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Abstract. While the game-theoretic analysis of conflict is often based upon the assumption

of multiplicative noise, additive noise such as assumed by Hirshleifer (1989) may be equally

plausible depending on the application. In this paper, we examine the equilibrium set of the

n-player difference-form contest with heterogeneous valuations. For high or intermediate levels

of noise, the equilibrium is in pure strategies, with at most one player being active. For small

levels of noise, however, we find a variety of equilibria in which some but not necessarily all

players randomize. In the case of homogeneous valuations, we obtain a partial uniqueness result

for symmetric equilibria. As the contest becomes increasingly decisive, at least two contestants

bid up to the valuation of the second-ranked contestant, while any others ultimately drop out.

In the limit, equilibria in the Hirshleifer contest converge to equilibria in the corresponding

all-pay auction.
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1. Introduction

Recent years have witnessed a tremendous surge in interest in the game-theoretic analysis of

conflict.1 Much of this interest has focused on specific classes of contest technologies that

admit both a plausible axiomatic characterization and a stochastic foundation. Among those,

the technologies introduced by Tullock (1980) and Hirshleifer (1989) figure most prominently

as the canonical models for the ratio-form and the difference-form contests, respectively.2

The Tullock contest is analytically convenient because its contest technology is homogeneous

of degree zero, i.e., what matters for the probability of winning is the ratio of efforts. Moreover,

at least two agents are active in any equilibrium, which is certainly appealing in the analysis

of conflict. An undesirable implication of that assumption, however, is that the chance of

winning by one contestant who bids zero with someone else bidding only slightly above zero

vanishes. Difference-form contest, on the other hand, are often criticized on the grounds that

their technology is, by definition, unresponsive if both efforts are raised by the same amount,

even if that brings the two effort levels on a similar level in relative terms. Notwithstanding,

Hirshleifer’s technology is arguably more suitable than the ratio form, e.g., for modeling military

conflict.3 This is due to two remarkable features of the Hirshleifer technology, viz. a positive

probability of winning despite exerting a zero effort and increasing returns to marginal effort

up to the inflection point where the probability of winning the prize is one half. Indeed, these

constituted the major motivation for Hirshleifer (1989, pp. 103-104) to develop an alternative

to the ratio-form model.

This paper examines the equilibrium set of the n-player Hirshleifer contest with heteroge-

neous valuations. To discuss the findings, it proves useful to organize the analysis along the

decisiveness of the contest, i.e., along the level of noise in the contest technology. For high and

1For an introduction to the theory of contests, see Konrad (2009). A more recent survey is Corchón and
Serena (2018).

2See Skaperdas (1996) and Ewerhart (2015a), respectively, for axiom systems applying to a population of
varying and constant size. Stochastic foundations of the Tullock contest in terms of multiplicative noise are due
to Hirshleifer and Riley (1992) and Jia (2008). See also Jia and Skaperdas (2012) and Jia et al. (2013). An
analogous foundation for the Hirshleifer contest in terms of additive noise is known as the multinomial discrete
choice model (with i.i.d. Gumbel distributed error terms). See, e.g., Anderson et al. (1992).

3For further discussion of the relative merits of Tullock vs. Hirshleifer, see Hirshleifer (1989, 1995, 2000),
Mueller (2003, p. 342), and Garfinkel and Skaperdas (2007, pp. 655-656).
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intermediate levels of noise, we find pure-strategy Nash equilibria (PSNE) of two types. In one

type of equilibrium, all players exert zero effort. We refer to this equilibrium as “multilateral

peace.” Indeed, when the contest technology is not very sharp, incentives to exert effort are

weak, which makes inactivity an optimal choice. In another type of pure-strategy equilibrium,

one player chooses a positive level of effort, while all other contestants remain inactive. This

type of equilibrium will be referred to as “one-sided dominance.”The intuition here is as fol-

lows. As the technology becomes more effective, contestants with relatively high valuations (or,

equivalently, relatively low marginal cost of effort) have an incentive to become active. However,

once a single contestant grasps this opportunity, the incentives for all the other contestants are

weakened, so that they optimally choose to remain inactive. Notably, however, the identity of

the active player is not determined by the ranking of the valuations alone, which implies the

possibility of multiple, payoff-inequivalent equilibria. These results, which amount to a fairly

complete characterization of the set of equilibria in pure strategies, confirm and extend the

intuitions derived in prior analyses of the case of two contestants in the literature.

Once the noise in the contest technology reaches a low level, overbidding by a small margin

ensures a win with high probability. For instance, contestants with relatively higher valuations

may cease to remain inactive by exerting positive efforts, overbidding any dominating bid.

However, in contrast to the case of multiplicative noise, at most one player may be active

with probability one. Therefore, there are no equilibria in pure strategies anymore. Instead,

one player randomizes, or several players randomize. That is, we obtain mixed-strategy Nash

equilibria (MSNE). Given the smoothness properties of Hirshleifer’s contest success function,

contestants randomize over a finite set of strategies. However, the bids and the probabilities

with which they are used remain determined by a system of equations that does not admit an

explicit solution in general. In the case of homogeneous valuations, and for symmetric equilibria,

the number of bids over which contestants randomize tends to increase, and the equilibrium

payoff tends to decline, as the noise becomes smaller, which is intuitive. We also obtain a

partial uniqueness result in this case, by combining ideas from the literature on zero-sum

games with concepts from the theory of montone comparative statics. Allowing for asymmetric

equilibria, the equilibrium set becomes convoluted even for the case of homogeneous valuations.
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For example, over a non-degenerate set of the parameter space, some players may choose to

remain inactive, while others may choose to randomize. We present a variety of examples

that illustrate the large variety of equilibria that this model admits. Further, in the case of

heterogeneous valuations, we derive a general inequality that relates the cardinalities of the

contestants’equilibrium supports and use it to obtain some structural results in the case where

all but one contestant uses a pure strategy.

We go on and study the case of vanishing small noise. In this case, the contest technology

approaches that of the standard all-pay auction. It is shown that, as the technology becomes

increasingly deterministic, at least two contestants become heavily engaged in the sense that

they bid, with positive probability, nearly up to the valuation of the second-ranked contestant.

Therefore, the undissipated rent goes to zero for all but the single contestant of the highest

valuation (if there is any). Contestants that are not heavily engaged ultimately become inactive

in the limit. Finally, we derive a collection of necessary properties of the equilibrium for the

case of arbitrarily small noise and show that convergent sequences of MSNE that correspond

to an unbounded sequence of the decisiveness parameter ultimately approach a MSNE of the

standard all-pay auction.

The analysis is complemented by a brief analysis of the case of large populations. Specifically,

keeping the decisiveness parameter fixed, we find that, if the number of contestants n grows

suffi ciently large, then the unique equilibrium in the n-player Hirshleifer contest is multilateral

peace.4

General classes of difference-form contests, which include the Hirshleifer contest as a spe-

cial case, have been analyzed for somewhat more than two decades (Baik, 1998). Assuming a

uniform distribution of noise, Che and Gale (2000) were the first in comprehensively character-

izing MSNE for a class of two-player contests of the difference form. More recently, Cubel and

Sanchez-Pages (2020) have generalized that analysis by allowing for more than two contestants

and more flexible difference-form contests.5 However, none of those papers touches upon the

4This observation contrasts with the case of the standard n-player Tullock contest where, regardless of n, all
contestants are active in the symmetric PSNE (Corcoran, 1988).

5See also Cubel and Sanchez-Pages (2016), who axiomatized difference-form contest success functions more
generally.
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questions addressed in the present study. In his seminal contribution, Hirshleifer (1989) iden-

tified two main types of PSNE between two contestants, viz. bilateral peace and one-sided

dominance. He also offered an informal discussion of MSNE for the case of two contestants.

Finally, when introducing the n-player generalization, he noted the equivalence of representa-

tions (1) and (2) below. However, he did not say anything about equilibria in the n-player

case. In earlier work (Ewerhart and Sun, 2018), we have shown that the two-player Hirshleifer

contest with homogeneous valuations generally admits a unique Nash equilibrium. We also

provided an explicit characterization of the Nash equilibrium, which is necessarily symmetric.

The case of heterogeneous valuations, still with two players, has been analyzed by Ewerhart

(2021). However, as far as we know, the equilibrium set of the Hirshleifer contest with more

than two contestants has not been studied so far.

A technically important dimension in which the Hirshleifer contest differs from the Tullock

contest is that equilibria in the case of two contestants and homogeneous valuations cannot

be used as a basis for constructing equilibria in the case of n contestants and heterogeneous

valuations. As noted by Alcalde and Dahm (2010), having one of two active contestants with

multiplicative noise use the zero bid with positive probability is equivalent to lowering the

valuation of the other active player. Using this trick, so-called all-pay auction equilibria may be

constructed in generalized Tullock models with heterogeneous valuations. This trick, however,

does not work in models with additive noise. The reason is that the marginal payoff against a

zero bid is not zero, as it is the case in the interior for the Tullock contest.

The remainder of the paper is structured as follows. Section 2 contains preliminaries. The

respective cases of high and intermediate levels of noise and low levels of noise are considered

in Sections 3 and 4. Section 5 deals with the limit case of vanishing noise. Section 6 concerns

the case of large populations. Section 7 concludes. All technical proofs have been relegated to

an Appendix.

2. Preliminaries

2.1 Set-up and notation

There are n ≥ 2 contestants (or players), collected in a set N = {1, . . . , n}, that exert effort to
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win a single indivisible prize. Contestant i’s valuation of the prize is denoted by Vi > 0. Thus,

we allow for heterogeneous valuations of the prize. Without loss of generality, valuations will

be ordered in size, i.e., we assume throughout that V1 ≥ . . . ≥ Vn > 0. Contestant i’s expected

payoff in the n-player Hirshleifer contest is given as

Πi(x1, . . . , xn) =
Vi∑n

j=1 exp(α(xj − xi))
− xi, (1)

where xj ≥ 0, for j ∈ N , denotes contestant j’s effort (or bid), and the parameter α > 0

measures the decisiveness of the contest technology. It is easy to see that, as α → 0, the

contest converges to the limit case of a pure lottery, where decisions about expenses do not

matter and the winner is determined by chance alone. As α→∞, however, the vector of payoffs

approximates that of the standard all-pay auction, where the highest bidder wins with certainty

(Baye et al., 1990, 1996). Thus, intuitively, chance plays a larger role in the determination of

the winner when α is small.

Rewriting relationship (1), one obtains the equivalent logit representation of contestant i’s

expected payoff as

Πi(x1, . . . , xn) =
exp(αxi)Vi∑n
j=1 exp(αxj)

− xi. (2)

It is noteworthy that the impact function xi 7→ Xi ≡ exp(αxi) exhibits strictly increasing

returns, i.e., it is strictly convex, for all values of α.6

As usual, a pure-strategy Nash equilibrium (PSNE) is a vector of bids, x∗ = (x∗1, . . . , x
∗
n) ∈

Rn≥0, such that Π∗i ≡ Πi(x
∗
i , x
∗
−i) ≥ Πi(xi, x

∗
−i) holds for any i ∈ N and xi ∈ R≥0, where we

adhere to the convention that x∗ = (x∗i , x
∗
−i), etc.

We will also allow for equilibria in randomized strategies. By a mixed strategy for contestant

i, we mean a probability measure µi on (the Borel subsets of) the interval [0, Vi]. Note that the

upper bound is introduced without loss of generality because any effort level exceeding a player’s

valuation is strictly dominated by the zero bid. Let Mi denote the set of mixed strategies for

contestant i. Pure strategies xi ∈ [0, Vi] are understood as Dirac probability measures, as usual.

6In contests between more than two parties, increasing returns suggest a motive to form alliances. However,
as discussed by Garfinkel and Skaperdas (2007, Sec. 7), the prospect of free-riding and intragroup conflict might
render such alliances instable. Further, if alliances are stable, then parties might be able to avoid the contest
altogether (by forming a grand coalition).
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Contestant i’s expected payoff from a mixed-strategy profile µ = (µi, µ−i) ∈M ≡M1×. . .×Mn

will be written as E(µi,µ−i)[Πi(xi, x−i)]. A mixed-strategy Nash equilibrium (MSNE) is then a

tuple µ∗ = (µ∗1, . . ., µ
∗
n) ∈ M such that E(µ∗i ,µ∗−i)[Πi(xi, x−i)] ≥ E(µi,µ∗−i)[Πi(xi, x−i)] holds true

for any i ∈ N and µi ∈ Mi. Existence of an equilibrium in randomized strategies is always

guaranteed.

Lemma 1. (Existence) For any n ≥ 2, the n-player Hirshleifer contest with parameter α > 0

and valuations V1 ≥ . . . ≥ Vn > 0 admits a MSNE µ∗.

Proof. See the Appendix. �

2.2 An initial observation

We prepare the main analysis by making a general observation. We say that contestant i ∈ N

is active (always active, inactive) in a mixed-strategy profile µ ∈M if her strategy µi employs

positive bids with positive probability (with probability one, with probability zero).7

Lemma 2. (Activity) At most one contestant is always active.

Proof. See the Appendix. �

Thus, in any equilibrium, either all contestants choose the zero bid with positive probability, or

there is precisely one contestant that is always active. We will see below that both cases are in

fact feasible. Thus, the equilibrium prediction for the Hirshleifer contest differs crucially from

that for the standard Tullock contest, as will be discussed further below.

Lemma 2 is obtained from an analysis of the second-order condition at small positive effort

levels. As the proof shows, the conclusion is driven by the fact that marginal returns for a

contestant in the n-player Hirshleifer contest are strictly increasing below the inflection point

where the probability of winning the contest equals one half. Thus, while we focus on a particular

functional form in this exploratory study, this crucial observation is likely to hold much more

generally.

7Thus, contestant i is active (always active, inactive) if and only if µ∗i ((0, Vi]) > 0 (= 1, = 0).
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3. High and intermediate levels of noise (leading to pure-strategy equilibria)

This section deals with the case where the decisiveness parameter α is relatively small, which

amounts to a substantial degree of noise in the contest technology and tends to result in pure-

strategy equilibria. Incentives may be so weak that no contestant bothers to exert positive effort

(Subsection 3.1). Alternatively, with a bit less noise, one contestant may choose to dominate

all other contestants (Subsection 3.2). The findings are discussed and compared to the case

of the Tullock contest (Subsection 3.3). Finally, we offer some anecdotal evidence (Subsection

3.4).

3.1 Multilateral peace

We will say that a PSNE x∗ reflects multilateral peace if x∗1 = . . . = x∗n = 0. By Lemma 2,

multilateral peace is the only symmetric PSNE feasible. To understand the conditions for this

to be an equilibrium, suppose that all opponents j 6= i of contestant i choose an expense level

of zero. Then, contestant i’s expected payoff is given by

Π0
i (xi;α) ≡ Πi(xi,0n−1) =

Vi
1 + (n− 1) exp(−αxi)

− xi, (3)

where 0n−1 = (0, . . . , 0) ∈ Rn−1. Figure 1 outlines the shape of this function.8 The illustration

suggests that multilateral peace is an equilibrium if and only if there is enough noise, i.e., if

and only if α is suffi ciently small. This is indeed the case.

Figure 1. Expected payoff against inactive opponents.

8Shown is Π0
1(x1;α) as a function of x1, for n = 3, V1 = 1, and selected values of α.
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A straightforward examination of marginal payoffs shows that Π0
i (·;α) is strictly declining for

α ≤ 4/Vi.9 For α > 4/Vi, however, there is a unique interior local maximum x̃i(α) > 0. In

that case, an application of the envelope theorem shows that the payoff at the interior local

maximum, Π0
i (x̃i(α), α), is strictly increasing in α. Further, as suggested by Figure 1, for

α > 4/Vi suffi ciently small, remaining inactive is weakly more profitable for contestant i than

bidding x̃i(α). Arguing along these lines, we arrive at the following result.

Proposition 1. (Multilateral peace) Consider an n-player Hirshleifer contest with valua-

tions V1 ≥ . . . ≥ Vn > 0. Then, there is a threshold value α∗ ≡ α∗(n, V1) > 0 such that:

(i) multilateral peace (i.e., x∗1 = . . . = x∗n = 0) is an equilibrium if and only if α ≤ α∗;

(ii) in this case, contestant i’s equilibrium payoff equals Π∗i = Vi/n, for any i ∈ N ;

(iii) the equilibrium is unique (in the set of PSNE) if and only if α < α∗.10

Proof. See the Appendix. �

Thus, for any given number of contestants and any given highest valuation, there is a critical

value for the decisiveness parameter α such that multilateral peace is an equilibrium if and only

if α remains weakly below that value.

The proof of Proposition 1 reveals that contestant 1’s optimality condition is pivotal for the

feasibility of multilateral peace, which is intuitively plausible. In particular, the threshold α∗

may be characterized as the unique solution of the indifference relationship

Π0
1(0;α) = Π0

1(x̃1(α);α). (4)

Solving equation (4) shows that α∗ = a(n)/V1, where a(n) is a constant depending on the

number of contestants only. In particular, this shows that the threshold α∗ is strictly declining

V1, i.e., multilateral peace becomes less likely as the highest valuation for the contested object

rises.

In general, the constant a(n) does not admit a simple analytical expression. However,

a(2) = 4, so that we retrieve Hirshleifer’s (1989) classic observation that bilateral peace is a

9For α = 4/V1, there is a saddle point, i.e., marginal payoffs vanish at a positive effort level. Note, however,
that Π0

i (·;α) is strictly declining also in that case.
10We will see below that the equilibrium is also unique within the set of symmetric MSNE for α ≤ α∗.
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PSNE if and only if α ≤ 4/V1. For n ≥ 3, the proof of Proposition 1 shows that a(n) ∈ (4, n2

n−1).

For instance, a(3) ≈ 4.12. Moreover, a(n) is strictly increasing in n.11 Thus, the entry of an

additional contestant, unless stronger than contestant 1, makes it easier to sustain multilateral

peace. We will elaborate on this point further later in the paper.

3.2 One-sided dominance

Multilateral peace breaks down for α > α∗. In this case, at least one contestant i (in particular,

the strongest contestant i = 1) has an incentive to deviate to xi = x̃i(α) > 0. Once contestant i

switches to this positive bid level, however, the incentive for any of the other (n−1) contestants

to become active are weakened. Thus, a new type of equilibrium candidate arises. We will say

that a PSNE x∗ reflects one-sided dominance by contestant i if x∗i > 0, while x∗j = 0 holds

for all other contestants j ∈ N\{i}. Our next result characterizes the conditions under which

one-sided dominance is an equilibrium.

Proposition 2. (One-sided dominance) Consider an n-player Hirshleifer contest with het-

erogeneous valuations V1 ≥ . . . ≥ Vn > 0. Then, there exists i∗ ∈ N such that, for any i ≤ i∗,

there are threshold values α∗i and α
∗∗
i such that:

(i) one-sided dominance by contestant i is a PSNE if and only if α ∈ [α∗i , α
∗∗
i ];

(ii) in that case, the corresponding efforts are given by x∗i = x̃i(α) with

x̃i(α) = 1
α

ln
(
n−1
2

{
αVi − 2 +

√
αVi(αVi − 4)

})
, (5)

and by x∗j = 0 for all j ∈ N\{i}, while expected payoffs are given as

Π∗i =
(
1
2

+
√

1
4
− 1

αVi

)
Vi − x∗i , (6)

Π∗j = 1
n−1

(
1
2
−
√

1
4
− 1

αVi

)
Vj ( j ∈ N\{i}); (7)

(iii) α∗1 ≤ . . . ≤ α∗i∗ < α∗∗i∗ ≤ . . . ≤ α∗∗1 , with α
∗
i = (V1/Vi)α

∗ for i ≤ i∗;

(iv) there does not exist any PSNE except those identified by Proposition 1 and part (i).

Proof. See the Appendix. �
11The proof is available from the authors upon request. The same applies to details on the numerical examples

presented further below.
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Part (i) says that, under the conditions stated, there is an interval [α∗i , α
∗∗
i ] of values for the

decisiveness parameter α with the property that one-sided dominance by contestant i is an

equilibrium and only if α lies in that interval. For α < α∗i , contestant i would prefer to bid

zero. For α > α∗∗i , however, the strongest contestant in the set N\{i} would find it profitable

to overbid contestant i. In the proof, we show that α∗∗i is well-defined, using an argument

analogous to the one used in the previous subsection to identify α∗.12

Regarding part (ii), we remark that the necessary first-order condition for the unique interior

optimum delivers the effort level of the dominant contestant as x∗i = x̃i(α). One can easily

check that x̃i(α) is increasing in Vi, the intuition being that a higher valuation is equivalent

to a lower marginal cost of effort. The comparative statics of the equilibrium with respect to

the decisiveness parameter α is less immediate. For instance, a numerical exercise for the case

of homogenous valuations reveals that, in the relevant range where the equilibrium exists, the

equilibrium effort level for the active contestant, x̃1(α), is strictly increasing in α for n ∈ {3, 4},

hump-shaped in α for n ∈ {5, 6}, and strictly declining n ≥ 7. Thus, contrary to intuition, if

the number of contestants is small, then a sharper sword may induce the dominating contestant

to choose an even higher effort level.

As for the equilibrium payoffs, the active contestant i receives a payoffweakly exceeding the

“fair share”, i.e., Π∗i ≥ Vi/n. Indeed, contestant i must find it weakly profitable to depart from

multilateral peace. Moreover, as the dominant contestant’s expenses and raised probability of

winning bite into the total cake available for distribution, less than the fair share is left for each

of the subdued contestants (all of which win with identical probability). Thus, Π∗j < Vj/n for

any j 6= i.

Part (iii) shows that the intervals [α∗i , α
∗∗
i ] over which one-sided dominance by contestant i

is an equilibrium are nested for i ∈ {1, . . . , i∗}, with the interval for a contestant with (strictly)

higher valuation (strictly) containing the interval for any contestant with a lower valuation.

Finally, part (iv) of the proposition says that there is no PSNE whatsoever for α > α∗∗1 .

Given that multilateral peace and one-sided dominance are the only feasible types of PSNE by

12Clearly, each α∗∗i = α∗∗i (n, Vi,maxj 6=i Vj) is a function of n, Vi, and maxj 6=i Vj only, because the optimality
condition of the strongest competitor of contestant i is pivotal for one-sided dominance by i to be an equilibrium.
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Lemma 2, this conclusion should be immediate in view of part (i) and Proposition 1.

The comparative statics of equilibrium payoffs is intuitive. Indeed, as seen before, the

equilibrium payoff of the active contestant, Π∗i = Π0
i (x̃i(α);α), is strictly increasing in α. On

the other hand, the equilibrium payoff of any inactive contestant j 6= i is strictly declining in

α, as may be easily seen by plugging the explicit solution (5) into j’s payoff function.

A straightforward continuity argument shows that, in general, the identity of the active

contestant is undetermined. Thus, the present discussion implies the existence of a multiplicity

of payoff-inequivalent PSNE (even in the case of homogeneous valuations).

Corollary 1. (Dominance by a weaker contestant) Let V1 ≥ V2 ≥ . . . ≥ Vn > 0, where

n ≥ 3. Suppose that α ∈ (α∗1, α
∗∗
1 ). Let i ∈ {2, . . . , n}. Then, for V1/Vi suffi ciently close to

one, there exists a PSNE in which contestant i is active, while all the other contestants remain

inactive.

Proof. See the Appendix. �

3.3 Discussion

Taken together, Propositions 1 and 2 offer a fairly comprehensive characterization of the set of

PSNE in the Hirshleifer contest. Notably, the striking differences in the equilibrium prediction

between the Tullock and Hirshleifer contests extend to the case of n players. In the Tullock

contest, inactivity by all players (“multilateral peace”) is never an equilibrium because, regard-

less of the tie-breaking rule in place, at least (n − 1) contestants would receive the prize with

probability strictly smaller than one. For those contestants, however, a deviation to any small

but positive bid would guarantee the prize, in conflict with the equilibrium property. Similarly,

just one player being active (“one-sided dominance”) is not feasible in a Tullock contest either

because the dominating player would always have a strict incentive to lower her positive bid.13

3.4 Historical illustrations

We conclude this section with some anecdotal evidence. Neither persisting equilibrium of

bilateral or multilateral inaction nor its breakdown due to improvement of effectiveness of
13For an insightful discussion of this argument, which extends to contest success functions that are homoge-

neous of degree zero, see Corchón (2000, Appendix).
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the combat technology could be foreign to military historians. Recall Carl von Clausewitz’s

classical quote, “defense is the stronger form of fighting than attack. . . . I am convinced that

the superiority of the defensive is very great, far greater than it appears at first sight. It is

this which explains without any inconsistency most periods of inaction that occur in war.”(von

Clausewitz [1832] 1976, p. 84.) One fundamental reason is what Clausewitz called “friction

in war”. This insight may not only illuminate Caesar’s observation two thousand years ago

that his Roman legions and the Gallic opponents repeatedly refused combat under certain

circumstances and von Clausewitz’s own records of similar episodes at his time. Effectiveness

of inaction was also demonstrated in the defense-dominated medieval Europe and World War I

(Hirshleifer 2000, p. 786), and even in the modern wars with tanks and airplanes as well (see,

e.g., Lawrence 2017, Chapters 2 and 3).

Another illustration is found in ancient China, during the transition of the late Chou (or

Zhou) dynasty from the Spring and Autumn Period (770—481 BC) to the Warring States Pe-

riod (481—221 BC), both with dozens of states coexisting. Largely due to decisive changes in

politico-military organization (emergence of counties (“xian”) and prefectures (“jun”) as units

of military recruitment and the concomitant large-scale standing forces) and significant improve-

ments in warfare technologies (in the form of crossbows, cloud ladders, armor and helmets, etc.,

as well as specially trained cavalry), the relatively peaceful former period was replaced by the

far more violent latter (cf. Lewis, 1999). Indeed, military conflicts among the so-called “states

organized for warfare”became more frequent, much longer-lasting (easily dragging on for years

rather than months), and remarkably deadlier (at times with hundreds of thousands of military

casualties). This historical transition, at least one important dimension thereof, might square

with our analysis of how an increase in the decisiveness parameter, which measures combat

effectiveness in this context, may result in the transformation of a multilateral-inaction Nash

equilibrium into an equilibrium with activity.14

14These and other historical examples illustrate also the importance of understanding the nature of coalitions
between Hirshleiferian contestants (even if unstable, cf. Footnote 6). While this topic is beyond the scope of
the present analysis, we refer the reader to Cubel and Sanchez-Pages (2022), whose analysis captures both
between-group contests and within-group distribution.
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4. Low levels of noise (leading to mixed-strategy equilibria)

For small noise, the pure-strategy equilibria considered in the previous section cease to exist.

Intuitively, overbidding an active opponent becomes less risky, so that dominating others be-

comes very costly. Instead, we find equilibria in which at least one contestant randomizes. We

start with the case of homogeneous valuations and examine for it both symmetric equilibria

(Subsection 4.1) and asymmetric equilibria (Subsection 4.2). Thereafter, we discuss the case of

heterogeneous valuations (Subsection 4.3).

4.1 Homogeneous valuations: Symmetric equilibria

We now focus on the important case where valuations are homogeneous, i.e., where V1 = . . . =

Vn ≡ V > 0, and equilibria are symmetric. As usual, we call a Nash equilibrium (pure or mixed)

symmetric if all players use the same strategy. In this case, it follows from general arguments

that each contestant randomizes over the same finite set of bids

y(1) > . . . > y(L) = 0, (8)

where L ≥ 1, and each y(l) is selected with probability q(l) > 0, for l ∈ {1, . . . , L}.15 If L = 1,

then the equilibrium is in pure strategies, and necessarily multilateral peace, as seen above. For

L ≥ 2, however, we have a symmetric MSNE.

Below, we offer a general result on the symmetric equilibrium in the n-player Hirshleifer

contest with homogeneous valuations.

Proposition 3. (Symmetric MSNE) Consider the n-player Hirshleifer contest with homo-

geneous valuations V1 = . . . = Vn ≡ V > 0. Then the following holds true:

(i) A symmetric equilibrium µ∗ exists for any α > 0;

(ii) L ≥ 2 if and only if α > α∗;

(iii) the number L respects the lower bound given by L ≥
(
(n−1)αV

n2

) 1
n−1
;

(iv) contestant i’s payoff satisfies Π∗i ≤ n
(n−1)α .

15Given the analyticity of the payoff functions on an open neighborhood of the strategy interval, any optimal
mixed strategy in the n-player Hirshleifer contest has finite support. For a formal statement, see Ewerhart
and Sun (2018). Similar techniques have been applied by Ewerhart (2015b, 2021), Sun (2017), and Levine and
Mattozzi (2022), in particular.
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Proof. See the Appendix. �

This proposition characterizes the structure of symmetric MSNE in the n-player Hirshleifer

contest with homogeneous valuations. Parts (i) and (ii) jointly establish the existence of MSNE

with L ≥ 2 if and only if α strictly exceeds the threshold α∗ introduced in the previous

section. Moreover, multilateral peace (where L = 1) is the unique symmetric MSNE whenever

multilateral peace is a PSNE, i.e., for α ≤ α∗.16 Part (iii) puts a general lower bound on the

number of mass points in the equilibrium bid distribution. As can be seen, the lower bound on

L is strictly increasing and unbounded in α. Thus, the number of mass points will ultimately

surpass any finite bound as α→∞. Remarkably, the payoff bound given in part (iv) does not

contain V .

The following example illustrates the symmetric MSNE in the simplest case where the

support of the symmetric equilibrium strategy has precisely two elements, i.e., L = 2.

Example 1 (The case L = 2) Let n ≥ 2. Consider a symmetric equilibrium strategy

that places probability q(1) > 0 on the positive bid y(1) > 0, and a complementary probability

q(2) = 1−q(1) > 0 on the zero bid y(2) = 0. Then, we have two equations that jointly characterize

y(1) and q(1), viz. the first-order condition at the interior bid y(1), and the indifference condition

between y(1) and y(2). For instance, if n = 3, then this type of equilibrium exists for a ∈

(4.12, 6.98), where α = a/V . For smaller values of a, each contestant would prefer to become

inactive. On the other hand, for larger values of a, each contestant would wish to deviate to a

bid level strictly between zero and y(1).

An interesting conjecture concerns the uniqueness of the symmetric MSNE for n ≥ 3.17 The

following result may be considered a first step in this direction.

Proposition 4. (Partial uniqueness) Suppose that µ∗1 and µ
∗∗
1 are two symmetric equilibrium

strategies in the n-player Hirshleifer contest with homogeneous valuations V1 = . . . = Vn ≡ V >

16To prove this, we first show that for α ≤ α∗ and n ≥ 3, any contestant strictly prefers bidding zero over
matching the bid of a single active opponent. The claim then follows by noting that bids are strategic substitutes
in the relevant domain.
17The case n = 2 is settled. In fact, there are no asymmetric equilibria in this case either. See Ewerhart and

Sun (2018) and Ewerhart (2021).
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0. Suppose also that µ∗1 and µ∗∗1 can be ranked in terms of first-order stochastic dominance.

Then, µ∗1 = µ∗∗1 .

Proof. See the Appendix. �

Thus, if multiple symmetric equilibria exist in the Hirshleifer contest with homogeneous val-

uations, then they are pairwise not comparable in terms of first-order stochastic dominance.

The proof of Proposition 4 combines results from the theory of monotone comparative statics

with methods from the theory of two-person zero-sum games. It might, therefore, be of some

independent interest.

4.2 Homogeneous valuations: Asymmetric equilibria

We now turn to the analysis of asymmetric equilibria while keeping the assumption that valua-

tions are homogeneous. As discussed, there are no asymmetric equilibria for n = 2. For n ≥ 3,

however, the set of asymmetric equilibria even for homogeneous valuations can be quite large,

as will be illustrated by three examples.

Example 2. (Two identically randomizing players and one inactive player) Let n = 3.

Suppose that contestants 1 and 2 use an identical mixed strategy that selects y(1)1 = y
(1)
2 > 0

with probability q(1)1 = q
(1)
2 ∈ (0, 1) and the zero bid otherwise, while contestant 3 remains

inactive. Then, like in Example 1, a first-order condition and an indifference relation jointly

characterize y(1)1 and q(1)1 . The resulting MSNE exists for a ∈ (4.12, 7.01).18 For smaller values

of a, contestants 1 and 2 would wish to reduce expenses to zero. For larger values of a, however,

both contestants would prefer some bid strictly between y(1)1 and zero.

Example 3. (One always active player, one randomizing player, and (n− 2) inactive

players) Let n ≥ 3. Suppose that contestant 1 chooses a positive bid y(1)1 > 0 with probability

one, while contestant 2 randomizes between the zero bid and overbidding y(1)2 > y
(1)
1 .

19 Suppose

also that contestants 3, . . ., n all remain inactive. In this case, we have three equilibrium con-

ditions, viz. the respective first-order conditions for y(1)1 and y(1)2 , and the indifference relation

18E.g., for a = 4.5, one finds y(1)1 = 0.348 · V and q(1)1 = 0.36.
19A minor modification of the argument used in the proof of Lemma 2 shows that it is suboptimal for

contestant 2 to bid in the interval (0, y
(1)
1 ].
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for contestant 2. For instance, for n = 3, the MSNE exists for a ∈ (4.58, 4.66).20 For smaller

values of a, contestant 1 has an incentive to deviate to zero. For larger values of a, however,

contestant 2 would prefer placing all probability weight on the zero bid.

Example 4. (One always active and two identically randomizing players) Let n = 3.

Suppose that contestant 1 plays a pure strategy y(1)1 > 0, while contestants 2 and 3 identically

randomize between the zero bid and y(1)2 = y
(1)
3 > y

(1)
1 . This MSNE exists for a ∈ (4.66, 4.86).

For smaller values of a, contestants 2 and 3 would prefer to become inactive, while for larger

values of a, contestant 1 would wish to withdraw.21

4.3 Heterogenous valuations

Let µ∗ = (µ∗1, . . . , µ
∗
n) be a MSNE in the Hirshleifer contest with valuations V1 ≥ . . . ≥ Vn > 0.

In this case, each contestant i ∈ N randomizes over a finite set of bids

y
(1)
i > . . . > y

(Li)
i ≥ 0, (9)

for some Li ≥ 1, such that y(li)i is selected with probability q(li)i > 0, for li ∈ {1, . . . , Li}. Let

L+i denote the number of positive elements in the support of µ
∗
i . From Lemma 2, we know that

L+i = Li− 1 holds for at least (n− 1) players. The following result establishes an upper bound

on L+i in terms of the cardinalities of the support for the other players.

Proposition 5. (Support inequality) L+i ≤
∏

j 6=i
Lj, for any i ∈ N .

Proof. See the Appendix. �

This inequality says that the number of pure strategies over which a player can possibly random-

ize cannot be too heterogeneous across players. The proof exploits the fact that a contestant’s

first-order condition for the effort levels used with positive probability may be interpreted as

a polynomial equation with known degree. The fundamental theorem of algebra then imposes

an upper bound on the number of solutions.22

20At a = 4.6, for instance, we find y(1)1 = 0.300 · V , y(1)2 = 0.513 · V , and q(1)2 = 0.163.
21It may be noted that all our examples of asymmetric MSNE are semi-mixed, i.e., at least one contestant

uses a pure strategy. However, in the set-up of Example 4, around a = 4.86, there is an asymmetric equilibrium
in which all three contestants randomize.
22This method of proof is restricted to the specific case of the Hirshleifer contest. In Ewerhart (2021), Laplace

transforms are used to derive similar inequalities for flexible classes of noise distributions in the case n = 2.
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In the case of equilibria where only one contestant randomizes, while all other contestants

use a pure strategy, Proposition 5 implies that the former randomizes between a zero bid and

a single positive bid.

Corollary 2. Suppose that µ∗ is an equilibrium in the n-player Hirshleifer contest with val-

uations V1 ≥ . . . ≥ Vn > 0. Suppose that contestant i ∈ N randomizes strictly while all

contestants j 6= i choose a pure strategy. Then, contestant i randomizes between a zero bid and

a single positive bid level.

Proof. Immediate from Proposition 5. �

Corollary 2 sheds light on the set of equilibria with the property that Lj = 1 for all j 6= i. In

view of Lemma 2, at most one contestant j 6= i can be always active. Therefore, there are two

cases. In one case, there is indeed one always active player j choosing a pure strategy, as in

Example 3 above. In another case, all the players that choose a pure strategy remain inactive,

as detailed by the following result.

Proposition 6. (One randomizing player and (n − 1) inactive players) Suppose there

are n ≥ 3 contestants with heterogeneous valuations V1 ≥ . . . ≥ Vn > 0, and let i ≤ i∗. Then, at

α = α∗i , there is a continuum of payoff-inequivalent equilibria in which contestant i randomizes,

choosing y(1)i = x̃i(α
∗
i ) > 0 with probability q(1)i ∈ [0, 1], and the zero bid otherwise, while the

other (n− 1) contestants all remain inactive.

Proof. See the Appendix. �

Thus, for n ≥ 3, a continuum of MSNE exists when the parameter α lies precisely at one of the

threshold values α∗1, . . . , α
∗
i∗ . The boundary cases where q

(1)
1 = 0 and q(1)1 = 1 are special cases

of Propositions 1 and 2, respectively. The continuum of equilibria is due to the fact, familiar

from the theory of bimatrix games, that the set of beliefs to which a pure strategy is a best

response is convex.
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5. Vanishing levels of noise

In this section, we study the structure of equilibrium in the limit case of vanishing noise. We

start by examining equilibrium bid distributions for α arbitrarily large but still finite.

Proposition 7. (Arbitrarily small noise) Suppose that V1 ≥ . . . ≥ Vn > 0. Let ε > 0 be

small. Then, for any α suffi ciently large, any equilibrium µ∗ of the n-player Hirshleifer contest

has the following properties:

(i) y(1)i ∈ (V2 − ε, V2) for at least two contestants i ∈ N ;

(ii) Π∗1 < V1 − V2 + ε, and Π∗i < ε for any i ∈ N\{1};

(iii) either y(1)i < ε or y(1)i > V2 − ε, for any i ∈ N .

(iv) if V1 = V2, then µ∗i ({0}) < ε for at least two contestants i ∈ N .

Proof. See the Appendix.

The proposition provides information about equilibrium strategies and expected payoffs in the

case where the noise in the contest technology becomes arbitrarily small.

Part (i) says that at least two contestants bid arbitrarily close to the valuation of the second-

ranked contestant.23 Effort levels approaching V2 are intuitively necessary because, without

them, every contestant j of valuation Vj ≥ V2 could earn a substantial rent by overbidding the

entire population. Moreover, at least two contestants must compete at such levels because a

single high bidder would have an incentive to reduce her bids.

Next, part (ii) says that any rent is dissipated except for any single highest-valuation contes-

tant as α→∞. Here, the argument is that any bidder earning substantial rents would not bid

arbitrarily close to V2. But then, as we show, one of the contestants involved in the highest-bid

competition would find it strictly beneficial to marginally overbid the said contestant, which is

impossible.

Part (iii) shows that, in the limit, everyone either bids up to V2 or ultimately becomes

inactive. Again, the proof relies on the idea that one of the contestants bidding nearly up to

23Clearly, when attention is restricted to symmetric MSNE for homogeneous valuations V1 = . . . = V n =
V > 0, then it easily follows that all bidders bid up to V .
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the valuation of the second-ranked contestant would prefer to slightly overbid any contestant

whose highest bid lies in the interval [ε, V2 − ε]. However, the proof of part (iii) requires an

additional argument, as the rent of the lower bidder cannot be assumed to be substantial.

Finally, part (iv) says that, provided that V1 = V2, the probability of bidding zero vanishes

as α → ∞ for at least two contestants.24 Intuitively, too much weight on the zero bid would

allow others to profitably overbid.

Thus, overall, the structure of equilibria in the Hirshleifer contest as α → ∞ is consistent

with those of the n-bidder all-pay auction. And indeed, the following limit result may be

obtained, which extends a result in Levine and Mattozzi (2022) for bilateral contests to any

finite number n ≥ 2 of contestants.

Proposition 8. (Robustness of the APA) Fix valuations V1 ≥ . . . ≥ Vn > 0. Let {αm}∞m=0
be an increasing and unbounded sequence of parameters in R>0, and let {µm}∞m=0 be a sequence

of mixed-strategy profiles in M , such that µm is a MSNE in the n-player Hirshleifer contest with

parameter αm, for any m ≥ 0. If {µm}∞m=0 converges in distribution to some limit µ∗ ∈ M ,

then µ∗ is a MSNE of the all-pay auction.

Proof. See the Appendix. �

6. Large populations

In this brief section, we change the perspective by keeping the decisiveness parameter of the

contest technology fixed while letting the number of contestants grow indefinitely. It turns out

that, for any given α > 0, and valuations bounded by some V > 0, multilateral peace is the

unique equilibrium in a Hirshleifer contest with suffi ciently many contestants. Intuitively, as

n grows indefinitely, it gets harder and harder for a single contestant to sustain a dominating

position.

Proposition 9. Let α > 0 and V > 0 be given. Then, there exists a threshold value n# such

that for any n > n#, multilateral peace is the unique equilibrium in the n-player Hirshleifer

contest with parameter α and heterogeneous valuations V ≥ V1 ≥ . . . ≥ Vn > 0.
24Judging on the basis of the all-pay auction, all of these contestants should bid up to V2 in the limit, but we

have not been able to prove this formally for the difference-form contest.
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Proof. See the Appendix. �

7. Conclusion

In this paper, we have examined the equilibrium set of the n-player Hirshleifer contest with

heterogeneous valuations, a canonical contest with additive noise. In line with the findings for

contests with multiplicative noise such as the Tullock contest, the equilibrium prediction de-

pends heavily on the level of noise in the contest technology. Notwithstanding, the analysis adds

strong support to Hirshleifer’s (1989) main conclusion, viz. that the nature of the equilibrium

prediction is strikingly different across these two cases.

On a more conceptual level, the results obtained in this study appear to be driven by

two characteristic features of the Hirshleifer contest technology, as already highlighted in the

introduction: (i) Effectiveness of passivity and (ii) increasing returns to marginal effort up

to the inflection point of winning with probability one half. When the contest effort is not

very effective (namely, the noise of the game is too large), inaction often proves a powerful

choice. However, when it considerably matters, the logic that “God is on the side of the larger

battalions”is at work, for “(t)here is an enormous gain when your side’s forces increase from

just a little smaller than the enemy’s to just a little larger”, as is stressed by Hirshleifer (1989,

p. 103). Not surprisingly, when the decisiveness parameter is large, at least two contestants

would engage in fierce competition for the prize, intuitively to be on the side favored by nature.

However, even in that case, precisely because at least two contestants become very aggressive

bidders, the chance available for the others to win becomes rather slim, and therefore the logic

of effectiveness of passivity kicks in again. One way to look at the present paper is that it

has tried to disentangle these these effects a bit, thereby shedding light on a very plausible

(even though less commonly employed) contest format. In any case, we plan to explore the

game-theoretic implications of Hirshleifer’s assumption further along several dimensions in our

future studies.
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Appendix. Proofs

This Appendix contains technical proofs omitted from the body of the paper. We start by

introducing some additional notation.

Additional notation used in the proofs. For bids xi ≥ 0 and x−i ∈ Rn−1≥0 , let

pi(xi, x−i) =
exp(αxi)

exp(αxi) +
∑

j 6=i exp(αxj)
(10)

denote contestant i’s probability of winning. Further, for a bid vector x ∈ Rn≥0 entering as an

argument of either Πi or pi, we will alternatively write x = (xi, xj, x−i,j), where

x−i,j = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−2≥0 .

Proof of Lemma 1. Each player i’s space of pure strategies, [0, Vi], is compact and nonempty.

Moreover, payoff functions are continuous. Therefore, the existence of a MSNE follows from

Glicksberg’s (1952) theorem. �

Proof of Lemma 2. To provoke a contradiction, suppose that two contestants i, j ∈ N with

i 6= j are always active in some MSNE µ∗. The second derivative of contestant i’s equilibrium

payoff with respect to xi is given by

∂2Πi

∂x2i
= α2pi(1− pi)(1− 2pi)Vi, (11)

where we use the shorthand notation Πi = Πi(xi, x−i) and pi = pi(xi, x−i). Clearly, pi ∈ (0, 1)

with probability one. In fact pi ∈ (0, 1
2
) with probability one if i plays xi = 0 against µ∗−i. Taking

the expectation over µ∗−i, and subsequently changing the order of integration and differentiation,

one obtains ∂2Πi/∂x
2
i > 0 at xi = 0. Moreover, by continuity, for ε > 0 suffi ciently small,

∂2Πi/∂x
2
i > 0 at any xi ∈ (0, ε). Yet by assumption, µ∗i has no mass point at zero. Hence,

the lower bound of contestant i’s equilibrium distribution µ∗i , denoted by yi, is positive. A

completely analogous argument shows that y
j
> 0. Therefore, by renaming players if necessary,

we may assume without loss of generality that 0 < y
i
≤ y

j
. Consider now the second-order

condition at xi = y
i
. Clearly, pi < 1

2
with probability one if either n ≥ 3 or y

i
< y

j
(or both).

Therefore, n = 2 and y
1

= y
2
. Thus, p1 ≤ 1

2
at x1 = y

1
where the inequality is strict with

22



positive probability unless contestant 2 uses a pure strategy. Again, the same argument can

be made with the roles of contestants 1 and 2 exchanged. Therefore, (y
1
, y
2
) is a (symmetric)

interior PSNE. But this is impossible, as pointed out by Hirshleifer (1989, p. 107). Hence, at

most one contestant is always active. �

Proof of Proposition 1. (i) The marginal payoff of contestant i ∈ N against x−i = 0−i is

given as
∂Π0

i (xi;α)

∂xi
=
α(n− 1)XiVi
(Xi + n− 1)2

− 1, (12)

where Xi = exp(αxi). The right-hand side of (12) vanishes at the solutions of the quadratic

equation

X2
i + (2− αVi)(n− 1)Xi + (n− 1)2 = 0. (13)

There is no solution for α < 4/Vi, and precisely one saddlepoint solution Xi = n − 1 for

α = 4/Vi. In the case α > 4/Vi, there are two solutions, and contestant 1’s payoff function has

a unique interior local maximum at

x̃i(α) =
1

α
ln

(
n− 1

2

{
αVi − 2 +

√
αVi(αVi − 4)

})
. (14)

Moreover, the local maximum ofΠ0
i (xi;α) at xi = 0 is globally optimal if and only ifΠ0

i (x̃i(α);α) ≤

Vi/n. By the envelope theorem,

∂Π0
i (x̃i(α);α)

∂α
=

∂

∂α

{
exp(αxi)Vi

exp(αxi) + n− 1
− xi

}∣∣∣∣
xi=x̃i(α)

(15)

=
(n− 1)x̃i(α) exp(αx̃i(α))Vi
α(exp(αx̃i(α)) + n− 1)2

> 0. (16)

Thus, Π0
i (x̃i(α);α) is strictly increasing in α. Next, suppose that α grows above all bounds.

Then, contestant i’s marginal payoff at xi = 0,

∂Π0
i (0;α)

∂xi
=
α(n− 1)Vi

n2
− 1 (17)

ultimately turns positive, so that eventually Π0
i (x̃i(α);α) > Vi/n. Thus, for each contestant

i ∈ N , there is a unique threshold α∗i ∈ [ 4
Vi
, n2

(n−1)Vi ] such that bidding xi = 0 is a best response

to x−i = 0−i if and only if α ∈ (0, α∗i ]. Thus, multilateral peace is a PSNE if and only if
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α ∈ (0, α∗], where α∗ = mini∈N{α∗i }.25 To see that player 1’s optimality condition is pivotal,

we show that α∗1 ≤ . . . ≤ α∗n. Indeed, the valuation ranking Vi ≥ Vj implies

Π0
i (ξ;α)− Π0

i (0;α)

Vi
−

Π0
j(ξ;α)− Π0

j(0;α)

Vj
=

(
1

Vj
− 1

Vi

)
ξ ≥ 0, (18)

for any ξ ≥ 0. It follows that α∗ = α∗1. (ii) The claims regarding p
∗
i and Π∗i are now immediate.

(iii) By Lemma 2, at least (n − 1) contestants remain inactive in any PSNE, i.e., there exists

i ∈ N such that x∗−i = 0−i. However, in slight extension of the argument given in part (i), for

α < α∗, contestant i’s unique best response to x−i = 0−i is xi = 0. This proves that multilateral

peace is unique within the set of PSNE if and only if α < α∗. The claim follows. �

Proof of Proposition 2. (i) Let α∗i be defined as in the proof of Proposition 1. We start by

showing that one-sided dominance by contestant i is not a PSNE for α < α∗i . Indeed, for this

case, we have seen that i’s unique pure best response to x−i = 0n−1 is xi = 0, which proves the

assertion. Next, we claim that one-sided dominance by contestant i is a PSNE for α ≥ α∗i . But

if α ≥ α∗i , then Π0
i (x̃i(α);α) ≥ Π0

i (xi;α) for any xi ≥ 0. Thus, contestant i has no incentive to

deviate from x∗i = x̃i(α). To understand the incentives to deviate for any inactive contestant

j 6= i, consider the payoff function

Π̂j(xj;α) =
XjVj

X∗i +Xj + n− 2
− xj, (19)

where X∗i = exp(αx∗i ) and Xj = exp(αxj). As in the proof of Proposition 1, one checks that the

contestant with the highest valuation in N\{i} is pivotal, therefore, we may assume without

loss of generality that j ∈ arg maxk∈N\{i} Vk, i.e., that j = 2 if i = 1, and j = 1 if i ≥ 2.

An examination of the derivative ∂Π̂j(xj;α)/∂xj shows that Π̂j(·;α) is strictly declining for

α ≤ 4/Vj. Moreover, for α > 4/Vj, solving the necessary first-order condition

αXj (X∗i + n− 2)Vj
(X∗i +Xj + n− 2)2

= 1 (20)

for xj shows that there is a unique interior maximum at xj = x̂j(α), where

x̂j(α) =
1

α
ln

(
n− 2 +X∗i

2

{
αVj − 2 +

√
αVj(αVj − 4)

})
. (21)

25For n ≥ 3, (14) implies that x̃i(α) > 0 even for α = 4/Vi, so that α∗ ∈ ( 4
V1
, n2

(n−1)V1 ) in that case.
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Moreover, using the envelope theorem,

∂Π̂j(x̂j(α);α)

∂α
=
X̂j (x̂j(α)(n− 2) + (x̂j(α)− x̃i(α))X∗i )Vj

(X∗i + X̂j + n− 2)2
> 0, (22)

where X̂j = exp(αx̂j(α)). On the other hand,

∂Π̂j(0;α)

∂α
= − x̃i(α)X∗i Vj

(X∗i + n− 1)2
< 0. (23)

Hence, the payoff difference Π̂j(x̂j(α);α) − Π̂j(0;α) is strictly increasing in α. Moreover, for

obvious economic reasons, limα→∞ Π̂j(x̂j(α);α) = Vj − x∗i . Thus, there is a unique threshold

value α∗∗i (note that the index i is indeed correct here because Vj is determined through i) such

that

Π̂j(x̂j(α
∗∗
i );α∗∗i ) = Π̂j(0;α∗∗i ). (24)

There are now two cases. If α∗i ≤ α∗∗i , then one-sided dominance by contestant i is a PSNE if

and only if α ∈ [α∗i , α
∗∗
i ]. If, however, α∗i > α∗∗i , then one-sided dominance by contestant i is not

a PSNE. (ii) Equation (5) is derived from the FOC for the dominating contestant, noting that

the second solution of the quadratic equation is necessarily a local minimum. The remaining

equations are then immediate. (iii) We have seen in the proof of Proposition 1 that α∗ = α∗1 ≤

. . . ≤ α∗n. In fact, it is easy to check via suitable substitutions that α
∗
1V1 = . . . = α∗nVn. Next,

we show that α∗∗n ≤ . . . ≤ α∗∗1 . For this, let

Bk =
1

2

(
αVk − 2 +

√
αVk(αVk − 4)

)
(25)

for k ∈ N and α > 4/Vk. It can be shown that relationship (24) amounts to

J(Bj, Bi) = Bj + 1− (Bj + 1)2

nBj

− lnBj − ln(n− 2 + (n− 1)Bi) = 0 (26)

holding at α = α∗∗i , where j is determined by i, as above. It is easy to check that J(Bj, Bi)

increases in Bj and decreases in Bi provided that Bi > 1, Bj > 1. Therefore, for any i ≥ 3,

we have J(Bj, Bi−1) ≥ J(Bj, Bi) at any relevant α since Vi−1 ≥ Vi. A similar argument shows

that α∗∗2 ≤ α∗∗1 , which proves the claim. Finally, we show that α
∗∗
1 ≥ α∗1. For this, given what

we already know, it suffi ces to prove that

Π̂2(x̂2(α
∗
1);α

∗
1)− Π̂2(0;α∗1) ≤ 0. (27)

25



So assume for the moment that α = α∗1. Comparing (14) with (21), one obtains

X2 ≤ X∗1 ·
n− 2 +X∗1
n− 1

, (28)

and hence,
X2

X∗1 +X2 + n− 2
− 1

X∗1 + n− 1
≤ X∗1 − 1

X∗1 + n− 1
. (29)

Moreover, rewriting in the indifference relationship at α = α∗1,

X∗1V1
X∗1 + n− 1

− x̃1(α) =
V1
n
, (30)

yields
(X∗1 − 1)V1
X∗1 + n− 1

=
n

n− 1
x̃1(α). (31)

Therefore, at α = α∗1,

Π̂2(x̂2(α);α)− Π̂2(0;α) =
X2V2

X∗1 +X2 + n− 2
− V2
X∗1 + n− 1

− x̂2(α) (32)

≤ n

n− 1
x̃1(α)− x̂2(α) (33)

=
1

α
ln

(
n− 1

n− 2 +X∗1
(X∗1 )

1
n−1

)
. (34)

The right-hand side of equation (34) is nonpositive since

(X∗1 )
1

n−1 ≤ n− 2 +X∗1
n− 1

, (35)

which is implied by the inequality between the geometric and the arithmetic mean. The claim

follows. (iv) This is immediate from Lemma 2 in combination with Proposition 1 and part (i)

above. �

Proof of Corollary 1. Consider the strategy profile characterized by Proposition 2 where

player i is active. It suffi ces to check that, for V1/Vi suffi ciently close to unity, contestant 1 has

no incentive to overbid contestant i, and contestant i has no incentive to become inactive. But

this follows from α∗1 < α < α∗∗1 and the continuity of α∗i and α
∗∗
i in V1 and Vi. �

The following lemma is used in the necessity part of the proof of Proposition 3(ii). Intuitively,

the lemma captures the point already mentioned in the body of the paper that, for α ≤ α∗(n)
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and n ≥ 3, any Hirshleifer contestant strictly prefers remaining inactive over using the same

bid as a single active opponent.

Lemma A.1 Let n ≥ 3, α ≤ α∗(n, V ), and y > 0. Then, Π1 (0, y,0n−2) > Π1 (y, y,0n−2).

Proof. Since α ≤ α∗(n), we know that Π1 (0,0n−1) ≥ Π1 (y,0n−1). Thus,

V

n
≥ Y V

Y + n− 1
− y, (36)

where Y = exp(αy). Hence,

Π1 (0, y,0n−2)− Π1 (y, y,0n−2) =
V

Y + n− 1
− Y V

2Y + n− 2
+ y (37)

≥ V

Y + n− 1
− Y V

2Y + n− 2
+

Y V

Y + n− 1
− V

n
(38)

=
(n− 2) (Y − 1)2 V

n (Y + n− 1) (2Y + n− 2)
> 0. (39)

This proves the claim. �

The following lemma establishes an upper bound on the equilibrium payoff for any contestant

that uses the zero bid in equilibrium. This lemma will be used in the proofs of Proposition

3(iv) and Lemma A.5.

Lemma A.2 Let µ∗ be a MSNE in the n-player Hirshleifer contest with valuations V1 ≥ . . . ≥

Vn > 0. If i ∈ N satisfies µ∗i ({0}) > 0, then Π∗i ≤ n
(n−1)α .

Proof. Clearly, pi(0, x−i) ≤ 1
n
for any x−i ∈ Rn−1≥0 . Therefore, contestant i’s marginal payoff at

xi = 0 is bounded from below by

∂Πi

∂xi
= αpi(1− pi)Vi − 1 ≥ α

n− 1

n
piVi − 1 = α

n− 1

n
Πi − 1. (40)

Taking expectations with respect to µ∗−i, and subsequently exchanging differentiation and in-

tegration, one obtains ∂Eµ∗−i [Πi]/∂xi ≥ (n−1)α
n

Π∗i − 1. But ∂Eµ∗−i [Πi]/∂xi ≤ 0 from the KKT

condition at xi = 0, which proves the claim. �

Proof of Proposition 3. (i) The proof is analogous to that of Lemma 1, with Becker and

Damianov (2006, Th. 1) replacing Glicksberg’s theorem. (ii) (Suffi ciency) Suppose that α >
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α∗. By part (i), there exists a symmetric MSNE. This equilibrium cannot be a PSNE by

Proposition 1(i). Hence, L ≥ 2, as claimed. (Necessity) For n = 2, the proof follows from

the uniqueness result in Ewerhart and Sun (2018). Suppose, therefore, that n ≥ 3. Take a

symmetric MSNE µ∗ with support 0 = y(L) < y(L−1) < . . . < y(1), where L ≥ 2. To provoke

a contradiction, suppose that α ≤ α∗. Focus on the smallest positive bid, y(L−1) > 0. By the

discussion preceding the statement of Proposition 1, Π1(y
(L−1),0n−1) ≤ Π1 (0,0n−1). Next, let

x+−1 = (y(L−1),0n−2) be such that contestant 2 bids y(L−1) and contestants 3, . . ., n all bid zero.

As, for any i 6= 1, expenses x1 and xi are strategic substitutes with respect to Π1(x1, . . . , xn) as

long as exp(αx1) ≤
∑

j 6=1 expαxj, we have

Π1 (yL−1, x−1)− Π1 (0, x−1) ≤ Π1

(
yL−1, x

+
−1
)
− Π1

(
0, x+−1

)
, (41)

for any profile x−1 6= 0n−1 in the support of µ∗−1. By Lemma A.1, Π1

(
yL−1, x

+
−1
)
−Π1

(
0, x+−1

)
<

0. Hence, bidding y(L) = 0 strictly dominates bidding y(L−1) > 0, a contradiction. (iii) Take

a symmetric MSNE µ∗ in the n-player Hirshleifer contest with parameter α. By Lemma 2,

there exist bid levels y(1) > . . . > y(L) ≥ 0, for some L ≥ 1, with corresponding probabilities

q(1), . . . , q(L) ∈ [0, 1], such that each contestant i ∈ N chooses y(l) with probability q(l), for any

l ∈ {1, . . ., L}. Fix l ∈ {1, . . ., L}. By the KKT condition at the optimum x1 = y(l), we get for

contestant 1 that

1 ≥
∂Eµ∗−1 [p1(x1, x−1)V ]

∂x1
(42)

= αV Eµ∗−1 [p1(x1, x−1)(1− p1(x1, x−1))] (43)

= αV

L∑
l2=1

. . .

L∑
ln=1

(∏n
i=2 q

(li)
)
p1(x1, y

(l2), . . . , y(ln))(1− p1(x1, y(l2), . . . , y(ln))) (44)

≥ αV
(
q(l)
)n−1 1

n

(
1− 1

n

)
. (45)

where the inequality in (45) is obtained by dropping all terms corresponding to scenarios in

which at least two contestants use different bid levels. Rewriting yields

q(l) ≤
(

n2

αV (n− 1)

) 1
n−1

, (46)
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for any l ∈ {1, . . ., L}. Since q(l) + . . .+ q(L) = 1, this implies

L ≥
(

(n− 1)αV

n2

) 1
n−1

, (47)

as claimed. (iv) By Lemma 2 and symmetry, we know that µ∗i ({0}) > 0 for all i ∈ N . Therefore,

the claim follows directly from Lemma A.2. �

The following two lemmas are used in the proof of Proposition 4.

Lemma A.3 Let i, j1, j2 ∈ N be such that i 6= j1 6= j2 6= i. Then, for any x−(j1,j2) ∈ Rn−2≥0 , the

mapping (xj1 , xj2) 7→ Πi(x1, . . . , xn) exhibits strictly increasing differences in (xj1 , xj2).

Proof. Let Xk = exp(αxk) and X =
∑n

k=1
Xk. Then,

∂2Πi

∂xj1∂xj2
=

∂2

∂xj1∂xj2

(
XiVi
X
− xi

)
=

2α2Xj1Xj2XiVi
X3

> 0. (48)

The claim follows. �

Lemma A.4 Suppose that f(x1, . . . , xm), with m ≥ 2, is symmetric and exhibits pairwise

weakly increasing differences. Then, for any y ≥ x,

f(y, . . . , y) ≥ mf(y, x, . . . , x)− (m− 1)f(x, . . . , x). (49)

Proof. By induction. For m = 2, increasing differences imply f(y, y) − f(y, x) ≥ f(x, y) −

f(x, x), while f(y, x) = f(x, y) by symmetry. Thus, f(y, y) ≥ 2f(y, x) − f(x, x), which is just

(49) form = 2. Suppose that the claim has been shown for somem ≥ 2. Take some f withm+1

arguments. Then, letting g(x1, . . . , xm) = f(y, x1, . . . , xm) and h(x1, x2) = f(x1, x2, x, . . . , x),

both g and h are symmetric and exhibit pairwise increasing differences. Therefore, using the

induction hypothesis (49) for g and h, one obtains

g(y, . . . , y) ≥ mg(y, x, . . . , x)− (m− 1)g(x, . . . , x) (50)

= mh(y, y)− (m− 1)h(y, x) (51)

≥ (m+ 1)h(y, x)−mh(x, x). (52)
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Hence, the claim holds for m+ 1, and therefore, for all m. �

Proof of Proposition 4. Given a mixed strategy profile µ = (µ1, . . . , µn), we denote by

Π̃i(µ) = Eµ

[
Πi(x1, . . . , xn)− V

n
+ 1

n−1

∑
j 6=i

xj

]
(53)

a normalized version of contestant i’s expected payoff. Clearly,∑n

i=1
Π̃i(µ) = 0. (54)

Let µ∗−1 = (µ∗1, . . . , µ
∗
1︸ ︷︷ ︸

(n−1) times

), and µ̂∗−1 = (µ∗∗1 , µ
∗
1, . . . , µ

∗
1︸ ︷︷ ︸

(n−2) times

). By assumption, (µ∗1;µ
∗
−1) is an equilibrium.

Hence,

Π̃1(µ
∗
1;µ

∗
−1) ≥ Π̃1(µ

∗∗
1 ;µ∗−1) = −(n− 1)Π̃1(µ

∗
1; µ̂

∗
−1), (55)

where the equality follows from (54) and the symmetry of the contest. By Lemma A.3 and

Echenique (2003, Lemma 4), f(µ−i) ≡ Π̃i(µ
∗
i , µ−i) exhibits pairwise weakly increasing differ-

ences w.r.t. to the (n− 1) variables {µj}j 6=i. Hence, using Lemma A.4,

Π̃1(µ
∗
1; µ̂

∗
−1) ≤

1

n− 1
Π̃1(µ

∗
1;µ

∗∗
−1) +

n− 2

n− 1
Π̃1(µ

∗
1;µ

∗
−1), (56)

where µ∗∗−1 = (µ∗∗1 , . . . , µ
∗∗
1︸ ︷︷ ︸

(n−1) times

). Plugging (56) in (55) yields (n − 1)Π̃1(µ
∗
1;µ

∗
−1) ≥ −Π̃1(µ

∗
1;µ

∗∗
−1).

Hence,

(n− 1)Π̃1(µ
∗
1;µ

∗
−1) ≥ −Π̃1(µ

∗
1;µ

∗∗
−1) ≥ −Π̃1(µ

∗∗
1 ;µ∗∗−1) = (n− 1)Π̃1(µ

∗∗
1 ;µ∗∗−1). (57)

As this holds analogously for the other players, relationship (54) implies that Π̃i(µ
∗
1;µ

∗
−1) =

Π̃i(µ
∗∗
1 ;µ∗∗−1), for i ∈ N .26 Therefore, all inequalities above are equalities. But then, necessarily

µ∗1 = µ∗∗1 (this follows from a straightforward extension of Echenique’s (2003) result to the case

of strictly increasing differences), as has been claimed. �

Proof of Proposition 5. The first-order condition for contestant i’s problem reads∑
x−j∈supp(µ−i)

(
αXiX−iVi

(Xi +X−i)
2

∏
j 6=i

µj({xj})
)

= 1, (58)

26Another way to see this equation is to note that the normalized payoffs correspond to a symmetric n-person
zero-sum game in which symmetric equilibrium payoffs are necessarily zero.
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where Xi = exp(αxi) and X−i =
∑

j 6=i exp(αxj). Multiplying by
∏

x−j∈supp(µ−i) (Xi +X−i)
2

yields a polynomial equation of degree D = 2 ·
∏

j 6=i Lj in the unknown Xi. By the fundamental

theorem of algebra, this equation has at most D solutions. But any two neighboring interior

maxima are separated by a local minimum. Hence, Eµ−i [Πi(xi;x−i)] admits at most
∏

j 6=i Lj

interior maxima. �

Proof of Proposition 6. By Proposition 1, the claim is true for q(1)i = 0. Similarly, by

Proposition 2 and n ≥ 3, the claim is true for q(1)i = 1. Suppose now that q(1)i ∈ (0, 1). Clearly,

contestant i is indifferent between her two best responses xi = x̃i(α
∗) and xi = 0. It remains

to be shown that no contestant j 6= i has an incentive to deviate. Consider a specific deviation

x̂j > 0. Clearly, contestant j has no incentive to deviate to xj = x̂j if xi = 0 (by Proposition

1), and j has likewise no incentive to deviate to xj = x̂j if xi = x̃i(α
∗) (by Proposition 2).

Therefore, j has no incentive to deviate to xj = x̂j if contestant i randomizes between xi = 0

and xi = x̃i(α
∗). As x̂j > 0 was arbitrary, this proves the claim. �

The following three Lemmas A.5 through A.7 prepare the proof of Proposition 7. The first

lemma is an existence result identifying, for α suffi ciently large, a contestant bidding arbitrarily

close to the value of the prize.

Lemma A.5 Suppose that V1 ≥ V2 = . . . = Vm > Vm+1 ≥ . . . ≥ Vn > 0 (where Vn+1 = 0 if

m = n). Let b ∈ [Vm+1, Vm). Then, for α suffi ciently large, any MSNE µ∗ has the property

that there is a contestant i ≤ m such that

Fi(b) ≡ µ∗i ([0, b]) ≤
(
2+b/V2
3

) 1
n−1
. (59)

Proof. Clearly, for any b ∈ [Vm+1, Vm), we have Fj(b) = 1 for any j ≥ m + 1 (if m < n). By

Lemma 2, at least (m − 1) contestants i ∈ {1, . . . ,m} each bid zero with positive probability

in µ∗. Then, for each of them,∏
j 6=i

Fj(b) =
∏

j 6=i,j≤m
Fj(b) ≤

b
V2

+ 2

3
, (60)

since otherwise, by bidding b+V2
2
, contestant i wins an expected payoff approaching

b
V2

+ 2

3
× V2 −

b+ V2
2

=
V2 − b

6
> 0, (61)
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in conflict with Lemma A.2. Thus, there exists at least one j 6= i such that j ≤ m and

Fj(b) ≤
(

b
V2

+ 2

3

) 1
m−1

≤
(

b
V2

+ 2

3

) 1
n−1

. (62)

This proves the lemma. �

The next two lemmas, Lemma A.6 and A.7, each capture the intuition that, as the contest

becomes increasingly decisive, a contestant’s probability of winning does not depend on bids

that are substantially lower.

Lemma A.6 Let δ > 0 and ε > 0. Then, for α large enough,

pi(xi + ε, 0, x−i,j)− pi(xi + ε, xi, x−i,j) ≤ δ (63)

for any i ∈ N , xi ≥ 0, and x−i,j ∈ Rn−2≥0 .

Proof. Writing X−i,j =
∑

k 6=i,j exp(αxk), we see that

pi(xi + ε, 0, x−i,j)− pi(xi + ε, xi, x−i,j)

=
exp(α(xi + ε))

exp(α(xi + ε)) + 1 +X−i,j
− exp(α(xi + ε))

exp(α(xi + ε)) + exp(αxi) +X−i,j
(64)

=
exp(α(xi + ε))(exp(αxi)− 1)

(exp(α(xi + ε)) + 1 +X−i,j) (exp(α(xi + ε)) + exp(αxi) +X−i,j)
(65)

≤ exp(αxi)− 1

exp(α(xi + ε))
(66)

≤ exp(−αε). (67)

This proves the claim. �

Lemma A.7 Let δ > 0. Then, for α large enough, in any MSNE µ∗ of the n-player Hirshleifer

contest, we have

pi(y
(1)
j + δ, xj, x−i,j) > pN,αj (y

(1)
j , xi, x−i,j)− δ, (68)

for all xj ∈ supp{µ∗j}, xi ∈ supp{µ∗i }, and x−i,j ∈ Rn−2≥0 .

Proof. There are two cases. If xi > y
(1)
j , then xi > xj, so that

pi(y
(1)
j + δ, xj, x−i,j) > pj(y

(1)
j , xi, x−i,j) > pj(y

(1)
j , xi, x−i,j)− δ. (69)
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If, however, xi ≤ y
(1)
j , then by Lemma A.6, for α large enough,

pi(y
(1)
j + δ, xj, x−i,j) ≥ pj(y

(1)
j + δ, 0, x−i,j)− δ > pj(y

(1)
j , xi, x−i,j)− δ. (70)

This proves (68). �

Proof of Proposition 7. (i) By Lemma A.5, for any α suffi ciently large, and any MSNE µ∗

in the n-player Hirshleifer contest with parameter α, there exists a contestant i ∈ N such that

Vi ≥ V2 and y
(1)
i ≥ V2 − ε

2
. We claim that, possibly after raising α even further, there always

exists another contestant j 6= i such that y(1)j > V2−ε. Suppose not. Then, y(1)j ≤ V2−ε for any

j ∈ N\{i}. But then, by the optimality condition for contestant i’s highest bid xi = y
(1)
i > 0,

0 =
∂Eµ∗−i [Πi]

∂xi
(71)

= αViEµ∗−i [pi(1−pi)]− 1 (72)

≤ αViEµ∗−i [1− pi]− 1 (73)

≤ α (n− 1)Vi
exp(αε/2) + (n− 1)

− 1. (74)

As the right-hand side of inequality (74) turns negative for large α, we arrive at the desired

contradiction. The claim follows. (ii) The idea of the following argument is adapted from Baye

et al. (1990). By part (i), there exist at least two i ∈ N such that y(1)i ≥ V2 − ε
2
. Clearly,

this implies Π∗i < Vi − V2 + ε
2
, provided that Vi ≥ V2. We claim that, possibly after raising

α even further, Π∗j < ε for any j that does not behave as such. Suppose not. Then, Π∗j ≥ ε

for some j. In particular, y(1)j < Vj − ε. Suppose that contestant i such that Vi = V2 and

y
(1)
i ≥ 1 − ε

2
overbids j using the bid y(1)j + δ, where δ > 0 is small. Then, from Lemma A.7,

taking expectations over µ∗, we see that

Eµ∗−i [pi(y
(1)
j + δ, xj, x−i,j)] ≥ Eµ∗−j [p

N,α
j (y

(1)
j , xi, x−i,j)]− δ, (75)

resulting in ε
2
> Π∗i ≥ Π∗j − 2δ ≥ ε − 2δ. However, for δ ≤ ε/4, this is impossible. The claim

follows. (iii) In the case that V1 = V2, Lemma A.5 implies that there exists a contestant i such

that Vi = V2 and such that

Fi

(
V2 −

ε

2

)
≤
( V2− ε

2

V2
+ 2

3

) 1
n−1

=

(
1− ε

6V2

) 1
n−1

(76)
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holds for any ε > 0 such that ε < V2−Vm+1 (where we let Vm+1 = 0 if m = n, of course). Using

Benoulli’s inequality, one obtains

Fi

(
V2 −

ε

2

)
< 1− ε

6(n− 1)V2
. (77)

To provoke a contradiction, suppose that y(1)j ∈ [ε, V2 − ε] for some contestant j ∈ N . Note

that Πj(y
(1)
j + α−

1
2 , µ∗−j) + (y

(1)
j + α−

1
2 ) is no smaller than Πj(y

(1)
j , µ∗−j) + y

(1)
j on the one hand

and approaching at most Vj ·Πk 6=jFk(y
(1)
j + 2α−

1
2 ) on the other. Thus, Vj ·Πk 6=jFk(y

(1)
j + 2α−

1
2 )

is approaching at least Πj(y
(1)
j , µ∗−j) + y

(1)
j for large α. Hence,[

1− ε
6(n−1)V2

]∏
k 6=i,j

Fk

(
y
(1)
j + 2α−

1
2

)
> Fi

(
V2 − ε

2

)∏
k 6=i,j

Fk

(
y
(1)
j + 2α−

1
2

)
(78)

≥ Fi

(
y
(1)
j + 2α−

1
2

)∏
k 6=i,j

Fk

(
y
(1)
j + 2α−

1
2

)
(79)

≥ y
(1)
j /Vj. (80)

By bidding y(1)j + δ, for any δ ∈ (4α−
1
2 , ε2

12(n−1)V2 ), contestant i then receives a payoff

Πi(y
(1)
j + δ, µ∗−i) ≥ Vi

(∏
k 6=i

Fk

(
y
(1)
j + δ

2

))
−
(
y
(1)
j + δ

)
(81)

≥ Vi

(∏
k 6=i,j

Fk

(
y
(1)
j + 2α−

1
2

))
−
(
y
(1)
j + δ

)
(82)

≥
[

1

1− ε
6(n−1)V2

× Vi
Vj
− 1

]
y
(1)
j − δ (83)

>

[(
1 +

ε

6(n− 1)V2

)
× Vi
Vj
− 1

]
y
(1)
j − δ (84)

≥ ε2

6(n− 1)V2
− δ (85)

>
ε2

12(n− 1)V2
. (86)

In the case V1 > V2, for any ε < V2− Vm+1, the value of Π1(V2− ε
2
, µ∗−1) is approaching at least

V1 ·
(
Πm
k=2Fk(V2 − ε

2
)
)
− (V2 − ε

2
). By claim (ii),

V1 ·
(

Πm
k=2Fk(V2 −

ε

2
)
)
− (V2 −

ε

3
) ≤ Π1(V2 −

ε

3
, µ∗−1) < V1 − V2 +

ε

6
(87)

for large α. Thus, Πm
k=2Fk(V2 − ε

2
) < 1 − ε

6V1
. Consequently, there exists a contestant i ∈

{2, . . . ,m} such that

Fi(V2 −
ε

2
) ≤ (1− ε

6V1
)

1
n−1 . (88)
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We can then take essentially the same route as above for the case V1 = V2 to likewise show that

Πi(y
(1)
j + δ, µ∗−i) >

ε2

12(n−1)V1 for any δ ∈ (4α−
1
2 , ε2

12(n−1)V1 ), an absurdity. (iv) By contradiction.

Suppose that V1 = V2 but, regardless of α, there exists a contestant i such that µ∗j({0}) ≥ ε for

all j 6= i. Then, the respective contestant i could bid slightly above zero and claim a positive

rent bounded away from zero as α → ∞. This, however, conflicts with part (ii) above. This

proves the last claim and, hence, the proposition. �

Proof of Proposition 8 (Sketch). For any m ≥ 0 and i ∈ N , we denote by Fm
i the

cumulative distribution function of contestant i’s mixed strategy µmi in the MSNE µm of the

n-player Hirshleifer contest with parameter αm. Clearly, each contestant can ensure a positive

expected payoff by bidding zero. Suppose first that V1 = V2. Then, for ε small enough,

Vi ·
∏

j 6=i F
m
j (xi − ε)− xi ≥ 0 (xi ∈ supp{µmi }). (89)

As there cannot be any mass points in the interior of [0, 1] in the limit, this implies

Vi ·
∏

j 6=i F
m
j (xi)− xi ≥ ε (xi ∈ supp{µmi }). (90)

On the other hand, as all rents are dissipated in the limit,

Vi ·
∏

j 6=i F
m
j (xi)− xi ≤ ε (xi ∈ [0, 1]). (91)

Letting m go to infinity yields

Vi ·
∏

j 6=i Fj(xi)− xi = 0 (xi ∈ supp µ∗i ), (92)

where Fj denotes the cumulative distribution function of contest j’s limit strategy µ∗j . If V1 > V2,

then it suffi ces to replace Vi by V2 throughout in the above reasoning for contestant i = 1. Thus,

the limit µ∗ is indeed a MSNE of the all-pay auction. �

Proof of Proposition 9. Assume that n > n#(α) = exp(αV1) + 1. Take a MSNE µ∗ in

the n-player Hirshleifer contest with parameter α, and let i ∈ N and xi ∈ supp{µ∗i }. Then,

exploiting that exp(αxi) ≤ exp(αV1) < n − 1, contestant i’s bid xi wins against any x−i ∈

supp{µ∗−i} with probability pi(xi, x−i) ≤ exp(αxi)/(exp(αxi) + n − 1) < 1
2
. Hence, as in the

proof of Lemma 2, ∂2Eµ∗−i [Πi]/∂x
2
i > 0. As this implies xi = 0, the claim follows. �
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