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Bayesian estimation and prediction
based on Rayleigh record data with applications

Raed R. Abu Awwad1, Omar M. Bdair2, Ghassan K. Abufoudeh3

ABSTRACT

Based on a record sample from the Rayleigh model, we consider the problem of estimating
the scale and location parameters of the model and predicting the future unobserved record
data. Maximum likelihood and Bayesian approaches under different loss functions are used
to estimate the model’s parameters. The Gibbs sampler and Metropolis-Hastings methods
are used within the Bayesian procedures to draw the Markov Chain Monte Carlo (MCMC)
samples, used in turn to compute the Bayes estimator and the point predictors of the future
record data. Monte Carlo simulations are performed to study the behaviour and to compare
methods obtained in this way. Two examples of real data have been analyzed to illustrate the
procedures developed here.

Key words: Bayesian estimation and prediction, Rayleigh distribution, record values, Markov
Chain Monte Carlo samples.

1. Introduction

Assume we have a sequence of independent and identically distributed (iid) random
variables from Rayleigh distribution. The two-parameter Rayleigh distribution with param-
eters λ and µ has the cumulative distribution function (CDF) and the probability density
function (PDF), respectively

F(x;λ ,µ) = 1− e−λ (x−µ)2
,x > µ, (1)

and

f (x;λ ,µ) =

{
2λ (x−µ)e−λ (x−µ)2

i f x > µ,

0 i f x ≤0 ,
(2)

where λ and µ are the scale and location parameters, respectively, and λ > 0 and µ >

0. From now on the Rayleigh distribution with parameters λ and µ will be denoted by
Ra(λ , µ). The Rayleigh distribution has many applications in reliability, life testing and
survival analysis. More details on the Rayleigh distribution can be found in Johnson et al.
(1994).
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The random variable X j is called a record (upper record) if X j > Xi for all i = 1,2, ..., j−
1. By convention X1 is a record. Then, the record times sequence {U(n),n ≥ 1} is defined
as U(1) = 1 with probability one, and for n ≥ 2, U(n) = min{ j : j >U(n−1)}. The ran-
dom variables XU(n),n ≥ 1 denote the record values from X-sequence. Naturally, record
values appear in many real life situations including data related to weather, sports, eco-
nomics and life-tests. For more details about the applications of record values, we refer the
reader to Arnold et al. (1998), Nevzorov (2000), and Gulati and Padgett (2003). Extensive
studies for estimating parameters from the Rayleigh distribution based on different types of
ordered data are available in the literature, but no attempt has been made for comparing the
performances in estimating and predicting under different types of loss functions based on
record values. Many authors in the literature worked on record data, among others; Bdair
and Raqab (2016) considered the Bayesian prediction of future records from Weibull distri-
bution when one- and two-sequence are used. Raqab et al. (2007) obtained the maximum
likelihood estimator and Bayes estimators for the parameters of the Pareto distribution based
on the record data. Raqab et al. (2018) studied the estimation and prediction problem of
bathtube-shaped distribution based on record values. Madi and Raqab (2004) studied the
problem of temperature records as an application to Pareto Bayesian prediction problem.
Based on a set of observed records from the exponential distribution, Ahsanullah M. (1980)
discussed the problem of predicting the unseen records. Ahmadi and Doostparast (2006)
discussed the Bayesian estimation and prediction based on record values for some distri-
butions like Weibull, Pareto and Burr type XII. Bdair and Raqab (2009) studied the mean
residual lifetime of record data and many of its mathematical properties.

Bayesian estimation of the distribution’s parameters as well as prediction of future
records are of natural interest in this context. For estimating θ by a decision δ , we con-
sider three types of loss functions. The first one is a symmetric quadratic loss function,
which is given by

LF1(θ ,δ ) = (θ −δ )2.

The second one is an alternative to the squared loss function, namely the absolute loss
function and it is given by

LF2(θ ,δ ) = |θ −δ |.

Varian (1975) proposed the LINEX loss function which is more commonly used form
of asymmetric loss. LINEX loss function can be defined by

LF3(θ ,δ ) = ea∗(δ−θ)−a∗(δ −θ)−1, a∗ ̸= 0.

To perform a Bayesian estimates of the Rayleigh distribution parameters, their prior
distributions should be specified. When both parameters λ and µ are unknown, we assume
that λ has the gamma prior distribution. The gamma prior distribution of λ denoted by
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Gamma(a,b) and is given by

π1(λ |a,b) =

{
ba

Γ(a)λ a−1e−bλ if λ > 0,

0 if λ ≤ 0.
(3)

Here, the hyper-parameters a > 0, b > 0, and Γ(a) is the gamma function, i.e. Γ(a) =∫
∞

0 xa−1e−xdx. The prior of µ (π2(µ)) is assumed with support (0,xU(1)). For more details,
one may refer to Kundu (2008) and Abu Awwad et al. (2018) and the reference therein.

The remaining sections of the paper are organized as follows. In Section 2, we propose
the maximum likelihood estimator (MLE) of the parameters of Rayleigh distribution. In
Section 3, we use the Metropolis-Hastings method with normal proposal (see Metropolis,
et al. (1953)) and the Gibbs sampling approach to compute the Bayes estimators (BEs)
of λ and µ under different loss functions LF1,LF2 and LF3. The implementation of Gibbs
sampling and Metropolis-Hastings methods to compute sample-based estimators for the
predictive density functions of the future record values based on some current available
records is discussed in Section 4. In Section 5, we show numerical data analyses for illus-
trative purpose. For this, we employ Monte Carlo simulation to compare the BEs with the
corresponding maximum likelihood estimates as well as to predict and compare between
the predicted values based on the suggested types of loss functions. We conclude the results
obtained in this work in Section 6.

2. Maximum likelihood estimation

Let xU(1),xU(2), ...,xU(n) be a sequence of n Rayleigh upper record values with respective
PDF and CDF given in Eq. (1) and Eq. (2). The likelihood function of this sample, see for
example Arnold et al. (1998) and Ahsanullah (2004), is given by

L(λ ,µ|data) =
n−1

∏
i=1

f (xU(i)|λ ,µ)
1−F(xU(i)|λ ,µ)

f (xU(n)|λ ,µ)

= 2n
λ

n
n

∏
i=1

(xU(i)−µ) e−λ (xU(n)−µ)2
. (4)

The natural logarithm of the likelihood function is

lnL(λ ,µ|data) = n ln2+n lnλ +
n

∑
i=1

ln(xU(i)−µ)−λ (xU(n)−µ)2. (5)

By equating the partial derivatives of Eq. (5), ∂ lnL(λ ,µ|data)
∂λ

and ∂ lnL(λ ,µ|data)
∂ µ

, to zero,
we readily conclude the following two normal equations

n
λ
− (xU(n)−µ)2 = 0,and (6)
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−
n

∑
i=1

(xU(i)−µ)−1 −2λ (xU(n)−µ) = 0. (7)

Equations (6) and (7) cannot be solved explicitly to obtain exact solutions for λ and µ ,
hence fixed point iteration method is employed for that. From Eq. (6), we can find the MLE
of λ as a function of µ , say λ̂ (µ), as follows

λ̂ (µ) =
n

(xU(n)−µ)2 . (8)

Substituting Eq. (8) in Eq. (5), without adding the constant term, we obtain the natural
logarithm of the likelihood function of µ as

g(µ) =−n ln(xU(n)−µ)2 +
n

∑
i=1

ln(xU(i)−µ). (9)

By maximizing Eq. (9) with respect to µ , we get the MLE of µ , say µ̂MLE . Applying
the fixed point solution method on Eq.’s (10) and (11) below, we can directly obtain the
maximum of Eq. (9).

h(µ) = µ, (10)

where

h(µ) = xU(n)+2n

(
n

∑
i=1

(xU(i)−µ)−1

)−1

. (11)

Very simple iterative procedure h(µ( j)) = µ( j+1), where µ( j) is the j-th iterative, can be
used to solve Eq. (10). Once µ̂MLE is obtained, the MLE of λ , say λ̂MLE , can be calculated
from Eq. (8) as λ̂MLE = λ̂ (µ̂MLE).

3. Bayesian estimation and corresponding CIs

Let us first consider the case when the location parameter µ is known. Based on the n
observed upper record data xU(1),xU(2), ...,xU(n), and by combining the likelihood function
Eq. (4) and the prior density Eq. (3), the marginal density of λ given µ and data can be
obtained to be Gamma(a+n, b+(xU(n)−µ)2) of the form

π1(λ |µ,data) =
(b+(xU(n)−µ)2)a+n

Γ(a+n)
λ

a+n−1 e−λ (b+(xU(n)−µ)2). (12)

Under the squared error loss function LF1, the BE λ̂B1 of λ is the posterior mean which
is given by

λ̂B1 = Eposterior(λ |µ,data) =
a+n

b+(xU(n)−µ)2 .
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Clearly, the BE under LF1 loss function, λ̂B1 is the same as the the corresponding MLE
of λ when Jeffrey’s prior (a = b = 0) is employed. The median of the posterior density, λ̂B2 ,
is the BE of λ in case of absolute error loss function LF2. Since the median of the posterior
density cannot have an explicit expression, a numerical solution is required by solving the
following equation in w:

Γ
(
a+n, (b+(xU(n)−µ)2)w

)
− Γ(a+n)

2
= 0,

where
Γ(a,c) =

∫
∞

c
xa−1 e−x dx, a > 0,c > 0,

is the incomplete gamma function. Under the LINEX loss function LF3 and for any given
a∗ ̸= 0, the BE λ̂B3 of λ can be computed using the PDF of the gamma distribution as
follows:

λ̂B3 = − 1
a∗

ln
[
Eposterior[e−a∗λ |data]

]
= − 1

a∗
ln
[∫

∞

0
e−a∗λ

π1(λ |µ,data) dλ

]
= −a+n

a∗
ln

[
b+(xU(n)−µ)2

a∗+b+(xU(n)−µ)2

]
.

Since the posterior distribution of λ given µ and data follows a gamma distribution, a
credible interval of λ can be easily obtained using the percentiles from the gamma distribu-
tion. In particular, if a is positive integer, then the chi-square table values can be easily used
for constructing credible interval for λ .

Now, we consider the case when both parameters λ and µ are unknown. By using the
prior distributions π1(λ |a,b) and π2(µ), the joint posterior function of λ and µ is given by

π(λ ,µ|data) =
L(λ ,µ|data) .π1(λ |µ,a,b)π2(µ)

∞∫
0

∞∫
0

L(λ ,µ|data) .π1(λ |µ,a,b)π2(µ)dλ dµ

. (13)

The marginal density of µ is obtained to be

π(µ|λ ,data) ∝

n

∏
i=1

(xu(i)−µ) eλ (xU(n)−µ)2
π2(µ), (14)

where π2(µ) is a prior distribution with support (0, xU(1)). Here, we follow the approach
suggested by Berger and Sun (1993) that no specific form of prior π2(µ) on µ is assumed.
For more details about this type of prior, the reader is referred to Abu Awwad et al. (2018).
Under the squared error loss function LF1, the BE of θ = g(λ ,µ), a function λ and µ , can
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be presented as

θ̂B1 = Eposterior(θ |data) =
∞∫

0

∞∫
0

θ π(λ ,µ|data)dλ dµ.

The BE of θ (θ̂B2 ), when the absolute error loss function LF2 is used, is just the median
of the posterior distribution, i.e.

θ̂B2 = Medposterior(θ |data).

The BE θ̂B3 of θ , under the LINEX loss function LF3, can be obtained as

θ̂B3 =− 1
a∗

ln
[
Eposterior(e−a∗θ |data)

]
=− 1

a∗
ln

 ∞∫
0

∞∫
0

e−a∗θ
π(λ ,µ|data)dλ dµ

 .
Here, the Bayes point estimators θ̂B1 , θ̂B2 and θ̂B3 cannot be obtained in closed forms.

It can be easily checked that λ can be generated directly using Eq. (12), while µ cannot be
generated directly from Eq. (14). For this, we implement the Metropolis-Hastings (M-H)
method (see Metropolis, et al. (1953)) with normal proposal distribution to generate ran-
dom values of µ from Eq. (14). The MLEs of λ and µ can be considered as initial values.
We can apply this method of generation, M times, to obtain {(λi,µi); i = 1, ...,M}. We use
these MCMC samples to obtain the Bayes estimates of θ = g(λ ,µ) and the corresponding
credible intervals. The M-H algorithm proceeds as follows.

M-H algorithm for prediction problem:

1. Start with an initial values (λ (0),µ(0)) and set k = 1;

2. Given µ(k−1), generate µ from π(µ|data) appeared in Eq. (14) with the N(µ(k−1),S2
µ)

proposal distribution, where S2
µ is the variance of µ . The values of µ can be generated

as follows:

a. Generate ζk from Ω(.|µ(k−1),S2
µ) = N(µ(k−1),S2

µ) and u from the uniform dis-
tribution U(0,1)

b. If u < min(1,ν) then let µ(k) = ζk, else go to (a), where

ν =
π(ζk|data)

π(µ(k−1)|data)

Ω(µ(k−1)|ζk,S2
µ)

Ω(ζk|µ(k−1),S2
µ)

.

3. Given µ , generate λ from Gamma(a+n, b+(xU(n)−µ)2);

4. Set k = k+1.

5. Repeat steps 2-4, M times.
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The BE of θ = g(λ ,µ) under the squared error loss function LF1 is obtained as

θ̂B1 =
1
M

M

∑
i=1

g(λi,µi).

To obtain the BE of θ = g(λ ,µ), under the absolute error loss function LF2, we compute
θi = g(λi,µi), i = 1,2, ...,M and order θ1,θ2, ...,θM as θ(1),θ(2), ...,θ(M), then the BE of
θ = g(λ ,µ) is θ̂B2 = Median{θ(1),θ(2), ...,θ(M)}.

We evaluate the Bayes estimator of θ = g(α,λ ) with respect to the LINEX loss function
LF3 with a∗ ̸= 0 as

θ̂B3 =− 1
a∗

ln

[
1
M

M

∑
i=1

e−a∗g(λi,µi)

]
.

Obtain the posterior variance of θ = g(λ ,µ) as

V̂ ar(θ |data) =
1
M

M

∑
i=1

(θi − θ̂B1,2,or3)
2

To compute the CI of θ = g(λ ,µ), we order θ1,θ2, ...,θM as θ(1),θ(2), ...,θ(M). Then,

(1− γ)100% symmetric CI of θ is given by
(

θ
([M γ

2 ])
,θ

([
M (1−γ)

2 ])

)
.

4. Bayesian prediction for future records and corresponding PIs

Here, we predict the future unseen records based on a sequence of observed records,
under different loss functions LF1, LF2 and LF3 with a∗ ̸= 0, when the one-sample predic-
tion problem is used. Naturally, we can notice the prediction problems in many real life
situations such as the prediction of extremes of rainfall, water levels and sea surface. In
the past two decades, many improvements have been done to this field. The readers may
refer to Ahsanullah (1980) and Nagaraja (1984). Al-Hussaini and Ahmad (2003) studied
the Bayesian prediction interval for the future generalized order statistics.
Suppose that we can only notice the first m upper records x

∼
= (xU(1),xU(2), ...,xU(m)). Our

goal is to obtain the Bayes point prediction of unobserved records under different loss func-
tions LF1,LF2 and LF3, as well as to construct the Bayes predictive interval for the nth future
upper record XU(n), where 1 ≤ m < n. The posterior predictive density of XU(n) at any point
y > xU(m) is given by

f P
XU(n)|x∼

(y|α,λ ) = Eposterior

[
fXU(n)|x∼

(y|λ ,µ)
]
,

where fXU(n)|x∼
(y|λ ,µ) is the conditional PDF of XU(n) given the records data x

∼
. Applying

the Markovian property on the record values, then fXU(n)|x∼
(y|λ ,µ) = fXU(n)|xU(m)

(y|λ ,µ) and
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the posterior predictive density of XU(n) at any point y > xU(m) is obtained as

f P
XU(n)|x∼

(y|α,λ ) = Eposterior

[
fXU(n)|xU(m)

(y|λ ,µ)
]

=

∞∫
0

∞∫
0

fXU(n)|xU(m)
(y|λ ,µ)π(λ ,µ|x

∼
)dλ dµ

=

∞∫
0

∞∫
0

[H(xU(n))−H(xU(m))]
n−m−1

(n−m−1)!
f (xU(n))

1−F(xU(m))
π(λ ,µ|x

∼
)dλ dµ

where H(x) =− ln(1−F(x)). Using Eq’s (1) and (2) and the binomial expansion, we have

f P
XU(n)|x∼

(y|λ ,µ) =

∞∫
0

∞∫
0

2λ n−m

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i eλ (xU(m)−µ)2

× (y−µ)2(n−m−i− 1
2 )e−λ (y−µ)2

π(λ ,µ|x
∼
)dλdµ, y > xU(m).

Under LF1, the BP of Y = XU(n) can be evaluated as

XBP1
U(n) = E f P(Y |x

∼
)

=

∞∫
xU(m)

y

 ∞∫
0

∞∫
0

2λ n−m

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i eλ (xU(m)−µ)2

× (y−µ)2(n−m−i− 1
2 )e−λ (y−µ)2

π(λ ,µ|x
∼
)dλdµ

dy.

=

∞∫
0

∞∫
0

eλ (xU(m)−µ )
2

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i

×

λ
i− 1

2 Γ

(
n−m− i+

1
2
,λ (xU(m)−µ)2

)
+µλ

i
Γ
(
n−m− i,λ (xU(m)−µ)2)

π(λ ,µ|x
∼
)dλdµ.
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Based on the MCMC samples {(λ j,µ j); j = 1,2, ...,M} obtained in Section 3, a simu-
lation predictor X̂BP1

U(n) of Y = XU(n) can be computed as

X̂BP1
U(n) =

1
M

M

∑
j=1

e
λ j(xU(m)−µ j

)2

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ j)

2i
λ

i− 1
2

j

×

[
Γ

(
n−m− i+

1
2
,λ j(xU(m)−µ j)

2
)

+µ jλ
i
jΓ
(
n−m− i,λ j(xU(m)−µ j)

2)] .
(15)

Usually, it is important to predict the first unseen record value XU(m+1), the simulation-
based consistent predictor of the first unseen record value can be evaluated by submitting
n = m+1 in Eq. (15) as

X̂BP1
U(n) =

1
M

M

∑
j=1

e
λ j(xU(m)−µ j

)2
[

λ
− 1

2
j Γ

(
3
2
,λ j(xU(m)−µ j)

2
)
+µ jΓ

(
1,λ j(xU(m)−µ j)

2)] .
Under LF2, the BP of Y = XU(n) is given by

XBP2
U(n) = Med f P(Y |x

∼
),

which is obtained by solving the equation

XBP2
U(n)∫

xU(m)

f P
XU(n)|x∼

(y|λ ,µ)dy =
1
2
,

or the equation

∞∫
XBP2

U(n)

f P
XU(n)|x∼

(y|λ ,µ)dy =
1
2
.

Which are equivalent to the simultaneous equations

∞∫
XBP2

U(n)

 ∞∫
0

∞∫
0

2λ n−m

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i eλ (xU(m)−µ)2

× (y−µ)2(n−m−i− 1
2 )e−λ (y−µ)2

π(λ ,µ|x
∼
)dλdµ

dy =
1
2
,
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and  ∞∫
0

∞∫
0

1
(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i eλ (xU(m)−µ)2

× λ
i
Γ

(
n−m− i,λ (XBP2

U(n)−µ)2
)

π(λ ,µ|x
∼
)dλdµ

=
1
2
.

Based on the MCMC samples {(λ j,µ j); j = 1,2, ...,M} obtained in Section 3, a simu-
lation predictor X̂BP2

U(n) of Y = XU(n) can be obtained by solving the equation, for X̂BP2
U(n)

1
M

M

∑
j=1

[
1

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ j)

2i eλ j(xU(m)−µ j)
2

× λ
i
j Γ

(
n−m− i,λ j(X̂

BP2
U(n)−µ j)

2
)=

1
2
.

In the similar way of the BP under the square error loss function, the BP of Y = XU(n)
under the the LINEX loss function LF3 can be obtained as

XBP3
U(n) = − 1

a∗
ln
[
E f P(e−a∗Y |x

∼
)
]

= − 1
a∗

ln

 ∞∫
xU(m)

e−a∗y
∞∫

0

∞∫
0

2λ n−m

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i

× eλ (xU(m)−µ)2
(y−µ)2(n−m−i− 1

2 )e−λ (y−µ)2
π(λ ,µ|x

∼
)dλdµ dy

]
= − 1

a∗
ln

 ∞∫
0

∞∫
0

λ n−m−1e−a∗µ+ a∗2
4λ

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i

× eλ (xU(m)−µ)2
2(n−m−i− 1

2 )

∑
k=0

(
2(n−m− i− 1

2 )

k

)
(−1)k(

a∗

2λ
)k

×
Γ
(
n−m− i− k,λ ((xU(m)−µ)+ a∗

2λ
)
)

λ n−m−i−k−1 π(λ ,µ|x
∼
)dλdµ

]
. (16)
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Based on the MCMC samples {(λ j,µ j); j = 1,2, ...,M}, a simulation predictor X̂BP3
U(n) of

Y = XU(n) can be obtained as

X̂BP3
U(n) = − 1

a∗
ln

 1
M

M

∑
j=1

λ
n−m−1
j e

−a∗µ j+
a∗2
4λ j

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ j)

2i

× eλ j(xU(m)−µ j)
2

2(n−m−i− 1
2 )

∑
k=0

(
2(n−m− i− 1

2 )

k

)
(−1)k(

a∗

2λ j
)k

×
Γ

(
n−m− i− k,λ j((xU(m)−µ j)+

a∗
2λ j

)
)

λ
n−m−i−k−1
j

 . (17)

The method for obtaining prediction intervals for the nth record value Y = XU(n), 1 ≤
m< n under different loss functions depends on the predictive survival function of Y =XU(n)
at any point y > xU(m), which is defined as follows:

SP
XU(n)|x∼

(y|λ ,µ) = Eposterior

(
SXU(n)|x∼

(y|λ ,µ)
)
,

where SXU(n)|x∼
(y|λ ,µ) is the survival function of Y = XU(n). Based on the Markovian prop-

erty of record values, we have

SXU(n)|x∼
(y|λ ,µ) = SXU(n)|xU(m)

(y|λ ,µ)

=

∞∫
y

fXU(n)|xU(m)
(z|λ ,µ)

=
2λ n−m

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i eλ (xU(m)−µ)2

×
∞∫

y

(z−µ)2(n−m−i− 1
2 )e−λ (z−µ)2

dz

=
1

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i eλ (xU(m)−µ)2

×
Γ
(
n−m− i,λ (y−µ)2

)
λ−i

(18)
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The predictive survival function of Y = XU(n) at any point y > xU(m), is then

SP
XU(n)|x∼

(y|λ ,µ) =

∞∫
0

∞∫
0

[
1

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ)2i

× eλ (xU(m)−µ)2 Γ
(
n−m− i,λ (y−µ)2

)
λ−i

π(λ ,µ|x
∼
)dλ dµ.

(19)

Eq. (19) cannot be evaluated analytically. Based on the MCMC samples{
(λ j,µ j); j = 1, ...,M

}
and under the square error loss function LF1, the estimate of the

predictive survival function for XU(n) can be written as

ŜP
XU(n)|x∼

(y) =
1
M

M

∑
j=1

[
1

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i (xU(m)−µ j)

2i eλ j(xU(m)−µ j)
2

×
Γ
(
n−m− i,λ j(y−µ j)

2
)

λ
−i
j

 .
Under the absolute error loss function LF2, and based on the MCMC samples

{(λi,µi); i = 1, ...,M}, we find the estimate predictive survival function of XU(n) as follows:
Evaluate Eq. (18) for each {(λi,µi), i = 1, ...,M} to get S1 , S2 , ... , SM , where Si =

SXU(n)|x∼
(y|λi,µi). Order S1 , S2 , ... , SM to get S(1) < S(2) < ... < S(M), then the es-

timate predictive survival function of XU(n) is

ŜP
XU(n)|x∼

(y) = Median
[
S(1) , S(2) , ... , S(M)

]
Under the LINEX loss function LF3, the estimate predictive survival function of XU(n) is
obtained as

ŜP
XU(n)|x∼

(y) =− 1
a∗

ln

[
1
M

M

∑
j=1

e
−a∗SXU(n)| x∼

(y|λ j ,µ j)

]
.

Consider

ŜP
XU(n)|x∼

(L) = 1− γ

2
, (20)

and

ŜP
XU(n)|x∼

(U) =
γ

2
. (21)

Solving the non-linear equations (20) and (21) for L and U under different loss functions
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LF1, LF2 and LF3, give the (1− γ)100% prediction interval for XU(n), n > m. We need to
apply a suitable numerical technique to solve these non-linear equations as they cannot be
solved analytically.

5. Simulation and data analysis

Here, we conduct a simulation study to examine the behaviour of the MLEs and BEs
as well as BPs that developed in the previous sections under different loss functions based
on record data and study a real life examples with the Rayleigh fitting distribution. All
computations are performed using Mathematica 11 software.

5.1. Simulation study

In this simulation, the values of the Rayleigh parameters are considered as λ = 2, µ = 1
to generate record data from Ra(λ ,µ). The first n observed records are generated by using
the transformation:

XU(k) =

(
∑

k
i=1 e(i)

µ

) 1
λ

,k = 1,2, ...,n,

where {e(i), i ≥ 0} is a sequence of iid Exp(1), [see Arnold et al. (1998), p.20]. For the
Rayleigh parameters λ and µ , we have computed the BEs, under the three different loss
functions; LF1,LF2 and LF3 for some values of a∗ (0.1,1.0,5). To compute the different
BEs we have assumed π1(λ ), the prior of λ , has gamma density function with the shape and
scale parameters c and d, respectively. Regarding the computations of BEs, we consider two
types of prior for both λ and µ; Prior 0: the non-informative prior (i.e. a = b = c = d = 0)
and Prior 1: the informative prior (i.e. a = b = 1, c = 2,d = 1). We have computed the
mean squared errors (MSEs) for BEs and MLEs based on 1000 replications to compare
their performances under different number of observed records. The CIs for the Rayleigh
parameters λ and µ are also computed. In the prediction problem and based on observed
sequences of record data, we compute the point predictors and 95% PIs for the future nth

record XU(n) for Prior 1 under the suggested loss functions; LF1, LF2 and LF3 and for the
values of a∗ (0.1,1.0,5.0). The prediction computations are conducted for the following
cases of sample sizes n = 3,n = 5, and n = 7.

In Table 1, we present the MLEs as well as the BEs of the scale and location param-
eters of the Rayleigh distribution λ and µ , under the different loss functions used in this
paper, when Prior 0 is used. Also, we present the MSEs of MLEs and BEs for the scale
and location parameters λ and µ . MCMC samples are used to compute the MSEs based on
M = 1000 replications. In Table 2, we present the BEs of λ and µ , under the different loss
functions, when Prior 1 is used. In Table 3, we show numerical comparisons between the
average lengths of the credible intervals of λ and µ when Prior 0 and 1 are used for all of
the considered cases.
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Table 1: MLEs and BEs (Bayes Estimates) with respect to different loss functions when
Prior 0 is used, for λ = 2 and µ = 1.

Cases MLE Sq. err. Abs. err. a∗ = 0.1 a∗ = 1.0 a∗ = 5
Bayes 1 Bayes 2 Bayes 3 Bayes 4 Bayes 5

λ 3.5966 1.9841 1.9761 1.9784 1.9738 1.9537
n = 3 (0.9098) (0.0206) (0.0208) (0.0206) (0.0207) (0.0215)

µ 1.2771 0.9165 0.9069 0.9069 0.8991 0.8668
(0.0210) (0.0163) (0.0170) (0.0164) (0.0166) (0.0191)

λ 2.1131 1.9695 1.9566 1.9639 1.9594 1.9400
n = 5 (0.0971) (0.0202) (0.0206) (0.0203) (0.0203) (0.0211)

µ 1.2794 0.9488 0.9496 0.9389 0.9307 0.8953
(0.0186) (0.0169) (0.0178) (0.0170) (0.0173) (0.0203)

λ 1.5667 1.9402 1.9160 1.9351 1.9310 1.9140
n = 7 (0.0521) (0.0183) (0.0190) (0.0183) (0.0184) (0.0190)

µ 1.2753 0.9629 0.9652 0.9530 0.9448 0.9089
(0.0195) (0.0171) (0.0180) (0.0172) (0.0175) (0.0205)

Note: The first entry represents the average estimate and the second entry is the MSE.

Table 2: BEs with respect to different loss functions when Prior 1 is used, for λ = 2 and
µ = 1.

Cases Sq. err. Abs. err. a∗ = 0.1 a∗ = 1.0 a∗ = 5
Bayes 1 Bayes 2 Bayes 3 Bayes 4 Bayes 5

λ 1.9775 1.9687 1.9719 1.9674 1.9479
n = 3 (0.0202) (0.0204) (0.0202) (0.0203) (0.0210)

µ 0.9521 0.9512 0.9428 0.9352 0.9020
(0.0161) (0.0170) (0.0162) (0.0164) (0.0190)

λ 1.9620 1.9464 1.9567 1.9523 1.9339
n = 5 (0.0194) (0.0198) (0.0195) (0.0195) (0.0202)

µ 0.9614 0.9695 0.9526 0.9452 0.9123
(0.0153) (0.0159) (0.0154) (0.0156) (0.0180)

λ 1.9352 1.9092 1.9302 1.9262 1.9097
n = 7 (0.0179) (0.0188) (0.0180) (0.0180) (0.019)

µ 0.9853 0.9879 0.9783 0.9726 0.9468
(0.0123) (0.0131) (0.0124) (0.0125) (0.0141)

Table 3: Average CI lengths (AL) and coverage percentage (CP).

Prior 0 Prior 1
Cases AL CP AL CP

n = 3 λ 0.7468 0.96 0.7249 0.95
µ 0.6377 0.96 0.5697 0.96

n = 5 λ 0.7265 0.94 0.6789 0.93
µ 0.6343 0.95 0.5628 0.93

n = 7 λ 0.6972 0.95 0.6610 0.95
µ 0.6273 0.96 0.5585 0.92
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From Tables 1 and 2, it is clear that as n increases the performances of MLEs of λ and
µ become better in terms of the MSEs. Also, we observe that the Bayes estimates of λ and
µ obtained by using Prior 0 and with respect to different loss functions LF1,LF2 and LF3,
are quite close to each other and are much better than the MLEs of λ and µ in terms of
the MSEs for all considered cases. It can also noticed that the Bayes estimators of λ and µ

obtained by using Prior 1 (informative prior) are much better than the Bayes estimators of λ

and µ obtained by using Prior 0 (non-informative prior) in terms of the MSEs in most of the
considered cases. Moreover, it is worth noting here that the BEs based on the squared error
loss function (LF1) are much better than other BEs that depends on other loss functions
based on the reported MSEs values. In Table 3, we observe that the average lengths of
the credible intervals for λ and µ , when Prior 1 is used, become smaller as expected, and
decrease as n increases. For both Prior 0 and 1, the simulated probabilities for 0.95 are quite
close to 0.95.

In Table 4, we present the point predictors and the corresponding 95% PIs for the
future nth record XU(n),1 ≤ m < n, based on set of observed records of size m, for all
considered cases and for all used loss functions LF1, LF2 and LF3 with many choices of
a∗ : 0.1,1.0,5.0. The simulated point predictors and 95% PIs are computed based on MCMC
samples {(λi,µi), i= 1,2, ...,M} and M = 1000. In this table the first three future nth records
after the last observed record are computed. It is observed from Table 4 that the predicted
values for the future records XU(n) (unobserved record) under different loss functions, are
quite close to each other and fall in their corresponding 95% PIs. It can be also noticed that
the PIs computed based on LINEX loss function (LF3) when a∗ = 0.5 are better than other
PIs in terms of the length of the PIs reported in the table. Also, as expected, the PIs lengths
increase as n increases for given values of m.

5.2. Data analysis

Example 1 (real data):
In this example, we analyze the data of thirty successive March precipitation (in inches)

observations. These data are presented in Hinkley (1977), pp. 67-69. The data set is:

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37
2.2 3 3.09 1.51 2.1 0.52 1.62 1.31 0.32
0.59 0.81 2.81 1.87 1.18 1.35 4.75 2.48 0.96
1.89 0.90 2.05

The Kolmogorov-Smirnov (KS) distance is found to be 0.0770 and the corresponding
p-value is 0.9900. Therefore, KS indicates that the Rayleigh distribution can be used to
analyze these data. Moreover, graphical tools of empirical and theoretical CDFs and the
Q-Q plot given in Figures 1 and 2, give a very good evidence that the Rayleigh distribution
fits the data very well. From these data, we have n = 5 observed upper record values: 0.77,
1.74, 1.95, 3.37 and 4.75.
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Table 4: Point predictors and the corresponding PIs for future records XU(n),1 ≤ m < n
based on some observed records.

Cases XU(n) Loss function Predicted 95% PIs

m = 3 XU(4) LF1 2.4043 (2.2988, 3.2135)
LF2 2.4699 (2.3009, 3.4610)

LF3(a∗ = 0.1) 2.5331 (2.2987, 3.0233)
LF3(a∗ = 1.0) 2.5241 (2.2987, 2.9080)
LF3(a∗ = 5.0) 2.4921 (2.2987, 2.7335)

XU(5) LF1 2.6253 (2.3511, 3.6133)
LF2 2.6903 (2.3628, 3.5598)

LF3(a∗ = 0.1) 2.7460 (2.3509, 3.2943)
LF3(a∗ = 1.0) 2.7308 (2.3507, 3.1122)
LF3(a∗ = 5.0) 2.6749 (2.3500, 2.8980)

XU(6) LF1 2.8236 (2.4329, 3.9355)
LF2 2.8870 (2.4643, 3.8435)

LF3(a∗ = 0.1) 2.9381 (2.4322, 3.5032)
LF3(a∗ = 1.0) 2.9181 (2.4317, 3.2669)
LF3(a∗ = 5.0) 2.8434 (2.4291, 3.0304)

m = 5 XU(6) LF1 3.1282 (3.0323, 4.0164)
LF2 3.3455 (3.0327, 3.7852)

LF3(a∗ = 0.1) 3.3799 (3.0321, 3.8923)
LF3(a∗ = 1.0) 3.3715 (3.0319, 3.8292)
LF3(a∗ = 5.0) 3.3378 (3.0311, 3.6714)

XU(7) LF1 3.3592 (3.1533, 4.3148)
LF2 3.5844 (3.2271, 4.3505)

LF3(a∗ = 0.1) 3.6084 (3.1516, 4.1179)
LF3(a∗ = 1.0) 3.5980 (3.1501, 4.0403)
LF3(a∗ = 5.0) 3.5558 (3.1432, 3.8750)

XU(8) LF1 3.5373 (3.2850, 4.5489)
LF2 3.7616 (3.4005, 4.5491)

LF3(a∗ = 0.1) 3.7851 (3.2822, 4.2852)
LF3(a∗ = 1.0) 3.7736 (3.2797, 4.1954)
LF3(a∗ = 5.0) 3.7269 (3.2680, 4.0173)

m = 7 XU(8) LF1 3.7850 (3.6146, 4.3022)
LF2 3.7377 (3.6166, 4.4392)

LF3(a∗ = 0.1) 3.7909 (3.6146, 4.2066)
LF3(a∗ = 1.0) 3.7872 (3.6146, 4.1380)
LF3(a∗ = 5.0) 3.7728 (3.6146, 4.0217)

XU(9) LF1 3.9596 (3.6527, 4.6313)
LF2 3.9096 (3.6504, 4.4205)

LF3(a∗ = 0.1) 3.9616 (3.6526, 4.4628)
LF3(a∗ = 1.0) 3.9547 (3.6526, 4.3459)
LF3(a∗ = 5.0) 3.9278 (3.6522, 4.1901)

XU(10) LF1 4.1248 (3.7153, 4.9056)
LF2 4.0737 (3.7120, 4.6262)

LF3(a∗ = 0.1) 4.1233 (3.7150, 4.6696)
LF3(a∗ = 1.0) 4.1137 (3.7147, 4.5100)
LF3(a∗ = 5.0) 4.0758 (3.7135, 4.3282)
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Figure 1: Empirical and fitted distribution functions and Q-Q Plots for data set of example
1.

Example 2 (real data):

In this example, we analyze the survival times in (days) of a group of size m = 16 lung
cancer patients (Lawless [1982, p. 319]) were considered as follows:

6.96 9.30 6.96 7.24 9.30 4.90 8.42 6.05
10.18 6.82 8.58 7.77 11.94 11.25 12.94 12.94

From these data, we have n = 5 observed upper record values: 6.96, 9.30, 10.18, 11.94
and 12.94. Soliman and Al-Aboud (2008) showed that the Rayleigh distribution fits the ob-
served record values well. Seo and Kim (2018) used this real example to apply an objective
Bayesian method under the observed upper record values.

For the above mentioned examples, we compute the BEs based on different loss func-
tions: LF1,LF2 and LF3 and for the values a∗ (0.1,1.0,5.0). The results are presented in
Tables 5 and 6. We can simply see from Tables 5 and 6 that all the estimates are quite
close to each other. Furthermore, we obtain the 95% credible intervals for λ and µ , respec-
tively for both examples. For example 1, the 95% CI are given by (1.5457,2.4826) and
(0.5693,1.4614). For example 2, they are (1.5473,2.4828) and (0.6092,1.4683). It can be
noticed that the BEs of λ and µ are falling in their credible intervals.

Also, we consider the prediction of the 6th, 7th and 8th future records. The predicted
values and the 95% PIs for the 6th, 7th and 8th future records are presented in Tables 7 and
8, for examples 1 and 2, respectively. It is observed that all predicted values, under different
loss functions, are all ordered and fall in their corresponding prediction intervals.
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Table 5: BEs based on different loss functions for example 1.

LF1 LF2 LF3(a∗ = 0.1) LF3(a∗ = 1.0) LF3(a∗ = 5.0)

λ 2.0848 2.1239 2.0636 2.0455 1.9614

µ 1.0215 1.0263 0.9867 0.9568 0.8284

Table 6: BEs based on different loss functions for example 2.

LF1 LF2 LF3(a∗ = 0.1) LF3(a∗ = 1.0) LF3(a∗ = 5.0)

λ 2.0841 2.1229 2.0628 2.0446 1.9608

µ 1.0774 1.0899 1.0457 1.0177 0.8874

Table 7: Point predictors and PIs for the 6th, 7th and 8th future records for example 1.

Number of observed records XU(n) Loss function Predicted 95% PIs
values

m = 5 XU(6) LF1 4.8320 (4.7548,5.5207)
LF2 4.8840 (4.7559,5.4676)

LF3(a∗ = 0.1) 4.9453 (4.7548,5.3315)
LF3(a∗ = 0.5) 4.9418 (4.7548,5.2064)
LF3(a∗ = 1.0) 4.9278 (4.7547,5.0566)

XU(7) LF1 4.9840 (4.7928,5.8867)
LF2 5.0593 (4.8058,5.7628)

LF3(a∗ = 0.1) 5.1235 (4.7926,5.5638)
LF3(a∗ = 0.5) 5.1169 (4.7925,5.3605)
LF3(a∗ = 1.0) 5.0908 (4.7918,5.1797)

XU(8) LF1 5.1589 (4.8531,6.1875)
LF2 5.2227 (4.8893,5.9981)

LF3(a∗ = 0.1) 5.2881 (4.8523,5.7464)
LF3(a∗ = 0.5) 5.2788 (4.8518,5.4798)
LF3(a∗ = 1.0) 5.2418 (4.8490,5.2816)
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Table 8: Point predictors and PIs for the 6th, 7th and 8th future records for example 2.

Number of observed records XU(n) Loss function Predicted 95% PIs
values

m = 5 XU(6) LF1 13.4808 (12.9604,15.6118)
LF2 13.4851 (12.9617,15.6530)

LF3(a∗ = 0.1) 13.6791 (12.9604,15.5010)
LF3(a∗ = 0.5) 13.6638 (12.9603,15.4030)
LF3(a∗ = 1.0) 13.6036 (12.9603,15.0070)

XU(7) LF1 14.1850 (13.1308,16.7771)
LF2 14.2062 (13.1448,16.8060)

LF3(a∗ = 0.1) 14.3694 (13.1307,16.5900)
LF3(a∗ = 0.5) 14.3428 (13.1306,16.4170)
LF3(a∗ = 1.0) 14.2361 (13.1301,16.6830)

XU(8) LF1 14.8853 (13.4155,17.7224)
LF2 14.8836 (13.4533,17.7340)

LF3(a∗ = 0.1) 15.0188 (13.4150,17.4670)
LF3(a∗ = 0.5) 14.9836 (13.4146,17.2250)
LF3(a∗ = 1.0) 14.8406 (13.4128,16.6900)

6. Conclusion

In this work, we have considered the problem of classical and Bayesian estimations of
the Rayleigh record model. We have also developed a Bayesian approach to compute the
point future records as well as their corresponding prediction intervals. For comparison
purposes, we have employed Markov Chain Monte Carlo (MCMC) samples generated from
the Rayleigh record model to compute the Bayesian estimators and the point predictors of
the future data. Monte Carlo simulations are used to study the behaviour of the obtained
methods. Also, two real data examples have been analyzed to illustrate the procedures
developed in this article.
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