the vari-

ances are very likely to differ; the estimates are in the range 8.4 – 11.7. Study 5, with τ̂2
5 not

available, has an unexceptional sample size. In each case A – C, we consider the plausible
range (0.17,0.28) for τ̂2

5 . That is, we rule out the possibility that τ2
5 may be smaller than

0.17 or larger than 0.28. This choice is informed by the sample size and the variances in the
other studies. Some leeway at either limit of their range is allowed since the (unknown) vari-
ance may be larger or smaller than the four recorded variances. In practice, expert opinion
may provide some additional input.

2. Information gained by using imputation

Suppose we have H studies with complete information and another study, H + 1, with
the value of τ̂2

H+1 (or σ̂2
H+1) missing. The treatment effect common to the H studies is

estimated by

θ̂− =
w1 θ̂1 + · · ·+wH θ̂H

WH
,

where wi = 1/τ̂2
i and WH = w1 + · · ·+wH . Ignoring the uncertainty about the weights wi ,

that is, about the variances τ2
i , leads to the expression var(θ̂−) = 1/WH . This confirms that

information, defined as the reciprocal of the sampling variance, is additive. Specifically, the
information about θ contained in study i is wi , in the collection of H studies it is WH and, if
τ2

H+1 were available, it would be WH +wH+1 in the H +1 studies.
If we had complete information about study H+1, we would evaluate the version of the
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estimator θ̂− for H +1 studies, that is,

θ̂+ =
WH θ̂−+wH+1 θ̂H+1

WH +wH+1
.

If wH+1 were known the variance of the estimator of θ would be reduced by

1
WH

− 1
WH +wH+1

=
wH+1

WH (WH +wH+1)
,

or by 100wH+1/(WH + wH+1)%. As wH+1 is not known, the potential for reduction is
smaller. When wH+1 is not known, but a plausible range for it is defined, then we can find
the plausible range of this percentage. In the cases in Table 1, this range is (19.8,28.9)%.
The plausible reduction of the standard error is in the range (9.5,13.5)%. Thus, a lot is at
stake; the sampling variance could be reduced by as much as 29%, but the uncertainty about
the magnitude of this stake, about 9%, is not trivial either.

3. Empirical Bayes model for σ2
i

Imputation for a variance estimate is based on an estimate of the distribution underlying
the variances of the studies. We assume that this distribution is inverse gamma, and estimate
its parameters. First we derive the marginal distribution of the estimator σ̂2

i of the within-
treatment group variance σ2

i in study i = 1, . . . ,H.
We assume that, conditionally on the variance σ2

i , ki σ̂
2
i /σ2

i has χ2 distribution with ki

degrees of freedom. Thus, the conditional density of σ̂2
i , given its estimand σ2

i , is

f (x) =
1

Γ
( 1

2 ki
) ( ki

2σ2
i

) 1
2 ki

x
1
2 ki−1 exp

(
− ki x

2σ2
i

)
,

where Γ is the gamma function. Further, we assume that the variances σ2
i are a random

sample from the inverse gamma distribution with parameters α and γ:

g(y) =
1

Γ(γ)
α

γ

(
1
y

)γ+1

exp
(
−α

y

)
.

The marginal density of σ̂2
i is obtained by integration of the joint density of σ̂2

i and σ2
i :

Cx
1
2 ki−1

∫ +∞

0

(
1
y

) 1
2 ki+γ+1

exp
{
−1

y

(
α +

1
2

ki x
)}

dy

= CΓ

(
ki

2
+ γ

)
x

1
2 ki−1(

α + 1
2 ki x

) 1
2 ki+γ

,

where C is the standardising constant, for which the expression is a density. We approximate
the concluding expression by an inverse gamma density using the relation (1+ c/k)k .

= ec,
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precise for sufficiently large k. For the denominator, we have(
α +

ki x
2

) 1
2 ki+γ

=

(
ki x
2

) 1
2 ki+γ (

1+
2α

ki x

) 1
2 ki+γ

.
=

(
ki x
2

) 1
2 ki+γ

exp
{

2α

ki x

(
1
2

ki + γ

)}
.

Hence the approximation to the marginal density of σ̂2
i by an inverse gamma density,

1
Γ(γ)

{
α

ki
(ki +2γ)

}γ (1
x

)γ+1

exp
{
− α

ki x
(ki +2γ)

}
,

where the first two factors standardise the expression to be a density. The expectation of this
distribution is µ =α(1+2γ/ki)/(γ−1), assuming that γ > 1, and its variance is µ2/(γ−2),
assuming that γ > 2. The parameters α and γ of this density are estimated by maximising
the loglikelihood

l =−H log{Γ(γ)}+Hγ log(α)+ γ

H

∑
i=1

log
(

ki +2γ

ki

)
− (γ +1)

H

∑
i=1

log
(
σ̂

2
i
)
−α

H

∑
i=1

ki +2γ

ki σ̂
2
i

.

We apply the Newton-Raphson algorithm. The score functions for l are

∂ l
∂α

=
Hγ

α
−

H

∑
i=1

ki +2γ

ki σ̂
2
i

∂ l
∂γ

= −HΓ
′(γ)+H log(α)+

H

∑
i=1

log
(

ki +2γ

ki

)
+2γ

H

∑
i=1

1
ki +2γ

−
H

∑
i=1

log
(
σ̂

2
i
)

−2α

H

∑
i=1

1
ki σ̂

2
i
,

where Γ′ is the digamma function, the derivative of log(Γ). The elements of the Hessian
matrix are

− ∂ 2l
∂α2 =

Hγ

α2

− ∂ 2l
∂α ∂γ

= −H
α

+2
H

∑
i=1

1
ki σ̂

2
i

− ∂ 2l
∂γ2 = HΓ

′′(γ)−4
H

∑
i=1

1
ki +2γ

+4γ

H

∑
i=1

1

(ki +2γ)2 ,

where Γ′′ denotes the trigamma function, the derivative of the digamma function. The
Newton-Raphson algorithm converges very fast, as judged by any reasonable criterion for
convergence. An initial solution has to be provided; this is difficult to automate because the
loglikelihood is not concave throughout the parameter space.
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The expression for l implies that the sufficient statistics for α and γ are the average (or
total) of log(σ̂2

i ) and, assuming that γ ≪ 1
2 ki for all i, the average (or total) of 1/σ̂2

i . The
‘weights’ ki are therefore not as important for summarising the variances σ2

i as they are for
the treatment effect θ . We confirm this on an example in Section 5.

We derive a non-iterative estimator of (α,γ) that can be used as an alternative, or as
an initial solution for the Newton-Raphson algorithm. Given γ̂ , ∂ l/∂α implies a simple
expression for α̂;

α̂ =
H γ̂

H

∑
i=1

ki +2γ̂

ki σ̂
2
i

, (1)

which is well approximated by H γ̂/(1/σ̂2
1 + · · ·+1/σ̂2

H) when γ̂ ≪ ki for all i.

The posterior distribution of σ2
i is inverse gamma with expectation E(σ2

i | σ̂2
i ) = c and

variance var(σ2
i | σ̂2

i ) = c2/(γ−2), where c=α(k+2γ)/{k(γ−1)}. Denote these moments
by E and V , respectively. The ratio E2/V is equal to γ − 2 for all ki . This motivates the
moment-matching estimator γ̂ = 2+ Ê2/V̂ , based on the naïve estimators of E and V . For
α we do not have a moment-matching estimator, but we can use the estimator given by
equation (1), without the assumption that γ ≪ ki . Problems with maximum likelihood are
sometimes encountered with small-scale data or large values of log{Γ(γ̂)}. We have not
come across any, but this non-iterative method can be regarded as a back-up for such an
eventuality.

3.1. Imputation

With maximum likelihood estimators α̂ and γ̂ , we have several options for imputation
for an unknown variance. The simplest is to impute the naïve estimator of the expectation
of the fitted distribution, ĉ = α̂(k+ 2γ̂)/{k(γ̂ − 1)}. This quantity depends on the degrees
of freedom k, although only weakly when k ≫ 2γ , when (k+ 2γ̂)/k .

= 1. Next, we could
use for imputation values generated by a draw from the fitted (inverse gamma) distribution.
And finally, the uncertainty about α and γ could be reflected by drawing first a plausible
pair (α̃, γ̃) from the fitted distribution for (α,γ) and then drawing a value σ̃2

i from the plau-
sible distribution given by (α̃, γ̃). Some approximation cannot be avoided in this process
because the joint distribution of (α̂, γ̂) is known only asymptotically and is estimated by
using estimates for the unknown parameters. Bayesian counterparts of these procedures can
be implemented; (α̃, γ̃) is drawn from the joint posterior distribution of (α,γ). They also
entail some approximation; the paucity of information about α and γ is unavoidable, espe-
cially if we have no means of faithfully representing the prior information about them and,
indeed, when our prior information is scant. Care has to be exercised also in the choice of a
flat prior to represent the absence of any such information.

The maximum likelihood estimators of α and γ , based on studies 1 – 4, have very large
sampling variances and the two estimators are highly correlated. When maximum likelihood
(or any other method) is fitted to a small number of studies the process of using plausible
values entails a lot variation.
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3.2. Meta-analysis with random effects

We have assumed that the studies have a common expectation θ . It may be more ap-
propriate to assume that the study-specific treatment effects θi are a random sample from
a distribution with expectation θ and variance ω ≥ 0. If this variance were known, the
optimal estimator of θ based on the first H studies would be

θ̂ =
1

WH(ω)

H

∑
i=1

wH(ω) θ̂i ,

where wi(ω) = 1/(ω+ τ̂2
i ) and WH(ω) =w1(ω)+ · · ·+wH(ω); see DerSimonian and Laird

(1986). A profound difficulty in using or adapting this estimator is that ω is not known and,
when H is small, is estimated with very low precision. Even if all H studies were very
large, so that there would be very little uncertainty about each θi , i = 1, . . . ,H, ω could be
estimated with only H−1 degrees of freedom. When the studies have moderate sample sizes
and there is appreciable uncertainty about each θ̂i , the uncertainty about ω is even greater.
This is difficult to reflect in the estimation of var(θ̂), but it is obvious that the conventional
estimator v̂ar(θ̂) = 1/WH(ω̂) has a negative bias. In fact, even with the assumption of a
common treatment effect, ω = 0, the estimator v̂ar(θ̂) = 1/WH has a (small) negative bias
because the uncertainty about the study weights wi is ignored. However, this bias is in
practice negligible.

The effect of the study-level variance ω on the weights wi(ω) is to reduce their dis-
persion and shrink their relative weights wi/WH toward the common value 1/H. Therefore
the effect of uncertainty about the missing value of a sampling variance diminishes with
increasing ω . So, the case of ω = 0, explored in the rest of the article represents an extreme
case, albeit without taking the uncertainty about ω into account.

3.3. Examples

The fit of the model for the variances σ2
i , i = 1, . . . ,4, yields the estimates α̂ = 141.23

and γ̂ = 18.60, with estimated sampling variance matrix(
3870.33 611.86
611.86 103.93

)
.

The estimated correlation of the two estimators is 0.965. The empirical Bayes estimate of
the expected value of σ̂2

5 is 141.23/17.60× (1+ 2× 18.60/92) = 11.27. The correspond-
ing estimate of τ̂2

5 is 11.27× 2/92 = 0.245. By substituting this value for τ̂2
5 we obtain

the estimates θ̂+ = 0.382, 0.499 and 0.445 in the respective cases A, B and C, each with
estimated standard error 0.232. The latter is an underestimate in all three cases because we
have pretended τ̂2

5 to be known.
The uncertainty about τ̂2

5 is partly reflected by averaging the plausible estimates θ̃+

obtained by substituting for τ̂2
5 random draws from its fitted sampling (or posterior) distri-

bution. The estimate of θ is obtained as the average of the plausible estimates. The sampling
variance has two components: average of the plausible sampling variances and variance of
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the plausible estimates of θ . The latter component should be multiplied by (1+1/m); when
we choose a large m, this factor makes next to no difference.

We applied m = 1000 replications; we can be profligate with the choice of m because
the calculations that follow are simple. The averages in the three cases are 0.383, 0.500 and
0.445, and the standard errors are estimated by 0.232 in all three cases. Thus, the results
are altered only slightly by using plausible values τ̃2

5 . In fact, the estimates of the standard
errors are greater by less than 0.0002 compared to when τ̂2

5 is used.
The two kinds of imputation we applied are improper in the terminology of Rubin (2004)

because they fail to reflect the uncertainty about the missing value(s) in its entirety. Specif-
ically, we have pretended that the parameters α and γ were known and were equal to their
estimates. We make amends for this by drawing a random sample of plausible pairs (α̃, γ̃),
and then drawing a plausible value σ̃2

H+1 from each (plausible) distribution based on the
realised pair (α̃, γ̃). In this procedure, we assume that the sampling distribution of (α̂, γ̂) is
bivariate normal, with the sampling variance derived from the fitted information matrix. Re-
lying on asymptotic normality with such a small sample size H = 4 is clearly problematic,
and some error is committed. However, this is bound to be not as large as if we pretended
this variance matrix to vanish.

With this method of multiple imputation, we obtain the estimates 0.378, 0.497 and 0.443
for the respective cases A, B and C, with standard error 0.234 in each case. They do not
differ materially from the results obtained by simpler improper methods of imputation. The
estimate of the standard error is inflated by only 0.0025.

In generating replicates of (α̃, γ̃), we rejected 32 pairs because they contained at least
one negative value. The values of the plausible weight w̃5 ranged from 0.01 to 15.6; their
mean was 4.07 and standard deviation 1.31. The substantial uncertainty about the param-
eters α and γ translates to substantial uncertainty about τ2

5 or the weight w5 , but this does
not contribute substantially to the uncertainty about θ .

4. Plausible values of θ̂

An approach that involves relatively weak assumptions about the incompletely reported
study H +1 is based on a plausible range of values of τ2

H+1 . A plausible range, an interval
(τ2

H+1,L ,τ
2
H+1,U), is defined by the condition that all values of τ2

H+1 outside this interval
can be ruled out. An interval that subsumes a plausible range is also a plausible range, but
a subinterval of a plausible range may not be. In ideal circumstances, the plausible range
would be elicited from subject matter experts, such as clinical personnel involved in the
meta-analysis or one of its studies. We assume that a plausible range for τ2

H+1 has been
specified. A value is said to be plausible if it is contained in the plausible range.

We evaluate the estimator θ̂ conditionally on τ2
H+1 being equal to each value on a fine

grid that covers the plausible range. These values can be regarded as plausible for θ̂ , and the
range they cover, (θ̂L , θ̂U), as the plausible range for θ̂+ . The plausible values of var(θ̂+) =
1/(WH +wH+1) can be established similarly. If these two plausible ranges are narrow, then
we can conclude the analysis with these two intervals, admitting the uncertainty about θ̂+

additional to its sampling variation, as well as the uncertainty about the standard error.
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The results of the meta-analyses for the three sets of studies introduced in Table 1 are
presented in the panels in one row of Figure 1. The first panel at the top (Ae, for case A)
presents the plausible value of θ̂+ as a function of the plausible value of τ̂2

5 (solid line). The
estimate θ̂− is indicated by horizontal dashes. By including study 5 in the meta-analysis,
the estimate of θ̂ is increased by about 0.10, from θ̂ = 0.295 to between 0.373 – 0.409.
The plausible standard errors, plotted in panel As are in the range 0.222 – 0.235, reduced
from the standard error of θ̂− equal to 0.263. The t ratio, plotted in panel At, is increased
from 1.12 (based on θ̂−) to between 1.59 and 1.85. So, we conclude with no evidence of
a treatment effect, despite an appreciable increase in the estimate of θ and reduction in its
standard error.

Panels in the middle row, based on case B, present an example in which study 5 alters
the verdict of significance unequivocally, for any plausible value of τ̂2

5 . Panels at the bottom
(case C) display an example of impasse. As a function of the estimate τ̂2

5 , the t ratio (panel
Ct) intersects the horizontal line drawn at 1.96. There would be sufficient evidence of a
treatment effect for some plausible values of τ̂2

5 , namely in the range (0.170, 0.217), but
‘not significant’ would be the verdict for 0.217 < τ̂2

5 < 0.240.

4.1. Plausible verdicts of hypothesis testing

If establishing significance is the sole objective of the analysis, then we can conclude the
analysis with an unequivocal statement when the test of the relevant hypothesis yields the
same verdict for every plausible value of τ2

H+1 . This approach can be reduced to evaluating
the t ratio at the limits τ2

H+1,L and τ2
H+1,U and at most one other point. We assume that the t

test is used throughout, and that its assumptions are satisfied.
Let τ̃2 be a plausible value of τ2

H+1 and θ̃ and w̃H+1 the corresponding values of θ̂+ and
wH+1 . In Appendix A we show that, except when θ̂H+1 = 0, the t ratio, θ̃/

√
WH + w̃H+1 ,

is either a unimodal or a monotone function of τ̃2; its extension to the entire real axis has a
single extreme, w∗

H+1 =WH (θ̂−/θ̂H+1 −2), and is monotone in the two intervals separated
by w∗

H+1 . If w∗
H+1 lies outside (wH+1,L ,wH+1,U), then the t ratio is a monotone function of

w̃H+1 = 1/τ̃2 in this range, and so it suffices to evaluate it at the limits wH+1,L and wH+1,U ;
these values of t delimit the plausible range of the t ratio. When w∗

H+1 is contained in
(wH+1,L ,wH+1,U), the plausible values of the t ratio have the same sign throughout, and so
their range is delimited by the t ratio evaluated at w∗

H+1 and at either wH+1,L or wH+1,U .
The plausible range of p values is obtained straightforwardly, as the p value is a decreasing
function of |t|.

An interesting case arises when θ̂− and θ̂H+1 have opposite signs and WH θ̂−/θ̂H+1 is a
plausible value of wH+1 . Zero is now a plausible value of the t ratio, so the ratio may be
both positive and negative. But significance of the t ratio would be plausible only in some
esoteric settings with extremely wide plausible ranges of τ2

H+1 .
Apart from adopting the t statistic for the hypothesis θ = 0, the only assumption we have

made is about the plausible range for wH+1 . For its specification we have to rely on expert
opinion formed by information from other studies and the nature of the variation of the out-
come variable in the relevant population. Eliciting such opinion is far from trivial. Experts
may be ill-at-ease and reticent to cooperate, being concerned that the integrity and veracity
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Figure 1: Plausible estimates (e), standard errors (s) and t ratios (t) in the meta-analyses A,
B and C (Table 1). Horizontal dashes mark the relevant statistics for the four studies with
complete information and the horizontal dots are drawn at the critical value of the t ratio,
1.96. By construction (identical sets of variance estimates τ̂2

i in Table 1), the panels As, Bs
and Cs are identical.

of their statements may be undermined in the future when new information emerges.

An alternative to this approach involves finding the values of τ2
H+1 for which the p

value of 0.05, or another a priori selected value, is attained. The behaviour of the t ratio as a
function of τ2

H+1 = 1/wH+1 implies that there are at most two such values. These borderline
points are easy to find by the Newton method or another line search algorithm. Within each
interval delimited by a pair of these borderline values, the p value is either entirely greater or
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smaller than the reference value, say 0.05. We then ask the experts whether every interval in
which the p values are greater than 0.05 is entirely implausible. If the answer is affirmative,
then we conclude with the verdict of significance because it would have been attained for
any plausible value of τ2

H+1 .
A drawback of both approaches is the possibility of an impasse, which arises when

significance would have been achieved for some but not all plausible values of τ2
H+1 . In

such a case, we have to admit that both significance and its negation are plausible outcomes
of the analysis. In general, it is preferable to specify as narrow a plausible range for τ2

H+1 as
possible, to reduce the chances of an impasse. However, it is an imperative that any value
of τ2

H+1 outside the declared range can be ruled out; otherwise the integrity of the method
is breached. In the second variant of this approach, it is important to discourage a hasty or
perfunctory dismissal of the plausibility of the intervals in which the p value is greater than
the reference (0.05).

4.2. Accounting for the uncertainty about τ2
H+1

The uncertainty that can be attributed to the unknown wH+1 is assessed by the condi-
tional distribution of θ̂+ given θ̂− and WH . The Taylor expansion for θ̂+ around θ̂− yields
the approximation

var
(
θ̂+ | θ̂− , θ̂H+1

) .
=
(
θ̂H+1 − θ̂−

)2
E
{
(1+ rH+1)

−4
}

var(r̂H+1) , (2)

where ri = wi/WH , i = 1, . . . ,H + 1, is the relative weight. This identity is derived in Ap-
pendix B. It implies three factors that have an impact on the uncertainty about θ̂+ : the
deviation of θ̂H+1 from θ̂− , the relative magnitude of wH+1 with respect to WH , and the
variance of this ratio rH+1 . The first factor does not involve rH+1 , and can be evaluated
from the available data directly. It vanishes when θ̂H+1 = θ̂− , and then θ̂+ = θ̂− for any
value of τ2

H+1 . The second term has an upper bound of 1.0. If study H + 1 is large, then
wH+1 is also large, and then this factor is small. Further, when we have a lot of informa-
tion about θ , and so WH is large, then var(r̂H+1) is small. These considerations, however
loose and involving approximation, conform with intuition. A study H + 1 omitted from
meta-analysis introduces greater uncertainty about θ when θ̂H+1 is exceptional among the
estimates θ̂1 , . . . , θ̂H , when the study contains a lot of information about θ (wH+1 is small),
and when we are uncertain about wH+1 .

The first factor is equal to 0.167, 0.061 and 0.051 for the respective cases A – C presented
in Table 1. The other two factors have values common to the three cases. The plausible
values of rH+1 are in the range 0.265 – 0.406, and for 1/(1+ rH+1)

4 they are in the range
0.256 – 0.390. We approximate var(r̂H+1) conservatively by the variance of the uniform
distribution on (0.265,0.406), that is, 0.1412/12 = 0.00166, and the expectation of 1/(1+
rH+1)

4 by its largest plausible value, 1/1.2654 = 0.390. Thus a conservative estimate of
the variance in (2) is 0.167× 0.00166× 0.391 = 1.08 · 10−4, that is, standard deviation of
about 0.0104 in case A, 0.0063 in case B, and 0.0057 in case C. This is a small contribution
to the overall uncertainty attributable to the variation of the outcome variable in the studied
population(s), as quantified by 1/

√
WH = 0.263.
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Table 2: Estimates, standard errors and sample sizes (n(P) — placebo and n(M) — mirtaza-
pine) for the studies in the systematic review of Mavridis et al. (2014).

Study Estimate St. error n(P) n(M)

S1 –3.1 2.91 18 25
S2 –2.5 2.20 23 26
S3 –1.8 3.02 16 11
S4 –6.8 2.30 23 22
S5 3.6 1.71 20 21
S6 –4.6 2.26 26 29
S7 –2.3 1.97 32 34
S8 –2.9 1.68 47 50

5. Example II

In this section we illustrate the methods on a systematic review conducted by Mavridis et
al. (2014) for comparing mirtazapine, a drug for treating clinical depression, with placebo.
The outcome variable is recorded on the HAMD21 scale constructed originally by Hamilton
(1967) using a patient questionnaire. Larger values of HAMD21 correspond to more severe
illness.

The systematic review found eight studies. Their results are presented in Table 2, listing
the estimate of the treatment effect (θ̂i), its (estimated) standard error, and the number of
observations (n(P)i for placebo and n(M)

i for mirtazapine) for each study S1 – S8. Study S5,
the only one with θ̂i > 0, is an obvious outlier. The standard errors are in the range 1.68–
3.02, and the numbers of observations are in the range 27–97.

We pretend that one of the standard errors is missing and apply the methods that make
use of the estimate and sample size for this study. The results are presented in Table 3.
Row labelled –Si, i = 1, . . . ,8, represents the setting with the standard error in study Si
missing. The first two columns present the estimates of the parameters of the inverse gamma
distribution on which imputation for this missing value is based. The next column presents
the estimate of the treatment effect based on the seven retained studies (θ̂−). The next
two columns present the imputed standard error τ̃i derived from the (empirical) posterior
expectation of the variance σ2

i and the estimate of θ based on this standard error (θ̂+). The
right-most column displays the estimates and standard errors based on averaging over 100
random draws from the posterior distribution of σ2

i .
The results are presented with three decimal places, so that the small differences of the

estimates can be discerned. The target of estimation is the treatment effect based on the
estimates of all the eight studies, θ̂ = −2.061. With no data discarded, the standard error
of θ̂ is estimated by 0.751. By imputing the posterior mean, all single-imputation estimates
θ̂+ are close to the target, except for the setting –S5. The estimated standard errors are also
close to 0.751, except for –S5. All of them should exceed 0.751 because they are based
on less information. The contradiction arises because the uncertainty about the imputed
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Table 3: Estimates and estimated standard errors (se) of the treatment effect; metaanalysis of
studies summarised in Table 2, with one standard error τ̂i deleted; θ− — the study discarded
altogether; θ+ — the study included, with the posterior expectation of σi imputed; θ̃+ —
the study included, with multiple imputation for σi .
Row labelled –Sk, k = 1, . . . ,8, indicates that τ̂k is regarded as missing.

α̂ γ̂ θ̂− (se) τ̃i θ̂+ (se) θ̃+ (se)

–S1 3.03 7.46 –1.987 (0.777) 2.36 –2.096 (0.748) –2.098 (0.753)
–S2 2.89 6.63 –2.003 (0.799) 2.23 –2.060 (0.752) –2.061 (0.758)
–S3 3.05 6.87 –2.079 (0.775) 3.26 –2.064 (0.754) –2.063 (0.764)
–S4 2.89 6.62 –1.496 (0.795) 2.34 –2.043 (0.752) –2.050 (0.767)
–S5 5.54 13.45 –3.414 (0.836) 2.59 –2.750 (0.795) –2.753 (0.797)
–S6 2.94 7.00 –1.746 (0.796) 2.05 –2.120 (0.752) –2.121 (0.753)
–S7 2.93 6.92 –2.021 (0.812) 1.85 –2.066 (0.745) –2.064 (0.754)
–S8 3.09 7.57 –1.852 (0.840) 1.47 –2.108 (0.739) –2.113 (0.748)

standard error is ignored. Multiple imputation corrects this bias but the estimates θ̃+ differ
from their single-imputation counterparts θ̂+ only slightly.

The estimates stand out for the setting –S5 because study S5 has a smaller standard error
than its sample size suggests. When τ̃5 is imputed the contribution of S5 to estimating θ is
underrated, and so its influence is reduced. In summary, imputation of the posterior mean
of the variance is sufficient for estimating the treatment effect. Multiple imputation yields
similar estimates and inflates the standard errors only slightly.

We illustrate sensitivity analysis by pretending that τ̂5 is not recorded. Since θ̂5 is an
outlier among the estimates, it may be justified to discard the study altogether, especially
if a careful review of the literature and of other sources discovers some reason for the ex-
ceptional result. Failure to report τ̂5 might also raise suspicion about both the quality and
context of the study. Instead of the dichotomy, to include or exclude the study from the
meta-analysis, we define a plausible range of standard errors, (τ̃5L , τ̃5U). Exclusion corre-
sponds to τ̃5L =+∞, implying that also τ̃5U =+∞. Exclusion being plausible corresponds
to τ̃5L <+∞ and τ̃5U =+∞.

An analyst might impute for τ̂5 the standard error from a study with a similar sample
size, such as S1 or S4, and allowing some larger values to reflect the doubt about θ̂5 . Sup-
pose the plausible range for τ̂5 is set to (2,5). Figure 2 displays the plot of the plausible
values of θ̂+ as a function of τ̃5 (solid line) together with the plausible confidence intervals
(shaded area). For τ̃5 = 2.0, θ̂+ is close to the target θ̂+ = −2.06 (horizontal line of long
dashes), so the error caused by the failure to allow for τ̂5 = 1.7 < τ̃5L is not harsh.

For τ5 = 5.0, study S5 contributes with very small weight; θ̂+ is close to θ̂− , marked
by the horizontal dashed line. The standard error increases with τ̃5 , from 0.771 at τ̃5 = 2.0
to 0.824 at τ̃5 = 5 — the grey region narrows towards the right. The upper confidence limit
for θ̂+ decreases with τ̃5 . It crosses zero at τ̃5 = 1.32. So, there is evidence of a negative
effect of mirtazapine so long as τ̂5 > 1.32. If τ̂5 were very small, study S5 would dominate
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Figure 2: Sensitivity analysis. Plausible estimate of the treatment effect θ̂ as a function of
the plausible value of the standard error τ5 when τ̂5 for study S5 is masked, regarded as not
reported.

the meta-analysis and it would conclude with evidence of a positive (detrimental) effect of
mirtazapine. This would happen for τ̂5 < 0.64. Such an outcome would not be credible
given that all but one study yielded a negative estimate.

6. Discussion

The empirical Bayes approach in Section 3 involves some assumptions that are con-
tentious and their plausibility is difficult to assess. The approach motivated by sensitivity
analysis in Section 4 carries a lighter burden of assumptions but has a heavier demand on
input — it requires the declaration of a plausible range for the missing sampling variance.
Also, it may conclude with an impasse, when one conclusion, e.g., of a hypothesis test, is
obtained for some plausible values of this variance, and another conclusion for other values
that are equally plausible.

The analysis in Section 2 shows that a study with standard error not reported can con-
tribute to the estimation of the overall treatment effect. Accounting for the uncertainty about
the imputed standard error makes much less difference. Similar conclusions can be drawn
about using plausible values for the missing standard error(s).

The model applied in Section 3 can be expanded to a regression model, and thus strengthen
the inference about a missing variance by exploiting the association of the variance and
mean implied by the distribution of the outcomes or other auxiliary information. This ap-
proach is not always useful. For example, when the outcomes are binary and the events
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are neither rare nor very frequent the variance is a very flat function of the probability. In
any case, the small number of studies precludes any complex modelling and any reliable
inference about the mean-variance relationship; prior information may be more useful.

The examples in Sections 4 and 5 confirm that even simple methods, using some short-
cuts on proper imputation, exploit nearly to the full the information about an incompletely
reported study and they estimate the standard error of the overall treatment effect with neg-
ligible bias. Sensitivity analysis using plausible ranges for the missing variance has some
potential but this is undermined by the general reluctance to participate in elicitation of these
ranges.

The common or average treatment effect θ is ascribed importance, and motivates the
attempt to recover information contained in an incompletely reported study (H + 1). The
problem has some commonality with publication bias, a widely studied issue. The expecta-
tion θ can be interpreted as the treatment effect in a set of studies among which the realised
studies are a random sample. This interpretation has a flaw in that the treatment effects
of these studies, θ1 , . . . , θH+1 , would be a random sample from a meaningful distribution
only if the populations (constituencies) and contexts of the studies were selected at random
from a universe of potential studies, that is, according to a design. In practice, these as-
pects are selected haphazardly, influenced by the availability of expertise and funding and
concern about the specific issue. Also, the contexts of the realised studies, especially those
conducted in the more distant past and in countries with different levels of development and
organisation of health care, may differ a great deal from the context for which the inferences
drawn by a meta-analysis are intended. Such relevance is rarely incorporated in the weights
used for estimating the overall (or average) treatment effect.

All the data used in this article are displayed in Tables 1 and 2.
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Appendix A. The t ratio for θ̂ as a function of wH+1

In this appendix we explore the behaviour of the t ratio θ̂+/
√

WH +wH+1 as a function of
wH+1 . This function is

T (w) =
WH θ̂−+wθ̂H+1√

WH +w
.

Its derivative is

∂T
∂w

=
1√

WH +w

(
θ̂H+1 −

1
2

WH θ̂−+wθ̂H+1

WH +w

)

=
1

2(WH +w)
3
2

{
WH
(
2θ̂H+1 − θ̂−

)
+wθ̂H+1

}
.

The sign of this derivative does not depend on w when θ̂H+1 = 0. In that case, the derivative
has the same sign as −θ̂− . When θ̂H+1 ̸= 0, the derivative has a single root at

w∗
H+1 = WH

(
θ̂−

θ̂H+1
−2

)
,

where its sign switches from positive to negative or vice versa. Therefore T changes at
w∗

H+1 from decreasing to increasing or vice versa. Its value at w∗
H+1 is

T
(
w∗

H+1
)
=

2WH√
WH +w∗

H+1

(
θ̂−− θ̂H+1

)
.

When θ̂H+1 ̸= 0, the function T has a single root at w(0)
H+1 =−WH θ̂−/θ̂H+1 , which is posi-

tive when θ̂− and θ̂H+1 have opposite signs. In that case, w∗
H+1 < 0, and so T is monotone

in the plausible range. In summary, T is either unimodal without changing its sign in the
plausible range of wH+1 , or is monotone, in which case it may cross zero at one point.

Appendix B. Taylor expansion for θ̂+

The first-order partial differential of θ̂+ with respect to wH+1 is

∂ θ̂+

∂wH+1
=

(WH +wH+1) θ̂H+1 −WH θ̂−−wH+1 θ̂H+1

(WH +wH+1)2

=
WH
(
θ̂H+1 − θ̂−

)
(WH +wH+1)2

=
θ̂H+1 − θ̂−

WH

1(
1+ wH+1

WH

)2 ,

from which the expression for the conditional variance in equation (2) follows directly,
evaluating (∂ θ̂+/∂wH+1)

2 var(ŵH+1) and substituting rH+1 = wH+1/WH .


