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Abstract

Markowitz portfolio selection is a cornerstone in finance, both in academia and

in the industry. Most academic studies either ignore transaction costs or account for

them in a way that is both unrealistic and suboptimal by (i) assuming transaction

costs to be constant across stocks and (ii) ignoring them at the portfolio-selection

state and simply paying them ‘after the fact’. Our paper proposes a method to fix

both shortcomings.. As we show, if transaction costs are accounted for (properly) at

the portfolio-selection stage, net performance in terms of the Sharpe ratio increases,

particularly so for high-turnover strategies.
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1 Introduction

Markowitz (1952) portfolios are a cornerstone of finance, both in the academic literature

and in the asset-management world. Since the two main input parameters, the vector

of expected returns and the covariance matrix of the returns in a universe of assets, are

unknown in practice, the true (or ideal) portfolios are infeasible and have to be estimated

instead. To this end one most commonly applies the plug-in method: use the estimated

vector of expected returns and the estimated covariance matrix in place of the true

quantities.

When several methods to estimate a given portfolio under consideration are available, it

is generally of interest to determine which method is ‘best’. In particular when researchers

come up with a new method, they generally want to demonstrate that their method

is ‘better’ than existing methods. One way to answer this question is via Monte Carlo

studies. Unlike in real life, in a Monte Carlo study the true portfolio is known and so one

can determine how close (on average) a given method gets to the truth. But any Monte

Carlo study is based on a data generating process (DGP) chosen by the researchers, which

leaves room to tweak this process in their favor. Therefore, the more common way to

answer the question is via backtest exercises: One applies the various methods to a set of

real data in a realistic manner (meaning that at any given point only data prior to that

point are used to estimate the portfolio) over a sufficiently long period, which results in

a series of (pseudo) out-of-sample (oos) returns for each method. Then the various oos

return series are used for performance evaluation.

Which criterion to use in the evaluation depends on the portfolio under consideration.

In the case of the Global Minimum Variance (GMV) portfolio, arguably, the most relevant

criterion is “risk” measured by the sample variance or, equivalently, the sample standard

deviation of the oos return series. The respective sample numbers then provide a ranking

of the various methods (with smaller numbers resulting in a higher ranking). In addition,

one can use hypothesis testing to examine whether one method significantly outperforms

another one; for example, see Ledoit and Wolf (2011). On the other hand, a ‘general’

Markowitz portfolio not only seeks a small “risk” but also a high “reward”. Whereas

the former is quantified by the standard deviation of the portfolio return, the latter is

quantified by its expectation. In such cases, the preferred criterion is the reward-to-risk

ratio, that is, the expected return divided by the standard deviation. When the returns are
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taken in excess of the risk-free rate, this ratio is known as the Sharpe ratio; otherwise, the

ratio is often called the information ratio. In a backtest exercise one then uses the sample

average of the oos return series divided by the sample standard deviation. Again, one can

use hypothesis tests to study whether one method significantly outperforms another one;

for example, see Ledoit and Wolf (2008).

When the Sharpe ratio is used as the performance criterion, the question becomes

whether to account for transaction costs or not. In our view, the answer is “it depends”.

Although this distinction is rarely made in the literature, there can be two goals in

performance evaluation.

The first goal, which one could term ‘accuracy’, is to evaluate the quality of estimated

inputs in plug-in methods, namely of the estimated vector of expected returns and of the

estimated covariance matrix; the idea being that the higher the quality of the estimated

inputs, the higher will be the oos Sharpe ratio. Therefore, in this context, a backtest

serves as an ‘indirect’ way of evaluating the quality of estimated inputs. (The ‘direct’ way,

by comparing estimated inputs to true inputs, is not feasible, since the true inputs are

not observable.) For this goal, transaction costs should not be taken into account, since

doing so would muddy the waters. For example, consider the case where one wants to

compare two estimators of the covariance matrix (holding the estimator of the vector of

expected returns fixed). It could well be that one of the estimators, although less precise,

leads to lower turnover and thus to a higher Sharpe ratio after transaction costs.

The second goal, which one could term ‘efficiency’ (shortcut for the mean-variance

efficiency of a dynamically-rebalanced portfolio), is to evaluate actual investment strategies.

Of course, for this goal, transaction costs should be taken into account. Arguably, an asset

manager does not care about the quality of estimated inputs per se as long as they result

in superior performance, which for him/her always means after transaction costs. Many

academic studies take transaction costs into account, be it as the leading objective or as a

robustness check. The problem is that the majority of such studies do so in a non-realistic

and suboptimal way: (i) they assume transaction costs to be constant across stocks and

(ii) they do not take transaction costs into account at the portfolio-selection stage.

Concerning (i), assuming that stocks have the same transaction costs makes life easier

but contradicts reality. Therefore, we incorporate this feature, using a realistic off-the-shelf

transaction-cost model from the literature. Concerning (ii), few portfolio managers in

the real world ignore transaction costs at the portfolio-selection stage and and simply
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pay them ‘after the fact’. Doing so can be expected to result in worse net performance

(that is, performance after transaction costs). Therefore, we propose a way to account for

transaction costs at the portfolio-selection stage and to demonstrate that, indeed, doing

so results in superior net performance.

The remainder of the paper is organized as follows. Section 2 specifies the portfolio

formulations of interest and how we account for transaction costs at the portfolio-selection

stage. Section 3 presents in great detail our backtesting technology including transaction

costs. Section 4 presents the results from real stock return data. Section 5 concludes. An

appendix contains some additional details and tables.

2 Portfolios

2.1 The Starting Point

Our starting point is the standard Markowitz portfolio-selection problem in its textbook

version. There are N assets in the universe with corresponding return vector r ..=

(r1, . . . , rN)′). Define the expected value and the covariance matrix of r as

µ ..= E(r) and Σ ..= Cov(r) .

The portfolio-selection problem in its textbook version is then formulated as

min
w
w′Σw (2.1)

subject to w′µ ≥ b , and (2.2)

w′1 = 1 , (2.3)

where b is a selected target expected return and 1 denotes a conformable vector of ones.1

The problem has the following analytical solution:

w = c1Σ−1
1 + c2Σ−1µ , (2.4)

where c1
..=

C − bB
AC −B2

and c2
..=

bA−B
AC −B2

, (2.5)

with A ..= 1
′Σ−1

1 , B ..= 1
′Σ−1µ , and C ..= µ′Σ−1µ . (2.6)

1One can also formulate the problem in its dual form: maximizing the expected return subject to an

upper bound on the variance of the portfolio.
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Since µ and Σ are unknown in practice, this solution is not feasible. But a feasible solution

can be obtained by replacing µ with an estimator µ̂ and Σ with an estimator Σ̂ in the

analytical formulas: this is the plug-in method.

Although of academic interest, the plug-in version of the solution (2.4)–(2.6) is rarely

used in real life. On the one hand, portfolio managers generally are interested in further

constraints in addition to (2.2) and (2.3), such as gross-exposure, maximum((-absolute)-

weight, industry-exposure, and factor-exposure constraints; of these, as a leading case,

we will consider a gross-exposure constraint in our analysis below. On the other hand,

the formulation (2.1)–(2.2) completely ignores transaction costs. In real life, the portfolio

manager already holds a current portfolio and the question is how to ‘best’ update (or

turn over) the portfolio. But updating (or turning over) a portfolio involves transaction

costs, which are stock-specific. Of course, one can simply ignore transaction costs at the

portfolio-selection stage, find the ‘best’ portfolio given one’s list of constraints, and then

pay the resulting transaction costs ‘after the fact’. As can be expected theoretically, and

as we will confirm empirically below, doing so is sub-optimal. It is generally advantageous

to take transaction costs into account at the portfolio-selection stage already.

2.2 Accounting for Transaction Costs

There is no unique way to take transaction costs into account. One way would be to

include an upper bound on such costs as an additional constraint; the question then

becomes what that amount should be. Instead, we opt for adding a penalty term, defined

as a multiple of the transaction cost, to the objective function (2.1). The question then

becomes what the multiplier should be. We feel that the latter question is easier (or more

natural) to address than the former and will offer a proposal below.

To start out, the more general problem formulation needed now must address the fact

that one is moving form a ‘holding portfolio’ to a ‘new portfolio’, so the concept of ‘time’

needs to be introduced. In our empirical analysis below, we will use daily stock data, which

is the norm in literature; but, as also is the norm, we do not update the portfolio on a

daily basis but only every 21 trading days, which corresponds to our notion of a ‘month’.2

As a result, the notation must distinguish between ‘return time’ and ‘portfolio-selection

(or rebalancing) time’. Return days are indexed by t ∈ {1, . . . , T}, where T denotes the

2So a ‘month’ generally does not correspond to a calendar month.
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sample size; portfolio-selection dates are indexed by h ∈ {1, . . . , H}, where H denotes the

number of ‘months’. The connection is that th denotes the (return) day corresponding to

portfolio-selection date h; in particular, th+1 = th + 21.

Consider a portfolio-selection date h > 1. The current vector of holding-portfolio

weights is given by

w∗h−1
..= (w∗h−1,1, . . . , w

∗
h−1,Nh

)′.

This vector specifies the portfolio at the end of the holding period h − 1 and differs

from wh−1, which specifies the portfolio at the beginning of the holding period. The

two vectors differ because of the different price evolutions of the various stocks during

the holding period; see (3.4) for a ‘formula’ to obtain w∗h for a general holding period h.

Finally, Nh denotes the size of the ‘combined’ investment universe at portfolio-selection

date h. This universe is given as the union of all stocks in the current holding portfolio

and all stocks to be included in the new (or upcoming) portfolio: At any given date h > 1,

one has to allow for some stocks leaving the portfolio and others entering the portfolio.

So even if the number of stocks in the holding portfolio remains constant (denoted by N),

as will be the case for us, Nh ≥ N generally varies over time. Of course, in case Nh > N ,

there will be (at least) Nh −N positions in wh−1, w
∗
h−1, and wh that are equal to zero.

The next ingredient is a vector of stock-specific transaction costs at portfolio-selection

date h:

ch ..= (ch,1, . . . , ch,Nh
)′ .

The ‘unit’ of the transaction costs must match the ‘unit’ of the stock returns. Say a

given transaction cost is 10 basis points (bps). If stock returns are ‘raw’ returns, then

this number should be expressed as 0.001; on the other hand, if the stock returns are

in percent, then this number should be expressed as 0.1 instead.3 When updating (or

turning over) the portfolio from w∗h−1 to wh the total transaction cost ‘per dollar’ is then

given by

τh ..= c′h|wh − w∗h−1| ..=

Nh∑
i=1

ch,i|wh,i − w∗h−1,i| . (2.7)

Therefore, τh is a relative rather than an absolute cost. The absolute cost is obtained

by multiplying the relative cost with the current net-asset value (NAV) of the portfolio.

As an example, take case where τh equals 5 bps. If the NAV equals one hundred million

3Note that 100 bps correspond to one percent.
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dollars, then the cost of turning over the portfolio is fifty thousand dollars; if the NAV

equals one billion dollars, the cost is half a million dollars.

The advantage of expressing the transaction cost ‘per dollar’ instead of in absolute

terms is that the penalty factor on the transaction cost, which is about to be introduced,

can also be chosen ‘per dollar’ and, thus, does not have to take into account (or ‘worry

about’) the current value of the portfolio.

To facilitate the upcoming methodology it will be convenient to partition the combined

investment universe at portfolio-selection date h into two sets: the one containing the

stocks in the new portfolio (of size N) and the one containing the stocks leaving the

holding portfolio (of size Mh) with Mh ≥ 0 and Nh = N +Mh. For further convenience,

the stocks will be (re-)ordered such that the first N will effectively constitute the new

portfolio and the last Mh will leave the holding portfolio. In this way, the total transaction

cost (per dollar) can be decomposed in the sum of a variable cost (corresponding to the

first N stocks) and a fixed cost (corresponding to the last Mh stocks):

τh = τvar
h + τfix

h
..=

N∑
i=1

ch,i|wh,i − w∗h−1,i|+
Nh∑

i=N+1

ch,i|w∗h−1,i| . (2.8)

The latter cost (which is zero in case Nh = N and positive otherwise) is obviously fixed,

since it does not depend on how the weights for the stocks in the new portfolio are selected.

On the other hand, this selection affects the former cost, which is therefore variable.

The two final ingredients are µ̂h and Σ̂h, the estimators of µh and Σh, which, in slight

abuse of notation, are defined as

µh ..= E(rnew
th

) and Σh
..= Cov(rnew

th
) and rnew

th
..= (rnew

th,1
, . . . , rnew

th,N
)′ .

Clearly only the returns rnew
th

of the stocks in the ‘new’ investment universe are relevant,

in the sense that we need estimators of the expectation and the covariance matrix of the

vector of returns; the stocks leaving the holding portfolio are irrelevant. At this point, we

assume nothing about the nature of µ̂h and Σ̂h; specific choices will be discussed in the

empirical analysis below.

With the definition of τfix
h as in (2.8), our formulation of the portfolio-selection problem,

both accounting for transaction costs and incorporating a gross-exposure constraint κ, is

then given by:
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min
w∈RN

w′Σ̂hw + λ ·
( N∑
i=1

ch,i|wi − w∗h−1,i|+ τfix
h

)
(2.9)

subject to w′µ̂h ≥ bh , (2.10)

w′1 = 1 , and (2.11)

||w||1 ≤ κ . (2.12)

The constant λ in (2.9) is the penalty parameter on the transaction cost ‘per dollar’; its

choice will be important in practice. Furthermore, our formulation allows for the bound

bh on the expected return in (2.10) to vary with time.4 Finally, || · ||1 in (2.12) denotes

the L1 norm of a vector, that is,

||w||1 ..=
N∑
i=1

|wi| .

Therefore, (2.12) represents a gross-exposure constraint where κ ≥ 1 expresses the upper

bound.5 In the extreme case κ = 1, the portfolio is long only, meaning that wi ≥ 0 for all i.

The choice κ = 1.6 corresponds to a 130-30 portfolio whereas the choice κ = 2 corresponds

to a 150-50 portfolios; such portfolios are becoming ever more popular in the financial

industry. The choice κ =∞ effectively removes the constraint (2.12) from the portfolio

formulation.

Denote the solution of (2.9)–(2.12) by ŵ. Then wh is given by wh ..= (ŵ1, . . . , ŵN , 0, . . . , 0)′,

where the last Mh ≥ 0 positions equal zero. To be careful, when portfolio-selection date

h+ 1 comes, w∗h shall be re-ordered relative to wh such that the last Mh+1 ≥ 0 positions

correspond to the stocks that will leave the holding portfolio at date h+ 1.

It should be pointed out that the problem (2.9)–(2.12) cannot be solved analytically,

that is, there is no formula for ŵ (unless λ = 0 and κ = ∞). However, the problem is

of convex nature and can be solved with off-the-shelf numerical-optimization software

coming under the header “convex solver”. Even for N = 1, 000, solving the problem only

takes a matter of seconds (in the single digits) with modern computers.

4This is to allow for some variation in expected market conditions.
5One could, in principle, also allow κ to vary with time but doing so is uncommon.
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2.3 Variations on the Theme

Many other portfolio formulations based on the plug-in method can be considered, where

the formulations can be either ‘smaller’ or ‘larger’.

To go ‘smaller’, one can drop the expected-return constraint (2.10). Doing so has the

advantage that one does not require an estimator of the expected return vector µh, which

is not trivial to come by with. Note that by now, an entire ‘academic industry’, if the

pun may be forgiven, is dedicated to finding such estimators, which sometimes are called

“factors” or “(return-predictive) signals”; for example, see Green et al. (2013) and Harvey

et al. (2016). If in addition the gross-exposure constraint (2.12) is dropped one arrives at

the global minimum variance (GMV) portfolio accounting for transaction costs; setting

λ = 0 in (2.9) gives the standard GMV portfolio (in its feasible version based on the

plug-in method). But, again, the standard version is not of much interest in real life. On

the one hand, the gross exposure can be anything and vary quite a bit from one portfolio-

selection date to another, which would not be permitted for many portfolio managers. On

the other hand, transaction costs are not accounted for. As for the general Markowitz

portfolio including an expected-return constraint, in the empirical study, just like the

GMV portfolio, we will compare the performance of the textbook version with versions

accounting for transactions costs and/or incorporating a gross-exposure constraint.

To go ‘larger’, as one typical would in real life, one can add further constraints

after (2.12), such as maximum-(absolute-)weight constraints (putting a common, say, upper

bound on |wi| to avoid overexposure to any given stock), industry-exposure constraints,

and factor-exposure constraints. Importantly, adding any such constraints (in their

common forms) preserves the convexity of the optimization problem, so that ŵ can still

be easily found with off-the-shelf numerical optimization software.

2.4 Getting Improved Performance

The feasible portfolio formulation (2.9)–(2.12) requires estimates of two input parameters,

µh and Σh. The formulation is high-level in the sense that nothing is said about the

nature of the estimators µ̂h and Σ̂h, which must be based on a (finite) history of past

observations.

It is common knowledge which estimators not to use (without further modifications

to the resulting solution ŵ): namely, the sample analogs, meaning the vector of sample
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means (for µ̂h) and the sample covariance matrix (for Σ̂h). Although unbiased, and

maximum likelihood under a normality assumption, in settings where the number of

stocks and the number of past observations are of similar magnitude (which is the setting

most portfolio managers face) the sample analogs contain too much estimation error.

Consequently, portfolios ŵ based on them perform poorly out of sample and are sometimes

called “estimation error maximizers”, a term coined by Michaud (1989).

2.4.1 First Avenue: Markowitz with Smart Inputs

Broadly speaking, there are two avenues for obtaining portfolios that have improved oos

performance. The first avenue is to use ‘sophisticated’ estimated input parameters µ̂h

and Σ̂h, after which the solution ŵ is obtained in the standard way and not modified

further. The second avenue is to stick with the sample analogs for µ̂h and Σ̂ but then not

to use the standard solution ŵ.

The first avenue is characterized by a ‘division of labor’. Some people aim to find

improved estimators of the vector of expected returns; again, for example, see Green et al.

(2013) and Harvey et al. (2016). Other people aim to find improved estimators of the

covariance matrix; for example, see Ledoit and Wolf (2022a) and the references therein.6

At any rate, this avenue can be considered ‘generic’ in the sense that both the problem

formulation and the method of solving it are common to all. The only way in which

specific proposals differ is the way in which they estimate the input parameters.

2.4.2 Second Avenue: Non-Markowitz Alternatives

The second avenue is characterized by ‘custom-tailored’ approaches based on the particular

problem formulation at hand. Some proposals start with the standard solution ŵ but then

modify it further. Other proposals use the sample analogs µ̂h and Σ̂h but use another

way to derive portfolio weights from them compared to the standard solution. This is not

the place to give a comprehensive overview over methods following the second avenue.

But to illustrate ideas, we provide an example for either type of proposal in Appendix

A. The bottom line is that the non-Markowitz avenue does not seem amenable to cases

6Improved estimation of the covariance matrix is huge field in the academic literature and this not the

place to give a comprehensive overview. Our point is that improved estimators, relative to the sample

analog, exist and we take the liberty of highlighting our own proposals in this regard without necessarily

claiming that they are (strictly) better than any other such proposals.
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where universe dimension exceeds sample size (a frequent occurrence in practice), and

where additional constraints or transaction costs have to be factored in. For these two

reasons, we remain focused here on the first avenue of Markowitz with smart inputs.

3 Backtesting Methodology

3.1 Data and Universe Rules

We download daily stock return data from the Center for Research in Security Prices

(CRSP) starting on 01-Jan-1982 and ending on 31-Dec-2021. We restrict attention to

stocks from the NYSE, AMEX, and NASDAQ exchanges. Daily risk-free rates come from

the supplemental series of the CRSP US Treasury Database via the Wharton Research

Data Services portal.7

For simplicity, we adopt the common convention that 21 consecutive trading days

constitute one ‘month’. The out-of-sample period ranges from 05-Jan-1988 through 31-

Dec-2021, resulting in a total of H = 408 months (or T = 8, 568 days). All portfolios

are updated monthly.8 We index the portfolio-selection dates by h = 1, . . . , 408. At any

date h, a covariance matrix is estimated based on the most recent 1, 260 daily returns in

the past, which roughly corresponds to using five years of past data.9

We now detail our rules for determining the investment universe at any given portfolio-

selection date h. For a stock to be ‘eligible’, it must satisfy five criteria. The first criterion

is not feasible in practice but common in academic analyses (and, basically, never kicks in

anyhow for large stocks): The stock must have a complete return future over the next 21

days. Second, the day when the stock ‘started’, that is, the day where we see for the first

time a non-missing value for the return of the stock must be at least 1,260 days in the

past. Third, over the history of the past 1,260 days, there must be a most 2.5% missing

values; any such missing value is then replaced with the return of the S&P 500 index on

that day. Fourth, there must be no pairs of stock with respective return series over the

7The unique series identifier is 2000061, corresponding to “RISKFREE2 (MTH/DLY)”. The maturity/

rebalancing label is “CRSP Risk Free – 4 week (Nominal)”.
8Monthly updating is common practice to avoid an unreasonable amount of turnover and thus

transaction costs. During a month, from one day to the next, we hold number of shares fixed rather than

portfolio weights; in this way, there are no transactions during a month.
9This rule implies our starting date of January 1987 for oos investing, since we need a history of about

five years of data and NASDAQ stocks become available in CRSP from late 1982 onward only.
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past 1,260 days that have a sample correlation exceeding 0.95. To ensure this criterion, we

compute the sample correlation matrix of all the stock satisfying the first three criteria. If

the largest correlation does not exceed 0.95, we keep all stocks. Otherwise, we identify the

pair with the largest correlation and remove the stock with the smaller market value of the

two at date h; then we repeat the exercise until there are no more correlations exceeding

0.95. There is a final, fifth, criterion, which is not based on daily returns. For reasons

that will become obvious below we also need price data in open, high, low, and close

(OHLC) form. For a stock to be eligible, it needs to have all four pieces of information

available for at least 240 out of the past 252 days. Then, at any date h = 1, the universe

is comprised of the N = 1, 000 largest eligible stocks in terms of their market value.

3.2 Modeling Transaction Costs

The goal of our paper is to develop a strategy that delivers desirable portfolio returns

net of transaction costs. Importantly, we are interested in a strategy that will work well

‘now’, that is, from here on going forward. We are not interested in a strategy that would

have worked well ‘in the past’, that is, over the last previous thirty years, say.

Consequently, we will use ‘historical’ stock returns in combination with ‘current’

transaction costs, the idea being that historical stock returns are (hopefully) representative

of future ones and that current transactions are also representative of future ones, at least

in the short- and medium-term future.

Apart from wanting to use ‘current’ transaction costs, we also want to be realistic and

use stock-specific transactions costs. To this end, we use the model of Briere et al. (2020),

which works by modeling stock-specific bid-ask spreads and then taking transaction costs

to be a constant fraction (across stocks) of these spreads. In particular, they propose to

model the log bid-ask spread of stock i at day t as a linear function of past log volatility.

The problem is that volatility is unobserved even in hindsight, so in an initial step a

feasible ‘version’ of volatility is taken to be the Garman and Klass (1980) intraday estimate

using past OHLC price data; see Equation [11.15] of Briere et al. (2020):

σGK
t,i

..=

√√√√ 1

252

252∑
s=1

1

2
log

(
Ht−s,i

Lt−s, i

)2

− (2 log 2− 1) log

(
Ct−s,i
Ot−s,i

)2

. (3.1)

If the complete OHLC information is not available for all past 252 days, we base the

estimate on the corresponding formula applied only to the days when the complete
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information is available, of which there must be at least 240 days by our rules above.

Based on a regression analysis the authors then propose the following linear

approximation for the log bid-ask spread of stock i on day t (see their Table 11.3):

log bast,i ≈ −4.137 + 0.777 log σGK
t,i ,

which results in the approximated transaction cost of stock i on day t as follows:

ct,i ..=
1

2
exp
(
−4.137 + 0.777 log σGK

t,i

)
. (3.2)

Here, using a constant multiplier across stocks, we equate transaction cost to one half of

the bid-ask spread, which is a common convention. Briere et al. (2020) actually propose 0.4

instead of 0.5 as the multiplier (see their Table 11.1) but we prefer to stick to the commonly

used and somewhat more conservative value of 0.5.

Finally, with some abuse of notation, the approximation we use in the problem

formulation (2.9)–(2.12) is given by ch,i ..= cth,i, where it should be recalled that th denotes

the day t that corresponds to portfolio-selection date h. Although an approximation

only itself, it is certainly more realistic than assuming a constant trading costs across

stocks, which is still the norm in the related academic literature. In our experience, the

transaction-cost model of Briere et al. (2020) is a realistic place-holder by default, but

any applied researcher who already holds a strong preference for some alternative model

is welcome to use it instead.

To get an idea what ‘typical’ trading costs look like using approximation (3.2), we

carry out the following exercise: For every portfolio-selection date h = 1, . . . , 408, take

the vector of the N = 1, 000 approximate trading costs corresponding to the stocks in

the ‘new’ portfolio. Based on this vector, compute the minimum, the first decile, the first

quartile, the median, the third quartile, the ninth decile, and the maximum. Then, for

each of these seven quantiles q ∈ {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}, compute the average over

the 408 portfolio-selection dates h; note that, with some abuse of terminology, we call the

minimum the 0 quantile and the maximum the 1 quantile. The results are reported in

Table 3.1. As can be seen, for example, the median transaction cost is 3.9 bps on average.

It can also be seen that there is considerable variation across transaction cost, as the 0.9

quantile is, in terms of the average, almost twice as large as the 0.1 quantile; therefore,

assuming a constant transaction cost across stocks is unrealistic.
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Quantile 0.0 0.1 0.25 0.5 0.75 0.9 1.0

Average 1.7 2.9 3.3 3.9 4.7 5.7 12.2

Table 3.1: Average quantiles of approximate trading costs; the unit is 1 basis point.

At each portfolio-selection date h = 1, . . . , 408, the seven listed quantiles are computed

from the vector of N = 1, 000 approximate trading costs (of the stocks in the ‘new’

investment universe) according to formula (3.2). Then, for each quantile, the average over

the 408 portfolio-selection dates is reported.

3.3 Computing Returns Net of Transaction Costs

We need to be careful about how we compute oos-ntc returns, (where the acronym oos-ntc

stands for “out-of-sample and net-of-transaction-costs”), and we need to state our method

clearly. The problem is that we have daily portfolio returns but update the portfolio only

every ‘month’, that is, every 21 days. In terms of the average oos-ntc return it would not

matter if we paid the transaction costs in full ‘at once’. But doing so would unduly affect

the standard deviation of the returns (which also enters our performance criteria below),

since only one out of twenty-one returns would take the ‘full hit’; so instead we should

spread out evenly the incurred transaction cost over all 21 days in the upcoming holding

period, that is, over the stretch {th, . . . , th + 20}. The cleanest way to do this is in terms

of the net-asset value (NAV) series of the portfolio.

At the first portfolio-selection date h = 1, we (somewhat cavalierly) ignore transaction

costs, since at this date the portfolio is not ‘updated’ but formed for the first time.10

Based on an (arbitrary) starting value X0, one invests amount X0 according to weight

vector w1 at the beginning of day 1.

Since the value of X0 is irrelevant for our purposes, we set it to X0
..= 1 for convenience.

The initial stretch of the NAV series, namely {Xt}21
t=1, is determined by letting the portfolio

run for 21 days, keeping the number of shares (rather than the portfolio weights) fixed

over time:

∀t = 1, . . . , 21 Xt = w′1 Πt
s=1(1 + rs) ,

10We are not investigating how to build a portfolio once from scratch but how to update a portfolio

repeatedly through time.
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where multiplication of two vectors is understood to be element-wise, that is,

(a1, . . . , aN)′ · (b1, . . . , bN)′ ..= (a1b1, . . . , aNbN)′ .

By the principle of recursion, to define the NAV series over the entire oos period, it now

is sufficient to specify our ‘recipe’ for a generic date h > 1. Denote by Xt the NAV of

the portfolio at the end of day t where, of course, “net” also means “net of transaction

costs”. The transaction cost incurred at portfolio-selection date h is given by τh ·Xth−1

with τh given by (2.7). In an initial step, we derive a no-transaction-cost asset-value series

{X̃th , . . . , X̃th+20} as follows: Invest amount Xth according to weight vector wh at the

beginning of day th and let the portfolio run for 21 days, holding the number of shares

(rather then the portfolio weights) fixed:

∀j = 0, . . . , 20 X̃th+j = Xth−1 · w′h Πj
s=0(1 + rth+s) .

The NAV series is then defined as

∀j = 0, . . . , 20 Xth+j
..= X̃th+j − (τh ·Xth−1)

j + 1

21
.

This convention corresponds to paying off the transaction cost incurred evenly over the 21

days in the upcoming holding period.11

In this way, a NAV series {Xt}Tt=0 is obtained, with X0 = 1 by our above convention.

From the NAV series one then backs out the oos-ntc returns as follows:

∀t = 1, . . . T xt ..=
Xt

Xt−1

− 1 . (3.3)

The series {xt}Tt=1 then forms the basis for performance evaluation.

Last but not least, in this context we can also detail how w∗h is obtained, the vector of

portfolio weights at the end of holding period h:

w∗h ∝ wh · Π20
s=0(1 + rth+s) , (3.4)

where the symbol ∝ stands for “proportional to”; since the weights need to some up to

one, specifying the proportional weights is obviously sufficient.

11It is tacitly assumed here that no interest will be charged by paying off the cost over the 21 upcoming

days instead of paying it off in full ‘at once’ on date h.
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4 Empirical Study

4.1 Investment Strategies

We consider four portfolio formulations:

• GMV: (2.9) and (2.11).

• GMV-130-30: in addition (2.12) with κ = 1.6.

• Marko: (2.9)–(2.11).

• Marko-130-30: in addition (2.12) with κ = 1.6.

To judge the benefit of accounting for transaction-costs at the portfolio-selection stage,

the portfolios GMV and Marko are of leading interest us. Since portfolio managers in the

industry often face additional constraints, we also include the portfolios GMV-130-30 and

Marko-130-30 as a ‘real-life’ robustness check.

4.2 Estimators in the Horse Race

We consider two estimators Σ̂h of the covariance matrix Σh:

• NL: the static nonlinear shrinkage estimator of Ledoit and Wolf (2022b, Section

4.5), termed QIS (Quadratic-Inverse Shrinkage) estimator.

• DCC-NL: the dynamic multivariate GARCH estimator of Engle et al. (2019). Note

that we use the QIS estimator to estimate the correlation targeting matrix C instead

of the QuEST function; see their Section 3.3.

This is not to imply that they are ‘state of the art’, although the underlying papers

do provide evidence in this respect, but also because NL and DCC-NL are intrinsically

compatible for the apples-to-apples comparison of going from a static to a dynamic

estimation method ceteris paribus. In both cases we use the returns of the previous 1,260

days for the estimation.

As a simple-minded benchmark for the GMV portfolios, we include the equally-weighted

portfolio, called 1/N , which de facto assumes that the covariance matrix is proportional to

the identity matrix.
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The portfolios Marko and Marko-130-30 need an estimator µ̂h in addition. For simplicity

and reproducibility, we use the well-known momentum factor (or simply momentum for

short) of Jegadeesh and Titman (1993). For a given portfolio-selection date h and a given

stock, the momentum is the geometric average of the previous 252 returns on the stock

but excluding the most recent 21 returns; in other words, one uses the geometric average

over the previous ‘year’ but excluding the previous ‘month’. Collecting the individual

momentums of all the N stocks contained in the ‘new’ universe then yields µ̂h.

As a simple-minded benchmark for the Marko portfolios we include the equally-

weighted portfolio of the top-quintile stocks (according to momentum). This portfolio is

obtained by sorting the stocks, from lowest to highest, according to their momentum and

then putting equal weight on all the stocks in the top 20%, that is, in the top quintile. We

call this portfolio EW-TQ. We then use the value of bh implied for the EW-TQ portfolio

as input in the constraint (2.11), that is, bh is the average momentum of the stocks in the

EW-TQ portfolio.12

4.3 Performance Measurement

We report the following three out-of-sample performance measures for each scenario,

where the acronym oos-ntc stands for “out-of-sample and net-of-transaction-costs” and

the corresponding returns are defined in (3.3):

• AV: We compute the average of the 8,568 oos-ntc returns in excess of the risk-free

rate and then multiply by 252 to annualize.

• SD: We compute the standard deviation of the 8,568 oos-ntc returns in excess of

the risk-free rate and then multiply by
√

252 to annualize.

• SR: We compute the (annualized) Sharpe ratio as the ratio AV/SD.

As stated in the introduction, there are two possible goals for a backtest exercise:

(i) the evaluation of the quality of estimated input parameters (like Σ̂h) and (ii) the

evaluation of actual investment strategies. The goal in this paper is the second one and,

therefore, for all four portfolio formulations considered, the leading performance criterion

of interest is SR.13

12In this way, bh varies over time, as it makes sense to use a lower value for bh after a bear market

than after a bull market.
13As an example for the first goal, if one wants to evaluate the quality of a covariance matrix estimator Σ̂h,
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In addition, we report the following two summary statistics pertaining to the weight

vectors:

• TO: Average monthly turnover defined as 1
407

∑408
h=2 ||w∗h−1 − wh||1.

• GE: Average gross exposure defined as 1
408

∑408
h=1 ||wh||1.

4.4 Transaction-Cost Penalty

Our problem formulations account for transaction costs via the penalty parameter λ

in (2.9). Unfortunately, there is no theory dictating an ‘optimal’ choice of λ. Instead we

try out various values in a certain grid and report the various measures for each choice.

The grid considered is

λ ∈ {0, 2.5, 5, 7.5, 10, 15, 20, 50, 100} ,

where the choice λ = 0 corresponds to the status quo in the academic literature: Ignore

transaction costs at the portfolio-selection stage and simply pay them ‘after the fact’; as

we aim to show, doing so is sub-optimal with respect to SR. Although we cannot know ex

ante which value of λ will work well in a given scenario, we expect that ceteris paribus NL

will require a lower value of λ compared to DCC-NL, since NL incurs lower turnover; for

example, see De Nard et al. (2021, Tables A.2 and A.4).

Detailed results can be found in Tables B.1–B.4 in the appendix. In order to mitigate

the effects of “cherry picking” and “Monday-morning quarterbacking”, we limit ourselves

to picking a common ‘good’ value of λ across the four different portfolios considered for

each of the two covariance matrix estimators: NL and DCC-NL. The following general

findings can be observed.

• Increasing the penalty parameter λ reduces TO. This is a strict monotonic relation

which holds in every scenario, as can be anticipated from theory.

• Although the relation is not strictly monotonic, increasing λ tends to increase AV.

This makes sense, since penalizing transaction costs more reduces them, which

benefits the average return net of transaction costs.

the canonical method is as follows: Focus on the GMV portfolio without transaction costs, that is, portfolio

formulation (2.9) with λ = 0 and (2.11); use oos instead of oos-ntc returns, that is, ignore transaction

costs; then use SD as the leading performance criterion of interest.

18



• Although the relationship is not strictly monotonic, increasing λ tends to increase

SD. This makes sense, since the objective is to minimize the variance of the portfolio

return subject to a penalty on transaction costs; and the higher the penalty, the

less ‘leeway’ one has in achieving the objective of minimizing the variance.

• The previous two relations imply, on balance, an inverse-U-shaped (and thus concave)

relation between λ and SR: As λ increases, first SR rises and then it falls again. The

location of the ‘peak’ depends on the scenario and, in particular, on the choice of

the estimator of the covariance matrix. As expected, ‘good’ values of λ are larger

for DCC-NL compared to NL.

Based on these findings, we select λ = 5 for NL and λ = 10 for DCC-NL.

4.5 Results

Armed with these choices, for any portfolio formulation we now present the results for five

strategies: the simple-minded benchmark (1/N respectively EW-TQ), NL with penalty

parameters λ ∈ {0, 5}, and DCC-NL with penalty parameters λ ∈ {0, 10}. Further,

to keep the column labeling in the tables compact, we use the following conventions:

NLλ stands for using NL with penalty parameter λ, whereas DCC-NLλ stands for using

DCC-NL with penalty parameter λ. The results are presented in Tables 4.1 and 4.2.

Based on these tables, the following conclusions can be drawn:

• With a single exception (namely: NL-based GMV-130-30), penalizing the transaction

costs (that is, using λ > 0) results in a higher SR.

• As expected, the improvements are larger for DCC-NL, since this method results in

higher turnover, which ‘eats into’ the net returns more severely compared to NL if

one simply pays the transactions costs ‘after he fact’.

• In both cases, GMV and Marko, the ‘raw’ portfolios deliver better performance

compared to their 130-30 counterparts.14 But even for these counterparts choosing

λ > 0 is generally beneficial. Arguably, the ‘raw’ portfolios are not suitable for

14DeMiguel et al. (2009a) show that constraining portfolio norms (such as imposing a gross-exposure

constraint) improves performance when one uses the sample covariance matrix as the estimator of Σh.

But if one uses a sophisticated estimator instead, such as NL or DCC-NL, this is obviously no longer the

case.
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EW-TQ NL0 NL5 DCC-NL0 DCC-NL10

GMV Portfolio

AV 11.70 7.89 8.02 8.37 8.85

SD 18.55 8.44 8.51 7.05 6.38

SR 0.63 0.93 0.94 1.19 1.39

TO 0.10 1.00 0.30 2.46 0.76

GE 1.00 4.07 3.89 2.88 3.28

GMV-130-30 Portfolio

AV 11.70 8.28 8.16 7.98 8.45

SD 18.55 9.21 9.32 6.86 6.54

SR 0.63 0.90 0.88 1.16 1.30

TO 0.10 0.34 0.17 1.63 0.82

GE 1.00 1.60 1.60 1.60 1.60

Table 4.1: Annualized performance measures (in percent) for various estimators of the

GMV and GMV-130-30 portfolios. AV stands for average; SD stands for standard deviation;

and SR stands for Sharpe ratio. All measures are based on 8,568 daily out-of-sample

returns net of transaction costs and are in excess of the risk-free rate. Furthermore, TO

stands for average monthly turnover and GE stands for average gross exposure.

mainstream players in the industry, such as mutual fund managers, because of their

high (average) gross exposure, but they might still be suitable for specialized players

who run big leverage ratios, such as hedge-fund managers.

• Although even for λ = 0 DCC-NL outperforms NL already, the improvement

generally increases for λ > 0. For the GMV portfolio the improvement increases

from 0.26 to 0.45 percentage points, whereas for the Marko portfolio it increases

from 0.17 to 0.25 percentage points. There are similar improvements as one moves

from the ‘raw’ portfolios to their 130-30 counterparts: from 0.26 to 0.42 percentage

points for the GMV-130-30 portfolio and from 0.25 to 0.27 percentage points for the

Marko-130-30 portfolio.

• For all four portfolio formulations, the winner is always the DCC-NL method with

λ = 10. In particular, for the GMV and Marko formulations, this method more

than doubles the SR of the simple-minded benchmark 1/N respectively EW-TQ.
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EW-TQ NL0 NL5 DCC-NL0 DCC-NL10

Marko Portfolio

AV 13.70 9.82 10.47 9.39 10.06

SD 21.72 9.69 9.85 7.98 7.65

SR 0.63 1.01 1.06 1.18 1.31

TO 0.56 1.44 0.61 2.80 1.04

GE 1.00 4.47 4.39 3.40 3.81

Marko-130-30 Portfolio

AV 13.70 9.79 9.99 9.26 9.47

SD 21.72 11.57 11.63 8.39 8.41

SR 0.63 0.85 0.86 1.10 1.13

TO 0.56 0.80 0.60 1.67 1.10

GE 1.00 1.60 1.60 1.60 1.60

Table 4.2: Analogous to Table 4.1 but now for the Marko and Marko-130-30 portfolios.

DeMiguel et al. (2009b) study various portfolio-selection strategies based on

estimated input parameters and conclude that “none is consistently better than the

1/N rule [net of transaction costs]”. We beg to differ.15

Remark 4.1 (Addressing statistical significance). Practitioners may wonder whether it

is worth it to upgrade from the static estimator NL to the dynamic estimator DCC-NL.

In addition to looking at the sample-based SR numbers, which are always higher for

DCC-NL, one can also use formal hypothesis testing to address this question. For each

of the four problem formulations, we can compute a p-value for the null hypothesis

of equal (population) Sharpe ratios for two comparisons: comparing the two methods

with λ = 0 and comparing the two methods with their respective ‘good’ value of λ,

that is, λ = 5 respectively λ = 10. In other words, does taking transaction costs into

account at the portfolio-selection stage (λ > 0) lead to increased statistical significance

compared to simply paying them ‘after the fact’ (λ = 0)? To this end, for each of the

eight comparisons, we compute a two-sided p-value with the HAC method of Ledoit and

15Part of the reason is that they consider an unduly large transaction cost of 50 bps (constant across

stocks); such a cost may have been realistic decades ago but it is no longer anywhere near the costs

investors face today. Another part of the reason is the particular list of strategies the authors consider,

for reasons not clear, leaves out some promising contenders.
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Wolf (2008, Section 3.1).16

The results are presented in Table 4.3. One can see that for each of the four portfolio

formulations, there is indeed increased statistical significance as one moves from λ = 0

to λ > 0; in particular, there is one formulation (Marko) where one moves from “no

significance” to “significance at the 5% level”.

Portfolio λ = 0 λ > 0

GMV 0.04 0.00

GMV-130-30 0.01 0.00

Marko 0.12 0.02

Marko-130-30 0.02 0.01

Table 4.3: p-values for the null hypothesis of equal Sharpe ratios of the respective NL and

DCC-NL methods. The column labeled “λ = 0” compares NL and DCC-Nl both with

λ = 0, whereas the column labeled “λ > 0” compares NL with λ = 5 and DCC-NL with

λ = 10.

Remark 4.2 (Selecting λ for other strategies). It should be clear that a ‘good’ value

of the transaction-cost penalty parameter λ is important. If, for a given scenario, one

considers SR as a function of λ, then the good news is that based on our (necessarily

limited) results, the function is rather flat near its ‘peak’ so that the exact choice of λ

is not overly critical, as long as one gets the ‘neighborhood’ right. A partial backtest

based on old data should provide enough guidance to pick a useful λ. Generally speaking,

the more dynamic the covariance matrix estimator, the more we want to throttle down

turnover by boosting up the λ penalty parameter, and the numbers we use above can

serve as guidance. Alternatively, in practical applications, the portfolio manager can

work backwards from an average turnover rate that he/she is comfortable with, and

reverse-engineer through trial-and-error the value of λ that delivers it.

5 Conclusion

In this paper, we have proposed a method to account for transaction costs at the portfolio-

selection stage in the context of Markowitz portfolio selection. Doing so increases the

16In particular, we use the pre-whitened version based on the QS kernel.
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Sharpe ratio of the returns net of transaction costs compared to the status quo in the

literature which amounts to ignoring the transaction costs at the portfolio-selection stage

and simply paying them ‘after the fact’. Importantly, and also deviating from the status

quo in the literature, we incorporate the fact that transaction costs are stock-specific

instead of taking the easy route of assuming them to be equal. The benefit of our proposal

is especially pronounced if dynamic estimators of the covariance matrix are used as inputs

in the Markowitz formulations. The reason is that dynamic estimators, although being

more accurate, typically generate higher turnover compared to static estimators and,

therefore, investment strategies based upon them suffer more from transaction costs. We

hope that our proposal will be of future use to anyone interested in devising Markowitz

portfolio-selection strategies that have desirable performance net of transaction costs.

Even though the focus of this paper has been more on the covariance matrix, an

obvious avenue for future research is to use the technology introduced here to further ‘tame

the factor zoo’ (Feng et al., 2020) by weeding out those alphas that are over-dependent

on high-t-cost stocks and turn over too much to pay for themselves — but only those. In

this context, ignoring t-costs is too lenient, whereas charging a constant t-cost to every

stock is unrealistic, so our method is the suitable ‘scalpel’.
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A Non-Markowitz Approaches

A.1 Post-Processing the Standard Markowitz Solution

As a representative example of this category, Frahm and Memmel (2010) estimate the

unconstrained GMV portfolio, which is the portfolio given by (2.1) and (2.3), dropping

the constraint (2.2). This problem has the following analytical solution:

wGMV =
1
′Σ−1

1′Σ−11
.

Denote the sample covariance matrix by S. Then the corresponding plug-in solution is

given by

ŵ =
1
′S−1

1′S−11
.

(Here we tacitly assume that the number of observations exceeds the number of stocks,

since otherwise S is not invertible.) Unless the number of stocks is very small relative to

the number of observations, this solution is know to have poor oos performance. Frahm

and Memmel (2010) propose to modify it as follows:

ŵmod ..= αwEW + (1− α)ŵ where wEW ..= (1/N, . . . , 1/N)′ .

Therefore, the proposed modification is a convex combination of the equally-weighted

(or 1/N) portfolio and the sample-based solution ŵ; another way to look at it is that the

sample-based solution ŵ is linearly ‘shrunk’ towards the 1/N portfolio. In practice, one

has to work out an ‘optimal’ choice of the shrinkage intensity α ∈ [0, 1] and Frahm and

Memmel (2010) offer a corresponding solution.

A.2 Specifying a Different Optimization Program

As a representative example of this category, consider the following problem formulation:

max
w∈RN

w′µ (A.1)

subject to w′Σw ≤ σ2 , (A.2)

where σ2 is an upper bound on the portfolio variance. This problem has the following

analytical solution:

wSR ..=
σ√
θ

Σ−1µ where θ ..= µ′Σ−1µ . (A.3)
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(When the returns are expressed in excess of the risk-free rate, (A.3) is also known as

the maximum Sharpe ratio (MSR) portfolio.) The standard feasible solution would be to

plug in the sample mean vector for µ and the sample covariance matrix for Σ in (A.3);

but, as discussed before, the resulting portfolio performs poorly out of sample. Instead

the proposal of Ao et al. (2019) works as follows. First, the problem (A.1)–(A.2) can be

re-expressed as an unconstrained population regression problem. Second, the population

regression problem can be approximated by a sample analog (based on past observations).

Third, the regression problem involves the unknown parameter θ which (under normality)

can be estimated in an unbiased fashion as

θ̂ ..=
(T −N − 2)θ̂s −N

T
, (A.4)

where T denotes the number of observations, N denotes the number of stocks and θ̂s is the

sample analog of θ. Fourth, the sample analog of the regression problem is estimated via

the LASSO instead of OLS. A crucial feature is that at the end of the day no sophisticated

estimators of µ and Σ are needed.

A.3 Overall Appraisal

Empirical studies have shown that Non-Markowitz avenues also enjoy improved oos

performance compared to standard plug-in solutions based on sample analogs. But there

are three (potential) issues. First, many such proposals do not work when N > T , that is,

when there are more stocks than past observations. Second, it is not always clear how

to incorporate additional constraints. Third, it is not always clear how to account for

transaction costs. Let us illustrate these problems using the two examples from above:

• The method of Frahm and Memmel (2010) cannot be used when N > T , since it

requires the sample covariance matrix to be of full rank. Also it does not seem

possible to incorporate additional constraints or to account for transaction costs in

any meaningful way.

• The method of Ao et al. (2019) also cannot be used when N > T , since then the

formula (A.4) results in a negative estimator θ̂. Incorporating additional constraints

seems possible ‘mechanically’ in the final step of their method (estimating a sample-

based regression problem via the LASSO) but it is not clear whether the original
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constraint (A.2) on the portfolio variance will be preserved in this way; a similar

concern applies to accounting for transaction costs.

By contrast, the avenue described in Section 2.4.1 (Markowitz with smart imputs) can

(i) be used when N > T (as long as the estimator of Σ is positive definite, which all

sophisticated estimators achieve) and (ii) incorporate additional constraints and account for

transaction costs while preserving the original constraints. Therefore, the non-Markowitz

avenue seems less promising for realistic dynamic portfolio management strategies.
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B Additional Tables

λ 0 2.5 5.0 7.5 10 15 20 50 100

GMV Portfolio: NL

AV 7.89 8.02 8.02 7.98 7.97 7.97 7.86 7.90 8.42

SD 8.44 8.47 8.51 8.58 8.64 8.79 8.91 9.59 10.29

SR 0.93 0.95 0.94 0.93 0.92 0.91 0.88 0.82 0.82

TO 1.00 0.43 0.30 0.24 0.20 0.16 0.13 0.07 0.05

GE 4.07 3.98 3.89 3.79 3.70 3.53 3.41 3.00 2.71

GMV Portfolio: DCC-NL

AV 8.37 8.60 8.78 8.84 8.85 9.01 9.29 9.14 8.97

SD 7.05 6.57 6.39 6.36 6.38 6.47 6.56 7.13 7.76

SR 1.19 1.31 1.37 1.39 1.39 1.39 1.42 1.28 1.16

TO 2.46 1.41 1.05 0.87 0.76 0.62 0.54 0.34 0.25

GE 2.88 2.93 3.07 3.18 3.28 3.41 3.49 3.73 3.68

Table B.1: Annualized performance measures (in percent) for various estimators of the

GMV portfolio. AV stands for average; SD stands for standard deviation; and SR stands

for Sharpe ratio. All measures are based on 8,568 daily out-of-sample returns net of

transaction costs and in excess of the rsik-free rate. Furthermore, TO stands for average

monthly turnover and GE stands for average gross exposure.

4



λ 0 2.5 5.0 7.5 10 15 20 50 100

GMV-130-30 Portfolio: NL

AV 8.28 8.18 8.16 8.13 8.16 8.08 8.01 8.25 8.50

SD 9.21 9.25 9.29 9.32 9.36 9.43 9.49 9.86 10.36

SR 0.90 0.88 0.88 0.87 0.87 0.86 0.84 0.84 0.82

TO 0.34 0.22 0.17 0.15 0.13 0.11 0.10 0.07 0.05

GE 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.59 1.57

GMV-130-30 Portfolio: DCC-NL

AV 7.98 8.29 8.40 8.45 8.45 8.43 8.47 8.37 8.28

SD 6.86 6.70 6.61 6.54 6.52 6.52 6.56 6.93 7.43

SR 1.16 1.24 1.27 1.29 1.30 1.29 1.29 1.21 1.12

TO 1.63 1.26 1.05 0.91 0.82 0.70 0.61 0.39 0.27

GE 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.59

Table B.2: Annualized performance measures (in percent) for various estimators of the

GMV-130-30 portfolio. AV stands for average; SD stands for standard deviation; and

SR stands for Sharpe ratio. All measures are based on 8,568 daily out-of-sample returns

net of transaction costs and in excess of the rsik-free rate. Furthermore, TO stands for

average monthly turnover and GE stands for average gross exposure.
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λ 0 2.5 5.0 7.5 10 15 20 50 100

Marko Portfolio: NL

AV 9.82 10.37 10.47 10.51 10.57 10.64 10.72 11 10.62

SD 9.69 9.74 9.85 9.95 10.07 10.31 10.55 11.74 13.14

SR 1.01 1.06 1.06 1.06 1.05 1.03 1.02 0.94 0.81

TO 1.44 0.81 0.61 0.51 0.45 0.38 0.34 0.25 0.21

GE 4.47 4.42 4.39 4.38 4.36 4.35 4.34 4.44 4.73

Marko Portfolio: DCC-NL

AV 9.39 9.79 10.05 10.03 10.06 10.14 10.31 10.92 11.11

SD 7.98 7.74 7.65 7.66 7.70 7.91 8.14 9.02 10.18

SR 1.18 1.27 1.31 1.31 1.31 1.28 1.27 1.21 1.09

TO 2.80 1.76 1.37 1.17 1.04 0.88 0.79 0.56 0.45

GE 3.40 3.44 3.57 3.70 3.81 4.00 4.15 4.70 5.17

Table B.3: Annualized performance measures (in percent) for various estimators of the

Marko portfolio. AV stands for average; SD stands for standard deviation; and SR stands

for Sharpe ratio. All measures are based on 8,568 daily out-of-sample returns net of

transaction costs and in excess of the rsik-free rate. Furthermore, TO stands for average

monthly turnover and GE stands for average gross exposure.
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λ 0 2.5 5.0 7.5 10 15 20 50 100

Marko-130-30 Portfolio: NL

AV 9.79 9.88 9.99 10.09 10.14 10.28 10.35 11.11 11.55

SD 11.57 11.59 11.63 11.67 11.73 11.83 11.94 12.56 13.48

SR 0.85 0.85 0.86 0.86 0.87 0.87 0.87 0.88 0.86

TO 0.80 0.68 0.60 0.54 0.49 0.43 0.39 0.29 0.23

GE 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.59 1.57

Marko-130-30 Portfolio: DCC-NL

AV 9.26 9.33 9.45 9.46 9.47 9.49 9.53 9.59 10.31

SD 8.39 8.38 8.38 8.40 8.41 8.46 8.51 9.34 10.28

SR 1.10 1.11 1.13 1.13 1.13 1.12 1.12 1.03 1.00

TO 1.67 1.45 1.30 1.19 1.10 0.98 0.90 0.65 0.51

GE 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.59 1.58

Table B.4: Annualized performance measures (in percent) for various estimators of the

Marko-130-30 portfolio. AV stands for average; SD stands for standard deviation; and SR

stands for Sharpe ratio. All measures are based on 8,568 daily out-of-sample returns net

of transaction costs and in excess of the rsik-free rate. TO stands for average turnover

and GE stands for average gross exposure.
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