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Abstract

Transaction costs are omnipresent in markets yet are often omitted in economic models.
We show that their presence can fundamentally alter incentives and welfare in markets in
which the price equates supply and demand. We categorize transaction costs into two types.
Asymptotically uninfluenceable transaction costs—such as fixed and price fees—preserve the key
asymptotic properties of markets without transaction costs, namely strategyproofness, efficiency,
and robustness to misspecified beliefs and to aggregate uncertainty. In contrast, influenceable
transaction costs—such as spread fees—lead to complex strategic behavior (which we call price
guessing) and may result in severe market failure. In our analysis of optimal design we focus on
transaction costs that are fees collected by a platform as revenue. We show how optimal design
depends on the traders’ beliefs. In particular, with common prior beliefs, any asymptotically
uninfluenceable fee schedule can be scaled to be optimal, while purely influenceable fee schedules
lead to zero revenue. Our insights extend beyond markets equalizing demand and supply.
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1 Introduction

There is almost no trade without transaction costs such as taxes, commissions, fees, or transportation
and packaging costs. Any difference between what the buyer pays and what the seller receives is
a transaction cost and their importance is long-established (Coase, 1960; Demsetz, 1968). The
questions we shall address in this paper is how transaction costs affect traders’ incentives and
resulting welfare and efficiency properties of markets?

Surprisingly, these questions received relatively little attention because transaction costs are
often omitted in the strategic analyses of markets.1 Is the omission of transaction costs affecting
market analyses? We show that the answer differs across different cost structures. For some costs,
such as fixed transaction costs and price fees, the omission does not substantially affect the strategic
properties of the market but nevertheless reduces efficiency. For other costs, such as spread fees,
strategic behavior is fundamentally altered and may result in market failure.2

A fixed fee charged to a trader depends only on whether the trader participates in trade. Examples
range from handling fees that are often related to overhead costs, to transaction costs related to
packaging and shipping. A price fee is a percentage of the price. Examples range from stamp duties
set by governments, Tobin taxes as levied in Sweden and Latin America, the ‘buyer’s premium’
charged by art auction houses, to ‘service fees’ or ‘final value fees’ as charged by Airbnb, eBay,
Uber and Lyft, etc. A spread fee is a percentage of the difference between a trader’s bid or ask and
the market clearing price (that is often unknown to the trader unknown). Examples range from
commissions charged by intermediaries such as car dealers, limit orders on stock markets, to markets
where trader’s pay their bid (e.g., Priceline.com).

This paper contributes to our understanding of the effect of transaction costs on incentives,
strategic behavior, and market outcomes. Allowing general continuous and monotonic transactions
costs, we consider a market in which the price equates supply and demand. The underlying market
mechanism is known as a Double Auction (DA).3 In the absence of transaction costs, in large DAs
the gains from misreporting have been shown to vanish and the resulting outcome to be efficient (cf.
Rustichini et al. 1994; Cripps and Swinkels 2006). We characterize optimal strategic behavior and
categorize transaction costs into two types, asymptotically uninfluenceable transaction costs that
preserve the latter desirable properties—asymptotic truthfulness and efficiency—and influenceable
transaction costs that do not preserve them. We also analyze the robustness of our findings to market

1Below we discuss the notable exceptions among the studies of Double Auctions which equate revealed demand
and supply: the analysis of efficiency under fixed fees in Tatur (2005), market entry under fixed fees in Marra (2019),
and platform revenues with fixed and price fees in Chen and Zhang (2020).

2Our analysis does not hinge on whether these transaction costs cover the cost of trading infrastructure or
additional services (such as transport or insurance).

3Notably, stock exchanges, including the New York Stock Exchange, run opening auctions at the start of each
trading day to equate supply and demand. Their mechanism closely resembles a Double Auction with transaction
costs. During a trading day stock exchanges run quasi-continuous markets, which can be thought off as open-bid
Double Auctions in contrast to the standard (sealed-bid) Double Auction.
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participants having misspecified beliefs and aggregate uncertainty.
A transaction cost is asymptotically uninfluenceable if, conditional on a market participant

trading in the market, the participant’s impact on the transaction cost they pay vanishes as the market
grows large; the transaction cost is influenceable if the cost depends on the trading participant’s
actions even in the limit. Price fees are examples of asymptotically uninfluenceable transaction costs
as, in the limit, the market participants impact on the fee vanishes (and, relatedly, all participants
who trade pay the same fee). Spread fees are examples of influenceable transaction costs as, in the
limit, the spread and hence the fee paid depends on the trading participant’s action. Not surprisingly,
under asymptotically uninfluenceable transaction costs, the traders behave similarly to traders in
markets with no transaction costs and they are approximately truthful in large markets. In contrast,
influenceable transaction costs distort incentives fundamentally, and, asymptotically, lead to what
we call price-guessing behavior whereby traders bid close to estimated market prices in order to try
to minimize their transaction cost.

Asymptotically uninfluenceable transaction costs lead to some unavoidable welfare losses in finite
markets that are due to strategic behavior and possible direct loss due to unprofitability of trades
whose surplus is insufficient to cover the cost. Because truthfulness emerges in the limit, in large
markets the outcomes are not much affected when the transaction costs are small; and the same
obtains even when agents have misspecified beliefs.

In contrast, in large markets, influenceable transaction costs lead to no loss due to strategic
behavior, but again may lead to a direct loss as described above. However, even slight belief
misspecification often leads to substantive market failure. The risk of market failure occurs for all
influenceable transaction costs, and the degree of inefficiency does not vanish with decreasing size of
the transaction cost.

In our analysis of optimal design we focus on transaction costs that are fees collected by a platform
as revenue. Considering an objective function that incorporates traders’ welfare and a platform,
we show how optimal design depends on the traders’ beliefs. With common prior beliefs, any
asymptotically uninfluenceable fee schedule can be scaled to be optimal, while purely influenceable
fee schedules lead to zero revenue. For some heterogeneous prior beliefs, purely influenceable fee
schedules can strictly outperform any asymptotically uninfluenceable fee schedules.

Finally, we discuss how our insights remain valid in any market organization in which the
participants believe that they have no influence on market prices.

Related literature

The idea that trade occurs at the price that equates revealed supply and demand goes back many
centuries and is at the core of economics until today (cf. Smith 1776; Hosseini 1995). In finite
markets, the Double Auction (DA) is the standard mechanism to compute the allocation and the
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market price.4 Strategic behavior has consequently been widely studied. Prominently, Myerson and
Satterthwaite (1983) showed that for finite markets with incomplete information there generally
exists no budget-balanced, incentive-compatible, and individually rational mechanism that is Pareto
efficient.5

Without transaction costs it has been shown that the incentive to misrepresent becomes arbitrarily
small in large markets (Roberts and Postlewaite 1976). For the DA-mechanism in finite markets,
Rustichini et al. (1994) and Cripps and Swinkels (2006) show that market participants have incentives
to be increasingly truthful, which results in asymptotic efficiency; any given participant’s influence
on demand or supply—and therefore the market clearing price—vanishes. Rustichini et al. (1994)
established this key insight for the DA mechanism with independent private values (cf. Satterthwaite
and Williams 1989b). Their work assumes existence of symmetric equilibria, which was later
established by Fudenberg et al. (2007) under correlated but conditionally independent private
values.6 Reny and Perry (2006) extend those findings to continuum markets à la Aumann (1964).7

Moreover, Azevedo and Budish (2019) show that DAs are also strategy-proof in the large, that is,
truthfulness is approximately optimal against any action distribution in large finite markets.

In the presence of transaction costs we know much less about strategic behavior. One notable
exception is the treatment of constant transaction costs in Tatur (2005). Chen and Zhang (2020)
study revenues in linear equilibria of DAs with transaction costs; they allow transaction costs to
depend on the size of individual trade but not on price, bid-ask spread, nor other parameters of the
market schemes. Marra (2019) studies market entry in DAs with fixed transaction costs. Noussair
et al. (1998) provides experimental evidence that fixed transaction costs lead to efficiency loss. Fixed
transaction costs have also been the focus in the finance literature on limit order books (Colliard
and Foucault 2012, Foucault et al. 2013, Malinova and Park 2015).8 Where this literature focuses on
specific (fixed) transaction costs, we look at transaction costs more generally and our classification
has no counterpart in the literature. Our general incentive, efficiency, and robustness results are also
new.

As we allow for general belief structures, our analysis also contributes to the burgeoning literature
on market behavior under belief misspecifications, a topic of interest since Ledyard (1978) and Wilson
(1987), which has received substantial recent interest such as in Bergemann and Morris (2005).9

4See Friedman and Rust (1993) for a survey of the DA as a market mechanism in history, theory and practice.
5The impossibility hinges on the quasilinearity of the preferences, which we also assume; see Garratt and Pycia

(2016).
6They also generalized the convergence results of Rustichini et al. (1994). Earlier work on equilibrium existence in

DAs includes Chatterjee and Samuelson (1983), Wilson (1985), Leininger et al. (1989), Satterthwaite and Williams
(1989a), Williams (1991), and Cripps and Swinkels (2006). See also Jackson and Swinkels (2005) who studied
equilibrium existence in a broad class of private value auctions that includes DAs.

7To define the DA-mechanism in continuum markets, Reny and Perry (2006) impose continuity and monotonicity
assumptions on demand and supply to guarantee the existence of a unique market-clearing price. For our analysis, we
will use the DA-mechanism for finite and infinite markets introduced in Jantschgi et al. (2022).

8See also Shi et al. (2013) who study a numerical model of marketplace competition with transaction costs.
9See also Chung and Ely (2007), Chassang (2013), Bergemann et al. (2015), Carroll (2015), Wolitzky (2016),
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The main thrust of this literature is that robustness to misspecification requires the mechanism to
be simple. In the context of Walrasian markets, the impact of heterogeneous, misspecified, beliefs
has been analyzed e.g., by Harrison and Kreps (1978) and Eyster and Piccione (2013).10 Our new
angle is the analysis of the consequences of belief misspecification on the efficiency of markets with
transaction costs, and how market robustness is critically a function also of fee type.

Outline

In Section 2 we provide an example that covers all subsequent, general results. Section 3 formally
introduces the market model, mechanism and information structure. Section 4 introduces key
concepts to understand traders’ incentives to then analyse optimal behavior in Section 5. Section 6
then studies welfare and performance implications and optimal design. Finally, Section 7 abstracts
our findings and concludes.

2 Example

In the example, we consider a special case of our general model. We assume there is a continuum
of traders on each side of the market. One of the main results of our paper is that there are two
qualitatively different categories of transaction costs. In the example, we focus on two common
transaction costs that are representative of these categories: price fees and spread fees. We make the
exposition parallel to the structure of the general results so that the reader can easily read it as
both a preview and an illustration of the general results.

Model (cf. Section 3)

The market (cf. Section 3.1). We consider a two-sided infinite market with a unit mass of buyers
and sellers who are interested in either buying or selling an indivisible good. Types, giving the
gross value of the item to a trader i, are uniformly distributed with ti ∈ T = [1, 2]. The utility of
each trader is the sum of the gross value of the object (if they have it) and their money holdings,
normalized such that a trader who does not participate in the mechanism has utility 0.

The mechanism (cf. Section 3.2). Every trader i submits an action ai(ti) ∈ R≥0 representing a
buyer’s bid and a seller’s ask. Given all actions, the double auction selects subsets of buyers and
sellers involved in trade at a unique market price P ∗. The market price is selected to balance demand
and supply, which are the total mass of buyers and sellers, who, given their actions, weakly prefer
trading over not trading at that price. Additionally, every trader involved in trade has to pay a
transaction cost. In the example, we consider our representative transaction costs, price and spread

Carroll (2017), Madarász and Prat (2017), Li (2017), Boergers and Li (2019), Pycia and Troyan (2019).
10See also, e.g., Heidhues et al. (2018) who study overconfidence in markets, and de Clippel and Rozen (2018) who

study the misperception of tastes.
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fees. A price fee is given by a fixed percentage φ ∈ [0, 1] of the market price and a spread fee is given
by a fixed percentage φ ∈ [0, 1] of the spread between the action of a trader and the market price.

Beliefs and aggregate uncertainty (cf. Section 3.3). We assume that traders know the market
mechanism, but have incomplete information about the market environment, that is the distribution
of gross values and market behavior of other traders. Both market sides may have incorrect and
heterogeneous beliefs, and aggregate uncertainty. We work with traders’ beliefs over actions. In an
infinite market—as considered in the example—this simplifies to considering beliefs directly over the
market price. Suppose that all buyers believe the market price to be β ∈ [1, 2] and all sellers believe
it to be σ ∈ [1, 2]. We say that beliefs have a common prior, if β = σ. Otherwise, we call them
heterogeneous prior beliefs. Traders might be uncertain about the market price and believe that it is
distributed according to a Beta-distribution over [1, 2], with mean equal to β respectively σ.

Key Concepts (cf. Section 4)

Truthfulness (cf. Section 4.1). In a double auction without transaction costs bidding one’s gross
value is the only action that (1) never results in a loss, (2) dominates all less aggressive actions (that
is higher for the buyer and lower for the seller), and (3) is not dominated by any more aggressive
action. If transaction costs are due, bidding one’s gross value may no longer satisfy these properties.
We define the net value, tΦb of a buyer with gross value tb as the largest action satisfying (1)-(3). In
analogy, for a seller with gross value ts, the net value tΦs is the smallest action satisfying (1)-(3).
With no transaction costs, the net value is the gross value, and motivated by this we say that bidding
is truthful if the trader bids their net value. To illustrate the concepts of net values and truthfulness,
let us consider price and spread fees. With price fees, for a buyer with gross value tb, the net value
is tΦb = tb/(1 + φ) and for a seller with gross value ts, the net value is tΦb = ts/(1− φ). With positive
price fees, trading at the market price equal to gross value results in negative utility while trading at
the price equal to net value results in the utility of 0. With spread fees, the net values are equal
to the gross values, that is, tΦb = tb and tΦs = ts. A trader is indifferent between trading and not
trading if the market price is equal to their gross value.

Predictability of trade (cf. Section 4.2). Without uncertainty, a buyer believes to trade, if their
bid is above the market price. Similarly, a seller believes to trade, if their action is below the market
price. If their action is equal to the market price they believe to be involved in tie-breaking and
trade with some probability. In the presence of uncertainty, the probability to be involved in trade
is a continuous function of a trader’s action. Decreasing the aggressiveness of an action, that is the
distance to truthfulness, increases the probability of being involved in trade.

Profitability of trade (cf. Section 4.3). In an infinite market, a trader cannot influence the market
price and hence also a price fee is independent of a trader’s action. In contrast, a spread fee is
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Figure 1: Left. Truthful strategy profiles for a 10% price and any spread fee. Right. Demand and
supply functions, if traders act truthfully, again with a 10% price and any spread fee.

directly influenced by the action of a trader and decreases, if a trader reports a more aggressive
action that is closer to the market price. As a general analysis shows, a trader’s influence on their
transaction cost or its lack plays a crucial role in determining their optimal strategy.

Trader’s behavior (cf. Section 5)

Optimal behavior maximizes the expected utility of a trader given their beliefs by finding the
right amount of aggressiveness to balance probability and profitability of trade. In the absence of
tie-breaking, optimal strategies exist. With tie-breaking, existence of optimal strategies depends on
the nature of the transaction cost.

Truthfulness is optimal for price fees (cf. Section 5.1). As a trader cannot influence their
payment, in order to maximize expected utility, it is optimal to maximize trading probability as long
as the involvement in trade is individually rational. This is achieved by a trader truthfully bidding
his net value. Note that truthfulness is independent of beliefs and uncertainty.

Price-guessing is optimal for spread fees (cf. Section 5.2). In the absence of uncertainty, it
is optimal to bid the market price, if this is individually rational given a trader’s gross value and
there is no tie-breaking. We call this behavior price-guessing. If there is uncertainty or tie-breaking,
the trade-off between decreasing the transaction cost and increasing the probability of trade is
non-trivial and depends on beliefs. However, if the uncertainty is sufficiently small, the incentive on
the former outweighs the latter and it is optimal to bid close to the estimated market price. Note
that price-guessing crucially depends on beliefs and uncertainty.

7
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Figure 2: Left. Best responses as a function of the gross value, for a 10% price fee. Right. Best
responses as a function of the gross value, for a 100% spread fee with deterministic beliefs β = σ = 1.5
without uncertainty (solid lines) and uncertain beliefs according to Beta(5, 5) (dotted lines). For
comparison, the diagonal line coincides with reporting the gross value. For price fees, the best
responses coincide with the net values. For spread fees, best responses constitute price-guessing
for ’in-the-market’ gross values and truthfulness otherwise, if there is no uncertainty. Uncertainty
diminishes price-guessing.

Market performance and design (cf. Section 6)

Suppose that the fees are collected by a market platform (as opposed to, for example, transportation
costs). Then a social planner evaluates market outcomes using standard performance metrics. If the
social planner can design the fee structure, what is the optimal choice?

Market Performance (cf. Section 6.1). The trading volume Tv is the mass of traders, who are
involved in trade. The trading excess Ex measures for the two market sides the difference in mass
of traders, who are willing to trade at the market price. The trader’s welfare W is the utility of
all traders involved in trade. The platform’s revenue R is the total amount of collected fees. Their
sum is called the gains of trade. We distinguish between realized, net, and gross gains of trade, write
G, Gnet, and Ggross, depending on whether trader’s use some action profile, or report their net or
gross values. The total loss is the difference L = Ggross − G, which measures how much gains of
trade are lost due to transaction cost considerations and strategic behavior. We split it up into
L = Ld + Ls, where Ld = Ggross −Gnet is the direct loss due to transaction cost constraints and
Ls = Gnet −G is the strategy-induced loss. Ggross can then be decomposed into welfare, revenue,
and loss: Ggross = W +R+ Ld + Ls.

Optimal design (cf. Section 6.2). Suppose that the social planner setting the fee schedule is
revenue-maximizing. In Section 6, we will consider more general class of objective functions that
are induced by social planner’s that care about the trader’s welfare as well. We will show that
price fees can be optimally scaled independent of traders’ beliefs. For spread fees, optimal design
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depends on the trader’s beliefs. For common prior beliefs, any spread fee leads to zero revenue due
to price-guessing. For some heterogeneous prior beliefs, spread fees can strictly outperform price
fees, while for others, they lead to complete market failure.

Optimal price fees are independent of beliefs (cf. Section 6.2.1). Independent of beliefs
and uncertainty, truthfulness is optimal. The market price does not depend on the symmetric fee
parameter φ and is equal to P ∗ = 3/2. The trading volume Tv = (1− 3φ)/2 decreases linearly in φ
with maximal trading volume without price fees equal to 1/2 and full market failure occurring at
φ = 1/3. Trading excess is equal to 0, so no tie-breaking is needed. The gross gains of trade are
Ggross = 1/4 and the realized gains of trade are equal to the net gains of trade = (1− 9φ2)/4. There
is no strategy-induced loss, as traders report truthfully. The direct loss is equal to 9φ2/4, which is
strictly increasing in the fee parameter. Welfare is equal to W = (1− 6φ− 9φ2)/4 and revenue is equal
to R = (3φ− 9φ2)/4. Revenue is maximized at φ = 1/6, where individuals’ fee payments and market
volume are balanced. At this point, 25% of the gross gains of trade are lost, 50% are revenue and
25% remain as welfare to the traders. The second column of Figure 3 shows the decomposition of
the gross gains of trade as a function of the fee parameter φ.

Optimal spread fees depend on beliefs (cf. Section 6.2.2). Optimal behavior in the presence
of spread fees depends on beliefs and uncertainty. Without uncertainty, price-guessing is optimal.
With uncertainty, traders might deviate from price-guessing: Traders with profitable gross values
are less aggressive, while traders with gross value close to the true market price might submit
actions that are more aggressive. We show that depending on the beliefs β and σ about the market
price, market outcomes range from full efficiency (with different decomposition of the gross gains of
trade into welfare and revenue) to complete market failure. Note that inefficiency is only due to
strategic behavior, as spread fees do not lead to a direct loss. Furthermore, depending on the beliefs,
uncertainty can either improve or worsen the market outcome, both from traders and the market
maker’s perspective. To illustrate the range of possibilities, we analyze five different belief scenarios:

1. Calibrated beliefs (β = σ = 3/2). The market is fully efficient. There is no revenue, as there
is no bid-ask spread for traders involved in trade. Uncertainty leads to a strategy-induced loss
and some revenue.

2. Homogeneous bias (β = σ 6= 1.5). The market is not fully efficient. The strategy-induced
loss is increasing in the distance between β = σ and 3/2. Similar to calibrated beliefs, there is
no revenue. Uncertainty diminishes the strategy-induced loss and leads to positive revenue.

3. Conservative bias (β ≥ 1.5 ≥ σ). The market is fully efficient. The revenue decrease, if
traders act more aggressive, and β and σ approach 3/2. Uncertainty decreases the revenue and
adds a strategy-induced loss.

4. Aggressive bias (σ ≥ 1.5 ≥ β). Complete market failure occurs. There is no trade, leading
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to zero revenue and surplus. Uncertainty lessens this effect, as traders are less aggressive,
leading to trade, and hence some revenue and surplus.

5. Mixed bias (1.5 ≥ β ≥ σ).11 The market is not fully efficient. The loss is increasing in σ,
more aggressive price-guessing by sellers leads to an efficiency loss. The revenue depends on
the spread β − σ and is generated entirely by buyers. Uncertainty leads to greater revenue and
less strategy-induced loss.

A table with the full analysis of market characteristics is relegated to the Appendix. The third and
fourth column of Figure 3 show the decomposition of the true gains of trade as a function of the fee
parameter φ for examples of the five belief scenarios with or without aggregate uncertainty. The
optimal design for a revenue-maximizing social planner crucially depends on beliefs and uncertainty.
First, consider the absence of aggregate uncertainty. If traders have homogeneous prior beliefs, so
either calibrated beliefs or a homogeneous bias, revenue is zero regardless of the fee percentage. In
that case, it is optimal to not charge any spread fee and avoid price-guessing, which would lead to
the fully efficient market outcome. If the beliefs are such that there is a spread, e.g., a conservative
or a mixed bias, it is optimal for revenue maximization to charge a 100% spread fee, as price-guessing
does not depend on the fee parameter. In the presence of aggregate uncertainty, the optimal fee
percentage is given via a non-trivial optimization problem that can be solved analytically.

11The case β ≥ σ ≥ 1.5 is analogous.
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1st row: Calibrated beliefs (β = σ = 1.5 ∼ Beta(5, 5))

2nd row: Homogeneous bias (β = σ = 1.625 ∼ Beta(5, 3))

3rd row: Conservative bias (β = 1.625 ∼ Beta(5, 3) and σ = 1.375 ∼ Beta(3, 5))

4th row: Aggressive bias (β = 1.375 ∼ Beta(5, 3) and σ = 1.625 ∼ Beta(5, 3))

5th row: Mixed bias (β ≈ 1.715 ∼ Beta(5, 2) and σ = 1.625 ∼ Beta(5, 3))

Figure 3: Decomposition of the gross gains of trade Ggross = 0.25 of an infinite uniform market
into total revenue R (blue), welfare W (green), direct loss Ld (dark-red) and strategy-induced loss
Ls (light-red) as a function of price (2nd column, independent of uncertainty) or spread fee φ (3rd

column without uncertainty and 4th column with uncertainty), if traders best respond to their beliefs.
The first column in each row shows the beliefs as indicated in the sub-captions.
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3 The model

3.1 The market

We study a market in which traders play one of two roles: sellers sell and buyers buy a commodity. B
denotes the set of buyers and S denotes the set of sellers. Each seller s has one unit to sell and each
buyer b has single-unit demand. We allow both the finite case, with m buyers B = {1, 2, ...,m} and
n sellers S = {1, 2, ..., n}, and the infinite case, with B ⊂ R and S ⊂ R being two compact intervals.

We denote by µB and µS the counting measure (in the finite case) or the Lebesgue measure (in
the infinite case) on the sets B and S. Let R = µS(S)

µB(B) .
Our focus is on large finite and on infinite markets. We say that a property P holds in sufficiently

large finite markets, if there exist m,n ≥ 1 such that P holds in any finite market with at least m
buyers and n sellers. If the property also holds in infinite markets, we say that it holds in sufficiently
large markets.

Every trader i ∈ B ∪ S has a type ti ∈ T = [t, t] ⊂ R≥0 giving valuation, reservation price or
gross value. We assume that the distribution of types are absolutely continuous with probability
densities f tB and f tS that are continuous and strictly positive on their support T , which we call
the type space. Let (F tB, F

t
S) be the corresponding pairs of cumulative distribution functions of

types. In finite markets, we assume that traders’ types are independent random variables that are
identically distributed according to (f tB, f

t
S) for each of the two market sides.12 Given the random

variables t1b , ..., t
m
b and t1s, ..., tns , we consider the random empirical measures on the sets of types

µtB =
∑m

j=0 δtjb
and µtS =

∑n
k=0 δtks . Letting n and m tend to infinity, normalized versions of µtB and

µtS converge uniformly to measures with densities f tB and f tS ; for details see Vapnik and Chervonenkis
(2015). In an infinite market, we scale these measures by µB(B) and µS(S) to achieve the market
ratio R = µS(S)/µB(B) and we denote these measures again by µtB and µtS . Given realizations of types
in finite markets and distributions of types in infinite markets, let tB : B → T and tS : S → T

denote the functions assigning each trader their type.13 The type distributions µtB and µtS are then
the push-forward measures of µB and µS via the functions tB and tS , i.e. µtB(·) = µB(t−1

B (·)) and
µtS(·) = µS(t−1

S (·)). Let (Ω,F ,P) be the probability space describing the randomness of sampling
type distributions. Denote by E [·] the expectation with respect to the probability measure P. We
write t = (ti, t-i), where ti is trader i’s type and t-i is the type distribution of all traders excluding
trader i. In finite markets, t is obtained by adding a point mass at ti to t-i. In infinite markets,
single traders do not change the type profile.

Every trader i submits an action ai ∈ R≥0 representing a buyer’s bid and a seller’s ask. Denote
by aB : B → AB with aB(b) = ab and by aS : S → AS with aS(s) = as Borel-functions that assign
an action for each trader. Let the action distributions µaB and µaS be two induced σ-additive and

12This is a common assumption in the literature, c.f. Rustichini et al. (1994); Azevedo and Budish (2019).
13Given the continuity assumptions on assumptions on f tB and f tS , tB and tS are Borel functions in finite and

infinite markets.
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finite measures on R≥0 with support in the action spaces AB = [aB, aB] and AS = [aS , aS ]. That is,
µaB(·) = µB(a−1

B (·)) and µaS(·) = µS(a−1
S (·)). Write a = (ai, a-i), where ai is trader i’s action and a-i

is the action distribution of all traders excluding trader i. In finite markets a is obtained by adding
a point mass to a-i. In infinite markets, single traders do not influence the action profile. We will
sometimes consider strategies ai : T → Ai, where ai(ti) specifies the action given i’s type. Given
type distributions t, strategies of traders induce action distributions a as the push-forward measure
of the type distributions.

We compare actions with respect to their aggressiveness, which refers to the amount of a bid’s
(or ask’s) misrepresentation: A buyer’s bid a1

b is (strictly) more aggressive than a2
b , write

<
(�), if

a1
b
≥

(>) a
2
b and similarly a seller’s offer a1

s is (strictly) more aggressive than a2
s, write

<
(�), if a1

s
≤

(<) a
2
s.

The utility of each trader is the sum of the gross value of the object (if they have it) and their
money holdings, normalized such that a trader who does not trade has utility 0. A buyer b involved
in trade makes a payment, Pb(ab, a-b), in order to obtain an item and their resulting utility is
ub (tb, ab, a-b) = tb−Pb (ab, a-b). Similarly, a seller s involved in trade receives a payment, Ps(as, a-s),
for their item and their utility is us (ts, as, a-s) = Ps (as, a-s)− ts.

3.2 Double auction with transaction costs

Demand D(P ) and supply S(P ) at a price P ≥ 0 are defined as D(P ) = µB(B≥(P )) and S(P ) =

µS(S≤(P )), where B≥(P ) = {b ∈ B : ab ≥ P} and S≤(P ) = {s ∈ S : as ≤ P}. B>(P ),B=(P ),S<(P ),
and S=(P ) are defined analogous.

A double auction with transaction costs takes as given a pricing parameter k ∈ [0, 1] and maps
action profiles a into market outcomes that equilibrate demand and supply. Such a market outcome
consists of

• A market price P ∗(a). The market price is set as

P ∗(a) = k ·minPMC(a) + (1− k) ·maxPMC(a),

where PMC(a) is the set of market clearing prices that equilibrate demand and supply.14

• An allocation A∗(a) = B∗(a) ∪ S∗(a) identifying subsets of traders B∗(a) ⊂ B and S∗(a) ⊂ S
involved in trade. Given P ∗(a), the allocation is:

S∗(a) = S<(P ∗(a)) ∪ S̃(a) and B∗(a) = B>(P ∗(a)) ∪ B̃(a),

where B̃(a) ⊂ B=(P ∗(a)) (respectively S̃(a) ⊂ S=(P ∗(a))) are uniform random sets selecting
14Analytic properties of demand and supply, as well as a detailed account of market-clearing prices are formulated

in Appendix A.1, and proven for the k-DA without transaction costs in finite and infinite markets in Jantschgi et al.
(2022).
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players to balance trade in case there is trading excess.15

• Transaction costs Φ (a) = Φi(a)i∈B∗∪S∗ = (Φi(a),Φ−i(a)) for all active traders.16

The payments of traders i ∈ B∗ ∪ S∗ are determined by price P ∗(ai, a-i) and transaction cost
Φi(ai, a-i). The payment a buyer b ∈ B∗ makes is Pb = P ∗(ab, a-b) + Φb(ab, a-b) and the payment
a seller s ∈ S∗ receives is Ps = P ∗(as, a-s) − Φs(as, a-s). We assume that the payments Pi(ai, a-i)

are continuous and increasing in ai. Hence, for a buyer bidding more aggressively leads to a lower
payment and for a seller bidding more aggressively leads to a higher payment. In Appendix A.3.3,
we prove that the function ai 7→ P ∗(ai, a-i) is continuous and increasing in ai. Therefore, a sufficient
condition for the monotonicity and continuity of the payment is that the transaction cost is continuous
and increasing. The payments of traders i 6∈ B∗ ∪ S∗ are normalized to 0; these traders do not
participate in trade.

Commonly observed transaction cost structures result in payments that are continuous and
increasing. Examples include constant fees, price fees, and spread fees. Those fee structures are
defined as follows. A transaction cost Φi is a constant fee if Φi(a) = ci for some constant ci ≥ 0. A
transaction cost Φi is a price fee if Φi(a) = φiP

∗(a) for some constant φi ∈ [0, 1]. A transaction cost
Φi is a spread fee if Φi(a) = φi|P ∗(a)− ai| for some constant φi ∈ [0, 1]. An interesting case is the
price fee for the seller, the payment received by the seller is increasing when the seller bids more
aggressively despite the fee paid by the seller being also increasing.17

3.3 Beliefs

We assume that traders commonly know the market mechanism, but allow the traders to have incom-
plete information regarding the market environment. In general, traders may have heterogeneous
priors and incorrect beliefs.

Trader i has beliefs about the number of traders, the distribution of their gross values, and their
market behavior. Denote by Ri = µS(Si)/µB(Bi) the ratio of the number of sellers to buyers. It is
common in the literature to assume correct beliefs about the number of traders and their gross value
distribution. In this common prior belief setting it is then standard to study symmetric equilibrium
strategies, see Rustichini et al. (1994). In an equilibrium, the traders’ beliefs over fundamentals
then induce their beliefs over other traders’ actions. In a more recent strand of literature, e.g., the
work by Azevedo and Budish (2019) on Strategy-proofness in the Large, best response behavior
to arbitrary action distributions is studied, not only those induced by common prior knowledge
and perfectly rational play. With some analytical assumptions, beliefs over actions incorporate the

15That is for all b ∈ B=(P ∗(a)) it holds that P[b ∈ B̃(a)] ≡ const (respectively for all s ∈ S=(P ∗(a)) it holds that
P[s ∈ S̃(a)] ≡ const). See Appendix A.2 for details regarding the allocation and tie-breaking.

16Whenever the dependence on the action profile is clear, we write P ∗, B∗ and S∗. When focusing on a single
trader with action ai, we write, e.g., P ∗(ai, a-i).

17If φi = 0 or ci = 0, the setting simplifies to the classical DA without transaction costs. Further, for spread fees, if
φi = 1 a trader’s payment is equal to their bid/ask.
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classical model of traders having beliefs about type distributions and strategies of other traders.18

Results on best response behavior can therefore be translated to symmetric Bayesian Nash equilibria.
We adopt this line of thought and work directly with beliefs over actions, as we will also study the
influence of misspecified beliefs on market performance in Section 6.

The distribution of actions of other traders is assumed to be absolutely continuous with probability
densities faB,i and f

a
S,i that are continuous and strictly positive on their supports. Let aB,i = min{ab :

faB,i(ab) > 0}, aB,i = max{ab : faB,i(ab) > 0}, aS,i = min{as : faS,i(as) > 0}, aS,i = max{as :

faS,i(as) > 0}. We assume that aS,i ≥ aB,i > aS,i ≥ aB,i; that is, the action spaces intersect. We also
assume that trader i’s net value (see Section 4.1) satisfies tΦi ∈ (aS,i, aB,i); that is a trader i believes
that when being truthful, traders on both market sides will submit both less and more aggressive
actions with positive probability.

In finite markets, we impose two additional assumptions. First, we assume that other traders’
actions are independent random variables, identically distributed for each of the two market sides.
Second, we assume that the supports of distribution of actions of other traders are convex, that is,
AB,i = [aB,i, aB,i] and AS,i = [aS,i, aS,i]. Let (F aB,i, F

a
S,i) be the pair of corresponding C

1 distribution
functions. Realizations of these random variables induce random empirical action distributions µaB
and µaS .

In infinite markets, we allow trader i to believe in any action distribution µaB and µaS . One class
of absolutely continuous action distributions is obtained by viewing infinite markets as the limit
of finite markets. Letting n and m tend to infinity, the random empirical probability measures
converge uniformly to measures with densities faB,i and f

a
S,i; for details see Vapnik and Chervonenkis

(2015). Scaling these measures by µB(Bi) and µS(Si) results in deterministic beliefs about absolutely
continuous action distributions in infinite markets.

Given the beliefs of trader i, let (Ω-i,F-i,P-i) be the probability space describing the randomness
of the action distribution a-i and tie-breaking. Denote by E-i [·] the expectation with respect to the
probability measure P-i.

Let the belief system B be the collection of all traders beliefs. B is thus a mapping from the set
of traders B ∪ S into the space of beliefs. We say that a belief system B has a common prior, if all
traders’ beliefs lead to the same critical value (will be introduced in Section 4.2). An example of a
common prior belief system is that all traders have exactly the same beliefs. Moreover, we say that a
common prior belief system is calibrated, if the traders’ belief of the critical value coincides with the
(true) critical value induced by the type distributions. If a belief system does not have a common
prior, we say that it has a heterogeneous prior. Section 6, we will assume that for heterogeneous
prior belief systems, traders on the same market side and with the same type have the same belief.

To evaluate the robustness of our findings we allow that traders are uncertain about their beliefs
18If trader i believes that types are distributed according to (F tB , F

t
S) and all traders use a symmetric strategy

profile (aB , aS), where both strategies are strictly increasing C1-functions, then actions are distributed according to
F tB(a−1

B (·)) on AB,i and F tS(a−1
S (·)) on AS,i.
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in infinite markets. We give a detailed definition of aggregate uncertainty in Appendix A.9. In the
main text, after each result, we will state qualitatively how they extend to markets with aggregate
uncertainty. The formal results are again relegated to Appendix A.9.

4 Key Concepts

In this section we introduce three key concepts which will allow to analyse optimal behavior. First,
we give a definition of what it means to not be loss-making ex-post in the presence of transaction
costs. The second is concerned with a trader’s ability to estimate their probability of trade. Third, we
introduce the key distinction between influenceable and asymptotically uninfluenceable transaction
costs and their relationship to the profitability of trade.

4.1 Truthfulness

Without transaction costs, if trader i bids their gross value (ai(ti) = ti), they maximize the probability
to be involved in trade, conditional on guaranteeing ex-post individual rationality. An action ai
is ex-post individually rational, if for all a-i it holds that ui(ti, ai, a-i) ≥ 0. Such behavior is often
called truthful because a trader reveals their type. Buyers prefer not to trade at market prices above
their gross value, and sellers prefer not to trade at market prices below their gross value. Indeed,
bidding gross values represents the maximal bids that constitute undominated actions for buyers,
and similarly the minimal asks that constitute undominated actions for sellers. We say that an
action a1

i dominates an action a2
i , if for all a-i it holds that ui(ti, a1

i , a-i) ≥ ui(ti, a2
i , a-i).

In the presence of transaction costs, actions may have to be more aggressive than gross values
in order to guarantee ex-post individual rationality, and bidding gross values may be dominated.
For some transaction costs, e.g., for constant and price fees, bidding ones gross value would result
in negative utility when the market price is equal to the gross value. Taking transaction costs into
account, we define a buyer’s net value, tΦb , as the supremum of the set of undominated and ex-post
individually rationality. Similarly, we define a seller’s net value, tΦs , as the infimum of the latter set.
If the net value does not exist the trader has no action guaranteeing ex-post individually rational
actions (see Appendix A.4 for pathological examples, where the net value does not exist).

In the presence of transaction costs, we say that a trader is truthful if they bid their net value.
Recall, that without transaction costs the net value is the gross value. Moreover, we say that an
action ai is (strictly) individually rational, if it is (strictly) smaller than the net value for buyers and
(strictly) greater than the net value for sellers.

Next, we show that for an important class of transaction costs (that includes constant, price and
spread fees), the net value exists and is analytically well-behaved. Consider that transaction cost
only depends on the action of a trader and the market price, that is Φi(ai, a-i) = Φi(ai, P

∗(ai, a-i)).
Suppose that P ∗ 7→ Pi(ai, P

∗) is increasing, ai 7→ Pi(ai, ai) is strictly increasing and both are
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continuous. We call such transaction costs regular.
Define the sets of gross values that allow for profitable trade, T+

b = {tb : ∃ab : tb−ab−Φb(ab, ab) >

0} and T+
s = {ts : ∃as : as − ts − Φs(as, as) > 0}.

Proposition 1 (Existence of net values). Consider regular transaction costs. For ti ∈ T+
i , the net

value exists and it is undominated and ex-post individually rational. It is continuous and strictly
increasing in the gross value and given by the unique solution of the equation tb − x− Φb(x, x) = 0

for a buyer and x− ts − Φs(x, x) = 0 for a seller.

Proof details are relegated to Appendix B.1. According to Proposition 1, for such transaction
costs the net value is the unique action, at which a trader is indifferent between trading and not
trading, when the market price is equal to their action. For constant, price and spread fees, this
characterization allows to express the net value as a function of the gross value and the fee parameter.

Corollary 2 (Net values for constant fees, price, and spread fees). For constant fees, the net value
shifts the gross value, that is, tΦb = max(0, tb − cb) and tΦs = ts + cs. Similarly, for price fees the net
value scales the gross value, that is, tΦb = tb/1 + φb and tΦs = ts/1− φs. By contrast, for spread fees the
gross value equals the net value.

Proof details are relegated to Appendix B.2. To exclude pathological scenarios we will assume
that the net value exists, is strictly increasing, and continuous in the gross value (thus, including the
regular transaction costs considered in Proposition 1).

4.2 Predictability of trade

Consider trader i’s probability of trading, P-i [i ∈ A∗(ai, a-i)]. In finite markets and infinite markets
with aggregate uncertainty, the function ai 7→ P-i [i ∈ A∗(ai, a-i)] is continuous and can be expressed
in terms of F aS,i and F

a
B,i.

19 In infinite markets without aggregate uncertainty, trader i believes that
the market price is deterministic and equal to the unique solution of the equation µS(S)F aS,i (·) =

µB(B)(1−F aB,i (·)). Call this solution the critical value P∞i .20 The probability of trading is equal to
1, if trader i’s action is less aggressive than P∞i . If their action is equal to P∞i they believe to be
involved in tie-breaking and trade with some probability between 0 and 1. If their action is more
aggressive, trader i believes that they are not involved in trade.

The critical value is also of central importance for the study of trading probabilities in large
finite markets. Given trader i’s beliefs about others’ behaviors, they can compute the market price
with increasing accuracy as the market grows. With increasing numbers of traders on both market
sides the variance of the realized market price decreases and it converges to the critical value. The
probability of trading then converges to a step function at the critical value P∞i .

19This is proven in Appendix A.3.2 and Appendix A.7 (see Equations (28) and (29)).
20Existence and uniqueness are proven in Appendix B.3.
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Proposition 3 (Predictability of trade). Consider trader i with action ai. For every ε > 0, in
sufficiently large markets, the probability of trade for i is (1) bounded from below by 1− ε if ai is
strictly less aggressive than the critical value P∞i and (2) bounded from above by ε if ai is strictly
more aggressive than the critical value P∞i .

In the omitted case, when ai = P∞i , the trading probability in finite markets is determined by
the action distributions and lies strictly between 0 and 1.21 This results remains true, if trader’s
have sufficiently small uncertainty about the market, see Appendix A.9.

Proof Outline. Growing market size in finite markets is formalized with respect to a single parameter.
Consider a sequence of strictly increasing market sizes (m(l), n(l))l∈N with m(l), n(l) = Θ(l) and
|R− n(l)

m(l) | = O(l−1) for R ∈ (0,∞).22 A buyer b is involved in trade, if their action ab is greater (or
equal, if they win tie-breaking) than at leastm(l) actions of other traders, that is P-b [b ∈ A∗(ab, a-b)] =

P-b

[
ab ≥ a

m(l)
-b

]
. The probability that the action of any other buyer and seller is below ab is

pab = FB,b(ab) and qab = FS,b(ab). If X
pab
i and Xqab

j are Bernoulli random variables with parameters
pab and qab , then the total number of traders with actions below ab has the same distribution as
the sum Sabl =

∑m(l)−1
i=1 X

pab
i +

∑n(l)
j=1X

qab
j . It follows that P-b [b ∈ A∗(ab, a-b)] = P[Sabl ≥ m(l)] =

1− P[Sabl ≤ m(l)− 1]. By the Berry-Esseen Theorem (Tyurin, 2012) an appropriately normalized
version of Sabl converges in distribution to a standard normal random variable with CDF Φ. We show
that there exists a sequence (Aab(l))l∈N = Θ(

√
l) with |P[Sabl ≤ m(l) − 1] − Φ(Aab(l))| ∈ O(l−

1
2 ).

For ab ≺ P∞b we show for sufficiently large l that Aab(l) < 0, which yields that Aab(l) ∈ Θ(−
√
l).

Using a concentration inequality for a standard Gaussian random variable gives Φ(Aab(l)) ∈ O(e−l).
It therefore holds that P[Sabl ≤ m(l)− 1] = O(l−

1
2 ). The statement for ab � P∞b and for sellers can

be derived analogously. In infinite markets, the statement follows directly from the model. Proof
details are relegated to Appendix B.4.

We sometimes focus on in-the-market gross values that are gross values ti such that tΦi ≺ P∞i .
Traders with such gross values are able to submit individually rational actions that make them likely
to be involved in trade when the market is sufficiently large. By contrast, for an out-of-the-market
trader, that is, one with gross value tΦi � P∞i , the probability of trade, when acting individually
rationally, vanishes in large markets.

4.3 Profitability of trade

We now turn to the expected utility conditional on trading. Write E-i [·|i ∈ A∗ (ai, a-i)] for the
conditional expectation of trader i given their beliefs. Recall, that we assume that payments are

21E.g., for uniform action distributions and equally many buyers and sellers, the trading probability is independent
of the market size and equal to 1

2
; we provide more details in the proof of point 2 of Theorem 10.

22If there exists a parameter l, such that for every l′ ≥ l Proposition 3 holds in markets with m(l′) buyers and n(l′)
sellers, then the statement also holds in sufficiently large finite markets.
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monotone in the aggressiveness of one’s action. Further, payments are composed of the market
price and a transaction cost. For the former, it is known from Rustichini et al. (1994), that in
large markets traders have vanishing influence on the market price. On the other hand, this is not
necessarily the case for transaction costs. To this end, a classification of transaction costs into two
broad classes turns out to be useful.

Definition (Asymptotically uninfluenceable vs. influenceable transaction costs). Two actions a1
i

and a2
i , such that a1

i is less aggressive than a2
i and both are less aggressive than the critical value,

that is a1
i ≺ a2

i ≺ P∞i , lead to asymptotically different transaction costs, if there exists ε > 0 such
that in sufficiently large markets

E-i
[
Φi(a

1
i , a-i)|i ∈ A∗

(
a1
i , a-i

)]
− E-i

[
Φi(a

2
i , a-i)|i ∈ A∗

(
a2
i , a-i

)]
≥ ε. (1)

Otherwise, the two actions lead to asymptotically equal transaction costs. Transaction costs Φi are
influenceable if every two such actions a1

i ≺ a2
i ≺ P∞i lead to asymptotically different transaction

costs. Transaction costs Φi are asymptotically uninfluenceable if for every ε > 0 in sufficiently large
markets without aggregate uncertainty

sup
a1
i≺a2

i≺P∞i
E-i
[
Φi

(
a1
i , a-i

)
|i ∈ A∗

(
a1
i , a-i

)]
− E-i

[
Φi

(
a2
i , a-i

)
|i ∈ A∗

(
a2
i , a-i

)]
≤ ε. (2)

In infinite markets, the definitions simplify, as there is no randomness due to sampling. Influence-
ability is then equivalent to the map ai 7→ Φi(ai, a-i) being strictly increasing for buyers and strictly
decreasing for sellers. Uninfluenceability is equivalent to the map ai 7→ Φi(ai, a-i) being constant.
For regular transaction costs that only depend on the trader’s action and the market price, this
implies that in infinite markets, uninfluenceable transaction costs are a function of the market price,
i.e. Φi(P

∗), while for influenceable transaction costs, the function ai 7→ Φi(ai, P
∗) is again strictly

monotone.23

An influenceable transaction cost might still include an asymptotically uninfluenceable part, e.g.,
the sum of a price and spread fee. We say that a regular influenceable transaction cost Φi(ai, P

∗) is
purely influenceable , if it holds that Φi(P

∗, P ∗) = 0. Note that for purely influenceable transaction
costs the net value equal the gross value. Spread fees are an example of purely influenceable
transaction costs. For regular transaction costs, it is possible to decompose any transaction cost into
an asymptotically uninfluenceable and purely influenceable part .

Lemma 4 (Decomposition of regular transaction costs.). A regular influenceable transaction cost can
be written as the sum of an asymptotically uninfluenceable transaction cost and a purely influenceable
transaction cost.

23These monotonicity conditions can be equivalently stated for the payment function ai 7→ Pi(ai, P
∗).
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Proof details are relegated to Appendix B.5. Moreover, the two types are not mutually exclusive,
as one can construct transaction costs that are asymptotically uninfluenceable in some price regions
and influenceable at others. However, focusing on these two cases (rather than on hybrids) allows us
to study the key strategic differences that in fact yield completely opposing behavior. In particular,
the two canonical examples of transaction costs, price and spread fees, fall under the two definitions:
Price fees are asymptotically uninfluenceable , and spread fees are influenceable .

5 Trader’s behavior

Best responses maximize individual expected utility given beliefs. The maximization finds the right
amount of aggressiveness, balancing the opposing forces of increasing the probability of trade versus
increasing the utility when trading.24 Given trader i’s beliefs and gross value ti, an action ai is an
ε-best response if E-i [ui (ti, ai, a-i)] ≥ supa′i∈R E-i [ui (ti, a

′
i, a-i)]− ε. For ε = 0 ai is a best response.

The analysis of best responses includes the special case of symmetric Bayesian Nash equilibria.
If all buyers use the same strictly increasing and continuous strategy aB and all sellers use the same
strictly increasing and continuous strategy aS , call (aB, aS) a symmetric strategy profile. Given
type distributions, the corresponding action distributions are given by µaB(·) = µB

(
t−1
B (a−1

B (·))
)
and

µaS(·) = µS
(
t−1
S (a−1

S (·))
)
. Assume that beliefs over action distributions originate from beliefs over

gross value distributions and over the symmetric strategy profiles of the other traders (aB, aS). If,
for every trader and every gross value, the action specified by these strategies are ε-best responses,
then the strategy profile constitutes a symmetric ε-Bayesian Nash equilibrium.25

Proposition 5 (Existence of best responses). Suppose the market environment is finite or, if not,
tie-breaking is a probability zero event. Then a best response exists for trader i.

In infinite markets the no-tie-breaking assumption matters. In its absence, a best response might
not exist for a trader i with ti ≺ P∞i . This is the case, for example, when spread fees are charged.
Under spread fees, it is not optimal to bid P∞i (or more aggressive) due to the risk of loosing out on
trading. But for any less aggressive bid, bidding slightly more aggressively would lead to a higher
payoff. The results also extends to aggregate uncertainty, see Appendix A.9.

Proof Outline. We show that a best response is necessarily located in a compact action space. Given
the continuity assumption of the payment, it follows that the expected utility is continuous in
the action ai and therefore attains a maximum by the Extreme Value Theorem. Proof details are
relegated to Appendix B.6.

24A detailed analysis of this trade-off for price and spread fees in finite markets via first order conditions can be
found in Appendix A.6.

25Therefore all of the results that we shall present in this paper about best responses directly apply to the study of
symmetric Bayesian Nash equilibria.
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The following theorem is a first indication that transaction costs have significant strategic
consequences.

Theorem 6 (Asymptotically equal transaction costs). Let T ∗ be the set of gross values of trader i
at which bidding the critical value is strictly individually rational. If trader i is best responding, then
the expected transaction costs of any two types t, t′ ∈ T ∗ are asymptotically equal.

For uninfluenceable transaction costs this result holds by definition. For influenceable transaction
costs, the result is non-trivial and will be useful in later analyses (see Section 5.2). This result
qualitatively extends to markets with sufficiently small aggregate uncertainty, see Appendix A.9.

Proof Outline. Assume that two actions a1
i ≺ a2

i ≺ P∞i lead to asymptotically different transaction
costs. We show that in sufficiently large markets, a trader can increase their expected utility, when
switching from action a1

i to a2
i , proving that a1

i is not a best response. Formally, as a1
i ≺ a2

i ≺ P∞i ,
Proposition 3 yields that for every ε1 > 0, P-i

[
i ∈ A∗(a1

i , a-i)
]
,P-i

[
i ∈ A∗(a2

i , a-i)
]
≥ 1 − ε1 in

sufficiently large markets. The difference in trading probability between a1
i and a2

i is then upper
bounded by ε1. If ε1 is sufficiently small, the loss in trading probability and possible influence
on the market price is compensated by a decrease in expected transaction cost by at least some
ε2 > 0 because transactions are assumed to be asymptotically different. For sufficiently small ε1, the
difference in expected utility between actions a1

i and a2
i is negative, if the market is sufficiently large,

proving that a1
i is indeed not a best response. Proof details are relegated to Appendix B.7.

5.1 Truthfulness is approximately optimal with uninfluenceable transaction
costs

Strategic misrepresentation is driven by the incentive to influence market price and transaction cost.
Reporting truthfully maximizes one’s trading probability, while remaining individually rational. In
large markets, the influence on the market price is vanishing ‘faster’ than the influence on one’s
trading probability, which is what drives the asymptotic truthfulness result in the literature, see
Rustichini et al. (1994). Therefore, if the influence on one’s own transaction cost is also vanishing
‘fast’ enough, then it is close to optimal to maximize one’s trading probability by reporting truthfully.
This is the case for uninfluenceable transaction costs, such as constant or price fee.

Theorem 7 (In large markets with uninfluenceable transaction costs truthfulness is an approximate
best response). If the transaction cost is uninfluenceable and trader i’s best response is uniformly
bounded away from the critical value P∞i , then for every ε > 0, in sufficiently large markets,
truthfulness is an ε-best response.

In infinite markets, the presence of aggregate uncertainty strenghtens this result, as truthfulness
is then the unique best response, see Appendix A.9.
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Proof Outline. Consider a best response ai of trader i. If ai ≺ tΦi , then t
Φ
i is a best response by

weak domination. Suppose now that ai � tΦi . By assumption, there exists δ > 0, such that in
sufficiently large markets, (i) ai ≺ P∞i − δ or (ii) ai � P∞i + δ holds. If (i) holds, then Proposition 3
implies that P-i [i ∈ A∗(ai, a-i)] converges to zero as the market gets large. Therefore for all ε > 0

the expected utility of ai is then upper bounded by ε, which also proves that that the net value
is an ε-best response, because it leads to a non-negative expected utility. If (ii) holds, consider
E-i[ui(ti, ai, a-i)] − E-i[ui(ti, t

Φ
i , a-i)]. We split the difference into two components and show that

for every ∀ε > 0 both components are less or equal than ε
2 if the market is sufficiently large: (a)

Difference in expected transaction costs and (b) Terms corresponding to a classical DA without
transaction costs. To bound (a), we can use Proposition 3 and uninfluenceability. For (b), we will use
that for a DA without transaction costs truthfulness is an ε-best response in sufficiently large markets,
see Theorem 8.2 with price fees equal to zero. Proof details are relegated to Appendix B.8.

Price fees. Fixing a specific transaction cost allows sharper results than Theorem 7. In particular,
for a price fee, any best response can be explicitly shown to be close to truthful in large finite
markets.

Theorem 8 (In large markets with price fees best responses are approximately truthful and
truthfulness is an approximate best response). If the fee is a price fee, then for every ε > 0 it holds
that (1) in sufficiently large markets truthfulness is an ε-best response and (2) in sufficiently large
finite markets all best responses are ε-truthful.

In infinite markets, truthfulness is not unique as a best response. Every action ai � P∞i that is
individually rational is also a best response. Theorem 8 is robust to aggregate uncertainty in infinite
markets, in which case truthfulness is also the unique best response, see Appendix A.9.

Proof Outline. Consider a buyer b. For (2), a best response satisfies the first order condition
dE-b[ub(tb,ab,a-b)]

dab
= 0, see Appendix A.6. Explicit calculations yield that there exists a constant

κ > 0, such that tb − (1 + φb) ab ≤ κq(n,m), with q(m,n) = max
{

1
n

(
1 + m

n

)
, 1
m

(
1 + n

m

)}
=

O(max(m,n)−1), from which the statement follows.26 For (1), we estimate E-b
[
ub(tb, t

Φ
b , a-b)

]
−

E-b [ub(tb, ab, a-b)], where ab denotes the best response. This difference is shown to be upper bounded
by −2k(1 + φb)|tΦb − ab|. It follows from (2) that ∀δ > 0 it holds in sufficiently large finite markets
that tΦb − ab ≤ δ. If for a given ε > 0, δ > 0 is chosen such that δ ≤ ε

2k(1+φb)
, it holds that tΦb is

ε-close to a best response ab in sufficiently large finite markets. In infinite markets, the expected
utility is deterministic and truthfulness is a best response, as the only strategic incentive is to be
involved in trade. Proof details are relegated to Appendix B.9.

26A similar proof technique has been used to show that Bayesian Nash equilibria are approximately truthful in
DAs without fees, see Rustichini et al. (1994, Theorem 3.1).
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5.2 Price-guessing is approximately optimal with influenceable transaction costs

If a trader can influence their transaction cost, then there remains a (non-vanishing) incentive to
act strategically in large markets. Moreover, given a trader will almost certainly trade as long
as their action meets the required threshold of the critical value, the incentive to influence their
transaction cost asymptotically outweighs the concern of loosing out on the deal. Therefore, it is
optimal to bid close to the critical value that corresponds to the predicted price, which is why we
shall call such behavior Price-Guessing. While our analysis only covers the case of a trader for whom
bidding the critical value is individually rational, the case of traders for whom it is not is discussed
in Proposition 21.

Theorem 9 (In large markets with influenceable transaction costs best responses are close to
price guessing). If the transaction cost is influenceable and bidding the critical value P∞i is strictly
individually rational for trader i, then for every ε > 0, in sufficiently large finite markets, all best
responses of i are in an ε-neighbourhood of the critical value P∞i .

This result extend to infinite markets with sufficiently small aggregate uncertainty, see Ap-
pendix A.9.

Proof Outline. Consider a buyer with action ab > P∞b . We show that if ab − P∞b ≥ ε, then the
difference in expected utility from playing ab versus P∞b + ε

2 is strictly negative in sufficiently large
markets, proving that ab is then not a best response. Similar to the proof of Theorem 6, we show
that in such markets, the buyer will be involved in trade with high probability with both actions.
Using that the transaction cost is influenceable , the decrease of the transaction cost when switching
to the more aggressive action P∞b + ε

2 outweighs the decrease in trading probability. Proof details
are relegated to Appendix B.10.

Spread fees. As a spread fee depends linearly on a trader’s action, it is an example of a influenceable
transaction cost. A best response exists given the spread fee is continuous and must be close to the
critical value. However, an analogous statement to Theorem 8.2, i.e., the utility at the critical value
is close to optimal, is not true in general. We show that there exist markets, such that bidding the
critical value is in general not ε-optimal in large markets.

Theorem 10 (In large markets with spread fees best responses are close, but not necessarily equal,
to the critical value). If the fee is a strictly positive spread fee, then a best response exists for a trader
i in finite and infinite markets without tie-breaking. Further, if bidding the critical value is strictly
individually rational, then (1) for every ε > 0, in sufficiently large markets, all best responses of i
are in an ε-neighbourhood of the critical value P∞i and (2) for sufficiently small ε > 0, there exist
beliefs, such that in sufficiently large finite markets the critical value P∞i is not an ε-best response.

Theorem 10 is robust to small aggregate uncertainty in infinite markets, see Appendix A.9.
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Proof Outline. We show that the expected transaction cost is and therefore the expected utility
is continuous in ai. The existence of a best response again follows as in Theorem 8. Consider a
buyer b with tΦb > P∞i . (1) is proven in complete analogy to Theorem 7.1. For (2), consider beliefs
such that the number of traders is equal to l for both market sides, where beliefs are uniformly
distributed over AB = AS = [0, 1]. It follows that P∞b = 1

2 . We prove that for every l > 1 it holds
that P-b[b ∈ B∗(P∞b , a-b)] = 1

2 . Therefore, for every bid ab > P∞b and for every ε > 0, it follows from
Proposition 3 that the buyer can increase their trading probability by 1

2 − ε when switching from
P∞b to ab. If ab is chosen close to P∞b , then this outweighs the increase in spread fee payment. Proof
details are relegated to to Appendix B.11.

5.3 Best responses and Bayesian Nash equilibria for price versus spread fees

Consider a finite markets with sizes (i) 2× 2 (that is, two buyers and two sellers) and (ii) 5× 5 in
the presence of either a price fee φi = 0.1 or a spread fee φi = 1, and k = 0.5. Figure 4 shows best
response strategies (Top.) for uniform beliefs over others’ actions in [1, 2] and a symmetric Bayesian
Nash Equilibrium (Bottom) for uniform beliefs over gross values in [1, 2] for price fees (Left.) and
spread fees (Right.).

In line with Theorem 8, optimal strategic behavior converges to truthfulness with growing market
size, if price fees are charged. In a small market with two buyers and two sellers traders have an
incentive to be more aggressive and misrepresent their net value, as can be measured by the distance
between their respective best response (dashed red/blue lines) and the net value (solid black lines).
In contrast, and in line with Theorem 8.1, the best responses (dotted red/blue line) in the larger
market (5× 5) are approaching truth-telling.

Note that in line with Theorem 10, best responses converge towards price-guessing with growing
market size if spread fees are charged. In a small market with two buyers and two sellers traders have
an incentive to be aggressive and misrepresent their true net value in order to influence the price
and reduce their fee payment. In line with implications from Theorem 10, best responses in a larger
market with five buyers and sellers (dotted line) do not approach truth-telling, if ti ≺ P∞i . Instead
traders remain aggressive as they aim to reduce their fee payment. In contrast, their influence on
the price diminishes which results in traders approximating the critical value P∞i provided it is
individually rational.
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Figure 4: Best responses for uniform beliefs over actions (top) and a symmetric Bayesian Nash
equilibrium for uniform beliefs over types (bottom) for buyers (red) and sellers (blue) as functions of
their gross value for 2× 2 (dashed lines) and 5× 5 (dotted lines) markets with price fee φi = 0.1
(left) or spread fee φi = 1 (right).

6 Market Performance and Design

So far we did not commit to a specific nature of transaction costs. For example, transaction costs
could have included shipping costs, taxes, and revenue of a market platform. As we are now interested
in welfare metrics, we will assume that all transaction costs are collected by some market platform.
Then a social planner evaluates the market outcome by considering the social welfare and platform
revenue according to some objective function. If the social planner can design the transaction cost,
what is the optimal choice?

The social planner thus chooses the transaction cost (e.g., constant fee, price fee, spread fee) and
its scale. For the latter, define the scaling of transaction costs Φ; for a two-dimensional parameter
γ = (γB, γs) with γB, γS ≥ 0 the linear γ-scaling of transaction costs Φ are Φγ

B = γB · Φ and
Φγ
S = γS · Φ. For instance, for price and spread fees, γ-scaling linearly scales the fee percentage φi.
For analytical tractability, we will restrict our analysis to infinite markets with type distributions

µtB and µtS and regular transaction costs (ΦB,ΦS) that are charged to all buyers and all sellers
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involved in trade. Recall that those are transaction costs that only depend on a trader’s action and
the market price. As we work in an infinite market, we will use the term uninfluenceable transaction
costs instead of asymptotically uninfluenceable transaction costs.

As in Section 5, traders best respond to their beliefs about the market environment. For uninflu-
enceable transaction costs we focus on traders that truthfully report their net value. Truthfulness
is a best response in infinite markets but other behaviors are also possible. However, we focus on
truthfulness, as we show in Theorems 7 and 8, limit best-response behavior in large finite markets
approaches truthfulness, and it is the unique best response in infinite markets with aggregate
uncertainty, c.f. Appendix A.9. For influenceable transaction costs suppose that traders price-guess.
This behavior is the unique best response in infinite markets and the approximate best response
in large finite markets, see Theorems 9 and 10. This also holds in markets with sufficiently small
aggregate uncertainty, c.f. Appendix A.9. Therefore the results in this section are qualitatively
robust to small aggregate uncertainty, but nevertheless may differ, c.f. Section 2 for an analysis of
market performance for spread fees in the presence of aggregate uncertainty.

In this section, we will analyze the performance of different transaction costs for fixed belief
systems. For uninfluenceable transaction costs, optimal behavior does not depend on traders’ beliefs
and the analysis of market performance will be independent of the belief system. For influenceable
transaction costs, price-guessing does not depend on scaling. Beliefs about the market price are
therefore independent of which influenceable transaction cost is analyzed. Based on these two
observations, we assume that a change in transaction costs does not affect the traders’ belief system.

6.1 Market Performance

The social planner evaluates the market outcome using the following standard performance metrics.
The traders’ welfare W =

∫
B∗ ub(tb, ab, a-b)dµB(b)+

∫
S∗ us(ts, as, a-s)dµS(s) is the overall utility of

all traders involved in trade.27 The platform revenue R =
∫
B∗ Φb(ab, a-b)dµB(b)+

∫
S∗ Φs(as, a-s)dµS(s)

is the total amount of transaction costs that is collected by the market maker. The sum G = W +R

are the realized gains of trade, and note that G =
∫
B∗ (tb − P ∗) dµB(b) +

∫
S∗ (P ∗ − ts) dµS(s). If

agents report truthfully in the presence of transaction costs Φ, we denote by Gnet the net gains of
trade. If no transaction is charged reporting truthfully thus yields the gross gains of trade Ggross,
where Ggross ≥ Gnet ≥ G will be shown to hold. The loss L = Ggross −G measures how much gains
of trade are lost due to fee considerations and strategic behavior. It can be split into the direct loss
Lφ = Ggross −Gnet, that is due to transaction costs, and the strategy-induced loss LF = Gnet −G.

The gross gains of trade are equal to the sum of platform revenue, social welfare and loss, that
is Ggross = W +R+ L. We identify market performance with the triple (W,R,L). We normalize
Ggross = 1 and hence the set of all performance triples lie on a triangle ∆ in a 2-dimensional
hyperplane in R3. We say that a performance triple (W,R,L) is achievable for transaction costs Φ

27Because best responses are individually rational, W is non-negative.
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and belief system B, if there exists a γ-scaling, such that optimal behavior of all traders leads to
that market performance.

6.2 Optimal transaction cost design

Suppose that the social planner aims to maximize a continuous objective function U : ∆ → R
on performance triples (W,R,L) ∈ ∆. We will consider objective functions, such that a Pareto
improvement of welfare and revenue leads to an increase in utility, that is, for any performance triplet
(W,R,L) and for α, β ≥ 0 with α+β ≤ L it holds that U (W,R,L) ≤ U (W + α,R+ β, L− (α+ β)).
In particular, it holds that U(1, 0, 0) ≥ U(0, 0, 1), that is the social planner prefers a fully efficient
market with zero revenue for the market maker over a fully inefficient market.

We say that transaction costs Φ1 (weakly) U -dominate transaction costs Φ2 for a class of beliefs,
if for any belief system B in that class the resulting market performance U (W,R,L) is (weakly)
greater for the former than for the latter. We call transaction costs Φ U -dominant for a class of
beliefs, if they weakly U -dominate all other transaction costs.

Optimal design of transaction costs depends on the nature of traders’ beliefs. The following
theorem shows that for common prior beliefs optimal design is possible for any uninfluenceable
transaction cost and crucially, independent of the specific belief system. By contrast, for heterogeneous
prior belief systems there exists no transaction cost that is always optimal.

Theorem 11 (Optimal Design). Consider a social planner with objective function U . For the
class of common prior beliefs, all uninfluenceable transaction costs can be scaled to be U -dominant.
Furthermore, the optimal scaling does not depend on the beliefs. For the class of heterogeneous prior
beliefs, there exists no U -dominant transaction cost.

Notably, for common prior belief systems, the optimal design problem is reduced from the space
of all transaction costs to a one-dimensional optimization problem of finding the optimal scaling for
any uninfluenceable transaction cost. For some heterogeneous prior beliefs, influenceable transaction
costs, even without an uninfluenceable part, can strictly outperform any uninfluenceable transaction
cost. However, there also exist heterogeneous prior beliefs, such that any uninfluenceable transaction
cost outperforms all influenceable transaction costs, as the latter class would lead to market failure.

The proof is relegated to Appendix B.12. We will omit a proof outline for Theorem 11 as it
combines results of the more detailed analysis that follows. Concretely, we analyse uninfluenceable
and purely influenceable transaction costs separately, to detail what market performances are
achievable and how they depend on the belief system and scaling. Finally, we return to mixed
transaction costs to discuss under what circumstances it may be optimal to use those.
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6.2.1 Uninfluenceable Transaction Costs

Suppose that the market maker charges uninfluenceable transaction costs Φ. The following proposition
characterizes the set of all achievable market performances: First, it is fully specified by the type
distributions µtB and µtS , but does not depend on the choice of the uninfluenceable transaction
costs, or the traders’ belief system. This implies that any market performance achievable with one
uninfluenceable transaction cost can be achieved with another provided it is properly scaled. Second,
this set is one-dimensional, as scaling is the only way to influence the market performance, which in
turn implies that most performances are not achievable with uninfluenceable transaction costs.

Proposition 12 (Equivalence of scaled uninfluenceable transaction costs). The set of achievable
performance triples (W,R,L) is the same for all uninfluenceable transaction costs Φ and belief
systems B. The set is a curve cP : [0, 1]→ ∆ in the simplex ∆ of all performance triples.

Outline. We prove that for any uninfluenceable transaction cost Φ, the market performance can be
represented as a continuous function of the net trading volume V , that is V 7→ (W (V ), R(V ), L(V )).
The revenue is equal to the rectangle with height equal to the net trading volume that fits under the
true demand and supply curve. The loss is the area above this rectangle.

Therefore, it suffices to prove that for any x ∈ [0, Vid], there exists a scaling γ, such that the net
trading volume is equal to x. The net trading volume is the intersection of net demand and supply.
We prove that for a fixed price P , net demand and supply are decreasing as a continuous function
of γ. We fix P = P ∗id and choose a scaling such that D(P ) = S(P ) = x, which is possible by the
Intermediate Value Theorem. Proof details are relegated to Appendix B.13.

The performance curve cP has several interesting properties: First, it connects the fully efficient
market outcome with zero revenue (1, 0, 0) and the fully inefficient market outcome (0, 0, 1) that
corresponds to complete market failure. Second, cP strictly increasing in the loss and strictly
decreasing in the welfare. Therefore, for any level of welfare in [0, 1], there exists a scaling to achieve
it. The revenue, as well as the loss, are then uniquely determined by the curve cP . This implies that
positive platform revenue with uninfluenceable transaction costs is directly tied to a positive loss of
efficiency.

This has immediate consequences for the optimal design of uninfluenceable transaction costs.
The market maker is restricted to a one-dimensional set of achievable performance triples that is
fully specified by the type distributions. Given their objective function U , the U -optimal market
performance is then achieved by scaling any uninfluenceable transaction cost properly. The belief
system of traders does not influence the optimal design.

Corollary 13 (Optimal design of uninfluenceable transaction costs). Consider a social planner with
objective function U . For all uninfluenceable transaction costs Φ, there exists a scaling γ, such that
for any belief system B the resulting performance triplet (W,R,L) is U -optimal among all achievable
market performances.
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Proof Outline. It follows from Proposition 12 that the set of achievable market performances is a
compact subset of ∆. Because the objective function U is continuous, it follows from the Extreme
Value Theorem that there exists a maximum (W,R,L). We have proven that any achievable market
performance is fully specified by the net trading volume and that for any x ∈ [0, Vid], there exists
a scaling γ ≥ 0, such that the net trading volume is equal to x. Proof details are relegated to
Appendix B.14.

If the social planner wants to maximize efficiency (that is, minimize the loss), zero transaction
costs are optimal. This leads to maximum traders’ welfare and zero revenue. For a revenue-
maximizing market-maker, there is a non-trivial trade-off between higher transaction costs per trader
and trading volume. It follows from the proof of Proposition 12 that the total platform revenue is
equal to the area of the rectangle with height equal to the net trading volume that fits under the true
demand and supply curve. Maximizing platform revenue is therefore an optimization problem with
respect to the net trading volume, for which an optimal solution exists. Once the optimal trading
volume is determined, any uninfluenceable transaction cost can be scaled to lead to that trading
volume, that is net demand and supply intersect at that height. The horizontal component of the
crossing point, that is the market price, determines, how much of the revenue is paid by buyers and
sellers. The area to the rectangle left to the market price is paid by sellers, and the area to the
right by buyers. With the right scaling – different to buyers and sellers – any market price on the
horizontal rectangle can be achieved. Hence, if the total revenue is equal to R, for any α ∈ [0, 1],
there exists a scaling, such that the revenue generated by buyers is α ·R and the revenue generated
by sellers is (1− α) ·R.

One interesting open question is that given type distributions, what is the maximum revenue
that can be generated. It was shown in Section 2 that for uniform type distributions, the answer
is equal to 0.5. It is therefore impossible to extract the full gains of trade as revenue. Is there a
general lower bound for any distribution?

6.2.2 Purely Influenceable Transaction Costs

Suppose that the market makers charges purely influenceable transaction costs Φ. The following
proposition characterizes the set of all achievable market performances: For common prior belief
systems, platform revenue is always zero and the market maker cannot influence the distribution
of welfare and loss. That is, there is a unique achievable market performance that is the same for
all purely influenceable transaction costs. Second, even if traders have heterogeneous priors, the
loss is again independent of the transaction cost structure. Via scaling, the market maker has some
influence on the welfare-revenue distribution.

Proposition 14 (Non-equivalence of scaled influenceable transaction costs). Suppose the transaction
costs are purely influenceable .
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• For common prior beliefs, there exists a unique achievable market performance (W,R,L) that
is the same for all such transaction costs. There is zero revenue, R = 0, and, if additionally
the belief system is calibrated, then the market is fully efficient, W = 1.

• For heterogeneous prior beliefs, the set of achievable market performances is a singleton or
line-segment with constant loss L that is the same for all such transaction costs. Furthermore,
for any L ∈ [0, 1], there exist a belief systems B that lead to loss L.

Proof Outline. We show that the loss L is fully characterized by the belief system and therefore
independent of the scaling of a purely influenceable transaction cost. For common prior beliefs, price
guessing leads to market outcomes, where all traders involved in trade submitted an action equal to
the realized market price P ∗. Therefore, purely influenceable transaction costs lead to zero revenue.
If the belief system is calibrated around the true critical value, then the trading volume is maximized
and the market is fully efficient. For heterogeneous prior beliefs, scaling of the transaction costs
leads to a continuous increase or decrease in revenue. As the loss is fixed, this yields that the set of
achievable market performances is a line-segment or singleton. To show that any loss can be realized,
we construct belief systems such that the traders with the most profitable gross values are involved
in trade with price-guessing. Then, the loss is a continuous function of the trading volume. We
prove that any trading volume can be realized with some heterogeneous prior beliefs. Proof details
are relegated to Appendix B.15.

Note that if traders have common prior beliefs, then the market maker has no influence on
the market performance (W,R,L) via the choice of the purely influenceable transaction cost. For
heterogeneous priors, the market maker might influence the welfare-revenue distribution by the
choice of the transaction cost. For the special case of spread fees, any such distribution is achievable.
That is, any performance triple (W,R,L) is achievable for some belief system and scaling. This is in
stark contrast to uninfluenceable transaction cost, where only a one-dimensional subset of the space
of all performance triples is achievable.

Note that for some beliefs (e.g., an aggressive bias as illustrated in Section 2, complete market
failure, that is (0, 0, 1) is the only achievable market performance. However, the market maker has
the possibility to scale the transaction cost to zero, which is not purely influenceable any more and
leads to the fully efficient market with zero revenue, that is (1, 0, 0).

Proposition 14 implies that the optimal design of purely influenceable transaction costs crucially
depends on the traders’ belief system. For some belief systems, including common prior beliefs, it
turns out to be optimal to not charge any purely influenceable transaction costs at all.

Corollary 15 (Optimal design of purely influenceable transaction costs). Consider a social planner
with objective function U and purely influenceable transaction costs Φ.

• For common prior beliefs, the U -optimal scaling of Φ is γ = (0, 0) with market performance
(1, 0, 0).
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• For heterogeneous prior beliefs, the U -optimal scaling of Φ depends on the belief system. For
some such beliefs the scaling γ = (0, 0) is again U -optimal.

Proof Outline. It follows from Proposition 14 that for common prior beliefs, there exists a unique
achievable market performance with zero revenue. As the social planner values welfare over loss, it
is optimal to not charge any purely influenceable transaction costs with the fully efficient market
performance (1, 0, 0). For some heterogeneous prior beliefs, price-guessing will lead to complete
market failure, that is (0, 0, 1). In that case the scaling γ = (0, 0) is again optimal. Proof details are
relegated to Appendix B.16.

For some belief systems and influenceable transaction costs, in contrast to uninfluenceable
transaction costs, it is possible to achieve market outcomes with strictly positive revenue and zero
loss, that is (x, 1− x, 0). Note that for some belief systems and objective functions, a high scaling
might be optimal. For example, if spread fees are charged and heterogeneous prior beliefs with
strictly positive gains of trade, it is optimal for a revenue-maximizing market maker to scale the
fees to 100%. Moreover, for certain beliefs, it is possible to achieve the optimal performance triplet
(W,R,L) in the space of all market performances. More formally, for any objective function U , there
exist spread fees and beliefs F , such that the corresponding market performance is U -optimal among
all market performances. For example, for a revenue-maximizing market maker, there exist belief
systems such that the market performance (0, 1, 0) is achievable.

6.2.3 Mixed Transaction Costs

Consider transaction costs that have an uninfluenceable and purely influenceable part. If the
uninfluenceable transaction cost is not optimally scaled, there exist common prior beliefs, such that
adding a purely influenceable transaction cost can be beneficial. That is, the resulting influenceable
transaction cost can outperform the original uninfluenceable one. Note that this is not due to an
increase in revenue from the purely influenceable part, as price-guessing leads to zero revenue from
this part. However, price-guessing might change the market price and lead to higher revenue from
the uninfluenceable part of the transaction cost. The following example illustrates this:

Example 16 (Strategic addition of influenceable transaction costs). Consider a market environment
with a unit mass of traders in [1, 2] and a 10% price fee, such that truthfulness leads to a market
price of 1.5 and a trading volume of 0.5. Moreover, assume that types are distributed, such that there
is only ε-demand in the set [1.5, 1.8]. If the common prior beliefs are such that all traders believe
that the market price will be equal to 1.8, adding a spread fee changes the strategic behavior from
truthfulness to price-guessing and the market price will turn out to be 1.8 instead of 1.5. The trading
volume decreases by at most ε, but the revenue increases due to a higher market price, even though
no revenue is due to the additional spread fee.
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7 Conclusion

We have studied a standard model of trade where the price is set to equate revealed supply and
demand and have shown how the presence of transaction costs fundamentally alter incentives
and welfare in markets. In particular, we have categorized transaction costs into asymptotically
uninfluenceable transaction costs (examples include fixed and price fees) and influenceable transaction
costs (examples include spread fees). Uninfluenceable transaction costs don’t fundamentally alter
strategic incentives and, in large markets, inefficiency only arises from the direct loss that resemble
the dead-weight loss of taxation or monopoly power. By contrast influenceable transaction costs
starkly alter strategic consideration. Dependent on beliefs and uncertainty total market failure may
occur.

Our results remain valid for any mechanism in which:

• A trader’s expected utility E[u(a)], given their action a, can be expressed as the product of
the probability of trade P[trading given a] and the expected utility conditional on trading
E[u(a)|trading given a]; we assume here that the utility when not trading is zero.

• A buyer’s P[trading given a] is increasing in a and E[u(a)|trading given a] is decreasing in a,
while a seller’s P[trading given a] is decreasing in a and E[u(a)|trading given a] is increasing
in a.

We say that trade is predictable if the probability of trade approaches a 0-1 step-function in the
trader’s action. Examples include large markets without aggregate uncertainty (c.f. Proposition 3)
and posted-price mechanisms. If trade is predictable, the trading probability is de facto a constraint
and to maximize utility a trader either chooses not to trade or chooses an action that ensures
trade and maximizes E[u(a)|trading given a]. For the latter maximization our categorization into
asymptotically uninfluenceable and influenceable payments is crucial and our analysis of the two
categories carries over to this more general setting. Extended in this way, our treatment includes
Vickrey mechanisms as an example of the asymptotically uninfluenceable case and the first-price
auction as an example of the influenceable case.

Transaction costs have often been overlooked in the strategic analysis of markets. The stark
influence that we have uncovered points towards both, empirical and theoretical questions. Given
that both asymptotically uninfluenceable and influenceable transaction costs are charged in practice,
what explains the choices? May the choice depend on differences in sophistication of traders; for
example influenceable transaction costs might be charged in situations where traders have incorrect
beliefs or face aggregate uncertainty. Theoretically, this opens the question of optimal information
design for a social planner or market maker. Finally, extending our insights to more complex market
interactions, where traders are interested in bundles should also be of great interest.
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A Auxiliary results

A.1 Demand, supply, and market-clearing prices

We clarify how the double auction chooses the market price. For a detailed treatment of the double
auction and the proofs of Lemmas 17, 18, and 19 see Jantschgi et al. (2022).

Recall the following notation: For a relationR ∈ {≥, >,=, <,≤}, define BR(P ) = {b ∈ B : tbRP}
and SR(P ) = {s ∈ S : tsRP}.

Definition (Demand and supply functions). The demand and supply functions at price P are
defined as D(P ) = µB(B≥(P )) and S(P ) = µS(S≤(P )), that is, by the mass of all traders who
weakly prefer trading over not trading at price P .

We next define a special class of action distributions, which arise in infinite markets, e.g., if they
are interpreted as the limit of finite markets where actions are modelled as independent random
variables. Say that action distributions µaB and µaS are regular, if they are equivalent to the Lebesgue-
measure on AB and AS and their densities fB and fS are continuous, that is µaB(A) =

∫
A fB(x)dx

and µaS(A) =
∫
A fS(x)dx for A ⊂ R.

Lemma 17 (Analytic properties of demand and supply functions). The demand function is non-
increasing, left-continuous with right limits. The supply function is non-decreasing, right-continuous
with left limits. It holds that D(P+) = µB(B>(P )) and S(P−) = µS(S<(P )). If action distributions
are regular, then demand is continuous and strictly decreasing on AB and supply is continuous and
strictly increasing on AS.

The following concept corresponds to market prices that equilibrate demand and supply.

Definition ((Strong) market clearing prices). P is a market-clearing price if D(P ) ≥ S(P ) and
D(P+) ≤ S(P ) (type I ) or S(P ) ≥ D(P ) and S(P−) ≤ D(P ) (type II ). P is a strong market-clearing
price if D(P ) = S(P ). Denote the set of all market-clearing prices by PMC and the set of all strong
market-clearing prices by PSMC .

Using the analytical properties of demand and supply, we can characterize the topology of the
set of (strong) market clearing prices.

Lemma 18 (Topology of PSMC and PMC). The set PSMC is a convex subset of T . Every strong
market-clearing price is a market-clearing price (of type I and II). The set of market-clearing prices
is non-empty, convex and closed. The set PMC \ PSMC has Lebesgue-measure zero. More precisely,
if PSMC 6= ∅, then PMC = PSMC , and if PSMC = ∅, then PMC is a singleton.
If action distributions are continuous, and aS > aB, then there exists a unique market clearing price
with positive trading volume and PSMC = PMC .

36

Electronic copy available at: https://ssrn.com/abstract=4043576



In finite markets the mechanism described in Section 3 coincides with the classical k-DA
(Rustichini et al., 1994), for which an explicit formula for the set of market-clearing prices is given.
Let a(m) be the m’th smallest action in the set of all actions a.

Lemma 19. In finite markets with m buyers and n sellers PMC = [a(m), a(m+1)]. If a(m) 6= a(m+1),
then for every P ∈ (a(m), a(m+1)) it follows that P ∈ PSMC .

A.2 Allocation and tie-breaking

If the double auction results in a strong market-clearing price P ∗, that is D(P ∗) = S(P ∗), then no
tie-breaking is needed. The allocation is set as B∗ = B≥(P ∗) and S∗ = S≤(P ∗), which balances trade,
that is µB(B∗) = µS(S∗). Therefore, the allocation consists of all traders, who weakly prefer trading
over not trading at P ∗.

Next, suppose that the double auction results in a market clearing price of type I, which is not
a strong market clearing price. Then, D(P ∗) > S(P ∗) and D(P ∗+) ≤ S(P ∗). Set S∗ = S≤(P ∗),
that is all sellers who, given their action, weakly prefer trading over not trading are involved in
trade. Consider the set of all buyers who strictly prefer to trade at P ∗, that is B>(P ∗). It follows
from Lemma 17 that D(P ∗+) = µB(B>(P ∗)). Let x = S(P ∗) − µB(B>(P ∗)) ≥ 0 and let B̃ be a
subset of B=(P ∗) with µB-measure equal to x. Such a set exists because D(P ∗) = µB(B≥(P ∗)) =

µB(B>(P ∗)) + µB(B=(P ∗)) ≥ S(P ∗) and D(P ∗+) = µB(B>(P ∗)) ≤ S(P ∗). Set B∗ = B>(P ∗) ∪ B̃.
That is, all buyers who strictly prefer to trade at P ∗ are involved in trade, together with a subset of
traders with bid equal to P ∗ that are indifferent in order to balance trade.

Finally, if a market clearing price of type II is chosen, the allocation is set analogously: B∗ =

B≥(P ∗) and S∗ = S<(P ∗) ∪ S̃, where S̃ is a subset of S=(P ∗) that balances trade.
Suppose that B̃ (respectively S̃) are chosen uniformly at random, this ensures fairness. That

is, they are random compact sets such that for all b ∈ B=(P ∗) it holds that P[b ∈ B̃] ≡ µB(B̃)/µB(B)

(respectively for all s ∈ S=(P ∗) it holds that P[s ∈ S̃] ≡ µS(S̃)/µS(S)). The existence of uniform
random sets is discussed in Jantschgi et al. (2022).

A.3 Explicit formulas

In this section we derive explicit formulas for some of the concepts introduced in the model in
Section 3 that will be used in subsequent proofs. We will sometimes differentiate between finite
markets with m buyers and n sellers and infinite markets with market ratio R.

Throughout this section, consider a buyer b with gross value tb and bid ab, and a seller s with
gross value ts and ask as. Let a denote an action distribution. Recall that in a finite market, a(k)

denotes the k’th smallest element in the set of all taken actions.
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A.3.1 Involvement in trade

Finite markets. If ab < a
(m)
-b , then it is strictly smaller than the m+ 1’st smallest element in the

set of all actions a (including ab) and buyer b is not involved in trade, because their bid is below the
market price. If ab > a

(m)
-b , then it is at least the m+ 1’st largest element and therefore sufficient to

be involved in trade. If ab = a
(m)
-b , then the buyer might be subject to tie-breaking.

If as > a
(m)
-s , then it is at least the m+1’st smallest element in the set of all actions (including as)

and seller s is not involved in trade, because their ask was above the market price. If as < a
(m)
-s , then

it is at most the m’th smallest action and therefore sufficient to be involved in trade. If as = a
(m)
-s s,

then the seller might be subject to tie-breaking.

Infinite markets. If there exists no demand excess, then a buyer is involved in trade, if ab ≥ P ∗(a).
If ab < P ∗(a), then the buyer is not involved in trade. If there exists demand excess, it is generated
by bids at P ∗(a). If ab > P ∗(a), then the buyer is involved in trade. If ab = P ∗(a), then the buyer
might be subject to tie-breaking.

If there exists no supply excess, then the seller is involved in trade, if as ≤ P ∗(a). If as > P ∗(a),
then the seller is not involved in trade. If there exists supply excess, it is generated by asks at P ∗(a).
If as < P ∗(a), then the seller is involved in trade. If as = P ∗(a), then the seller might be subject to
tie-breaking.

We can now express the probability of trade, given the beliefs of a trader.

A.3.2 Trading probabilities given beliefs

Finite markets. Given the belief that actions are random variables with continuous distribution,
tie-breaking is a probability zero event in finite markets. It follows from Appendix A.3.1 that

Pa-b [b ∈ B∗(ab, a-b)] = Pa-b

[
ab ≥ a

(m)
-b

]
and Pa-s [s ∈ S∗(as, a-s)] = Pa-s

[
as ≤ a(m)

-s

]
. (3)

In Appendix A.7, explicit formulas for such probabilities are derived in a more general context (see
Equations (28) and (29)).

Infinite markets. If there exists no demand excess at P ∗, then

Pa-b [b ∈ B∗(ab, a-b)] =

1 ab ≥ P ∗(a),

0 else.
(4)
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Suppose that there is strictly positive demand excess. That is µB(B≥(P ∗(a))) = V (a) + x and
µB(B>(P ∗(a))) = V (a)− y for x > 0 and y ≥ 0 (see Appendix A.2). Then,

Pa-b [b ∈ B∗(ab, a-b)] =


1 ab > P ∗(a),

y
x+y ab = P ∗(a),

0 else.

. (5)

If there exists no supply excess, then

Pa-s [s ∈ S∗(as, a-s)] =

1 as ≤ P ∗(a),

0 else.
(6)

Suppose that there is strictly positive supply excess. That is µS(S≤(P ∗(a))) = V (a) + x and
µS(S<(P ∗(a))) = V (a)− y for x > 0 and y ≥ 0. Then,

Pa-s [s ∈ S∗(as, a-s)] =


1 as < P ∗(a),

y
x+y as = P ∗(a),

0 else.

(7)

Note that in the presence of strictly positive trading excess, traders believe that if they are
involved in tie-breaking in an infinite market, then they have a fair chance of being involved in trade.

A.3.3 Market Price

Finite markets. Recall that by Lemma 19 P ∗(a) = ka(m) + (1 − k)a(m+1). Interpreting the
market price as a function of a single action yields

P ∗ (ab, a-b) =

(1-k)a
(m)
-b +kab if a(m)

-b ≤ab≤a
(m+1)
-b ,

(1-k)a
(m)
-b +ka(m+1)

-b else.
(8)

P ∗ (as, a-s) =

(1-k)as+ka
(m)
-s if a(m-1)

-s ≤as≤a(m)
-s ,

(1-k)a
(m-1)
-s +ka(m)

-s else.
(9)

Note that P ∗ (ab, a-b) depends only on a(m)
-b and a(m+1)

-b , and P ∗ (as, a-s) depends only on a(m-1)
-s

and a(m)
-s . In some proofs, this dependence will be of importance and we will, for example, write

P ∗
(
ab, a

(m)
-b , a

(m+1)
-b

)
instead of P ∗ (ab, a-b).

In addition, for a trader i, we will in some proofs consider P̃ ∗ (ai, a-i), which is equal to the
market price, if i is involved in trade, and zero otherwise.
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Infinite markets. In an infinite market, a single trader cannot influence the market price. It
therefore holds for a trader i and for all actions ai and a′i that P

∗(ai, a-i) = P ∗(a′i, a-i). By abuse of
notation, we will in some proofs write P ∗(a-i).

A.3.4 Utility functions

For a buyer the utility of being involved in trade is equal to the difference between their gross value
and the market price minus the additional transaction cost:

ub (tb, ab, a-b)) =

tb-P ∗ (ab, a-b) -Φb (ab, a-b) b ∈ B∗,

0 else.
(10)

For a seller the utility of being involved in trade is equal to the difference between the market price
and their gross value minus the additional transaction cost:

us (ts, as, a-s)) =

P ∗ (as, a-s) -ts-Φs (as, a-s) s ∈ S∗,

0 else.
(11)

Finite markets. Let µb (a-b) denote the distribution of a-b according to the beliefs of trader b. It
holds that

E-b [ub(tb, ab, a-b)] =∫
{ab≥a(m)

-b }

(tb-P ∗ (ab, a-b) -Φb (ab, a-b)) dµb (a-b) =

tb · P-b[b ∈ B∗(ab, a-b)]−
∫

[aS,b,aS,b]
2

P̃ ∗
(
ab, a

(m)
-b , a

(m+1)
-b

)
dµb(a

(m)
-b , a

(m+1)
-b )− E-b [Φb(ab, a-b)]

(12)

Note that both a(m)
-b and a(m+1)

-b have support in [aS,b, aS,b]. That is because a-b consists of m− 1

bids and n asks. So there must be at least one ask below or equal to a(m)
-b .

Let µs (a-s) denote the distribution of a-s according to the beliefs of a seller s. It holds that

E-s [us(ts, as, a-s)] =∫
{as≤a(m)

-s }

(P ∗ (as, a-s) -ts − Φs (as, a-s)) dµs (a-s) =

∫
[aB,s,aB,s]

2

P̃ ∗
(
as, a

(m-1)
-s , a(m)

-s

)
dµs(a

(m-1)
-s , a(m)

-s )− ts · P-s[s ∈ S∗(as, a-s)]− E-s [Φs(as, a-s)] .

(13)

Note that both a(m-1)
-s and a(m)

-s have support in [aB,s, aB,s].
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Infinite markets. The expectation is only concerned with tie-breaking, as both the market price
and the transaction cost are deterministic. Therefore,

E-b [ub(tb, ab, a-b)] = (tb − P ∗(ab, a-b)− Φb(ab, a-b))P-b [b ∈ B∗(ab, a-b)] (14)

and
E-s [us(ts, as, a-s)] = (P ∗(as, a-s)− ts − Φs(as, a-s))P-s [s ∈ S∗(as, a-s)] . (15)

Difference in expected utility for actions a1
i and a2

i in finite markets In multiple proofs,
we will estimate the difference in expected utility in finite markets for two actions a1

i and a2
i . The

following lemma yields an upper bound:

Lemma 20. For bids a1
b > a2

b and for asks a1
s < a2

s it holds that

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
≤

tb
(
P-b
[
b ∈ B∗(a1

b , a-b)
]
− P-b

[
b ∈ B∗(a2

b , a-b)
])
−
(
E-b
[
Φb
(
a1
b , a-b

)]
− E-b

[
Φb
(
a2
b , a-b

)])
.

(16)

and
E-s
[
us
(
ts, a

1
s, a-s

)]
− E-s

[
us
(
ts, a

2
s, a-s

)]
≤ 2aB,s (1− P-s [s ∈ S∗(as, a-s)])− ts

(
P-s
[
s ∈ S∗(a1

s, a-s)
]
− P-s

[
s ∈ S∗(a2

s, a-s)
])

−
(
E-s
[
Φs
(
a1
s, a-s

)]
− E-s

[
Φs
(
a2
s, a-s

)])
.

(17)

The proof of this Lemma is relegated to Appendix B.19.

A.4 Discussion of truthfulness for pathological transaction costs

The set of undominated actions might be empty. First, the net value might not exist, as
the set of undominated actions can be empty. Consider a seller s with a positive gross value ts. If a
price fee φs = 1 is charged, then any involvement in trade results in a loss for the seller. Therefore
any action as is dominated by a greater action a′s, proving that there does not exist an undominated
action.

The net value might be dominated. Second, the net value might be dominated, as the set of
undominated actions might be open. Consider a buyer b with positive gross value tb. If a constant
fee cb > tb is charged, any involvement in trade results in a loss for a buyer. It is therefore optimal
to not be involved in trade. Formally, this would mean to submit a negative action ab ∈ [−∞, 0).
But ab = 0 is dominated by any negative action, as a buyer can still be involved in trade, if all
other traders submit 0, and the buyer wins tie-breaking. Therefore the supremum of the set of
undominated and ex-post individually rational actions is not attained as a maximum.

The maximal undominated action might not be ex-post individually rational. Third,
the maximal undominated action might not be ex-post individually rational. Consider a buyer with
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gross value tb and a fee Φb that is equal to zero, unless for one action distribution a′-b, where the
buyer is involved in trade with action tb and the fee is greater than tb. The largest undominated
action is equal to tb, as this action dominates all larger actions actions, but is not dominated by
smaller actions. But it is not ex-post individually rational, because ub(tb, ab, a′-b) < 0.

A.5 Out-of-the market gross values

We sometimes focus on in-the-market gross values that is gross values ti such that tΦi ≺ P∞i . Traders
with such gross values are able to submit individually rational actions that make them likely to be
involved in trade when the market is sufficiently large. By contrast, for an out-of-the-market trader,
that is, one with gross value tΦi � P∞i , the probability of trade, when acting individually rationally,
vanishes in large markets. Observe that bidding the critical value P∞i is individually rational for for
in-the-market traders but not for out-of-the-market traders.

Proposition 21 (For out-of-the-market gross values, truthfulness is close to optimal). If bidding
the critical value P∞i is not individually rational for trader i, then for every ε > 0, in sufficiently
large markets, truthfulness is an ε-best response.

Proof Outline. As tΦi � P∞i , the best response for a trader is more aggressive than P∞i . But for
any such action, it follows from Proposition 3 that the trading probability gets arbitrarily small in
sufficiently large markets. Therefore, for any ε > 0, the expected utility of a best response is less or
equal than ε, and, as truthfulness leads to a non-negative expected utility by assumption, it is an
ε-best response in sufficiently large markets. Proof details are relegated to Appendix B.20.

A.6 Strategic incentives for price and spread fees

This section contains a detailed discussion of the opposing strategic incentives for price and spread
fees in finite markets: (i) Utility when trading, versus (ii) probability of trading.28

Recall that a trader i believes that actions are distributed in intervals AB,i = [aB,i, aB,i] and
AS,i = [aS,i, aB,i] with the assumption that aS,i ≥ aB,i > tΦi > aS,i ≥ aB,i.

Consider a buyer b with action ab. We can omit the analysis of ab > aB,b and ab < aS,b; for the
first, such an action is by assumption not individually rational and strictly dominated by tΦb , for the
second, any action below aS,b has probability of trade equal to 0, because no seller is believed to
submit an action below it. Therefore, the expected utility at such a bid is equal to 0. We therefore
consider ab ∈ [aS,b, aB,b].

As the market price depends only on ab, a
(m)
-b and a(m+1)

-b . For ease of notation, let y = a
(m)
-b and

z = a
(m+1)
-b and denote by e(y, z) the joint density of y and z given the beliefs of buyer b.

28This section is closely related to methods used in Rustichini et al. (1994) to analyze strategic incentives in k-DAs
without transaction costs.
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Price fees. The expected utility of a buyer is of the form

E-b [ub(tb, ab, a-b)] =

aS,i∫
ab

ab∫
aS,b

(tb − (1 + φb) (kab + (1− k) y)) e(y, z)dydz+

ab∫
aS,b

z∫
aS,b

(tb − (1 + φb) (kz + (1− k) y)) e(y, z)dydz.

(18)

The expected utility is continuously differentiable as a function of ab over the interval [aS,b, aS,b].
Straightforward computation using Leibniz’s rule for differentiation under the integral sign yields

dE-b [ub(tb, ab, a-b)]

dab
= (tb − (1 + φb) ab) fy(ab)− (1 + φb) kP-b [y ≤ ab ≤ z] , (19)

where fy(ab) denotes the density function of y. If ab ∈ (aS,b, aS,b) maximizes the expected utility,
then the first order condition

dE-b [ub(tb, ab, a-b)]

dab
= 0 (20)

holds. fy(ab) is equal to dP-b[y≤ab]
dab

. A formula for P-b[y ≤ ab] is stated in Appendix A.7. Therefore,
we can explicitly state the first order condition in terms of distribution and density functions, see
Equation (24) below. The first order condition for a seller can be derived in analogy, see Equation (25)
below.

Spread fees. The expected utility of a buyer is of the form

E-b [ub(tb, ab, a-b] =

aS,b∫
ab

ab∫
aS,b

(tb − φbab − (1− φb) (kab + (1− k) y)) e(y, z)dydz+

ab∫
aS,b

z∫
aS,b

(tb − φbab − (1− φb) (kz + (1− k) y)) e(y, z)dydz.

(21)

The expected utility is continuously differentiable as a function of ab over the interval [aS,b, aS,b].
Straightforward computation using Leibniz’s rule for differentiation under the integral sign yields

dE-b [ub(tb, ab, a-b]

dab
= (tb − ab) fy(ab)− φbP-b [y ≤ ab]− (1− φb) kP-b [y ≤ ab ≤ x] . (22)

where fy(ab) denotes the density function of y. If ab ∈ (aS,b, aS,b) maximizes the expected utility,
then the first order condition

dE-b [ub(tb, ab, a-b)]

dab
= 0 (23)
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holds. fy(ab) is equal to dP-b[y≤ab]
dab

. A formula for P-b[y ≤ ab] is stated in Appendix A.7. Therefore,
we can explicitly state the first order condition in terms of distribution and density functions, see
Equation (24) below. The first order condition for a seller can be derived in analogy, see Equation (25)
below.

First Order Conditions To explicitly state the first order conditions, we introduce additional
notation: Define ai,j as an action distribution for i buyers and j sellers. In this notation, a as defined
in Section 3 corresponds to am,n and for any buyer b and seller s, a-b and a-s correspond to am−1,n

and am,n−1. Denote again by a(l)
i,j its l’th smallest element.

We say that an action ab satisfies the buyer’s first order condition for gross value tb if

(tb- (1+φb) ab)

(tb-ab)

·
(
nP-b

[
a

(m-1)
m-1,n-1≤ab≤a

(m)
m-1,n-1

]
fS,b(ab)+ (m-1)P-b

[
a

(m-1)
m-2,n≤ab≤a

(m)
m-2,n

]
fB,b(ab)

)
=


(1 + φb) kP-b

[
a

(m)
m-1,n-1 ≤ ab ≤ a

(m+1)
m-1,n

]
for price fees

φbP-b

[
a

(m)
m,n-1 ≤ ab

]
+ (1-φb) kP-b

[
a

(m)
m-1,n ≤ ab ≤ a

(m+1)
m-1,n

]
for spread fees

.

(24)

We say that an action as satisfies the seller’s first order condition for gross value ts if

((1-φs) as-ts)

(as-ts)

·
(

(n-1)P-s

[
a

(m-1)
m,n-2≤as≤a

(m)
m,n-2

]
fS,s(a)+mP-s

[
a

(m-1)
m-1,n-1≤as≤a

(m)
m-1,n-1

]
fB,s(a)

)
=


(1-φs) (1-k)P-s

[
a

(m-1)
m,n-1 ≤ as ≤ a

(m)
m,n-1

]
for price fees

φsP-s

[
a

(m)
m,n-1 ≥ as

]
+ (1-φs) (1-k)P-s

[
a

(m-1)
m,n-1 ≤ as ≤ a

(m)
m,n-1

]
for spread fees

.

(25)

Interpretation of a buyer’s first order condition. Despite the extensive and complex form
of the condition, it has a natural interpretation: It balances between the probability of trade and
the utility when trading.

In particular, an incremental increase ∆ab in a buyer’s bid has two opposing effects: If the bid
ab does not include the buyer amongst those who trade, then by increasing it to ab + ∆ab, the buyer
may surpass other actions and be involved in trade. If the bid ab is sufficient to include the buyer in
trade, then increasing their bid by ∆ab may lead to an increase in market price and their fee.

In Equation (24), the left-hand side of the equation describes the gain from increasing one’s
trading probability. The sum in brackets times ∆ab is the probability that the buyer enters the
set of buyers who trade as they incrementally raise their bid by ∆ab. The first term in the sum
is the marginal probability of acquiring an item by passing a seller’s offer and the second term is
the marginal probability of acquiring an item by passing another buyer’s bid. For a price fee the
profit from such a trade is between tb − (1 + φb)ab and tb − (1 + φb)ab − (1 + φb)∆ab. Therefore, the
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marginal expected profit for a buyer who raises their bid is tb − (1 + φb)ab times the term in the
brackets. In analogy, for a spread fee the marginal expected profit for a buyer who raises their bid is
tb − φbab times the term in the brackets.

Next, in Equation (24), the right-hand side of the equation describes the buyer’s marginal
execpted loss from increasing their bid above ab. P-b

[
a

(m)
m-1,n ≤ ab ≤ a

(m+1)
m-1,n

]
is the probability that a

buyer who increases their bid by ∆ab increases the market price by k(1 + φb)∆ab for a price fee and
by k(1− φb)∆ab for a spread fee. Additionally, for a spread fee P-b

[
a

(m)
m-1,n ≤ ab

]
is the probability

that a buyer who increases their bid by ∆ab increases the part of the charged fee depending on their
bid by φb∆ab.

The interpretation for a seller is symmetric and thus omitted.

A.7 Probabilities in the first order conditions

In this section we derive explicit formulas for the probabilities arising in the first order conditions in
Equations (24) and (25), that are also used in the proof of Theorem 8 in Appendix B.9. Instead of
deriving expressions for all different probabilities, note that for general n,m, l all of them can be
expressed as one of the following three probabilities for different n,m, l: (i) P-i

[
a

(l)
m,n≤ai≤a(l+1)

m,n

]
,

(ii) P-i

[
a

(l)
m,n ≤ ai

]
and (iii) P-i

[
a

(l)
m,n ≥ ai

]
.

For (i) it is the probability that action ai lies between the l’th and l + 1’st smallest element
in a set of m bids and n asks. The probability that another buyer submits an action smaller or
equal ai is F aB,i(ai). The probability that a buyer submits an action greater or equal ai is therefore
1− F aB,i(ai). Replace F aB,i by F aS,i for sellers. The event that exactly l bids and asks are below ai

can be split up in the following way: Suppose that i buyers and j sellers bid and offer less or equal
than ai. i + j must be equal to l. Assuming that there are m buyers and n sellers in total, this
means that exactly m− i buyers and n− j sellers bid and offer more than ai. Selecting i buyers and
j sellers, the probability that exactly i+ j = l bids and offers are below or equal to ai is

F aB,i (ai)
i F aS,i (ai)

j (1-F aB,i (ai)
)m-i (

1-F aS,i (ai)
)n-j

, (26)

because the actions of traders are assumed to be independent. There are
(
m
i

)
possibilities to choose i

buyers and
(
n
j

)
possibilities to choose j sellers. Therefore, the total probability that exactly l traders

submit below ai is equal to

P-i

[
a(l)
m,n≤ai≤a(l+1)

m,n

]
=
∑
i+j=l

0≤i≤m
0≤j≤n

(
m

i

)(
n

j

)
F a
B,i (ai)

i
F a
S,i (ai)

j (
1-F a

B,i (ai)
)m-i (

1-F a
S,i (ai)

)n-j
. (27)

For (ii) it is the probability that ai is greater than the l’th action. That is, for some k ∈ [l,m + n] the
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number of offers below ai is exactly equal to k. Summing over k yields that

P-i

[
a(l)
m,n ≤ ai

]
=

n+m∑
k=l

∑
i+j=k
0≤i≤m
0≤j≤n

(
m

i

)(
n

j

)
F a
B,i (ai)

i
F a
S,i (ai)

j (
1-F a

B,i (ai)
)m-i (

1-F a
S,i (ai)

)n-j
. (28)

For (iii), because distributions are assumed to be atomless P-i

[
a

(l)
m,n = ai

]
= 0. It therefore holds

that
P-i

[
a(l)
m,n ≥ ai

]
= 1− P-i

[
a(l)
m,n ≤ ai

]
, (29)

which was computed above.

A.8 Market performance in the infinite market with spread fees

Consider the infinite market with type space T = [1, 2], µt
B and µt

S the Lebesgue-measures from ??. Assume
that a symmetric spread fee, that is, φb = φs = φ is charged. Best responses divide the population into
price-guessers choosing actions at the critical value and price-takers. We suppose all buyers identify the
critical value at β ∈ [1, 2], and all sellers at σ ∈ [1, 2]. The following table gives different measures describing
the outcome in a market with and without fees.

Case (i) Case (ii) Case (iii) Case (iv)
Buyer strategy aB(tb) β if tb ≥ β and tb if tb < β

Seller strategy aS(ts) σ if ts ≤ σ and ts if ts > σ

Demand D(P ) 2− P if P ≤ β and 0 if P > β

Supply S(P ) 0 if P < σ and P − 1 if P ≥ σ
Market Price P ∗ 3/2 σ β ∈ (β, σ)

Market Volume Q∗ 1/2 2− σ β − 1 0

Market Excess Ex∗ 0 2σ − 3 3− 2β 0

Max. Gains of Trade Ggross 1/4

Gains of Trade 1/4 3σ−σ2−2
2(σ−1)

3β−β2−2
2(2−β)

0

Transaction Costs
φ
(
(2-β)(β-3/2)+ (β-3/2)2

2

+(σ-1)(3/2-σ)+ (3/2-σ)2

2

) φ
(
(2-β)(β-σ)

+ (β-σ)2

2

) φ
(
(1-σ)(β-σ)

+ (β-σ)2

2

) 0

Surplus G− Tc G− Tc G− Tc 0

Loss 0 2σ2-5σ+3
4(σ-1)

2σ2-7β+6
4(2-σ)

1/4

A.9 Aggregate uncertainty

Consider an infinite market with regular transaction costs. Recall that regular transaction costs in infinite
markets only depend on a traders action and the market price. Uninfluenceable regular transaction costs are
functions of the market price, that is Φi(ai, P

∗) = Φi(P
∗). Examples include constant and price fees. Regular

transaction costs are influenceable in infinite markets iff the map ai 7→ Φi(ai, P
∗) is strictly increasing for

buyers and strictly decreasing for sellers. Spread fees are again an example of influenceable transaction costs.
In this section suppose that trader i is uncertain about the uninfluenceable market price P ∗. We assume

P ∗ is a random variable and that the distribution is absolutely continuous with probability density function
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fP∗,i that is continuous and strictly positive on its support [P ∗i , P
∗
i ] with P ∗i < P ∗i . Denote by FP∗,i the

corresponding distribution function. Additionally, trader i also hold individual beliefs about the tie-breaking
probability pi ∈ [0, 1], if a traders’ action is equal to P ∗. Trader i may be more or less certain about their
beliefs, which, for some degree δ > 0, we measure by δ-aggregate uncertainty as follows: given δ > 0, there
exists a price P ∗i , such that Pi [P ∗ ∈ [P ∗i − δ, P ∗i + δ]] ≥ 1− δ.29

Predictability of trade. In general, for a buyer b with action ab the probability of trading is equal
to 1−FP∗,b(ab). For a selle with ask as, it is equal to FP∗,s(as). δ-aggregate uncertainty is directly related to
the predictability of trade. P ∗i corresponds to the critical value. If trader i submits an action that is strictly
less (more) aggressive than the critical value, then for sufficiently small δ > 0, the probability of trading is at
least 1− δ (at most δ). Therefore Proposition 3 directly extends to settings with small uncertainty.

Existence of best responses. Proposition 5 extends to markets with aggregate uncertainty. The
same proof method as in Appendix B.6 works. That is, the expected utility is continuous as a function of the
action ai of trader i. As best responses are necessary located in the compact space [P ∗i , P

∗
i ], the existence of

a maximum follows from the Extreme Value theorem.

Asymptotically equal transaction Costs. Theorem 6 directly extends to settings with suffi-
ciently small δ-aggregate uncertainty. The proof is similar to Proposition 23 below, and will be added.

Uninfluenceable transaction costs. In the presence of aggregate uncertainty, Theorem 7 and
Theorem 8 can be strengthened, as truthfulness is the unique best response.

Proposition 22. Consider an uninfluenceable transaction cost and δ-uncertainty. For every δ > 0, truthful-
ness is the unique best response.

The proof is relegated to Appendix B.17.

Influenceable transaction costs. Theorem 9 and Theorem 10 also extend to markets with suffi-
ciently small aggregate uncertainty.

Proposition 23. Consider an influenceable transaction cost, δ-uncertainty, and assume that for trader i
bidding the critical value P∞i is strictly individually rational. Then, if δ is sufficiently small, best responses
approximate price-guessing

The proof is relegated to Appendix B.18.

B Proofs

B.1 Proof of Proposition 1

Proof. Consider a buyer b with gross value tb ∈ T+
b . First, we prove that there exists a unique

solution to the equation tb − x− Φb(x, x) = 0. Because tb ∈ T+
b , there exists an action ab such that

29δ = 0 would describes the case of deterministic beliefs.
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tb − ab − Fb(ab, ab) > 0. Furthermore, for ab > tb, it holds that tb − ab − Fb(ab, ab) < 0. Because the
function x 7→ tb − x− Fb(x, x) is continuous and strictly decreasing, there exists a unique zero point
by the Intermediate Value theorem.

Existence. Next, we show that this solution x is equal to the net value tΦb , by proving that
x is undominated, it dominates every larger action ab, it is ex-post individually rational, and no
larger action ab is ex-post individually rational. Consider ab > x. If a-b is such that buyer b is not
involved in trade with x and ab, then the utility is equal to 0 for both actions. If a-b is such that
b is involved in trade with both actions, then it follows that ub(tb, x, a-b) ≥ ub(tb, ab, a-b), because
the fee is monotone. If a-b is such that b is only involved in trade with ab, then then the market
price P ∗(ab, a-b) is greater or equal than x. It holds that ub(tb, ab, a-b) ≤ ub(tb, P

∗(ab, a-b), a-b) =

tb−P ∗(ab, a-b)−Φb(P
∗(ab, a-b), P

∗(ab, a-b)) ≤ tb−x−Φb(x, x) = 0. The first inequality follows from
the monotonicity of the fee, the second inequality follows, because the map ai 7→ Pi(ai, ai) is strictly
increasing, and the final equality follows from the definition of x. Therefore ab is dominated by x.
Consider ab < x. We show that there exists a-b such that ub(tb, x, a-b) > ub(tb, ab, a-b). Take a-b, such
that buyer b is involved in trade only with x and the market price is strictly less than x. It holds that
ub(tb, x, a-b) = tb − P ∗(x, a-b)−Φb(x, P

∗(x, a-b) > tb − x−Φb(x, x) = 0. The inequality follows from
regularity of the fee. Therefore x is not dominated by ab. To show that x is ex-post individually
rational, take any distribution of actions a-b. If buyer b is involved in trade with x, it holds that
P ∗(x, a-b) ≤ x and therefore ub(tb, x, a-b) = tb−P ∗(x, a-b)−Φb(x, P

∗(x, a-b)) ≥ tb−x−Φb(x, x) = 0,
where the inequality follows from regularity. Finally, we show that ab > x is not ex-post individually
rational. Take a-b, such that buyer b is involved in trade with ab and P ∗(ab, a-b) > x. It holds
that ub(tb, ab, a-b) ≤ ub(tb, P

∗(ab, a-b), a-b) = tb − P ∗(ab, a-b) − Φb(P
∗(ab, a-b), P

∗(ab, a-b)) < tb −
x− Φb(x, x) = 0, where the first inequality follows from monotonicity, and the second one follows,
because the map ai 7→ Pi(ai, ai) is strictly increasing. This finally proves that x = tΦb . Therefore,
the net value exists and the supremum is attained as a maximum.

Continuity. It was proven above that the net value exists on T+
b and is equal to the unique

zero point of the function x 7→ tb − x − Φb(x, x). Because this function is strictly increasing and
continuous, the zero point continuously depends on the gross value tb.

Monotonicity. The map tb 7→ tb−x−Φb(x, x) is strictly increasing. Therefore, the zero point
of the map x 7→ tb − x− Φb(x, x) is strictly increasing in tb.

The statement for sellers can be proven analogously.

B.2 Proof of Corollary 2

Proof. Consider a buyer b.
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Spread fees. It holds that Φb(ab, a-b) = φb(ab − P ∗(ab, a-b) = Fb(ab, P
∗(ab, a-b) with the

function Fb(x, y) = φb(x− y). It holds that the map y 7→ y+Fb(x, y) = φbx+ (1−φb)y is increasing,
the map x 7→ x + Fb(x, x) = x is strictly increasing in y and both are continuous. Therefore
spread fees satisfy the conditions of Proposition 1. For any tb, there exists a unique solution of
tb − tΦb − Fb(tΦb , tΦb ) = 0. It is given by tΦb = tb, proving that the net value equals the gross value.

Price fees. It holds that Φb(ab, a-b) = φbP
∗(ab, a-b = Fb(ab, P

∗(ab, a-b) with the function
Fb(x, y) = φby. It holds that the maps y 7→ y + Fb(x, y) = (1 + φb)y and x 7→ x+ Fb(x, x) = x are
strictly increasing and continuous. Therefore price fees satisfy the conditions of Proposition 1. The
unique solution of tb − tΦb − Fb(tΦb , tΦb ) = 0 is given by tΦb = tb

1+φb
, proving that the net value scales

the gross value.

Constant fees. It holds that Φb(ab, a-b) = cb = Fb(ab, P
∗(ab, a-b) with the function Fb(x, y) =

cb. It holds that the maps y 7→ y + Fb(x, y) = y + cb and x 7→ x+ Fb(x, x) = x+ cb are continuous
and strictly increasing in y. Therefore constant fees satisfy the conditions of Proposition 1. There
exists a solution to tb − tΦb − Fb(tΦb , tΦb ) = 0, if tb ≥ cb. It is given by tΦb = tb − cb, proving that the
net value shifts the gross value.

The statement for sellers can be proven analogously.

B.3 Proof that the critical value P∞i exists and is unique

Proof. At the point aS,i, it holds that F aB,i(aS,i) < 1. That is because F aB,i has a strictly positive
density faB,i on [aB,i, aB,i] and aS,i < aB,i by assumption. Second, it holds that F aS,i(aS,i) = 0,
because the corresponding density faS,i has support [aS,i, aB,i]. Therefore, at aS,i, it holds that

F aB,i(aS,i) +RiF
a
S,i(aS,i) < 1. (30)

A similar argument yields that at the point aB,i, it holds that F aB,i(aB,i) = 1 and F aS,i(aS,i) > 0.
This implies that

F aB,i(aB,i) +RiF
a
S,i(aB,i) > 1. (31)

Because F aB,i and F
a
S,i are both continuous, it follows from the Intermediate Value Theorem, that

there exists P∞i ∈ (aS,i, aB,i) with

F aB,i(P
∞
i ) +RiF

a
S,i(P

∞
i ) = 1. (32)

Because both F aB,i and F
a
S,i are strictly monotone on (aS,i, aB,i), the uniqueness of P∞i follows.
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B.4 Proof of Proposition Proposition 3

Proof. For trader i, consider a sequence of strictly increasing market sizes (m(l), n(l))l∈N with
m(l), n(l) = Θ(l) and |R− n(l)

m(l) | = O(l−1) for R ∈ (0,∞).30

Consider a buyer b. It follows from Appendix A.3 that P-b [b ∈ B∗(ab, a-b)] = P-b

[
ab ≥ a

m(l)
-b

]
.

This is equal to the probability that at least m(l) actions are below ab in a sample of actions from
m(l)− 1 buyers and n(l) sellers. Let pab = FB,b(ab) ∈ (0, 1) be the probability that another buyer’s
bid is below ab. In analogy, define qab = FS,b(ab) ∈ (0, 1) for sellers. For i > 0 let Xpab

i denote
an independent Bernoulli random variable with parameter pab and for j > 0 let Xqab

j denote an
independent Bernoulli random variable with parameter qab . Define

Sabl =

m(l)−1∑
i=1

X
pab
i +

n(l)∑
j=1

X
qab
j . (33)

Sabl has the same distribution as the number of traders in a sample of m(l) − 1 buyers and n(l)

sellers, whose actions are less or equal than ab. It follows that

P-b [b ∈ B∗(ab, a-b)] = P[Sabl ≥ m(l)] = 1− P[Sabl ≤ m(l)− 1]. (34)

Next, we will show that a properly normalized version of Sabl converges in distribution to a standard
normal random variable. This follows as an application of the following version of the Berry-Esseen
theorem, see Tyurin (2012):

Theorem 24 (Berry-Esseen). Suppose X1, X2, ... is a sequence of independent random variables
with (i) µi = E[Xi] <∞, (ii) σ2

i = E[(Xi − µi)2] <∞ and

(iii) ρi = E[|Xi − µi|3] <∞. Set rn =
∑n

i=1 ρi, s
2
n =

∑n
i=1 σ

2
i , Fn(x) = P

[∑n
i=1(Xi−µi)√

s2n
≤ x

]
and let

Φ(x) be the distribution function of a standard random variable. There exists a constant C = 0.5591

such that for all x ∈ R
|Fn(x)− Φ(x)| ≤ Crn

s3
n

(35)

In order to apply Theorem 24, we rewrite Sabl as a single sum of random variables and check
all requirements. Define Y pab

i =
∑m(i)−m(i−1)

j=0 X
pab
i,j for i ≤ l − 1 and Y pab

l =
∑m(l)−m(l−1)−1

j=1 X
pab
i,j

with Xpab
i,j independent Bernoulli random variables with parameter pab . In analogy, define Y qab

i =∑n(i)−n(i−1)
j=1 X

qab
i,j for i ≤ l independent Bernoulli random variables with parameter qab and Z

ab
i =

30This means that both market sides are assumed to have linear growth with respect to a single parameter l, such
that neither side of the market dominates the other asymptotically and the ratio of buyers to sellers converges and
fluctuates only slightly in finite markets.
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Y
pab
i + Y

qab
i . This yields that in distribution

Sabl
d
=

l∑
i=1

Zabi . (36)

Recall that a Bernoulli random variable with parameter p has expectation p and variance p(1− p).
Using linearity of expectation and, because the random variables are independent, linearity of
variance, it holds for i < l, that the random variables satisfy (i) and (ii) in Theorem 24, i.e.

µi = (m (i)−m (i− 1)) pab + (n (i)− n (i− 1)) qab <∞,

σ2
i = (m (i)−m (i− 1)) pab (1− pab) + (n (i)− n (i− 1)) qab(1− qab) <∞.

(37)

For i = l it holds that

µl = (m (l)−m (l − 1)− 1) pab + (n (l)− n (l − 1)) qab <∞,

σ2
l = (m (l)−m (l − 1)− 1) pab (1− pab) + (n (l)− n (l − 1)) qab (1− qab) <∞.

(38)

Furthermore, for i < l it holds that

ρi = E

∣∣∣∣∣
m(i)−m(i−1)∑

j=0

X
pab
i,j +

n(i)−n(i−1)∑
j=0

X
qab
i,j − (m (i)−m (i− 1)) pab − (n (i)− n (i− 1)) qab

∣∣∣∣∣
3


≤ ((m (i)−m (i− 1)) (1− pab) + (n (i)− n (i− 1)) (1− qab))
3

≤ K <∞.

(39)

The first inequality in Equation (39) holds, because Xpab
i,j ≤ 1 and Xqab

i,j ≤ 1 almost surely. The
second inequality follows for some finite K > 0 from the assumption supi≥1m(i)−m(i− 1) <∞
and supi≥1 n(i)− n(i− 1) <∞. In analogy, for i = l it holds that

ρl ≤ K <∞, (40)

which proves that requirement (iii) is fulfilled. Finally, it holds that

s2
l = (m(l)− 1)pab(1− pab) + n(l)qab(1− qab). (41)

Next, define the sequence (Aab(l))l∈N via

Aab(l) =
m (l)− 1− ((m (l)− 1) pab + n (l) qab)√
(m(l)− 1) pab (1− pab) + n(l)qab (1− qab)

=
√
m(l)

(
1− 1

m(l)

)
−
((

1− 1
m(l)

)
pab + n(l)

m(l)

)
qab)√(

1− 1
m(l)

)
pab (1− pab) + n(l)

m(l)qab (1− qab)
.

(42)
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Theorem 24 now implies that

|P[≤ m(l)− 1]− Φ(Aab(l))| ≤
Crl
s3
l

≤ CKl(
s2
l

)3/2 = O(l−
1
2 ). (43)

It follows from Equation (42) that |Aab(l)| = Θ(
√
l). We now argue that for ab > P∞b and sufficiently

large l, Aab(l) < 0. This follows, if we show that for sufficiently large l(
1− 1

m(l)

)
−
((

1− 1

m(l)

)
pab +

n(l)

m(l)
qab

)
< 0. (44)

Given that ab is strictly greater than the critical value P∞b , there exists δ > 0, such that pab +Rqab =

1 + δ. By adding and subtracting Rqab it follows that Equation (44) is equivalent to

1− 1

m(l)
(1− pab)− (1 + δ) + (R− n(l)

m(l)
)qab < 0 (45)

and therefore to
R− n(l)

m(l)
<

1

qab
(δ +

(1− pab)
m(l)

). (46)

Because it is assumed that |R − n(l)
m(l) | = O(1

l ), Equation (44) holds for sufficiently large l. This
implies that Aab(l) = Θ(−

√
l). A standard concentration inequality for a standard Gaussian random

variable Z and x > 0 using the Chernoff bound gives

P |Z| ≥ x] ≤ 2 exp

(
−x2

2

)
(47)

It follows that
Φ(Aab(l)) = O(e−l). (48)

Equation (43) therefore implies that P[Sabl ≤ m(l)− 1] = O(l−
1
2 ). Recalling Equation (34) finishes

the proof. The statements for ab < P∞b and for sellers can be proven analogously.

B.5 Proof of Lemma 4

Proof. For a regular transaction cost Φi(ai, P
∗), consider the following two auxiliary transaction

costs: Φ1
i (ai, P

∗) = Φi(P
∗, P ∗) and Φ2

i (ai, P
∗) = Φi(ai, P

∗)−Φ1
i (ai, P

∗). Note that Φ1
i depends only

on the market price and is therefore uninfluenceable and Φ2
i is purely uninfluenceable by construction,

that is Φ2
i (P

∗, P ∗) = 0.

B.6 Proof of Proposition 5

Proof. Consider a buyer b with private type tb.
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Finite Markets. As was shown in Equation (12), the expected utility is of the form

E-b [ub(tb, ab, a-b)] = tb · P-b [b ∈ B∗(ab, a-b)]− E-b [P ∗(ab, a-b)]− E-b [Φb(ab, a-b)] . (49)

First, we will show that the expected utility is continuous in ab.31 The first term tb ·P-b [b ∈ B∗(ab, a-b)]

is continuous by Equation (3) and Equation (28). To show that the expected market price is
continuous, consider E-b [P ∗(a′′b , a-b)]− E-b [P ∗(a′b, a-b)] for two bids a′′b > a′b as a

′′
b − a′b approaches

zero. The buyer increases the expected market price when raising their bid if (1) they are involved
in trade at a′′b , but not at a

′
b or (2) a

′
b influences the market price. For (1), the market price is at

most a′′b and for (2) the change in market price is at most a′′b − a′b. This implies that

E-b
[
P ∗(a′′b , a-b)

]
− E-b

[
P ∗(a′b, a-b)

]
≤

a′′b
(
P-b
[
b ∈ B∗(a′′b , a-b)

]
− P-b

[
b ∈ B∗(a′b, a-b)

])
+ (a′′b − a′b).

(50)

The continuity of E-b [P ∗(·, a-b)] therefore follows from the continuity of P-b [b ∈ B∗(·, a-b)]. For the
expected transaction cost, it holds that

E-b [Φb(ab, a-b)] =

∫
ab≥a

(m)
-b

Φb(ab, a-b)dµ(a-b). (51)

By assumption, the map ab 7→ Φb(ab, a-b) is continuous. Therefore Equation (51) implies that the
map abE-b [Φb(ab, a-b)] is continuous as well. Therefore, the expected utility is indeed continuous in
ab.

Every bid ab < aS,b results in zero utility, as the buyer is almost surely not involved in trade. For
every bid ab > tΦb , it follows from weak domination ex post that the expected utility for ab is smaller
or equal than for tΦb ≤ tb. If tΦb ≤ aS,b, then tΦb is a best response with expected utility equal to zero.
Otherwise, in order to compute a best response, it is sufficient to consider the interval

[
aS,b, t

Φ
b

]
.

Because the expected utility is a continuous function on this compact set, it follows from the Extreme
Value Theorem that the expected utility attains a maximum. Therefore, a best response exists.

Infinite Markets. It was shown in Appendix A.3 that the expected utility is of the form

E-b [ub(tb, ab, a-b)] = (tb − P ∗(ab, a-b)− Φb(ab, a-b)) · P-b [b ∈ B∗(ab, a-b)] . (52)

31The same proof strategy for continuity is used in Williams (1991) for the expected utility in a buyer’s bid DA
without fees in the context of Bayesian Nash equilibria.
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In an infinite market, the market price P ∗(ab, a-b) and the fee Φb(ab, a-b) are deterministic. By
assumption, Φb(ab, a-b) is continuous in the action ab. By Appendix A.3 it holds that

P-b [b ∈ B∗(ab, a-b)] =

1 ab ≥ P ∗(a)

0 else
, (53)

if there is no tie-breaking. If tΦb < P ∗(a), then buyer b has no undominated action with positive
probability of trade. Therefore tΦb is a best response with expected utility equal to zero. If tΦb = P ∗(a),
then the only undominated action with positive probability of trade is tΦb . If this results in a strictly
positive utility, then it is a best response. If not, then any bid below P ∗(a) is a best response.
Therefore, consider the case tΦb > P ∗(a). If there is no tie-breaking, then the trading probability is
constant and equal to 1 on the compact set [P ∗(a), tΦb ]. Note that any bid above tΦb is not a best
response by weak domination. By similar arguments as before, the expected utility on this interval
is equal to tb − P ∗(ab, a-b) − Φb(ab, a-b) and therefore a continuous function. The Extreme Value
Theorem implies again that the maximum is attained and a best response exists.

The statement for sellers can be proven analogously.

B.7 Proof of Theorem 6

Proof. Consider a buyer b and two actions a1
b > a2

b > P∞b that lead to asymptotically different
transaction costs. We will prove that in sufficiently large markets a buyer can improve their expected
utility when switching from action a1

b to a
2
b . This in turn implies that best responses for two different

gross values must lead to asymptotically equal transaction costs. Otherwise, there is a buyer with
a certain gross value, who has an incentive to change their action in sufficiently large markets to
increase their expected utility.

By assumption, there exists ε > 0 such that in sufficiently large markets

E-b
[
Φb(a

1
b , a-b)|b ∈ B∗

(
a1
b , a-b

)]
− E-i

[
Φb(a

2
b , a-b)|b ∈ A∗

(
a2
b , a-b

)]
≥ ε. (54)

We will show that in sufficiently large markets a1
b cannot be a best response. By contradiction,

assume that it was a best response for some gross value tb. The expected utility E-b
[
ub
(
tb, a

1
b , a-b

)]
is

greater or equal than 0, otherwise it is trivially not a best response. We will prove that in sufficiently
large markets

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
< 0, (55)

which proves that a1
b is not a best response in such markets, because a2

b increases the expected utility.
Using the law of total expectation, the expected difference in transaction costs can be lower
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bounded by

E-b
[
Φb
(
a1
b , a-b

)]
− E-b

[
Φb
(
a2
b , a-b

)]
= E-b

[
Φb(a

1
b , a-b)|b ∈ B∗

(
a1
b , a-b

)]
P-b
[
b ∈ B∗(a1

b , a-b)
]
− E-b

[
Φb(a

2
b , a-b)|b ∈ B∗

(
a2
b , a-b

)]
P-b
[
b ∈ B∗(a2

b , a-b)
]

≥ P-b
[
b ∈ B∗(a2

b , a-b)
] (

E-b
[
Φb(a

1
b , a-b)|b ∈ B∗

(
a1
b , a-b

)]
− E-b

[
Φb(ab, a-b)|b ∈ B∗

(
a2
b , a-b

)]) (56)

The inequality from the last line follows from the monotonicity of the trading probability, which
implies

P-b
[
b ∈ B∗(a1

b , a-b)
]
≥ P-b

[
b ∈ B∗(a2

b , a-b)
]
. (57)

It follows from Proposition 3 that for every γ it holds in sufficiently large markets that P-b
[
b ∈ B∗(a2

b , a-b)
]
≥

1− γ. Combining this with the assumption of asymptotically different transaction costs yields that
in sufficiently large markets

E-b
[
Φb

(
a1
b , a-b

)]
− E-b

[
Φb

(
a2
b , a-b

)]
≥ (1− γ)ε. (58)

Using Equation (16) in Lemma 20 it holds in sufficiently large markets that

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
≤ tbγ − (1− γ)ε. (59)

If we now choose γ < ε
tb+ε

, the difference in expected utility is strictly negative, thus contradicting
that a1

b is a best response. The statement for sellers can be proven analogously.

B.8 Proof of Theorem 7

Proof. Consider a buyer b with gross value tb, such that the best response ab is uniformly bounded
away from the critical value. That is, there exists δ > 0, such that in sufficiently large markets either
(i) ab ≤ P∞b − δ or (ii) ab ≥ P∞b + δ. It suffices to prove that for every ε > 0 it holds in sufficiently
large markets that

E-b
[
ub(tb, t

Φ
b , a-b)

]
− E-b [ub(tb, ab, a-b)] ≥ −ε, (60)

which implies that truthfulness is an ε-best response. If it holds that tΦb ≤ ab, it holds that

E-b
[
ub(tb, t

Φ
b , a-b)

]
= E-b [ub(tb, ab, a-b)] , (61)

because tΦb weakly dominates every larger bid and since ab is a best response, the expected utilities
must be equal. Therefore, assume that tΦb > ab.

If (i) holds, then Proposition 3 implies that for all γ > 0 P-b [b ∈ B∗(ab, a-b)] ≤ γ holds in
sufficiently large markets. If γ < ε

tb
it follows that

E-b [ub(tb, ab, a-b)] ≤ tbγ ≤ ε. (62)
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By assumption it also holds that

E-b
[
ub(tb, t

Φ
b , a-b)

]
≥ 0. (63)

Combining Equations (62) and (63) yields Equation (60).
If (ii) holds, then

E-b
[
ub(tb, t

Φ
b , a-b)

]
− E-b [ub(tb, ab, a-b)] ≥

tΦb
(
P-b
[
b ∈ B∗(tΦb , a-b)

]
− P-b [b ∈ B∗(ab, a-b)]

)
−
(
E-b
[
P ∗(tΦb , a-b)

]
− E-b [P ∗(ab, a-b)]

)
−
(
E-b
[
Φb(t

Φ
b , a-b)

]
− E-b [Φb(ab, a-b)]

)
,

(64)

because by assumption tΦb ≤ tb. It follows from Theorem 8 that for a DA without transaction costs
for every ε1 > 0 truthfulness is an ε1-best response in sufficiently large markets. Assume that a
buyer has gross value equal to tΦb . It therefore holds in sufficiently large markets that for any other
bid, i.e., also the best response ab for gross value tb

tΦb
(
P-b
[
b ∈ B∗(tΦb , a-b)

]
− P-b [b ∈ B∗(ab, a-b)]

)
−
(
E-b
[
P ∗(tΦb , a-b)

]
−

E-b [P ∗(ab, a-b)] ≥ −ε1.
(65)

Using the law of total expectation, the expected difference in transaction costs in Equation (65) is
equal to

E-b

[
Φb(t

Φ
b , a-b)

]
− E-b [Φb(ab, a-b)]

= E-b

[
Φb(t

Φ
b , a-b)|b ∈ B∗

(
tΦb , a-b

)]
P-b

[
b ∈ B∗(tΦb , a-b)

]
−

E-b [Φb(ab, a-b)|b ∈ B∗ (ab, a-b)]P-b [b ∈ B∗(ab, a-b)] .

(66)

Because both actions are by assumption greater or equal than P∞b + δ, for every γ > 0 it holds in
sufficiently large markets that P-b

[
b ∈ B∗(tΦb , a-b)

]
,P-b [b ∈ B∗(ab, a-b)] ≥ 1 − γ. It therefore holds

that
P-b
[
b ∈ B∗(tΦb , a-b)

]
− P-b

[
b ∈ B∗(tΦb , a-b)

]
≤ γ. (67)

This implies that in sufficiently large markets

E-b
[
Φb(t

Φ
b , a-b)

]
− E-b [Φb(ab, a-b)] ≤

P-b [b ∈ B∗(ab, a-b)]
(
E-b
[
Φb(t

Φ
b , a-b)|b ∈ B∗

(
tΦb , a-b

)]
− E-b [Φb(ab, a-b)|b ∈ B∗ (ab, a-b)]

)
+

γE-b
[
Φb(t

Φ
b , a-b)|b ∈ B∗

(
tΦb , a-b

)]
.

(68)

Asymptotic uninfluenceability of the transaction costs implies that for every ε2 > 0 the first term
in Equation (68) is less or equal than ε2 and for every ε3 > 0 the second term can be chosen to
be less or equal than ε3 in sufficiently large markets by choosing γ ≤ ε3

E-b[Φb(tΦb ,a-b)|A∗(b,tΦb )]
. If ε1, ε2

and ε3 are chosen such that their sum is less or equal than ε, plugging Equations (65) and (68) into

56

Electronic copy available at: https://ssrn.com/abstract=4043576



Equation (64) yields that in sufficiently large markets

E-b
[
ub(tb, t

Φ
b , a-b)

]
− E-b [ub(tb, ab, a-b)] ≥ −(ε1 + ε2 + ε3) ≥ −ε, (69)

which completes the proof. The statement for sellers can be proven analogously.

B.9 Proof of Theorem 8

Proof. Consider a buyer b with private type tb.

Best responses are close to truthfulness (2). We will show that there exists a constant κ > 0,
such that

tb − (1 + φb) ab ≤ κq(n,m), (70)

with q(m,n) = max
{

1
n

(
1 + m

n

)
, 1
m

(
1 + n

m

)}
= O(max(m,n)−1), from which the statement follows.

It was proven in Appendix A.6, that a best response ab necessarily satisfies the first order condition
in Equation (24), which implies the following bound:

tb − (1 + φb) ab ≤
(1 + φb) kP-b

[
a

(m)
m−1,n ≤ ab ≤ a

(m+1)
m−1,n

]
(m− 1)P-b

[
a

(m−1)
m−2,n ≤ ab ≤ a

(m)
m−2,n

]
fB,b(ab)

. (71)

It can be proven analogous to Rustichini et al. (1994, Appendix) that

P-b

[
a

(m)
m−1,n ≤ ab ≤ a

(m+1)
m−1,n

]
P-b

[
a

(m−1)
m−2,n ≤ ab ≤ a

(m)
m−2,n

] ≤ 2

[
FB,b(ab) +

n

m

(1− FB,b(ab))FS,b(ab)
1− FS,b(ab)

]
. (72)

Defining

τb ≡ 2 max
x∈[aS,b,aB,b]

{
FB,b(x)

fB,b(x)
,
(1− FB,b(x))FS,b(x)

fB,b(x) (1− FS,b(x))

}
(73)

yields that

tb − (1 + φb) ab ≤
τbk (1 + φb)

m− 1

[
1 +

n

m

]
. (74)

To obtain the bounds in the theorem, note that n
n−1 and m

m+1 are both less than 2. Setting κ ≡ 2τbk

proves the statement for buyers. For a seller s with private type ts an analogous argument yields

(1− φs) as − ts ≤
τs(1-k)(1− φs))

n− 1

[
1 +

m

n

]
(75)

for τs with

τs ≡ 2 max

{
1− FS,s(x)

fS,s(x)
,
(1− FB,s(x))FS,s(x)

fS,s(x)FB,s(x)

}
. (76)
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Truthfulness is an ε-best response. We start by estimating the difference in utility when a
buyer switches from a bid a1

b to a smaller bid a2
b , i.e., E-b

[
ub(tb, a

1
b , a-b)

]
− E-b

[
ub(tb, a

2
b , a-b)

]
. The

expected utility is not dependent on the entirety of a-b, but only on a(m)
-b and a(m+1)

-b . We consider
all six possible cases for the realizations of a(m)

-b and a(m+1)
-b with respect to a1

b > a2
b .

ub(tb, a
1
b , a-b) ub(tb, a

2
b , a-b)

I a1
b ≥ a

2
b ≥ a

(m+1)
-b ≥ a(m)

-b tb-(1+φb)
(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
tb-(1+φb)

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
II a1

b ≥ a
(m+1)
-b ≥ a2

b ≥ a
(m)
-b tb-(1+φb)

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
tb-(1+φb)

(
ka2
b+(1-k)a

(m)
-b

)
III a1

b ≥ a
(m+1)
-b ≥ a(m)

-b ≥ a2
b tb-(1+φb)

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
0

IV a
(m+1)
-b ≥ a1

b ≥ a
2
b ≥ a

(m)
-b tb-(1+φb)

(
ka1
b+(1-k)a

(m)
-b

)
tb-(1+φb)

(
ka2
b+(1-k)a

(m)
-b

)
V a

(m+1)
-b ≥ a1

b ≥ a
(m)
-b ≥ a2

b tb-(1+φb)
(
ka1
b+(1-k)a

(m)
-b

)
0

VI a
(m+1)
-b ≥ a(m)

-b ≥ a1
b ≥ a

2
b 0 0

Analogously, we consider the difference in utilities:

ub(tb, a
1
b , a-b)− ub(tb, a2

b , a-b)

I a1
b ≥ a2

b ≥ a
(m+1)
-b ≥ a(m)

-b 0

II a1
b ≥ a

(m+1)
-b ≥ a2

b ≥ a
(m)
-b -k(1+φb)

(
a

(m+1)
-b -a2

b

)
III a1

b ≥ a
(m+1)
-b ≥ a(m)

-b ≥ a2
b tb-(1+φb)

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
IV a

(m+1)
-b ≥ a1

b ≥ a2
b ≥ a

(m)
-b -k(1+φb)

(
a1
b-a

2
b

)
V a

(m+1)
-b ≥ a1

b ≥ a
(m)
-b ≥ a2

b tb-(1+φb)
(
ka1

b+(1-k)a
(m)
-b

)
VI a

(m+1)
-b ≥ a(m)

-b ≥ a1
b ≥ a2

b 0

We want to lower bound E-b
[
ub(tb, a

1
b , a-b)

]
−E-b

[
ub(tb, a

2
b , a-b)

]
. It is therefore sufficient to lower

bound the expression in II and IV, since they are negative and neglect the positive difference in the
other cases. In order to prove truthfulness is close to optimal, consider a1

b = tΦb and a2
b = ab a best

response. We show that for any ε > 0 it holds in sufficiently large finite markets the difference in
expected utility is bounded from below by −ε. Because best responses are ε-close to truthfulness in
sufficiently large finite markets, it holds in such markets that for all δ > 0 tΦb − ab ≤ δ. Therefore
the difference in II and IV is lower bounded by −k(1 + φb)δ. It follows that

E-b
[
ub(tb, t

Φ
b , a-b)

]
− E-b [ub(tb, ab, a-b)] ≤

−k(1 + φb)δ (P [II] + P [IV]) ≤ −2k(1 + φb)δ.
(77)

If for a given ε > 0, δ > 0 is chosen such that δ ≤ ε
2k(1+φb)

, it holds in sufficiently large finite markets
that tΦb is ε-close to a best response ab. In infinite markets, the expected utility is equal to

E[ub(tb, ab, a-b)] =

tb − (1 + φb)P
∗ if ab ≥ P ∗,

0 if ab < P ∗.
(78)

If tΦb ≥ P ∗, then the expected utility is equal to tb − (1 + φb)P
∗ > 0, and therefore a best response.

If tΦb ≤ P ∗, then the expected utility is equal to 0. Because every action ab > tΦb is dominated, tΦb is
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again a best response. Therefore truthfully reporting tΦb is a best response. The statement for sellers
can be proven analogously.

B.10 Proof of Theorem 9

Proof. Consider a buyer b with a gross value tb, such that tΦb > P∞b . First, we show that in sufficiently
large markets an action a1

b < P∞b is not a best response. We show that there exists an action
a2
b > P∞b such that in sufficiently large markets

E-b
[
ub(tb, a

2
b , a-b)

]
− E-b

[
ub(tb, a

1
b , a-b)

]
> 0, (79)

which implies that a1
b is not a best response. Because the net value is by assumption continuous and

strictly increasing in the gross value, there exists a gross value t′b < tb, such that tΦb > tΦb
′ > P∞b .

Denote the difference between tΦb and tΦb
′ by δ > 0. It holds that

E-b
[
ub(tb, t

Φ
b
′, a-b)

]
= E-b

[
ub(t

′
b, t

Φ
b
′, a-b)

]
+ δ ≥ δ, (80)

because the net value is assumed to be ex-post individually rational. Note that this inequality holds
for every market size. To prove Equation (98), it therefore suffices to show that for a1

b < P∞b it holds
in sufficiently large markets that

E-b [ub(tb, ab, a-b)] < δ. (81)

We can upper bound the expected utility by neglecting the expected market price and the expected
fee and get that

E-b
[
ub(tb, a

1
b , a-b)

]
≤ tbP-b

[
b ∈ B∗(a1

b , a-b)
]
. (82)

Proposition 3 implies that for any γ > 0 it holds in sufficiently large markets that P-b [b ∈ B∗(ab, a-b)] ≤
γ. If we choose γ < δ

tb
, the statement follows. We therefore consider an action ab that is ε-distant to

the critical value, that is, there exists ε > 0 such that ab−P∞b ≥ ε. We will prove that in sufficiently
large markets it holds that

E-b [ub(tb, ab, a-b)]− E-b [ub(tb, P
∞
b + ε/2, a-b)] < 0, (83)

which proves that ab is not a best response in sufficiently large markets. Therefore, best responses
must be ε-close, but above the critical value in sufficiently large markets. Using the law of total
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expectation, the expected difference in transaction cost can be lower bounded by

E-b [Φb (ab, a-b)]− E-b [Φb (P∞b + ε/2, a-b)] =

E-b [Φb(ab, a-b)|b ∈ B∗ (ab, a-b)]P-b [b ∈ B∗(ab, a-b)]−

E-b [Φb(P
∞
b + ε/2, a-b)|b ∈ B∗ (P∞b + ε/2, a-b)]P-b [b ∈ B∗(P∞b + ε/2, a-b)] ≥

P-b [b ∈ B∗(P∞b + ε/2, a-b)] (E-b [Φb(ab, a-b)|b ∈ B∗ (ab, a-b)]−

E-b [Φb(P
∞
b + ε/2, a-b)|b ∈ B∗ (P∞b + ε/2, a-b)]

(84)

The inequality on the last line holds because the trading probability is monotone, which implies
P-b [b ∈ B∗(ab, a-b)] ≥ P-b [b ∈ B∗(P∞b + ε/2, a-b)]. It follows from Proposition 3 that for every γ it
holds in sufficiently large markets that P-b [b ∈ B∗(P∞b + ε/2, a-b)] ≥ 1− γ. Combining this with the
assumption of influenceability of the transaction costs yields that there exists δ > 0 such that it
holds in sufficiently large markets that

E-b [Φb (ab, a-b)]− E-b [Φb (P∞b + ε/2, a-b)] ≥ (1− γ)δ. (85)

Using Equation (16) from Lemma 20, it therefore holds in sufficiently large markets that

E-b [ub (tb, ab, a-b)]− E-b [ub (tb, P
∞
b + ε/2, a-b)] ≤ tbγ − (1− γ)δ. (86)

If we now choose γ < δ/tb + δ, the difference is strictly smaller than 0, which proves that ab is not a
best response in sufficiently large markets.

The statement for sellers can be proven analogously.

B.11 Proof of Theorem 10

Proof. To prove that best responses are in an ε-neighbourhood of the critical value in sufficiently
large markets , consider a buyer b with gross value tb, such that tΦb > P∞b . It follows analogous to
Appendix B.10 that in sufficiently large markets an action a1

b < P∞b is not a best response. We
therefore consider an action ab > P∞b . That is, there exists ε > 0 such that ab − P∞b ≥ ε. We will
prove that in sufficiently large markets

E-b [ub(tb, ab, a-b)]− E-b [ub(tb, P
∞
b + ε/2, a-b)] < 0, (87)

which proves that ab is not a best response in such markets. Therefore, best responses must be
ε-close, but above the critical value in sufficiently large markets. For two bids a1

b > a2
b Lemma 20
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implies in the presence of a spread fee that

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
≤
(
tb − φba1

b

)
P-b
[
b ∈ B∗(a1

b , a-b)
]
−
(
tb − φba2

b

)
P-b
[
b ∈ B∗(a2

b , a-b)
]
.

(88)

Now set a1
b = ab and a2

b = P∞b + ε/2. It follows from Proposition 3 that for any γ > 0 it holds in
sufficiently large markets that P-b [b ∈ B∗(ab, a-b)] ,P-b [b ∈ B∗(P∞b + ε/2, a-b)] ≥ 1− γ and therefore
also

P-b [b ∈ B∗(ab, a-b)] ≤ P-b [b ∈ B∗(P∞b + ε/2, a-b)] + γ. (89)

Combining Equations (88) and (89) implies that it holds in sufficiently large markets that

E-b [ub (tb, ab, a-b)]− E-b [ub (tb, P
∞
b + ε/2, a-b)]

≤ −φb(1− γ)(ab − (P∞b + ε/2)) + γ (tb − φbab) .
(90)

By assumption, it holds that ab − (P∞b + ε/2) ≥ ε/2, which yields

E-b [ub (tb, ab, a-b)]− E-b [ub (tb, P
∞
b + ε/2, a-b)]

≤ −φb(1− γ)
ε

2
+ γ (tb − φbab) ≤ −φb(1− γ)

ε

2
+ γtb.

(91)

If γ is chosen such that γ < φbε
2tb+φbε

holds, then in sufficiently large markets

E-b [ub (tb, ab, a-b)]− E-b [ub (tb, P
∞
b + ε/2, a-b)] < 0, (92)

which implies that ab is not a best response in such markets.
Next, we prove that for sufficiently small ε > 0, there exist beliefs, such that the critical value

is not an ε-best response in sufficiently large finite markets. Consider a buyer b with gross value
tΦb > P∞b in a sequence of market environment with m(l) = l, n(l) = l, T = [0, 1] and uniformly
distributed beliefs over actions for both buyers and sellers. In this case, the critical value P∞b is
equal to 1

2 . By assumption, there exists ε > 0, such that tb = P∞b + ε for ε > 0. We will show that
in sufficiently large markets

E-b [ub(tb, P
∞
b + ε/4, a-b)]− E-b [ub(tb, P

∞
b , a-b)] > 0, (93)

which proves that P∞b is not a best response. In order to estimate the difference in expected utility
for two bids a1

b > a2
b , we use a table similar to the one in Appendix B.9:
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ub(tb, a
1
b , a-b) ub(tb, a

2
b , a-b)

I a1
b ≥ a

2
b ≥ a

(m+1)
-b ≥ a(m)

-b tb-φba1
b -(1-φb)

(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
tb-φba2

b -(1-φb)
(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
II a1

b ≥ a
(m+1)
-b ≥ a2

b ≥ a
(m)
-b tb-φba1

b -(1-φb)
(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
tb-φba2

b -(1-φb)
(
ka2
b+(1-k)a

(m)
-b

)
III a1

b ≥ a
(m+1)
-b ≥ a(m)

-b ≥ a2
b tb-φba1

b -(1-φb)
(
ka

(m+1)
-b +(1-k)a

(m)
-b

)
0

IV a
(m+1)
-b ≥ a1

b ≥ a
2
b ≥ a

(m)
-b tb-φba1

b -(1-φb)
(
ka1
b+(1-k)a

(m)
-b

)
tb-φba2

b -(1-φb)
(
ka2
b+(1-k)a

(m)
-b

)
V a

(m+1)
-b ≥ a1

b ≥ a
(m)
-b ≥ a2

b tb-φba1
b -(1-φb)

(
ka1
b+(1-k)a

(m)
-b

)
0

VI a
(m+1)
-b ≥ a(m)

-b ≥ a1
b ≥ a

2
b 0 0

Analogously, we consider the difference in utilities:

ub(tb, a
1
b , a-b)− ub(tb, a2

b , a-b)

I a1
b ≥ a2

b ≥ a
(m+1)
-b ≥ a(m)

-b −φb
(
a1
b − a2

b

)
II a1

b ≥ a
(m+1)
-b ≥ a2

b ≥ a
(m)
-b −φb

(
a1
b − a2

b

)
− k(1− φb)

(
a

(m+1)
-b − a2

b

)
III a1

b ≥ a
(m+1)
-b ≥ a(m)

-b ≥ a2
b tb − φba1

b − (1− φb)
(
ka

(m+1)
-b + (1-k)a

(m)
-b

)
IV a

(m+1)
-b ≥ a1

b ≥ a2
b ≥ a

(m)
-b −φb

(
a1
b − a2

b

)
− k

(
(1− φb)

(
a1
b − a2

b

))
V a

(m+1)
-b ≥ a1

b ≥ a
(m)
-b ≥ a2

b tb − φba1
b − (1− φb

(
ka1

b + (1-k)a
(m)
-b

)
VI a

(m+1)
-b ≥ a(m)

-b ≥ a1
b ≥ a2

b 0

In order to obtain a lower bound on the expected difference in utility, we bound all five non-zero
terms from below. We set a1

b = P∞b + ε/4 and a2
b = P∞b , which implies that there difference is equal

to ε/4. The expressions in I, II and IV are therefore greater or equal than −ε/4. For III and V, the
lower bound tb − (P∞b + ε/4) = 3ε

4 holds, because tb = P∞b + ε. Combining these bounds with the
probabilities of each event, the following inequality holds:

E-b [ub(tb, P
∞
b + ε/4, a-b)]− E-b [ub(tb, P

∞
b , a-b)] ≥

− ε
4
P-b

[
P∞b ≥ a

(m)
-b

]
+

3ε

4
P-b

[
P∞b + ε/4 ≥ a(m)

-b ≥ P
∞
b

]
=

− ε
2
P-b

[
P∞b ≥ a

(m)
-b

]
+

3ε

4

(
P-b

[
a

(m)
-b ≤ P

∞
b + ε/4

]
− P

[
a

(m)
-b ≤ P

∞
b

]) (94)

By definition a(m)
-b is the m’th smallest submission in a set of m− 1 bids and n asks. Since buyer b

assumes that those are uniformly distributed and that there are m(l) = l and n(l) = l many buyers
and sellers, it follows from order statistics that a(m)

-b ∼ Beta(l, l). This distribution is symmetric
on [0, 1] for every l and therefore at the critical value P∞b = 1

2 , it holds that P-b

[
a

(m)
-b ≤ P

∞
b

]
= 1

2 .
Furthermore, it follows from Proposition 3 that for any γ > 0 it holds in sufficiently large markets
that P

[
a

(m)
-b ≤ P

∞
b + ε/4

]
≥ 1− γ. It follows that

E-b [ub(tb, P
∞
b + ε/4, a-b)]− E-b [ub(tb, P

∞
b , a-b)] ≥

− ε
8

+
3ε

4

(
1

2
− γ
)
,

(95)

which is positive if γ is chosen to be smaller than 1
3 . The statement for sellers can be proven

analogously.
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B.12 Proof of Theorem 11

To be added.

B.13 Proof of Proposition 12

To be added.

B.14 Proof of Corollary 13

To be added.

B.15 Proof of Proposition 14

To be added.

B.16 Proof of Corollary 15

To be added.

B.17 Proof of Proposition 22

Proof. Consider a buyer b with gross value tb and action ab. Tie-breaking is a probability zero event.
The expected utility is equal to

Eb[ub(tb, ab, P ∗)] =

∫ ab

P ∗
(tb − x− Φb(x)) fP ∗(x)dx. (96)

Recall from Proposition 1 that tb − tΦb − Φb(t
Φ
b ) = 0. By assumption, the map x 7→ x + Φb(x)

is strictly increasing. Therefore, for x ∈ [P ∗, tΦb ), the integrand is strictly greater than zero. For
x ∈ (tΦb , P

∗], the integrand is strictly negative. Hence, the expected utility is maximized at the
unique point ab = tΦb .

32 The function ab 7→ Eb[ub(tb, ab, P ∗)] is continuous, increasing on [P ∗b, t
Φ
b ]

and decreasing on [tΦb , P
∗
b]. ε-best responses therefore approximate tΦb . As truthfulness is the unique

best response ab, it holds that EΦ =
P∗P [b∈B∗(ab,P ∗)]
P∗P [b∈B∗(tΦb ,P ∗)]

=
P∗P [b∈B∗(tΦb ,P

∗)]

P∗P [b∈B∗(tΦb ,P ∗)]
= 1.

32Alternatively, this can be proven via the first order condition by differentiating the expected utility using Leibniz’s
rule and setting the derivative zero.
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B.18 Proof of ??

Proof. Consider a buyer b with gross value tb and action ab. Suppose that tΦb > P ∗b . Tie-breaking is
a probability zero event. The expected utility is equal to

Eb[ub(tb, ab, P ∗)] =

∫ ab

P ∗
(tb − x− Φb(ab, x)) fP ∗(x)dx. (97)

The expected utility is continuous in ab on [P ∗, P ∗] and attains a maximum by the Extreme Value
Theorem, which proves the existence of a best response.

First, we show that an action a1
b < P ∗b is not a best response. We show that there exists an

action a2
b > P ∗b such that

Eb
[
ub(tb, a

2
b , a-b)

]
− Eb

[
ub(tb, a

1
b , a-b)

]
> 0, (98)

which implies that a1
b is not a best response. Because the net value is by assumption continuous and

strictly increasing in the gross value, there exists a gross value t′b < tb, such that tΦb > tΦb
′ > P∞b .

Denote the difference between tΦb and tΦb
′ by δ > 0. It holds that

E-b
[
ub(tb, t

Φ
b
′, a-b)

]
= E-b

[
ub(t

′
b, t

Φ
b
′, a-b)

]
+ δ ≥ δ, (99)

because the net value is assumed to be ex-post individually rational.
We therefore consider an action ab with ab − P ∗b ≥ ε for some ε > 0. We will show that if

the aggregate uncertainty δ is sufficiently small, then ab is not a best response, proving that best
responses must be ε-close to P ∗b . More specifically, we prove that a buyer can increase their expected
utility when switching to P ∗b + ε/2. For δ < ε/2 it holds that

Eb[ub(tb, ab, P ∗)]− Eb[ub(tb, P ∗b + ε/2, P ∗)] =

ab∫
P∗

(tb − x− Φb(ab, x)) dµP∗(x)−

P∗
b +ε/2∫
P∗

(tb − x− Φb(P
∞
b + ε/2, x)) dµP∗(x) =

ab∫
P∗
b

+ε/2

(tb − x) dµP∗(x)−

 P∗
b +ε/2∫
P∗

(Φb(ab, x)− Φb(ε/2, x)) dµP∗(x) +

ab∫
P∗
b

+ε/2

Φb(ab, x)dµP∗(x)

 .

(100)

Note that for any two actions a1
b ≥ a2

b there exists a constant γ > 0, such that for all P ∈ [P ∗, a2
b ] it

holds that Φb(a
1
b , P )− Φb(a

2
b , P ) ≥ γ. That is because the map ab 7→ Φb(ab, P ) is strictly increasing

on [P ∗, ab]. Therefore, for fixed actions a1
b and a

2
b the continuous function P 7→ Φb(a

1
b , P )−Φb(a

2
b , P )

is strictly positive on the compact interval [P ∗, a2
b ] and attains a strictly positive minimum by the

Extreme Value theorem. Consider the constant γ > 0 that corresponds to a1
b = ab and a2

b = P ∗b + ε/2.
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Together with δ-aggregate uncertainty, we get that

P ∗b +ε/2∫
P ∗

(Φb(ab, x)− Φb(P
∗
b + ε/2, x)) dµP ∗(x) ≥ (1− δ)γ. (101)

Moreover it holds that
ab∫

P∗
b +ε/2

(tb − x) dµP∗(x) ≤ δtb and

ab∫
P∗
b +ε/2

Φb(ab, x)dµP∗(x) ≥ 0. (102)

Combining Equations (100) to (102) yields

Eb[ub(tb, ab, P ∗)]− Eb[ub(tb, P ∗b + ε/2, P ∗)] ≤ tbδ − (1− δ)γ. (103)

If δ < γ
tb+γ

, then the difference in expected utility is strictly negative, proving that ab is not a best
response. This implies that best responses are ε-close to P ∗b if δ is sufficiently small.

B.19 Proof of Lemma 20

Proof. Recall that P̃ ∗ denotes the market price, if a trader is involved in trade, and zero otherwise.
For a buyer b with private type tb, Equation (12) yields that

E-b
[
ub
(
tb, a

1
b , a-b

)]
− E-b

[
ub
(
tb, a

2
b , a-b

)]
=

tb
(
P-b
[
b ∈ B∗(a1

b , a-b)
]
− P-b

[
b ∈ B∗(a2

b , a-b)
])
−∫

[aS,b,aS,b]
2

(
P̃ ∗
(
a1
b , a

(m)
-b , a

(m+1)
-b

)
− P̃ ∗

(
a2
b , a

(m)
-b , a

(m+1)
-b

))
dµ(a

(m)
-b , a

(m+1)
-b )−(

E-b
[
Φb

(
a1
b , a-b

)]
− E-b

[
Φb

(
a2
b , a-b

)])
.

(104)

Note that the integral in the difference above is non-negative, because P̃ ∗(ab, a
(m)
-b , a

(m+1)
-b ) is

increasing in ab for fixed a
(m)
-b and a(m+1)

-b . Equation (16) follows by neglecting the term corresponding
to the change in expected market price.

For a seller s with private type ts, Equation (13) yields

E-s
[
us
(
ts, a

1
s, a-s

)]
− E-s

[
us
(
ts, a

2
s, a-s

)]
=∫

[aB,s,aB,s]
2

(
M̃P

(
a1
s, a

(m-1)
-s , a(m)

-s

)
− P̃ ∗

(
a2
s, a

(m-1)
-s , a(m)

-s

))
dµ(a(m-1)

-s , a(m)
-s )−

ts
(
P-s
[
s ∈ S∗(a1

s, a-s)
]
− P-s

[
s ∈ S∗(a2

s, a-s)
])
−
(
E-s
[
Φs

(
a1
s, a-s

)]
− E-s

[
Φs

(
a2
s, a-s

)])
.

(105)

ts
(
P-s
[
s ∈ S∗(a1

s, a-s)
]
− P-s

[
s ∈ S∗(a2

s, a-s)
])
≥ 0 holds, because the trading probability is decreasing for a

seller in their ask. To see that the integral in Equation (105) is bounded from above by 2ts
(
1− P-s

[
s ∈ S∗(a2

s, a-s)
])
,
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we split up the integral into all six possible cases for the realizations of and a(m-1)
-s with respect to a1

s < a2
s.

which is shown in the following table.33

P̃ ∗
(
a1
s, a

(m-1)
-s , a

(m)
-s

)
M̃P

(
a2
s, a

(m-1)
-s , a

(m)
-s

)
I a

(m)
-s ≥ a(m-1)

-s ≥ a2
s ≥ a1

s ka
(m)
-s +(1-k)a

(m-1)
-s ka

(m)
-s +(1-k)a

(m-1)
-s

II a
(m)
-s ≥ a2

s ≥ a
(m-1)
-s ≥ a1

s ka
(m)
-s +(1-k)a

(m-1)
-s ka

(m)
-s +(1-k)a2

s

III a2
s ≥ a

(m)
-s ≥ a(m-1)

-s ≥ a1
s ka

(m)
-s +(1-k)a

(m-1)
-s 0

IV a
(m)
-s ≥ a2

s ≥ a1
s ≥ a

(m-1)
-s ka

(m)
-s +(1-k)a1

s ka
(m)
-s +(1-k)a2

s

V a2
s ≥ a

(m)
-s ≥ a1

s ≥ a
(m-1)
-s ka

(m)
-s +(1-k)a1

s 0

VI a2
s ≥ a1

s ≥ a
(m)
-s ≥ a(m-1)

-s 0 0

For I, II, IV and VI, the difference between P̃ ∗
(
a1
s, a

(m-1)
-s , a

(m)
-s

)
and P̃ ∗

(
a2
s, a

(m-1)
-s , a

(m)
-s

)
is

less or equal than 0. It follows that∫
[aB,s,aB,s]

2

(
P̃ ∗
(
a1
s, a

(m-1)
-s , a(m)

-s

)
− P̃ ∗

(
a2
s, a

(m-1)
-s , a(m)

-s

))
dµ(a(m-1)

-s , a(m)
-s ) ≤∫

III
(ka(m)

-s + (1− k)a(m-1)
-s )dµ∗s(a

(m-1)
-s , a(m)

-s )

+

∫
V

(ka(m)
-s + (1− k)a1

s)dµ(a(m-1)
-s , a(m)

-s ).

(106)

Because both integrands in Equation (106) are less or equal than aS,s, it follows that∫
[as,
¯
s]2

(
P̃ ∗
(
a1
s, a

(m-1)
-s , a(m)

-s

)
− P̃ ∗

(
a2
s, a

(m-1)
-s , a(m)

-s

))
dµ(a(m-1)

-s , a(m)
-s )

≤ aS,sP[III] + aS,sP[V]

≤ 2aS,sP[a(m)
-s < a2

s] = 2aS,s
(
1− P-s

[
(s, a2

s ∈ S∗
])
,

(107)

which finishes the proof.

B.20 Proof of Proposition 21

Proof. Consider a buyer b with gross value tb, such that tΦb < P∞b . A best response ab with ab ≤ tΦb
must exist. That is because if there is a best response ab with ab > tΦb , the expected utilities must
be equal, as the net value dominates all larger actions, proving that tΦb is a best response as well. By
the monotonicity of the trading probability, it then holds that

P-b [b ∈ B∗(ab, a-b)] ≤ P-b
[
b ∈ B∗(tΦb , a-b)

]
. (108)

For all γ > 0, it holds by Proposition 3 that in sufficiently large markets P-b
[
b ∈ B∗(tΦb , a-b)

]
≤ γ.

The expected utility is upper bounded by neglecting the payment of market price and fee, that is
33Different to P̃ ∗b (ab, y, z) it holds that P̃ ∗s (as, y, z) is not increasing in as for fixed y and z.
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the gross value times the probability of trade:

E-b [ub(tb, ab, a-b)] ≤ tbγ. (109)

Choose γ ≤ ε
tb
. This implies that ISLM , the expected utility of a best response is upper bounded by

ε. The expected utility of truthfulness is non-negative by assumption. This implies that truthfulness
is an ε-best response. The statement for sellers can be proven analogously.
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