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A calibrated synthetic estimator for small area estimation 

Matthew Joshua Iseh1, Ekaette Inyang Enang2 

ABSTRACT 

Synthetic estimators are known to produce estimates of population mean in areas where no 
sampled data are available, but such estimates are usually highly biased with invalid 
confidence statements. This paper presents a calibrated synthetic estimator of the population 
mean which addresses these problematic issues. Two known special cases of this estimator 
were obtained in the form of combined ratio and combined regression synthetic estimators, 
using selected tuning parameters under stratified sampling. In result, their biases and 
variance estimators were derived. The empirical demonstration of the usage involving the 
proposed calibrated estimators shows that they provide better estimates of the population 
mean than the existing estimators discussed in this study. In particular, the estimators were 
examined through simulation under three distributional assumptions, namely the normal, 
gamma and exponential distributions. The results show that they provide estimates of the 
mean displaying less relative bias and greater efficiency. Moreover, they prove more 
consistent than the existing classical synthetic estimator. The further evaluation carried out 
using the coefficient of variation provides additional confirmation of the calibrated 
estimator’s advantage over the existing ones in relation to small area estimation.  

Key words: auxiliary variable, calibration estimation, simulation, synthetic estimation. 

1.  Introduction 

The theory of small area estimation (SAE) revolves around the use of statistical 
modelling techniques to produce required estimates for several geographic sub-
populations and socio demographic groups when the available survey data are not 
enough to calculate reliable direct estimates. The inherent challenges facing SAE 
revolve around finding the best statistical model to be fitted on the available data when 
a survey is designed for national purposes but preferably used for inferences about small 
areas to increase the accuracy of sub-national estimates and selecting the best 
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estimation method having known that SAE is likely to be used in the survey (Pandey 
and Tikkiwal 2007). 

Authors like Gonzales (1973) and Sarndal (1981, 1984) have made useful 
contributions on the use of synthetic estimators in domains with zero/small sample 
sizes. Although the synthetic estimators have been shown to produce estimates for 
domains without sample units with an attractive property of small mean square error, 
it has also been noted that these estimators are sometimes characterized with large bias, 
hence, researchers are advised to apply caution in using this method (Sarndal, 
Swensson and Wretman 1992; Rao 2003; Rao and Choudhry 1995; Marker 1999). 

In progression for improving the performance of small area estimators, a number 
of estimators have been constructed using weighted linear combination of different 
statistical principles like: the empirical Bayes approach by Fay and Herriot, (1979), 
sample dependent (composite) method by Drew Singh and Choudhry (1982), Error 
Prediction approach by Battesse and Fuller (1984). However, these techniques are 
identified with non-negligible bias and large MSE in areas with a small to modest 
sample size, which might constitute an invalid confidence interval.  

In a bid to improve on the efficiency of small area estimators in the last two decades, 
several authors have proposed various types of estimators through the use of the 
calibration approach. In particular, among them are: Lundstrom and Sarndal (2001), 
Chambers (2006), Sarndal and Lundstrom (2007), Pfefferman (2013), Hidiroglou and 
Estavao (2014), Rao and Molina (2015), Clement and Enang (2017). Nevertheless, none 
of these works has considered improving on the post stratified synthetic estimator 
whose strength in producing estimates even in areas of no unit is based on the 
assumption of structural similarities. By keeping in mind the proposition of testability 
of the assumption of structural similarity of characteristics and a careful choice of 
auxiliary variable proposed by Rao (2003), this paper seeks to formulate synthetic 
estimators through calibration techniques in stratified sampling to reduce the bias and 
improve upon the precision of the synthetic estimators for small area. 

2. Notations 

Consider a finite population consisting of  𝑁 units which is divided into 𝐷 non-
overlapping domains 𝑈ௗ, 𝑑 ൌ 1,2, . . . , 𝐷 with 𝑁ௗ  units such that ∑ 𝑁ௗ


ௗ ൌ 𝑁. Let the 

population be further partitioned into 𝐺 non-overlapping groups (considered to be 
strata) which are considered to be larger than the domains 𝑈., 𝑔 ൌ 1,2, . . . , 𝐺 with 𝑁. 
units such that ∑ 𝑁.ீ

 ൌ 𝑁 so that the 𝐺 groups cuts across the 𝐷 domains to form a 
grid of 𝐷𝐺 cells denoted by 𝑈ௗ with 𝑁ௗ units such that 𝑈 ൌ ⋃ௗୀଵ

 𝑈ௗ ൌ ⋃ୀଵ
ீ 𝑈. ൌ

⋃ௗୀଵ
 ⋃ୀଵ

ீ 𝑈ௗ and 𝑁 ൌ ∑ 𝑁ௗ

ௗ ൌ ∑ 𝑁.

ீ
 ൌ ∑ ∑ 𝑁ௗ

ீ



ௗ . The sample s is analogously 

partitioned into domain subsamples 𝑠ௗ, group subsamples 𝑠. and cells subsamples 𝑠ௗ 
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with corresponding sample sizes 𝑛, 𝑛ௗ, 𝑛. and 𝑛ௗ as 𝑠 ൌ ⋃ௗୀଵ
 𝑠ௗ ൌ ⋃ୀଵ

ீ 𝑠. ൌ
⋃ௗୀଵ

 ⋃ୀଵ
ீ 𝑠ௗ  and  𝑛 ൌ ∑ 𝑛ௗ


ௗ ൌ ∑ 𝑛.

ீ
 ൌ ∑ ∑ 𝑛ௗ

ீ



ௗ . The cells subsamples 𝑛ௗ are 

assumed to be random. Ordinarily, 𝑛ௗ  and 𝑛. are also random but 𝑛.would be fixed 
if the 𝑔௧ group is a stratum from which a fixed number of elements is drawn. Let 𝑌 be 
the study variable whose values 𝑦ௗ are known for just the element of a sample s, where 
𝑘 ൌ 1,2, . . . , 𝑁ௗ (the number of population units in the ሺ𝑑𝑔ሻ௧ cell) and 𝑋 be the 
auxiliary variable whose values 𝑥ௗ  0 may or may not be known a priori for all units 
in 𝑈.  

Let the population mean 𝑌ሜௗ for the domain be defined as 𝑌ሜௗ ൌ ∑ 𝑊ௗ𝑌ሜௗ
ீ
ୀଵ , where 

𝑌ሜௗ ൌ ∑
ೖ

ே

ே

ୀଵ   is the population mean per ሺ𝑑𝑔ሻ௧ cell for the small area. A Horvitz-

Thompson (1952)-type direct unbiased estimator of the population mean 𝑌ሜௗ  for the 
domain under stratified sampling is given as: 

�̄�ௗ ൌ ∑ 𝑊ௗ�̄�ௗ
ீ
          (1) 

where 𝑊ௗ is the stratum weight given as 𝑊ௗ ൌ 𝑁ௗ
ିଵ𝑁ௗ and 𝑦തௗ ൌ ∑

௬ೖ





ୀଵ   is the 

sample mean per ሺ𝑑𝑔ሻ௧ cell for the small area. Equation (1) will perform at its best 
when 𝑛ௗ  is sufficiently large as well as 𝑛ௗ. However, under SAE, even if 𝑛ௗ  is large, 
there is the likelihood that 𝑛ௗ might turn out to be zero for some cells. Consequently, 
the direct estimator might be very unstable with large variance as well as lead to 
underestimation in areas with small sample sizes and also impossible to compute where 
there is no sample observation in the domain of interest. Under the aforementioned 
conditions, assuming that the groups 𝑔’s ሺ𝑔 ൌ 1,2, . . . , 𝐺ሻ are similar for small area 𝑑’s 
ሺ𝑑 ൌ 1,2, . . . , 𝐷ሻ,  Marker (1999) suggested the synthetic estimator of the average of 
characteristic Y for small area 𝑑, as: 

�̄�ௗ
௦ ൌ ∑ 𝑊ௗ�̄�.

ீ
           (2) 

And the bias of Eq.2 given as 𝐵ሺ�̄�ௗ
௦ሻ ൌ ∑ 𝑊ௗ൫𝑌ሜ. െ 𝑌ሜௗ൯ீ

  with mean square error 
(MSE) as: 

𝑀𝑆𝐸ሺ�̄�ௗ
௦ሻ ൌ ∑ 𝑊ௗ

ଶ ൬
ଵ

.
െ

ଵ

ே.
൰ 𝑆

ଶீ
  ൣ∑ 𝑊ௗ൫𝑌ሜ. െ 𝑌ሜௗ൯ீ

 ൧
ଶ

,  

where �̄�. ൌ ∑ ∑
௬ೖ

.

ே



ௗ   is the sample average of 𝑌ሜ. (the  population mean for the 

𝑔௧ subgroup) across all domains, 𝑌ሜௗ is the population mean for the 𝑑௧ domain 
within the 𝑔௧ subgroup and 𝑆

ଶ ൌ ൫𝑁. െ 1൯
ିଵ

∑ ∑ ൫𝑌ௗ െ 𝑌ሜ.൯
ଶே



ௗ . 

It is assumed that if small areas are similar across the groups, 𝑌ሜ. ൌ 𝑌ሜௗ, then the 
synthetic estimator is almost unbiased. However, in practical terms this assumption of 
structural similarity of the characteristics within the groups might not hold, hence 
equation (2) becomes heavily biased.  
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To further enhance the efficiency of the direct estimator for domain estimation, 
Clement and Enang (2017) calibrated on equation (1) and obtained combined ratio and 
regression estimators for domain means under stratified sampling as follows: 

�̄�ௗ ൌ ∑ 𝑊ௗ�̄�ௗ
ீ
 

∑ ௐ௫̄௬̄
ಸ


∑ ௐ௫̄
మಸ


൫𝑋ሜ െ ∑ 𝑊ௗ�̄�ௗ

ீ
 ൯.      (3) 

By extension, setting 𝑞ௗ ൌ �̄�ௗ
ିଵ and 𝑞ௗ ൌ 1 the authors obtained 

�̄�ௗ ൌ
∑ ௐ௬̄

ಸ


∑ ௐ௫̄
ಸ


𝑋ሜ           (4)  

as the calibration approach combined ratio estimator and 

�̄�ௗ ൌ �̄�ௗ  𝑏ሺ𝑋ሜ െ �̄�ௗሻ.         (5) 

as the calibration approach combined regression estimator respectively, where �̄�ௗ ൌ
∑ 𝑊ௗ�̄�ௗ

ீ
  is analogous to equation (1) is the domain direct estimator for the auxiliary 

variable, �̄�ௗ and �̄�ௗ are the cell means for the interest and auxiliary variables 

respectively and 𝑏 ൌ
∑ ௐ௫̄௬̄

ಸ


∑ ௐ௫̄
మಸ


  is the regression coefficient.  

Note: Although the estimators in equations (4) and (5) exhibited some level of 
improvements over that in equation (1), they perform poorly in areas with a small 
sample size and are impossible to compute in the domains of interest with no sample 
observation, hence the need for a modified synthetic estimator.   

3. Calibrated synthetic estimators. 

Consider the Marker (1999) synthetic estimator in equation (2) for a domain of 
interest with small or no sample observation. If small areas have similar characteristics 
as large areas (groups), it suffices to borrow strength cross-sectionally (i.e. from larger 
areas having similar region for the small areas). The idea here is that “the groups (strata) 
are a powerful factor in explaining the variance of the variables whereas the domains 
are not”. For example, as illustrated in Section 4.1 (Real-life Data Based Evaluation), 
‘sex’ as used in the groupings will often explain a good part of individual variations but 
beyond that the States (Domains) may be a weak explanatory factor, see Sarndal, 
Swensson and Wretman 1992. In addition, the idea of calibration allows us to borrow 
strength from auxiliary variable, hence, a calibrated synthetic estimator of the 
population mean  𝑌ሜௗ,  is obtained as follows: 

�̄�ௗ
௦∗ ൌ ∑ 𝑊ௗ

 �̄�.
ீ
           (6) 

where 𝑊ௗ
  is the new calibration weight chosen such that the distance measure given by: 

𝛷ଵሺ𝑊, 𝑊ሻ ൌ
ଵ

ଶ
∑

൫ௐ
 ିௐ൯

మ

ௐ

ீ
         (7) 
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is minimized subject to the calibration constraints; 

∑ 𝑊ௗ
 �̄�.

ீ
 ൌ 𝑋ሜௗ         (8)  

and 𝑞ௗ are known positive weights unrelated to 𝑊ௗ
  called the tuning parameter. 

Minimizing the loss function (7) subject to the calibration constraint (8) yields the 
calibration weights for small area under stratified sampling as 

𝑊ௗ
 ൌ 𝑊ௗ 

൫ሜ ି∑ ௐ௫̄.
ಸ
 ൯

∑ ௐ௫̄.
మಸ


𝑊ௗ𝑞ௗ�̄�.      (9)  

Substituting (9) into (6) gives 

�̄�ௗ
௦∗ ൌ ∑ 𝑊ௗ�̄�.

ீ
 

∑ ௐ௫̄.௬̄.
ಸ


∑ ௐ௫̄.
మಸ


൫𝑋ሜௗ െ ∑ 𝑊ௗ�̄�.

ீ
 ൯.    (10) 

Equation (10) can also be written in the form of GREG estimator: 

�̄�ௗ
௦∗ ൌ �̄�ௗ

௦  ሺ𝑋ሜௗ െ �̄�ௗ
௦ሻ𝐵ௗ

௦         (11)  

where �̄�ௗ
௦  is as defined in Eq.2 and  �̄�ௗ

௦  analogously defined as Eq.2 for the auxiliary 
variable, and 

𝐵ௗ
௦ ൌ ൫∑ 𝑊ௗ𝑞ௗ�̄�.

ଶீ
 ൯

ିଵ
∑ 𝑊ௗ𝑞ௗ�̄�.�̄�.

ீ
    

3.1. Estimator of the variance of �̄�𝒅𝒄
𝒔∗  

Lemma: The variance of the estimator in Eq.10 with one constraint is given as  

𝑉ுሺ�̄�ௗ
௦∗ሻ ൌ ∑

.൫ௐ
 ൯

మ

ௐ
మ 𝑠̂.

ଶீ
 

∑ .൫ௐ
 ൯

మ
ொ௦.ೣ

మಸ


∑ .ௐ
మ ொ൫௦.ೣ

మ ൯
మಸ


𝑠̂.

ଶ ൣ𝑉௦௧ሺ�̄�ௗ
௦ሻ െ 𝑉௦௧ሺ�̄�ௗ

௦ሻ൧ .  

Proof: Consider the estimator of variance of the combined regression estimator under 
stratified sampling by Sarndal (1996) given as 

𝑉ሺ�̄�ௗሻ ൌ ∑
.൫ௐ

 ൯
మ

ௐ
మ 𝑠̂.

ଶீ
         (12) 

where 𝑠̂.
ଶ ൌ ൫𝑛. െ 1൯

ିଵ
∑ �̂�ௗ

ଶ  


  is the 𝑔௧ group (stratum) sample variance,  
�̂�ௗ ൌ 𝑦ௗ െ �̄�. െ 𝐵ௗ

௦൫𝑥ௗ െ �̄�.൯, 𝑊ௗ
  as given in Eq.9 and 𝐷. ൌ 𝑊ௗ

ଶ 𝛾. is the 
initial weight of Eq.12 and 𝛾. ൌ

ଵ

.
െ

ଵ

ே.
.  Following the procedure by Singh and Arnab 

(2014), the estimate of variance of the estimator �̄�ௗ
௦∗  obtained by calibrating on Eq.12 is 

given as 

𝑉ுሺ�̄�ௗ
௦∗ሻ ൌ ∑

ఆ.൫ௐ
 ൯

మ

ௐ
మ 𝑠̂.

ଶீ
        (13) 
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where 𝛺. is the new weights chosen such that the chi-square distance function  

𝛷ଶ ൌ ∑
൫ఆ.ି.൯

మ

.ொ

ீ
           (14) 

 is minimized subject to the calibration constraint  

∑ 𝛺.𝑠.௫
ଶீ

 ൌ 𝑉௦௧ሺ�̄�ௗ
௦ሻ          (15) 

where 𝑄ௗ is the tuning parameter unrelated with 𝛺.. Hence, the calibration weight is 
obtained as 

𝛺. ൌ 𝐷. 
.ொ௦.ೣ

మ

∑ .ொ൫௦.ೣ
మ ൯

మಸ


ൣ𝑉௦௧ሺ�̄�ௗ
௦ሻ െ ∑ 𝐷.𝑠.௫

ଶீ
 ൧ .     (16) 

Substituting (16) in (13) gives 

𝑉ுሺ�̄�ௗ
௦∗ሻ ൌ ∑

.൫ௐ
 ൯

మ

ௐ
మ 𝑠̂.

ଶீ
 

∑ .൫ௐ
 ൯

మ
ொ௦.ೣ

మಸ


∑ .ௐ
మ ொ൫௦.ೣ

మ ൯
మಸ


𝑠̂.

ଶ ൣ𝑉௦௧ሺ�̄�ௗ
௦ሻ െ 𝑉௦௧ሺ�̄�ௗ

௦ ሻ൧   

 (17) 

where 𝑉௦௧ሺ�̄�ௗ
௦ሻ ൌ ∑ 𝐷.𝑆.௫

ଶீ
  is assumed to be known variance of 𝑋ሜௗ and 𝑠.௫

ଶ ൌ
ଵ

.ିଵ
∑ ∑ ൫𝑥ௗ െ �̄�.൯





ଶ
 

ௗ  is an unbiased of  𝑆.௫
ଶ ൌ

ଵ

ே.ିଵ
∑ ∑ ൫𝑋ௗ െ 𝑋ሜ.൯





ଶ
ௗ .  

Eq (17) can further be written as 

𝑉ுሺ�̄�ௗ
௦∗ሻ ൌ 𝑉ሺ�̄�ௗሻ  𝐵ௗൣ𝑉௦௧ሺ�̄�ௗ

௦ሻ െ 𝑉௦௧ሺ�̄�ௗ
௦ሻ൧    (18) 

where 𝑉ሺ�̄�ௗሻ ൌ ∑
.൫ௐ

 ൯
మ

ௐ
మ 𝑠̂.

ଶீ
  as earlier defined in Eq.12 and 𝐵ௗ ൌ

∑ .൫ௐ
 ൯

మ
ொ௦.ೣ

మಸ


∑ .ௐ
మ ொ൫௦.ೣ

మ ൯
మಸ


𝑠̂.

ଶ .    

3.2. Combined ratio synthetic estimator 

Here, we consider special cases of the estimator in Eq.10. 
Case 1: Suppose we set the tuning parameter  𝑞ௗ ൌ �̄�.

ିଵ in Eq.10, then  

�̄�ௗ
௦∗ ൌ

∑ ௐ௬̄.
ಸ


∑ ௐ௫̄.
ಸ


𝑋ሜௗ.          (19) 

The approximate form of the bias of Eq.19 is obtained through Taylor’s series 
approximation method. Equation (19) can be written as 

�̄�ௗ
௦∗ ൌ

௬̄
ೞ

௫̄
ೞ 𝑋ሜௗ ൌ 𝑅ௗ

௦ 𝑋ሜௗ          (20) 

�̄�ௗ
௦∗ െ 𝑌ሜௗ ൌ 𝑋ሜௗ൫𝑅ௗ

௦ െ 𝑅ௗ൯, where 𝑅ௗ ൌ
ሜ 

ሜ 
. 

 



STATISTICS IN TRANSITION new series, September 2021 

 

21

The bias 𝐵ሺ�̄�ௗ
௦∗ ሻ ൌ 𝐸ሺ�̄�ௗ

௦∗ െ 𝑌ሜௗሻ ൌ 𝐸ൣ𝑋ሜௗ൫𝑅ௗ
௦ െ 𝑅ௗ൯൧  

𝐵ሺ�̄�ௗ
௦∗ ሻ ൌ 𝑋ሜௗ𝐸 

ଵ

௫̄
ೞ ሺ�̄�ௗ

௦ െ 𝑅ௗ�̄�ௗ
௦ሻ൨.           (21) 

But ଵ

௫̄
ೞ ൌ

ଵ

ሜ 
ቂ1 

௫̄
ೞ ିሜ 

ሜ 
ቃ

ିଵ
, such that Taylor’s series expansion to the first order 

approximation gives ଵ

௫̄
ೞ ൌ

ଵ

ሜ 
ቂ1 െ

௫̄
ೞ ିሜ 

ሜ 
ቃ, then Equation (21) becomes 𝐵ሺ�̄�ௗ

௦∗ ሻ ൌ

𝑋ሜௗ𝐸 ቂ
ଵ

ሜ 
ቀ1 െ

௫̄
ೞ ିሜ 

ሜ 
ቁ ሺ�̄�ௗ

௦ െ 𝑅ௗ�̄�ௗ
௦ሻቃ 

𝐵ሺ�̄�ௗ
௦∗ ሻ ൌ

ଵ

ሜ 
∑ 𝑊ௗ

ଶ 𝛾.൫𝑅ௗ𝑆.௫
ଶ െ 𝑆.௫௬൯ீ

      (22) 

where, 𝑆.௫௬ ൌ
ଵ

ே.ିଵ
∑ ∑ ൫𝑋ௗ െ 𝑋ሜ.൯൫𝑌ௗ െ 𝑌ሜ.൯

ே



ௗ   is estimated by  

𝑠.௫௬ ൌ
ଵ

.ିଵ
∑ ∑ ൫𝑥ௗ െ �̄�.൯൫𝑦ௗ െ �̄�.൯





ௗ   

and the bias estimator of �̄�ௗ
௦∗  is given as; 

𝐵ሺ�̄�ௗ
௦ ሻ ൌ

ଵ

ሜ 
∑ 𝑊ௗ

ଶ 𝛾.൫𝑅ௗ𝑠.௫
ଶ െ 𝑠.௫௬൯ீ

 .      (23) 

To obtain the estimator of the variance for Eq.19, we set 𝑞ௗ ൌ �̄�.
ିଵ , 𝑄ௗ ൌ 𝑠.௫

ିଶ 
and replaced  𝑠̂.

ଶ  by 𝑠̂.ೝ
ଶ  in Eq.17  as;   

𝑉௦௧ሺ�̄�ௗ
௦∗ ሻ ൌ ൬

ሜ 

௫̄
ೞ ൰

ଶ


ೞ൫௫̄

ೞ ൯

ೞ൫௫̄
ೞ ൯

൨ ∑ 𝑊ௗ
ଶ 𝛾.𝑠̂.ೝ

ଶீ
       (24) 

Equation (24) is in the form of the ratio-type estimator proposed by Wu & Deng 
(1983) for estimating variance of the combined ratio estimator. The difference here is 
that it makes use of extra knowledge of known variance of the auxiliary variable at the 
estimation stage, where 

𝑠̂.ೝ
ଶ ൌ 𝑠.௬

ଶ  𝑅ௗ
ଶ𝑠.௫

ଶ െ 2𝑅ௗ𝑠.௫௬   

3.3. Combined regression synthetic estimator 

Case 2: Again, we set the tuning parameter 𝑞ௗ ൌ 1 in Eq.10, then the combined 
regression-synthetic estimator in stratified sampling is given as 

�̄�ௗோாீ
௦∗ ൌ �̄�ௗ

௦  𝑏.
∗ ሺ𝑋ሜௗ െ �̄�ௗ

௦ሻ        (25) 

where 𝑏.
∗ ൌ

∑ ௐ௫̄.௬̄.
ಸ


∑ ௐ௫̄.
మಸ


 is the synthetic regression coefficient of the domain. The 

estimator in Eq.25 is in the form of Hansen, Hurwitz and Madow (1953) combined 
regression estimator.  The bias of Eq.25 is obtained by replacing 𝑅ௗ by 𝑏.

∗  in Eq.22 such 
that 

𝐵ሺ�̄�ௗோாீ
௦∗ ሻ ൌ

ଵ

ሜ 
∑ 𝑊ௗ

ଶ 𝛾.൫𝑏.
∗ 𝑆.௫

ଶ െ 𝑆.௫௬൯ீ
       (26) 
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and its estimator is 

𝐵ሺ�̄�ௗோாீ
௦∗ ሻ ൌ

ଵ

ሜ 
∑ 𝑊ௗ

ଶ 𝛾.൫𝑏.
∗ 𝑠.௫

ଶ െ 𝑠.௫௬൯ீ
 .     (27) 

An estimator of variance of the calibration approach combined regression synthetic 
estimator �̄�ௗோாீ

௦∗  is obtained by setting 𝑞ௗ ൌ �̄�.
ିଵ and 𝑄ௗ ൌ 𝑠.௫

ିଶ in Eq.17 and 
replacing 𝑠̂.

ଶ  with 𝑠̂.ೝ
ଶ  as 

𝑉௦௧൫�̄�ௗ
௦ ൯ ൌ ൬

ሜ 

௫̄
ೞ ൰

ଶ


ೞ൫௫̄

ೞ ൯

ೞ൫௫̄
ೞ ൯

൨ ∑ 𝑊ௗ
ଶ 𝛾.𝑠̂.ೝ

ଶீ
      (28) 

where 

𝑠̂.ೝ
ଶ ൌ 𝑠.௬

ଶ  𝑏ௗ
ଶ𝑠.௫

ଶ െ 2𝑏ௗ𝑠.௫௬      (29) 

4. Data and methods for empirical evaluation 

In this section, data and methods for empirical evaluation of the proposed and 
existing estimators are discussed. Real-life and simulated data are used. When domains 
of interest have no sample observation, the existing calibration estimator becomes 
impossible to compute for the area of interest. This was illustrated using real-life data 
as shown in Table 1. This will help to validate the theoretical claims. However, on 
a general note, simulation analysis was done using R-software to ascertain the level of 
performance of both existing and suggested estimators.   

4.1. Real-life data based evaluation 

The real-life data used in this analysis were obtained from the population of the 
household finances and consumptions survey (HFCS) conducted in 2017 by the 
Statistics Department of the Central Bank of Nigeria. The population comprised of 
2986 male and female heads of household. The population was partitioned into two 
strata of male and female household heads with subpopulation sizes of 1625 and 1361, 
respectively, across the 37 domains (States).  

To illustrate an ideal situation of small area estimation, the study variable y is 
considered as the household expenditure and the auxiliary variable x as the household 
income. The object is to estimate the mean of y for all the 37 domains. To compute 
the estimates for all the domains, the proportional allocation procedure was applied 
and a sample s of size 10% was drawn from each stratum (group) using simple random 
sample without replacement (SRSWOR) with the cells averages on bold points as 
shown in Appendix A. The results are shown in Table 1. 
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Table 1.  Estimators of mean expenditures for domains using existing and proposed estimators 

DOMAIN �̄�ௗ �̄�ௗ �̄�ௗ
௦  �̄�ௗ

௦∗  �̄�ௗோாீ
௦∗  𝑌ሜௗ 

ABIA 21393.61 21392.2 24061.07 23131.81 23143.91 21366.1 
ADAMAWA 21861.68 21856.98 25267.49 36151.67 36035.95 34303.16 
AKWA IBOM 19173.4 19176.94 24444.22 34921.18 34791.54 26161.88 
ANAMBRA 18401.87 18392.88 24112.91 25195.98 25181.96 23548.92 
BAUCHI 12556.76 12557.61 25003.59 15856.92 15959.68 15773.49 
BAYELSA 6634.7 6634.7 24343.82 29799.31 29730.82 26115.66 
BENUE 31350.08 31345.96 24298.10 37359.16 37194.12 30794.01 
BORNO 22672.94 22753.52 25484.83 21287.21 21329.65 20671.39 
CROSS R 12685.94 12682.54 23830.67 17343.67 17430.28 17085.43 
DELTA 44291.46 44272.31 24021.61 46528.64 46234.19 41404.02 
EBONYI 20677.67 20677.67 24343.82 23069.98 23085.97 22713.72 
EDO 25419.3 25412.72 24063.92 34683.85 34545.6 30517.07 
EKITI 38276.63 38289.31 24821.58 30122.35 30060.72 30346.33 
ENUGU 27117.48 27132.43 23628.31 22174.25 22194.02 25256.79 
FCT 7508.05 7508.05 25636.96 26374.9 26367.72 24184.29 
GOMBE 33280.32 33364.8 24763.67 27232.24 27203.23 29613.17 
IMO 39268.29 39190.17 23934.60 30677.41 30588.34 31019.32 
JIGAWA 21597.66 21597.22 24824.90 25092.69 25089.58 24196.47 
KADUNA 38844.85 38844.88 25463.42 28631.39 28599.19 27648.58 
KANO 19557.45 19636.3 25313.68 27801.67 27775.49 30336.33 
KATSINA 21793.15 21797.54 24647.22 27130.71 27100.95 28684.67 
KEBBI 35688.25 35696.3 24393.48 35026.58 34894.02 33024.15 
KOGI 22144.18 22147.94 25059.34 18667.27 18738.29 20948.49 
KWARA 27003.13 27003.29 24763.67 31499.15 31420.01 34756.05 
LAGOS 31918.62 31948.07 25136.32 43977.99 43771.93 52055.29 
NASARA 56889.76 56929.3 23574.10 25923.61 25891.53 28630.6 
NIGER 24252.95 24241.96 25095.65 35049.99 34940.2 33504.88 
OGUN 47334.04 47321.89 24544.62 35066.09 34937.89 34929.4 
ONDO NA NA 25239.92 33167.93 33083.13 33375.22 
OSUN 14038.37 14038.32 24005.90 14977.6 15095.92 16472.88 
OYO 26364.26 26364.43 24120.36 29933.23 29858.07 29499.42 
PLATEAU 25735.76 25735.58 24456.47 24168.14 24171.7 24785.42 
RIVERS 27626.89 27633.98 25313.11 33789.51 33700.3 35138.01 
SOKOTO 10216.44 10216.44 27422.72 16539.78 16591.33 18813.12 
TARABA 9306.65 9306.65 25036.58 43455.52 43249.94 46880.2 
YOBE 14446.75 14446.75 27251.67 26217.78 26223.21 27139.53 
ZAMFARA 20969.1 20968.26 24586.90 19218.79 19283.76 21479.42 
AVERAGE 24952.73 24284.21 24765.17 28574.22 28526.87 28464.13 
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4.2. Simulation Study 

Here, the procedure of population generation and sample selection by Hidiroglou 
and Estevao (2014) was adopted. Bivariate observations ൫𝑥, 𝑦൯ were generated to 
comprise finite population of size 4950 units. The population 𝑈 considered was created 
by generating data for three separate subsets of the populations termed groups (strata) 
with different intercepts and slopes. Each group was split into ten domains that are 
mutually exclusive and exhaustive, as follows: Group 1; 𝑈ଵଵ, 𝑈ଶଵ, . . . , 𝑈ଵଵ, Group 2; 
𝑈ଵଶ, 𝑈ଶଶ, . . . , 𝑈ଵଶ, and Group 3; 𝑈ଵଷ, 𝑈ଶଷ. . . , 𝑈ଵଷ. The number of units in each cell 𝑁ௗ 
was sequentially allocated in a monotonic manner: cell 𝑈ଵଵ with 20 units; cell 𝑈ଶଵ with 
30 units; and cell 𝑈ଵଷ with 310 units. The values of 𝑥 in each group were generated 
from three different distributions, Gamma ሺ𝛼 ൌ 5, 𝛽 ൌ 10ሻ, Norm (5,1) and Exp (1.5) 
distributions. The simulation for the variable of interest 𝑦 was obtained using the model 
𝑦ௗ ൌ 𝛽  𝛽ଵ𝑥ௗ  𝑣ௗ  𝑒ௗ, where 𝑑 ൌ 1,2, . . . ,30;  𝑘 ൌ 1,2, . . . , 𝑁 and 𝑔 ൌ
1,2,3; 𝑒ௗ~𝑁ሺ0, 𝐶ௗ

ଶ 𝜎
ଶሻ, 𝑣ௗ~ 𝑁ሺ0, 𝜎௩

ଶሻ. It is assumed that 𝜎
ଶ ൌ 𝜎௩

ଶ ൌ 20ଶ ൌ 400 for 
the gamma distribution, 𝜎

ଶ ൌ 𝜎௩
ଶ ൌ 1ଶ ൌ 1 for normal and exponential distributions. 

𝑐ௗ ൌ 𝑥ௗ is set to reflect the heterogeneity of the model errors for the synthetic and 
calibration estimators. 

4.2.1. Simulation results  

The summary of the representation of units in each group across the domains is 
presented in Table 2 and 3. Table 2 shows how the population was split into the three 
groups with the respective values of intercepts and slopes for the Gamma, Normal and 
Exponential distributions. Table 3 illustrates the population under study divided into 
domains and further partitioned into groups that are larger than the domains and cut 
across the domains to form grids that are mutually exclusive and exhaustive. The result 
of the simulation study using R software for selection of independent samples of sizes 
𝑛 ൌ 248ሺ5%ሻ, 𝑛 ൌ 495ሺ10%ሻ,  𝑛 ൌ 744ሺ15%ሻ, 𝑛 ൌ 990ሺ20%ሻ, 𝑛 ൌ 1239ሺ25%ሻ 
drawn using SRSWOR from 𝑈 and the computation of various estimates is presented 
in Table 4. 

Summary statistics of the simulated data will be done using Average Percent 
Absolute Relative Bias, Average Percent Relative Efficiency and Average Percent 
Coefficient of Variation %𝐴𝑅𝐵തതതതതത, %𝑅𝐸തതതത and %𝐶𝑉തതതത respectively, and are obtained as 

%𝐴𝑅𝐵ሺ�̄�ௗሻ ൌ ቂ
ଵ


∑ 𝐴𝑅𝐵ሺ�̄�ௗሻ

ௗୀଵ ቃ ൈ 100,  

where 𝐴𝑅𝐵ሺ�̄�ௗሻ ൌ ฬ
ଵ

ோ
∑ ൬

௬̄ು
ሺೝሻ

ሜ 
െ 1൰ோ

ୀଵ ฬ 

%𝑅𝐸ሺ�̄�ௗሻ ൌ 
ெௌா൫௬̄ಶ൯

ெௌா൫௬̄ು൯
൨ ൈ 100,  
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where 𝑀𝑆𝐸ሺ�̄�ௗሻ ൌ
ଵ


∑ 𝑀𝑆𝐸ሺ�̄�ௗሻ

ௗୀଵ  and  

𝑀𝑆𝐸ሺ�̄�ௗሻ ൌ
ଵ

ோ
∑ ቀ�̄�ௗ

ሺሻ െ 𝑌ሜௗቁோ
ୀଵ

ଶ
  

%𝐶𝑉ሺ�̄�ௗሻ ൌ ቂ
ଵ


∑ 𝐶𝑉ሺ�̄�ௗሻ

ௗୀଵ ቃ ൈ 100, where 𝐶𝑉ሺ�̄�ௗሻ ൌ
ටெௌா൫௬̄ು൯

ሜ 
  

where �̄�ௗ
ሺሻ and �̄�ௗா

ሺሻ denote, say, the proposed and existing estimators respectively, 
produced for the 𝑟௧ sample, 𝑟 ൌ 1,2, . . . , 𝑅,  and for each small area 𝑑 ൌ 1,2, . . . , 𝐷.  
For each selected sample in each simulation run ൌ 1,2, . . . , 𝑅 ሺ𝑅 ൌ 100,000), we shall 

compute estimates of dY  for the estimators.  

Note: In small area estimation, Molina and Rao (2010) suggested a benchmark value 
for %𝐶𝑉ሺ�̄�ௗሻ at 20-25% as being reliable. As a result, a high value of %𝐶𝑉ሺ�̄�ௗሻ above 
25% is considered as unreliable estimates while estimators with values of %𝐶𝑉ሺ�̄�ௗሻ 
below 25% are considered reliable and suitable for SAE. 

Table 2.  Partitioning the Population into Groups with their Respective Slopes and Intercepts under 
Gamma, Normal and Exponential Distributions 

Distributions Gamma Normal and Exponential 

Group 
ሺ𝑔ሻ 

Cells in groups 𝛽 𝛽ଵ 𝛽 𝛽ଵ 

1 𝑈ௗଵ for 𝑘 ൌ 1,2, . . . ,10 200 30 5 1.5 

2 𝑈ௗଶ  𝑓𝑜𝑟 𝑘 ൌ 11, . . . ,20 300 20 10 1.0 

3 𝑈ௗଷ   𝑓𝑜𝑟 𝑘 ൌ 22, . . . ,30 400 10 15 0.5 

Table 3.  Summary of Splitting the Population into Cells, Groups and Domains 

Domain 
number (d) 

Group 
Number (g) Domains 

ሺ𝑈ௗሻ 1 2 3
1 𝑈ଵଵ 𝑈ଵଶ 𝑈ଵଷ 𝑈ଵ 
2 𝑈ଶଵ 𝑈ଶଶ 𝑈ଶଷ 𝑈ଶ 
3 𝑈ଷଵ 𝑈ଷଶ 𝑈ଷଷ 𝑈ଷ 
4 𝑈ସଵ 𝑈ସଶ 𝑈ସଷ 𝑈ସ 
5 𝑈ହଵ 𝑈ହଶ 𝑈ହଷ 𝑈ହ 
6 𝑈ଵ 𝑈ଶ 𝑈ଷ 𝑈 
7 𝑈ଵ 𝑈ଶ 𝑈ଷ 𝑈 
8 𝑈଼ଵ 𝑈଼ଶ 𝑈଼ଷ 𝑈଼ 
9 𝑈ଽଵ 𝑈ଽଶ 𝑈ଽଷ 𝑈ଽ 
10 𝑈ଵଵ 𝑈ଵଶ 𝑈ଵଷ 𝑈ଵ 
Groups (𝑼.𝒈ሻ 𝑈.ଵ 𝑈.ଶ 𝑈.ଷ 𝑈 
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Table 4.  Result of Simulation Evaluation for Gamma (5,10), Norm (5,1) and Exp (1.5) 

Sample 
size Distribution 

%𝐴𝑅𝐵തതതതതത %𝑅𝐸തതതത %𝐶𝑉തതതത 

�̄�𝒅
𝒔  �̄�𝒅𝒄𝒓

𝒔∗  �̄�𝒅𝒄𝑹𝑬𝑮
𝒔∗  �̄�𝒅

𝒔  �̄�𝒅𝒄𝒓
𝒔∗  �̄�𝒅𝒄𝑹𝑬𝑮

𝒔∗  �̄�𝒅
𝒔  �̄�𝒅𝒄𝒓

𝒔∗  �̄�𝒅𝒄𝑹𝑬𝑮
𝒔∗  

5% Gamma 65.7 13.4 13.7 100 2350 2360 65.7 13.4 13.7 

 Normal 73.2 5.5 5.5 100 12832.7 12845.9 73.2 5.5 5.5 

 Exponential 74.2 14.2 61.7 100 2451.9 145.5 74.2 15.3 61.8 

10% Gamma 65.7 13.3 13.4 100 4150 4110 65.7 13.3 13.4 

 Normal 71.9 5.5 5.5 100 12786.6 12846.4 71.9 5.5 5.5 

 Exponential 74.2 13.6 61.7 100 2383.3 145.4 74.2 14.6 61.8 

15% Gamma 65.7 13.3 13.4 100 4590 4520 65.7 13.3 13.4 

 Normal 71.9 5.5 5.5 100 12770.3 12844.3 71.9 5.5 5.5 

 Exponential 74.2 13.7 61.8 100 2360.8 145.3 74.2 14.4 61.8 

20% Gamma 65.7 13.2 13.7 100 4840 4740 65.7 13.2 13.7 

 Normal 71.9 5.5 5.5 100 12776.9 12859.7 71.9 5.5 5.5 

 Exponential 74.2 13.7 61.8 100 2358.7 145.3 74.2 14.8 61.8 

25% Gamma 65.7 13.2 13.8 100 4750 4750 65.7 13.2 13.8 

 Normal 71.9 5.5 5.5 100 12767.3 12853.1 71.9 5.5 5.5 

 Exponential 74.2 13.7 61.8 100 2353.9 145.3 74.2 14.1 61.8 

5.  Discussion of results 

From Table 1, it can be seen that the domain called ONDO has no estimate under 
the existing calibration estimators �̄�ௗ and �̄�ௗ because there was no sampled unit 
selected for that domain and the estimates of the population mean could not be 
computed. This agrees with Purcell and Kish (1979) and Rao (2003), that in areas 
without sample observations, the direct estimator could not be computed. However, 
the synthetic estimators (both existing and proposed) �̄�ௗ

ௌ, �̄�ௗ
௦∗  and �̄�ௗோாீ

ௌ∗  produced 
estimates (of 25239.92, 33167.93 and 33083.13 naira respectively) for the average 
population expenditure (of 33375.22 naira) for ONDO. This agrees with Rao (2003) 
proposition on testability of the assumption of structural similarities of characteristics 
and a careful choice of auxiliary variable in the use of synthetic estimators. It could also 
be seen that, although the existing synthetic estimator �̄�ௗ

ௌ produced estimate for ONDO 
where there are no sample units, the value obtained underestimated the population 
mean expenditure of the domain compared to the proposed synthetic estimators that 
made use of additional supplementary information. Furthermore, on average, the mean 
expenditures of all the domains produced by the proposed synthetic estimators �̄�ௗ

௦∗  
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and �̄�ௗோாீ
ௌ∗  as 28574.22 and 28526.87 naira respectively, are almost the same as the 

population mean expenditure (28464.13 naira) compared to that obtained from the 
existing synthetic and calibrated estimators. This agrees with the appealing property of 
the domain estimator (that the sum of the domains estimates will equal the population 
parameter) as suggested in the literature by Lundstrom and Sarndal (2001). These 
results confirm the need to borrow strength cross-sectionally in addition to a highly 
correlated auxiliary variable. In this case, the proposed synthetic estimator gained 
dominance over the existing synthetic and direct estimators in domains of interest 
where there are no sample observations. 

Results of analysis in Table 4 showed values of %𝐴𝑅𝐵തതതതതത between 5.5% to 14.2% and 
5.5% to 61.8%  for �̄�ௗ

௦∗  and �̄�ௗோாீ
௦∗  respectively, while that of the existing synthetic 

estimator �̄�ௗ
௦  was 65.7% to 71.9%. From the result, the proposed synthetic estimators 

have been found to exhibit a remarkably smaller %𝐴𝑅𝐵തതതതതത than the existing synthetic 
estimator for all the probability distributions and in all sample sizes under study. 

It was further observed that under normal distribution, the proposed estimators 
�̄�ௗ

௦∗  and �̄�ௗோாீ
௦∗  have a constant %𝐴𝑅𝐵തതതതതത of 5.5%,  which is regarded as the least for all 

sample sizes. Under gamma distribution, they recorded between 13.2% to 13.8%. 
However, under exponential distribution, the %𝐴𝑅𝐵തതതതതത values of  �̄�ௗ

௦∗  lies between 13.6% 
to 14.4%  while that of  �̄�ௗோாீ

௦∗  was seen to be highly biased with 61.7% to 61.8% as 
indicated in column 5 of Table 4 with bold points. This result conforms to an 
established fact in the literature by Clement and Enang (2017) that under domain 
estimation, the calibration approach combined ratio estimator outperforms the 
combined regression estimator. In addition, this result suggests that for real life data 
that follow exponential distribution, the proposed combined ratio is more preferred to 
the combined regression estimator. 

From Table 4, the proposed synthetic estimators �̄�ௗ
௦∗  and �̄�ௗோாீ

௦∗  were observed to 
have higher gains in efficiency than the existing estimator �̄�ௗ

௦  in all sample sizes for all 
the three probability distributions considered. Contrary to popular claims that the 
existing synthetic estimator produced estimates for domains without sample units with 
a very small mean square error, the proposed synthetic estimators have been shown to 
be more efficient and superior to the existing estimator. The %𝑅𝐸തതതത of the proposed 
synthetic estimators for the three distributions were observed to be between 12770.3% 
to 12894.3% for normal distribution followed by gamma distribution with 2350% to 
4840% and the exponential distribution between 145.5% to 2451.9%. Again, as 
expected, �̄�ௗ

௦∗  was clearly more efficient than �̄�ௗோாீ
௦∗  in all sample sizes under 

exponential distribution, which supports the results in the literature by Clement and 
Enang (2017). Furthermore, the gain in efficiency of the proposed �̄�ௗ

௦∗  for the three 
distributions and in all sample sizes considered is an improvement in SAE contrary to 
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the results in the literature by Rao and Choudhry (1996) on the instability of ratio 
synthetic MSE. 

Again, the result in Table 4 showed that �̄�ௗ
௦∗   has the smallest percent average 

coefficient of variation of 5.5% to 15.3%  while �̄�ௗோாீ
௦∗  has 5.5% to 61.8% against �̄�ௗ

௦  
with %𝐶𝑉തതതത of 65.7% to 71.9% for all the sample sizes considered in this work. This 
suggest that the proposed synthetic estimators are highly preferred for small area 
estimation having met the required benchmark of falling below 25% as suggested by 
Molina and Rao (2010) but the same could not be said about the existing synthetic 
estimator. It could be said that synthesizing on the approaches of borrowing strength 
cross-sectionally and through calibration has been profitable in this study. It was 
further observed that, for exponential distribution, the combined regression synthetic 
estimator �̄�ௗோாீ

௦∗  has a constant %𝐶𝑉തതതത  as high as 61.8% for all sample sizes. This is an 
indication that �̄�ௗோாீ

௦∗  is not suitable for any real-life data that follow exponential 
distribution for small domains under stratified sampling. It is convenient to say that the 
proposed combined ratio has an edge over the combined regression synthetic estimator 
under exponential distribution in small area estimation. The normal distribution 
produced a constant value of %𝐶𝑉തതതത of 5.5% and is seen as the smallest for all the sample 
sizes followed by Gamma with 13.2% to 13.8% and exponential with 14.4% to 61.8% for 
the proposed synthetic estimators. This points to the desired qualities of the Normal 
distribution in small area estimation under stratified sampling design. 

6.  Conclusion 

The synthetic estimation technique has been shown to be the only remedy if no 
sampled units are available in some domains of interest as shown by the result of this 
study. Therefore, it can be concluded that the proposed small area estimators (which 
borrowed strength cross-sectionally and with auxiliary variable) are an improvement 
over the Marker (1999) synthetic estimator (that only borrowed strength cross-
sectionally) and the calibration approach direct estimators for the estimation of 
population mean in areas that are characterized by small/no sample sizes.  Also, the 
proposed combined ratio synthetic estimator has shown dominance over the combined 
regression synthetic estimator suggesting that the latter is not suitable for any real-life 
data that follow exponential distribution for small domains under stratified sampling. 
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