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Abstract

This paper studies random vectors X featuring symmetric distributions in that i) the order of the random

variables in X does not affect its distribution, or ii) the distribution of X is symmetric at zero. We derive a

number of characterization results for such random vectors, thereby connecting the distributional symmetry

to various notions of how (Euclidean) functions have been regarded as symmetric. In addition, we present

results about the marginals and conditionals of symmetrically distributed random vectors, and apply some

of our results to various transformations of random vectors, e.g., to sums or products of random variables,

or in context of a choice probability system known from economic models of discrete choice.
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1 Introduction

The symmetry of certain shapes or functions have pervaded the mathematical profession and related fields, such

as geometry, crystallography, quantum mechanics, statistics or economics. In probability theory, the notion of

symmetry mostly pertains to the distribution of some random variable (RV). The Normal distribution, Student’s

distribution, the Uniform or the Logistic distribution all are examples of distributions that are symmetric around

some x ∈ R. Among such RV’s, those that are zero symmetric embody a strong notion of unbiasedness of the

distribution: They have a zero mean (if it exists), and always display equal tail probabilities P (X ≤ x) =

P (X ≥ −x), which is a helpful property, e.g., to statistics or econometrics for doing inference.

Regarding random vectors X = (X1, ..., Xn), there are multiple ways how the respective distributions could

be called symmetric. First, one can generalize the notion of zero symmetry to hold for some or all component

RV’s ofX. However, as these RV’s can be correlated – an important general aspect of the distributions of random

vectors – it is not obvious in general how the zero symmetry of the various RV’s in X matter for the overall zero

symmetry of X itself. Second, another intuitive notion of symmetry concerns the order of the random variables

(RV’s) constituting X, asking whether one can permute these RV’s without altering the distribution of X. This

is a reasonable property if one thinks of the RV’s in X as representing different observations from a random

sample. Symmetry in this sense then states that the sampling order itself should not have any predictive power.

This is evidently the case if one is willing to assume that the RV’s in X are iid, as is a standard supposition in

applied statistics and econometrics. But what if the various independent RV’s fail to be identically distributed,

or if at least some RV’s are correlated?

While the symmetry of random variables or vectors matters in fields as diverse as algebraic theory, crystal-

lography, quantum mechanics, statistics or economics, the definite connections between the various ways how

functions have been called “symmetric” and the symmetry of related distributions has not been comprehensively

unfolded yet, to our knowledge. With this note, we aim at making the corresponding picture more complete.

In particular, we provide a number of characterization results for the above two notions of symmetric random

vectors, e.g., in terms of CDF’s, Characteristic Functions or PDF’s, thereby relating the distributional sym-

metry to the symmetry of certain functions. Further, we are interested in transformations that preserve the

relevant symmetry of the random vectors, and correspondingly consider marginal and conditional distributions,

respectively. In addition, we identify a simple class of Euclidean functions – those featuring center symmetric

transformations – that preserves the zero symmetry of any random vector. This result is powerful enough to

conclude that various important transformations, such as (weighted) sums or certain products of RV’s from a

zero symmetric random vector will retain the zero symmetry as its key property.

To provide a more elaborated example for the latter, applied economics frequently depicts choice as select-

ing one of n ∈ N different products, where tastes (i.e., individual preferences) are dispersed over a consumer

population of, say, measure one. Let n = 2 for the sake of illustration, and suppose that consumer valuation for
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products j = 1, 2 is Uj = qj−pj+Xj , where pj > 0 is the price of the product, qj ≥ 0 is product quality, and Xj

is an RV expressing how well product j matches consumers’ tastes. Thus, consumer tastes are distributed over

the population according to the random vector X = (X1, X2), defined on some probability space (Ω,F , P ). It

follows that utilities themselves are dispersed according to a random vector (U1, U2).
1 Ignoring the possibility

of binding budget constraints, a rational consumer chooses option j if Uj = max{U1, U2}. Thus, the choice

probability for, say, option j = 1 (or the fraction of consumers who choose j = 1) is P1 = P (U2 − U1 ≤ 0).

Plugging in the definition of Uj reveals that P1 depends decisively on the distribution of valuation differences

Y1 ≡ (X2 −X1) for given prices and qualities, as P1 = P (Y1 ≤ w1), w1 ≡ (a1 − a2) + (p2 − p1). In applications,

the literature frequently assumes that tastes X1, X2 are independent and zero symmetric, which is a strong

form of assuring that tastes are unbiased within the consumer population.2 It is an exercise to see that if tastes

X1, X2 are independent and zero symmetric, then the difference distribution Y1 must also be zero symmetric for

j = 1, 2, meaning that rational choices must also reflect the unbiasedness of tastes. For example, for equal prices

and qualities, each firm gets exactly half of the consumer population. Likewise, for given prices and quality

levels, a permutation of the firm index just permutes the respective choice probabilities, reflecting that no firm

has an unilateral advantage in terms of consumer-side willingness-to-pay. But what if X1 and X2 are correlated?

Would this not generally imply that the difference distribution Y1, and hence the choice probability system,

could feature some form of bias towards a certain product, which reflects the correlation structure? The answer

to this question is a direct corollary to one of the transformation theorems in this paper. In particular, we show

that even if n ≥ 2 and we do not restrict the correlation of the RV’s in X = (X1, ..., Xn) other than possibly

by the requirement of zero symmetry, the difference distributions Y1, ..., Yn must always be zero symmetric as

well. Thus zero symmetry of the taste distribution X is all that is needed to assure that the correlation among

the Xj ’s washes out.
3

The paper is structured as follows. Section 2 introduces the relevant concepts from probability theory, in

particular the two symmetry notions for random vectors outlined above (Section 2.1), and the symmetry notions

for functions we require (Section 2.2). The main results are in Section 3. We present various characterization

results for symmetric random vectors (Section 3.1), and derive analogous results for the marginal and conditional

distributions in Section 3.2. Finally, Section 3.3 shows that zero symmetry is preserved under arbitrary center

symmetric transformations and discusses various implications, including our motivational example of unbiased

1Such Random Utility Models generally allow for two possible interpretations (Anderson et al., 1992). In the first, one thinks of
modeling the choice of a single consumer, about whose precise tastes the observer (e.g., the econometrician) has limited information
(see Manski, 1977 for a discussion). This is frequently the relevant interpretation when estimating discrete choice models. In the
second, one thinks of a continuum of consumers with tastes distributed according to X over the consumer population. Then, X
can reflect some form of “locational” allocation of consumers and products across a metric space (or a preference space) as well as
imperfect cognitive abilities of consumers.

2This does not mean that the two products must be symmetric. It can well be that, ceteris paribus, one product is more
preferred than the other as it features a higher exogenously given quality. In fact, assuming iid zero symmetric RV’s X1, X2 with
exogenously given quality levels (q1, q2) is equivalent to assuming iid RV’s which are symmetric at (q1, q2).

3Allowing that the RV’s in X can be correlated is vital in that if valuations Uj are micro-founded by some form of locational
model – such as a Salop circle – then the corresponding random utility model naturally features correlated tastes; see, e.g., Hefti
et al. (2022).
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choice probability systems. Longer proofs are in Appendix A.1.

2 Basic Definitions and Concepts

Consider the measurable space (Rk,Bk), where Bk denotes the Borel field on Rk. We denote the elements of

Rk as k-vectors x = (x1, ..., xk). A measurable measurable function g from (Rn,Bn) to (Rm,Bm) is a Borel

function. Whenever the domain of g is S ⊂ Rn, we assume that S ∈ Bn and also call g a Borel function. With

respect to probability, we need the following standard notions. Let Ω be a non-empty set, and (Ω,F , P ) is a

probability space. A measurable function X : Ω → Rn is a random vector with distribution dFX on (Rn,Bn); if

n = 1 then X is a random variable (RV). Recall that the distribution dFX of a random vector X is characterized

by its Cumulative Distribution Function (CDF) FX : Rn → R, F (x) ≡ dFX ((−∞, x]), by its Characteristic

Function (ChF) φX : Rn → C, φX(t) ≡ E
[
eit·X

]
, or by its Moment Generating Function (MGF) mX : Rn → R,

mX(t) ≡ E
[
et·X

]
, provided that the latter expectation exists. Finally, two random vectors X,Y are equal in

distribution, written as X
d
=Y , if they have the same distribution (dFX(B) = dFY (B) ∀B ∈ Bn).

2.1 Symmetric Random Vectors: Exchangeability and Zero Symmetry

We next introduce the two notions of symmetric random vectors outlined in the introduction. Our first notion

– exchangeability – states that the distribution dFX of a random vector X = (X1, ..., Xn) is invariant to the

“order” of the random variables X1, ..., Xn.

Definition 1 (Exchangeability) A random vector X = (X1, ..., Xn) is ij-exchangeable if

(X1, ..., Xi, ..., Xj , ..., Xn)
d
=(X1, ..., Xj , ..., Xi, ..., Xn).

If X
d
=σ(X) ≡ (Xσ(1), ..., Xσ(n)) for every permutation σ of the set {1, .., , n}, then X is exchangeable.

If X is an exchangeable random vector, then every possible way how the RV’s X1, ..., Xn can be written as

a k-vector yields one and the same distribution. In this sense, an exchangeable random vector features an

irrelevance of order of its constituting random variables.

Our second notion of symmetry – zero symmetry – captures the notion of unbiasedness of a random vector

X suggested by the introduction.

Definition 2 (Zero Symmetry and Axial Symmetry) A random vector X is zero symmetric if X
d
=−X.

Further, if X satisfies (X1, ..., Xi, ..., Xn)
d
=(X1, ...,−Xi, ..., Xn), then X is i-axially symmetrically distributed.

Finally, X is axially symmetrically distributed if X is i-axially symmetrically distributed for every i = 1, ..., n.
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A zero symmetric random vector is unbiased in the sense that its positive and negative values are equally

likely. Likewise, if X is i-axially symmetrically distributed, then flipping the sign of the RV Xi does not affect

the distribution of X. Put differently, if X is i-axially symmetrically distributed, then the RV Xi is zero

symmetric. However, it may be of interest to observe that a zero symmetric random vector may fail to be

axially symmetrically distributed, while axial symmetry always assures zero symmetry (see below). Further,

our focus on zero symmetric random vectors is without loss in the followings sense. If X is zero symmetric,

then Y ≡ X + a is a-symmetric, for any given a ∈ Rn , in that (Y − a)
d
=(a− Y ). In reverse, any a-symmetric

random vector Y can always be decomposed as Y = X + a, where X is zero symmetric.

2.2 Symmetric Functions

The above two symmetry definitions pertain to aspects of the distribution of a random vector. By contrast, the

following symmetry notions pertain to functions. As we shall see, the various symmetry notions will be tightly

related to each other. Let S ⊂ denote a nonempty subset of Rn, and g : S → Rm be a function. We call a

function g exchangeable if the value of this function is invariant to arbitrary permutations of its entries, e.g., if

g(x1, x2) = g(x2, x1) everywhere.

Definition 3 (Exchangeable Functions) A function g : S → Rm is ij-exchangeable if

g(x1, ..., xi, ..., xj , ..., xn) = g(x1, ...., xj , ..., xi, ...., xn) on S. If

g(x1, ..., xi, ..., xn) = g(xσ(1), ...., xσ(i), ...., xσ(n))

holds on S for any permutation σ of (1, ..., n), then g is an exchangeable function.

In words, ij-exchangeability states that we can exchange the values of the i-th and j-th projection with each

other without altering the value of g. Geometrically, this means that, for each coordinate function gi of g and

fixed values of xk ∀k ̸= i, j, the level sets of gi are symmetric at the 45-degree line in the ij-plane (see Figure

1). Another well-known type of symmetry occurs if g is symmetric with respect to some coordinate axis.

Definition 4 (Axial Symmetry) A function g : S → Rm is i-axially symmetric if g(x1, ..., xi, ..., xn) =

g(x1, ...,−xi, ..., xn) on S. Further, g is axially symmetric if g is i-axially symmetric for all i = 1, ..., n.

If g is i-axially symmetric, this geometrically means that the level sets of g are rotated around the i-th coordinate

axis (see Figure 1). If m = 1, a function g which is axially symmetric has sometimes been called an even

symmetric function. Note that g is zero symmetric, i.e., g(x) = g(−x) for all x ∈ S, whenever g is axially

symmetric, while the converse does not hold. 4

4For instance, the function g(x1, x2) = x1x2 verifies g(−x) = g(x) on R2, while it is not 1-axially symmetric.
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As for our last notion of symmetry, a function may also be symmetric with respect to some point a ∈ Rn,

where the case a = 0 will be of relevance to us.

Definition 5 (Center Symmetry) A function g : S → Rm is center symmetric if g(−x) = −g(x) on S.

A function that is center symmetric is reflection symmetric at the origin. If m = 1, a center symmetric function

sometimes has been called an odd symmetric function, or a parity inversion in quantum mechanics. For m > 1,

observe that g is center symmetric if and only if each of its coordinate functions gi, i = 1, ...,m is center

symmetric.

It is easy to gauge that exchangeability, axial symmetry and center symmetry are different properties. Figure

1 depicts three different functions defined on S = [−1, 1]× [−1, 1]. The function in Panel A is exchangeable and

zero symmetric (i.e. g(x) = g(−x)), but it is not i-axially symmetric for i = 1, 2 and also not center symmetric.

The function in Panel B is exchangeable, axially symmetric and zero symmetric but not center symmetric.

Finally, the function in Panel C is not exchangeable, 1-axially symmetric but not 2-axially symmetric, and

center symmetric.

While the notions of center symmetry and axial symmetry are different, they are related in the following

sense. If g is a center symmetric C1-function, then the points x and −x must have the same derivative, i.e.,

Dg(x) = Dg(−x). Put differently, the derivative function Dg of a center symmetric function itself must be

axially symmetric. This also implies that g has one and the same directional derivative at the points x and −x,

i.e., Dvg(x) = Dvg(−x). If g is real-valued, this geometrically implies that the level sets at the point −x can

be obtained from the ones at x by rotating the latter around the origin, where however the gradients at x and

−x, respectively, are not rotated but rather point in the same direction (see Figure 1). We use this occasion to

establish the converse of the above derivative condition.

Proposition 1 Let M be open and convex. A C1-function h : M → Rm is a translated version of a center

symmetric function g : M → Rm, i.e., h(x) = g(x) + c for some c ∈ Rm, if and only if the derivative of h is

zero symmetric, i.e., Dh(−x) = Dh(x) on M .

3 Main Results

3.1 Symmetric Random Vectors: Characterization Results

We first present various characterizations for our two notions of symmetric random vectors
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Panel A
𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 = 𝑥𝑥1𝑥𝑥2

Panel B
𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 = 𝑥𝑥12 + 𝑥𝑥22

Panel C
𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 = 𝑥𝑥12𝑥𝑥2

Figure 1: Symmetric Functions

3.1.1 Exchangeable Random Vectors

Let X = (X1, ..., Xn) be a random vector. It is easy to see that if all RV’s constituting X are iid, then X

must be exchangeable.5 If one thinks of such RV’s as iid observations from a random n-sample, exchangeability

simply paraphrases the standard premise of applied statistics that the sampling order of the observations should

be irrelevant for probabilistic considerations. One of the conclusions in this section is that the converse of this

statement is false, as the“irrelevance of sampling order” can hold even if there is correlation among the RV’s

in X. We begin by establishing equivalence between exchangeability of a random vector and exchangeability of

important related functions.

Proposition 2 Let X be a random vector. The following statements are equivalent: 1) X is ij-exchangeable,

2) FX(x) is ij-exchangeable, 3) φX(t) is ij-exchangeable, 4) mX(t) is ij-exchangeable (if mX(t) exists).

If X allows for a density function, then a similar result holds:

Corollary 1 Suppose that X = (X1, ..., Xn) is either a discrete random vector or absolutely continuous with

respect to Lebesgue measure. Then X has a density function fX(x), and X is ij-exchangeable if and only if fX

is ij-exchangeable almost everywhere. In addition, if the density fX(x) is ij-exchangeable almost everywhere,

then fX(x) also is a density for the random vector where Xi and Xj have been permuted.

The next result shows that for a random vector X to be exchangeable it is necessary and sufficient that one can

permute any two arbitrary RV’s in X without changing dFX . It formally rests on the following Lemma, stating

that any permutation of a finite set can be decomposed into at most (n− 1) binary permutations.

5If the RV’s in X are only independent but not identically distributed, X will not be exchangeable in general.
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Lemma 1 Let σij denote the permutation of (1, ..., n) that only exchanges i with j, and σ(1, ..., n) ≡ (σ(1), ..., σ(n))

be an arbitrary permutation of (1, ..., n). Then σ(1, ..., n) = σ(n−1)σ(n−1) ◦ ... ◦ σ2σ(2) ◦ σ1σ(1)(1, ..., n)

Corollary 2 A random vector X is exchangeable if and only if X is ij-exchangeable for every i, j ∈ {1, ..., n}.

By Corollary 2, we can directly use the characterizations in Proposition 2 and Corollary 1 to check whether X

is exchangeable by verifying, e.g., whether FX , φX etc. are ij-exchangeable for any index pair (i, j). Moreover,

exchangeability by no means requires that the RV’s in X must be iid. To illustrate, suppose that X =

(X1, X2, X3) has a (Lebesgue-) density fX(x1, x2, x3) = 2
3 (x1 + x2 + x3) with support supp(X) = [0, 1] ×

[0, 1]× [0, 1]. While the RV’s in X are not iid, X still is exchangeable as the density fX is ij-exchangeable for

every pair (i, j).

We end this section with a remark on the expectation and covariance, respectively, of an ij-exchangeable

random vector.

Proposition 3 Let X be ij-exchangeable and Y be the correspondingly permuted random vector. Then, E[Xi] =

E[Xj ] and Cov(Xi, Xk) = Cov(Xj , Xk) for every k = 1, ..., n, whenever the respective expressions exist.

Proof: The first claim follows as X
d
=Y ⇒ E[X] = E[Y ] (provided that the expectation exists). Recall that

Cov(Xh, Xk) = E [(Xh − E[Xh])(Xk − E[Xk])]. Using the Borel function fi(x1, ..., xn) ≡ (xi − E[Xi])(xk −

E[Xk]) for some k = 1, ..., n, and the fact that fi(X)
d
= fi(Y ), yields Cov(Xi, Xk) = E[fi(X)] = E[fi(Y )] =

Cov(Xj , Xk). ■

It readily follows from Proposition 3 that E[X] = (E[X1], E[X1], ..., E[X1]) for an exchangeable random vector.

As V ar(X) is the symmetric n×n matrix with the covariances Cov(Xh, Xk) as its entries, Proposition 3 further

shows that if X is exchangeable, then V ar(X) must be a perfectly symmetric matrix in that all entries of its

diagonal (the variances) are the same, and all entries of its off-diagonal are also the same (but not necessarily

equal to zero).

3.1.2 Zero Symmetric Random Vectors

We next derive characterization results for axially symmetrically distributed and zero symmetric random vectors.

Proposition 4 Let X be a random vector. The following statements are equivalent: 1) X is i-axially symmet-

rically distributed, 2) φX(t) is i-axially symmetric, 3) mX(t) is i-axially symmetric (if mX(t) exists).

Similar to ij-exchangeability, the notion of a random vector with an i-axially symmetrical distribution has a

direct connection to i-axial symmetry of the ChF. Further, ifX is an RV it is well known thatX is zero symmetric
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if and only if its ChF is real-valued. The following result summarizes the straightforward generalization to the

case of zero symmetric random vectors.

Proposition 5 A random vector X is zero symmetric if and only if φX(t) = φX(−t) for every t ∈ Rn, or

equivalently if and only if φX(t) is a real-valued function.

Proof: For any t ∈ Rn, we have φ−X(t) = φX(−t). Thus φX(t) = φ−X(t), i.e., X
d
=−X, iff φX(t) = φX(−t)

∀t. The remaining equivalence follows from the fact that φ−X(t) = φX(t) (complex conjugate of φX(t)) for any

t ∈ Rn. Thus φX(t) is real-valued, i.e., φX(t) = φX(t), iff φX(t) = φX(−t) ∀t. ■

We next establish that every axially symmetric random vector must also be zero symmetric.

Proposition 6 Let X be axially symmetrically distributed. Then X is zero symmetric, and also X
d
=Y , where

Y coincides with X except for the fact that one or more random variables of X enter Y with negative sign.

Note that zero symmetry of X is, in general, weaker than X being i-axially symmetrically distributed for all i;

an example is presented after Corollary 4 below.

There is no general analogue between axial or zero symmetry of a random vector and its CDF, in contrast

to what we found for exchangeability. However, for the special case where the RV’s in X are independent, the

following result applies.

Proposition 7 Let X = (X1, ..., Xn) consist of n independent RV’s. Then X is zero symmetric if and only if

∏n

i=1
Fi(xi) =

∏n

i=1

(
1− lim

si↑(−xi)
Fi(si)

)
(1)

If, in addition, X is a continuous random vector, then X is zero symmetric if and only if
∏n

i=1 Fi(xi) =∏n
i=1(1− Fi(−xi)).

Proof: By independence, FX(x) =
∏n

i=1 Fi(xi) and F−X(x) = P (X ≥ −x) =
∏n

i=1 P (Xi ≥ −xi), where

P (Xi ≥ −xi) = 1−P (Xi < −xi) and P (Xi < −xi) = 1− lim
si↑(−xi)

Fi(si) (left-side limit). Thus FX(x) = F−X(x)

iff condition (1) holds. The last claim follows from P (Xi < −xi) = P (Xi ≤ −xi) if X is continuous. ■

Proposition 7 includes n = 1 as a special case: If X is an RV, then X is zero symmetric if and only if its CDF

satisfies FX(x) + (1− lim
s↑(−x)

FX(s)) = 1 for all x. Further, if X is continuous and zero symmetric because X is

axially symmetrically distributed, the following result holds:

Proposition 8 If X = (X1, ..., Xn) is continuous and axially symmetrically distributed, then FX(0, ..., 0) = 1
2n .

8



Proof Let Y be a random vector where one or several RV’s in X enter with negative sign. Because X is axially

symmetric, Proposition 6 shows that also X
d
=Y . Let Y be the set of all such Y , noting that |Y| = 2n − 1. As

P (X ≤ 0) = P (Y ≤ 0) for any Y ∈ Y and, because X is continuous, also 1 = P (X ≤ 0) +
∑

Y ∈Y P (Y ≤ 0), we

obtain 1 = P (X ≤ 0) + |Y|P (X ≤ 0), which shows that FX(0, ..., 0) = P (X ≤ 0) = 1
2n . ■

Other than for the CDF, a nice characterization for zero symmetry (and i-axial symmetry) exists if X allows

for a density function. This result builds on a following change-of-variable formula, which we derive next. Let

B be a nonempty subset of Rn, and denote by −B ≡ {−b : b ∈ B} the negative of B.6

Lemma 2 Let µ be a measure on (Rn,Bn) with µ(B) = µ(−B) on Bn. For any measurable f : Rn → R+∫
−B

f(x)dµ(x) =

∫
B

f(−x)dµ(x). (2)

Proposition 9 Let X = (X1, ..., Xn) be absolutely continuous with respect to some measure µ that satisfies

µ(B) = µ(−B) on Bn. Then X is zero symmetric if and only if X has a density fX(x) satisfying fX(x) =

fX(−x) almost everywhere.

The probably most important application of Proposition 9 is if X is discrete or has a density with respect to

Lebesgue measure:

Corollary 3 If X = (X1, ..., Xn) is discrete or absolutely continuous with respect to Lebesgue measure, then

X
d
=−X if and only if the respective density of X verifies fX(x) = fX(−x) almost everywhere.

Proof If X is discrete (continuous), then fX is a density wrt Counting (Lebesgue) measure. The Counting

measure γ obviously verifies γ(B) = γ(−B). As for the Lebesgue measure λ, it is well known that for any linear

transformation λ(T (B)) = |det(T )|λ(B). Consider the special linear transformation T (b) = −Ib, where b ∈ Rn

and I is the n × n identity matrix. Then T (B) = −B and thus λ(−B) = λ(T (B)) = λ(B). The claim then

follow from Proposition 9. ■

The statements of Proposition 9 and Corollary 3 apply, analogously, for the case of an i-axially symmetrically

distributed random vector. We prove the analogue to Proposition 9 for i-axially symmetrical random vectors

in Appendix A.1, and restrict attention here to the analogue of Corollary 3.

Corollary 4 If X = (X1, ..., Xn) is discrete or absolutely continuous with respect to Lebesgue measure, then X

is i-axially symmetrically distributed if and only if the density of X is i-axially symmetric almost everywhere.

6Note that B ∈ Bn ⇔ −B ∈ Bn.
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We can use Corollary 4 to demonstrate that zero symmetry of X does not imply that X is axially symmetrically

distributed. Consider X = (X1, X2) with (Lebesgue-) density f = 3
8 (x1 + x2)

2 on supp(X) = [−1, 1]× [−1, 1].

As f(x) = f(−x) everywhere, X must be zero symmetric. By contrast, it is easy to verify that f(x1, x2) ̸=

f(−x1, x2) on the positive measure set B = (−1, 0) × (−1, 0). By 4 , this implies that (X1, X2) cannot be

1-axially symmetric. We end this section by remarks on the expectation and covariance, respectively, of an

i-axially symmetrically distributed or a zero symmetric random vector.

Proposition 10 Let X be an i-axially symmetrically distributed random vector. Then E[Xi] = 0, V ar(Xi) =

E[X2
i ] and Cov(Xi, Xk) = 0 for any k ̸= i, whenever the respective expressions exist.

Proof The first two claims immediately follow from E[Xi] = E[−Xi] and from V ar(Xi) = E[X2
i ] − E[Xi]

2.

For the last claim recall that Cov(Xi, Xk) = E[XiXk] − E[Xi]E[Xk] Consider the continuous function with

fk(x1, ..., xn) = (x1, xk) for some fixed k ̸= i. Then, as f(X1, ..., Xi, ..., Xn)
d
= f(X1, ...,−Xi, ..., Xn), we obtain

(Xi, Xk)
d
=(−Xi, Xk). Therefore E[XiXk] = E[−XiXk] = −E[XiXk] which implies E[XiXk] = 0, and hence

Cov(Xi, Xk) = 0. ■

Thus, whenever X is an i-axially symmetrically distributed, then Xi and Xk, k ̸= i, must necessarily be

uncorrelated RV’s. Moreover, if X is axially symmetrically distributed, then all RV’s are uncorrelated, meaning

that the variance-covariance matrix of X is a zero matrix except possibly for the diagonal, which consists of

the variances of the various Xi’s in X. Further, E[X] = 0 also follows if X is zero symmetric (provided that

the expectation exists). Note, however, that zero symmetry by itself does not imply that the RV’s forming X

must be uncorrelated. In fact, our previous example with X = (X1, X2) and density f = 3
8 (x1 + x2)

2 is zero

symmetric but has Cov(X1, X2) = 1/3 > 0.

3.2 Marginal and Conditional Distributions of Symmetric Random Vectors

We next present some results about the marginal and conditional distributions of symmetric random vectors.

Proposition 11 (Marginals) If X is ij-exchangeable, then Xi
d
=Xj. If X is i-axially symmetrically dis-

tributed, then Xi is a zero symmetric RV. Finally, if X is zero symmetric, then any sub-collection of RV’s in

X is zero symmetric as well.

Note that it is a direct consequence of the first part of Proposition 11 and Corollary 2 that any sub-collection of an

exchangeable random vector must again be exchangeable. Likewise, if X is i-axially symmetrically distributed,

then (Xi, Xj)
d
=(−Xi, Xj) for any j ̸= i.7

7This holds for longer marginals, such as (Xi, Xj , Xm) etc. as well.
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Proposition 12 (Conditionals) If X is ij-exchangeable and P (Xj ∈ B) > 0, then P (Xi ∈ A|Xj ∈ B) =

P (Xj ∈ A|Xi ∈ B) and also P (Xi ∈ A|Xk ∈ B) = P (Xj ∈ A|Xk ∈ B) if P (Xk ∈ B) > 0 and k ̸= i, j.

Likewise, if X is i-axially symmetric, then P (Xi ∈ A|Xj ∈ B) = P (−Xi ∈ A|Xj ∈ B) for any j ̸= i.

It follows from (the proof of) Proposition 12 and the previous arguments that if X is exchangeable, then

any conditional distribution of any sub-collection of the RV’s in X must be exchangeable, provided that the

conditioning RV’s have a positive probability.8 Likewise, if X is axially symmetric, hence also zero symmetric,

then the conditional distributions obtained by any collection of RV’s in X must again be zero symmetric. This

does not hold, however, if X is zero symmetric but not axially symmetric (see below). We first show that the

analogue of Proposition 12 holds for conditional densities.

Proposition 13 Suppose that X = (X1, ..., Xn) is discrete or absolutely continuous wrt Lebesgue measure, such

that X has a density f(x1, ..., xn) (wrt to Counting or Lebesgue measure, respectively). If X is ij-exchangeable,

then fXi|Xj
(a|b) = fXj |Xi

(a|b) almost everywhere whenever fXj
(b) > 0. If X is i-axially symmetrically dis-

tributed, then fXi|Xj
(a|b) = fXi|Xj

(−a|b) almost everywhere whenever fXj
(b) > 0.

The above statements hold analogously if the conditioning is for several random variables. Note however, that

the statement does not hold, in general, if X is zero symmetric. As an example, consider X = (X1, X2) with

joint density f(x1, x2) =
3
8 (x1 + x2)

2 on [−1, 1] × [−1, 1]. This random vector is zero symmetric (Corollary 9)

but not 1-axially symmetrically distributed, and fX1|X2
(x1|x2) = (x1+x2)

2

fX2
(x2)

̸= (−x1+x2)
2

fX2
(x2)

= fX1|X2
(−x1|x2) in

general,9 showing that the RV X1|X2 = x2 fails to be zero symmetric if x2 < 0.

3.3 Symmetry-preserving Transformations

The last part of our analysis is interested in transformations that preserve the zero symmetry of a random

vector, as is inspired by our example from discrete choice theory. We first note that zero symmetry of a random

vector X is not preserved, in general, under axially symmetric transformations. As an example, consider a zero

symmetric RV X and the axially symmetric transformation f(x) = x2. Then, the RV Y = f(X) = X2 fails to

be zero symmetric (unless X is degenerate).10 Our main result is that zero symmetric is always preserved under

center symmetric transformations, which is helpful in that many specific transformations verify this criterion.

8For example, if X = (X1, X2, X3, X4) is exchangeable, then P ((X1, X2) ∈ A|(X3, X4) ∈ B) = P ((X3, X4) ∈ A|(X1, X2) ∈ B)
provided that P ((X3, X4) ∈ B) > 0.

9For example, (x1 + x2)2 ̸= (−x1 + x2)2 on the entire set [−1, 0)× [−1, 0), such that for x2 ∈ (−1, 0) we get fX1|X2
(x1|x2) ̸=

fX1|X2
(−x1|x2) for every x1 ∈ [−1, 0).

10To see this, recall that for zero symmetry we require that FZ(z) + FZ(−z) = 1 everywhere. If X is not degenerate, take any
z0 > 0 such that FZ(z0) ∈ (0, 1). But as FZ(z) = 0 for any z < 0 we cannot have that FZ(z0) + FZ(−z0) = 1.
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Proposition 14 If X = (X1, ..., Xn) is a zero symmetric random vector and f : Rn → Rm a measurable and

center symmetric function, then f(X) is a zero symmetric random vector.

Proof: f(X)
d
= f(−X) because X

d
=−X and f is measurable. The claim follows because f(−X) = −f(X) for

any center symmetric function f . ■

Theoretical and applied statistics have been frequently interested in the distributions of the sum and the product

of two or more RV’s. In context of zero symmetric RV’s, Hamedani and Walter (1985) show that in case of

n = 2 independent RV’s the zero symmetry of at least one RV is necessary and sufficient for the zero symmetry

of the product X1X2, or Rubin and Sellke (1986) establish that any RV who has a zero mean (or no mean at

all) can always be written as the sum of two zero symmetric RV’s. The following result adds to this literature

by exploiting Proposition 14 in that sums and products of RV’s from a random vector X are specific examples

of center symmetric transformations of X.

Corollary 5 Let X = (X1, ..., Xn) be a zero symmetric random vector. Then Y =
∑n

i1
αiXi, αi ∈ R ∀i =

1, ..., n, is zero symmetric. Further, any product of the form Y = X1 ·X2... ·Xk consisting of an odd number of

factors is zero symmetric.

Proof: Follows from Proposition 14 as the function f(x1, ..., xn) ≡
∑n

i=1 αixi is center symmetric, and so are

products of the type f(x1, ..., xn) ≡ x1 · ... · xk with an odd number of factors. ■

We remark that there is no analogue to Proposition 14, in general, ifX is only i-axially symmetrically distributed

(instead of zero symmetric). For example, the fact that every RV in X is zero symmetric does, by itself, not

allow us to conclude that the sum of these RV’s must also be zero symmetric. In fact, this result explains an

example provided by Chen and Shepp (1983), who show that the sum of two zero symmetric RV’s with Cauchy

distribution fails to be zero symmetric.

We remark that the relevant condition f(X) = −f(X) in the proof of Proposition 14 may be satisfied, even

thoughX is not zero symmetric. For example, if (X1, X2)
d
=(−X1, X2), then the transformation f(x1, x2) = x1x2

implies that f(−x1, x2) = −x1x2 = −f(x1, x2). This shows that Y = X1X2 is zero symmetric despite that

(X1, X2) is not. This argument can be generalized to see that if X = (X1, ..., Xn) is zero symmetric because X

also is axially symmetrically distributed, then any product of the RV’s in X must again be a zero symmetric

RV. In particular, if X1, ..., Xn are independent random variables, and each Xi itself is zero symmetric, then

Y = X1 · ... ·Xn is also zero symmetric.

While elementary transformations, such as weighted sums, differences or odd products are center symmetric,

this obviously will not hold for every transformation of interest. To mention one example, the order statistics
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pertaining to a zero symmetric X = (X1, ..., Xn) will generally fail to be zero symmetrically distributed.11

Application to Discrete Choice We now resume the discrete choice model outlined in the introduction,

generalized to the case of n ≥ 2 products. The random vector X = (X1, ..., Xn) governs how tastes are dispersed

and, accordingly, the (n−1)-dimensional random vector Yj ≡ (X1−Xj , ...Xn−Xj) captures the distribution of

taste differences from the perspective of product j. Recalling that consumer valuation for product j = 1, ..., n

is Uj = qj − pj + Xj , the choice probability system is determined by Pj = P (Yj ≤ wj), where j = 1, ..., n

and wj is the (n − 1) vector with i-th entry wij = (qj − qi) + (pi − pj) for i ̸= j. Thus, as with n = 2,

the difference distribution Yj captures everything about the taste distribution that is relevant for the choice

probability system. However, Yj is a random vector for n > 2, and as Yj ̸= Yk for j ̸= k is not excluded, these

distributions may look quite differently for different products. Nevertheless, we now show that zero symmetry is

all that is needed to discipline the possible correlations in the RV’s of X in that every difference distribution Yj

again must be zero symmetric and, accordingly, the choice probabilities remain unbiased in this sense. Formally,

the result is a direct consequence of Proposition 14 by noting that Yj can be obtained from X via the continuous

transformation fj : Rn → Rn−1, fj(x1, ..., xn) = (x1 − xj , ..., xn − xj).

Corollary 6 (Unbiased Choice Probability System) Let X = (X1, ..., Xn) be zero symmetric. Then, the

n − 1-dimensional random vector Yi = (X1 − Xi, X2 − Xi, ..., Xn − Xi), i = 1, ..., n, of differences is zero

symmetric as well.

Proof For i = 1, ..., n, the Borel function fi : Rn → Rn−1, f(x1, ..., xn) = (x1 − xi, x2 − xi, ..., xn − xi) is center

symmetric and Yi = fi(X). The claim therefore follows from Proposition 14.

4 Conclusion

This paper studied random vectors with at least partially symmetric distributions, either in the sense that the

random variables can be at least partially reordered without affecting the joint distribution, or in the sense

of being symmetrically dispersed around some coordinate axis, or around the origin. In the former case, we

established that exchangeability of the RV’s in essence is a binary property: The RV’s in a random vector

X = (X1, ..., Xn) can be reordered in any arbitrary way without changing its distribution if and only if this

holds for any two RV’s that are exchanged with each other. This property can be viewed as a generalization

11Let X = (X1, X2) and consider Y = max{X1, X2}. Note that f(x1, x2) ≡ max{x1, x2} fails to be center symmetric. If X1, X2

are iid with center symmetric density f(x), then Y = max{X1, X2} has a density g(z) = 2F (z)f(z). Because g(z) = g(−z) ⇔
F (z) = 1/2, the density g(z) violates the condition g(z) = g(−z) almost everywhere, for which reason Y cannot be zero symmetric.
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of the “irrelevance of sampling order” to the case of dependent random variables. Things are slightly more

complicated for axially symmetric random vectors, in that axial symmetry is sufficient but not necessary for

X to have a zero symmetric distribution: If a random vector X is axially symmetrically distributed for every

coordinate i = 1, ...n, then X must also be zero symmetric, while the converse is false in general. This is also

vindicated by the fact that the RV’s of a zero symmetric random vector which is not axially symmetric may be

correlated with each other, and may have conditional distributions that fail to be themselves zero symmetric.

Yet, in our application to discrete choice, we show that the zero symmetry of the idiosyncratic taste distribution

is enough to assure that consumer demand cannot be biased towards particular products, despite that tastes

could be correlated with each other in the consumer population.
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A Appendix

A.1 Proofs

Proof Proposition 1 We only prove the “if”-part. Consider the function h(x) = (h1(x), ..., hm(x)), and

suppose that Dh(x) = Dh(−x) on M . Recall that Dh(x) can be represented by an m × n (Jacobian) matrix

with all partial derivative functions hi
j(x) ≡ ∂hi(x)

∂xj
, i ∈ {1, ...,m} and j ∈ {1, ..., n} as its entries. Note that

each of these partial derivative functions also verifies hi
j(−x) = hi

j(x). The anti-derivative of h
i
j(x) with respect

to xj is hi(x)+φi
j(x¬j) meaning that hi(x) is determined up to a function φi

j(x¬j) that generally could depend

on all covariates except for xj .
12 Because we obtain the same anti-derivative for any j = 1, ..., n, we have that

φi
1(x¬1) = ... = φi

n(x¬n) for every x ∈ M , which implies that φi
j(x¬j) = ki0 (a constant) for every j = 1, ..., n.

Repeating the above argument for the function hi
j(−x) gives −hi(−x) + ki1 as its anti-derivative. Because

hi
j(−x) = hi

j(x) on M , the anti-derivatives of these two functions also coincide, from which we obtain that

hi(−x) = −hi(x) + ci, ci ≡ ki1 − ki0. Proceeding in this way for each i = 1, ..., n shows that


h1(−x)

...

hm(−x)

 = −


h1(x)

...

hm(x)

+


c1

...

cn

 ,

and hence h(−x) = −h(x) + c. ■

Proof Proposition 2 We show the claim for the case where i = 1 and j = 2, which is plainly due to

notational convenience. It shall be evident that the arguments in the following proof are valid for any choice of

i, j ∈ {1, ..., n}. Accordingly, let Y = (X2, X1, X3, ..., Xn).

1) ⇔ 2): Note that FY (x1, ..., xn) = P (X2 ≤ x1, X1 ≤ x2, ..., Xn ≤ xn) = FX(x2, x1, ...., xn) on Rn. If X is

12-exchangeable, thenX
d
=Y , and hence FX(x) = FY (x), which shows that FX(x1, x2, ..., xn) = FX(x2, x1, ..., xn)

by the previous equation. If, conversely, FX(x1, x2, ..., xn) = FX(x2, x1, ...., xn) on Rn, then also FX(x) = FY (x)

∀x, which implies that X
d
=Y .

1) ⇔ 3): Note that for all (t1, ., , , tn) ∈ Rn

φY (t1, t2, ..., tn) = E
[
eit1X2eit2X1 ...eitnXn

]
= φX(t2, t1, ...., tn). (3)

If X
d
=Y , then also φX(t1, t2, ..., tn) = φY (t1, t2, ..., tn), and (3) implies that φX(t1, t2, ..., tn) = φX(t2, t1, ..., tn).

Conversely, if φX(t1, t2, ..., tn) = φX(t2, t1, ..., tn), then also φX(t1, t2, ..., tn) = φY (t1, t2, ..., tn) and thus X
d
=Y .

1) ⇔ 4): Suppose that the MGF mX exists. Similar to (3), we then have

mX(t2, t1, ..., tn) = E
[
et1X2et2X1 ...etnXn

]
= mY (t1, t2, ...., tn),

12The anti-derivative can be found by integrating with respect to xj holding all other covariates fixed, which is well-defined
because M is open and convex, and hi

j(x) is continuous in xj .
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showing that mY must also be well-defined. Proceeding as in the proof that 1) ⇔ 3) shows the equivalence of

1) and 4). ■

Proof Corollary 1 As before, we only consider the case where (i, j) = (1, 2), and let Y = (X2, X1, ..., Xn). We

first consider the continuous case. Suppose that fX is a (Lebesgue-) density for X. Because fX(x1, x2, ..., xn) =

fX(x2, x1, ..., xn) almost everywhere (wrt to Lebesgue measure) by presumption, we have for any x = (x1, ..., xn)

FX(x2, x1, ...xn) =
xn∫

−∞
. . .

x1∫
−∞

x2∫
−∞

fX(s1, s2, ..., sn)ds1ds2 . . . dsn =
xn∫

−∞
. . .

x1∫
−∞

x2∫
−∞

fX(s2, s1, ..., sn)ds1ds2 . . . dsn

=
xn∫

−∞
. . .

x2∫
−∞

x1∫
−∞

fX(s2, s1, ..., sn)ds2ds1 . . . dsn =
xn∫

−∞
. . .

x2∫
−∞

x1∫
−∞

fX(u1, u2, ..., un)du1du2 . . . dun

= FX(x1, x2, ..., xn)

Thus, FX(x1, ..., xn) is 12-exchangeable, which implies that X
d
=Y by Proposition 2. Moreover, because

FY (x1, x2, ..., xn) = FX(x2, x1, ..., xn), the previous argument also shows that fX(x1, x2, ..., xn) also is a density

for Y . Conversely, let X
d
=Y . Note first that

FX(x1, x2, ..., xn) =
xn∫

−∞
. . .

x2∫
−∞

x1∫
−∞

fX(s1, s2, ..., sn)ds1ds2 . . . dsn,

FX(x2, x1, ..., xn) =
xn∫

−∞
. . .

x1∫
−∞

x2∫
−∞

fX(s1, s2, ..., sn)ds1ds2 . . . dsn

But because by Proposition 2 the equation FX(x1, , x2, ..., xn) = FX(x2, x1, ..., xn) holds for any (x1, ...xn), we

obtain

fX(x1, x2, ..., xn) =
∂FX(x1, x2, ..., xn)

∂x1...∂xn
=

∂FX(x2, x1, ..., xn)

∂x1...∂xn
= fX(x2, x1, ..., xn).

This shows that fX is a density that is 12-exchangeable, and the claim follows as any other density for

X differs from fX only on zero measure sets. We now turn to the case where X is a discrete random

vector. Then X has a density function (wrt Counting measure) fX(x1, ..., xn) ≡ dFX ({(x1, ..., xn)}) =

P (X1 = x1, X2 = x2, ..., Xn = xn) which is strictly positive on supp(X). If X
d
=Y , then X and Y have the

same support, and

fX(x1, x2, ..., xn) = dFX ({(x1, x2, ..., xn)}) = dFY ({(x1, x2, ..., xn)})

= P (X2 = x1, X1 = x2, ..., Xn = xn) = fX(x2, x1, ..., xn),

showing that fX(x) must be 12-exchangeable on the support ofX. Conversely, if fX(x1, x2, ..., xn) = fX(x2, x1, ..., xn)

on supp(X) then

FX(x1, x2, ..., xn) =
∑

s∈supp(X)
s≤x

fX(s1, s2, ..., sn) =
∑

s∈supp(X)
s≤x

fX(s2, s1, ..., sn) = FX(x2, x1, ..., xn)

must hold for any (x1, ..., xn), and thus X
d
=Y . ■

Proof Lemma 1 Note first that the trivial binary permutation σii simply means that no entry of (1, ..., n)

is permuted. Let σ(1, ..., n) ≡ (σ(1), ..., σ(n)) be an arbitrary permutation of (1, ..., n). Then σ1,σ(1)(1, .., n) is

the binary permutation of (1, .., n) that replaces 1 with σ(1). Applying the binary permutation σ2σ(2) to this

permutation replaces its second entry with σ(2), holding the first entry (i.e., σ(1)) constant. More generally,
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for i = 1, ..., n − 1, σiσ(i) replaces the i-th entry of σ(i−1)σ(i−1) with σ(i), holding (σ(1), ..., σ(i − 1)) constant.

Continuing this finite process up to σ(n−1)σ(n−1) assures that the so obtained list is equally arranged as σ(1, ..., n)

up to the first n− 1 entries, which implies that this must hold for the residual n-th entry as well. ■

Proof Corollary 2 It is evident that an exchangeable random vector must also be ij-exchangeable. For

the converse, if X is ij-exchangeable for any pair (i, j), then so is FX(x1, ..., xn) with respect to any two

coordinates xi and xj by Proposition 2 for any given (x1, ..., xn). Now, fix the values (x1, ..., xn) and let

(xσ(1), ..., xσ(n)) be an arbitrary permutation of (x1, ...., xn). By Lemma 1 we can obtain this permutation by

conducting at most n − 1 binary permutations. But as FX(x1, ..., xn) is ij-exchangeable with respect to any

two coordinates xi and xj (and any values) these binary permutations cannot alter the value of F (x1, ..., xn),

and thus FX(x1, ..., xn) = FX(xσ(1), ..., xσ(n)), which yields X
d
=σ(X) by Proposition 2. ■

Proof Proposition 4 We prove the claim for i = 1, which keeps notation simple. It shall be evident that

each of the arguments below applies for any i = 1, ..., n. Let Y = (−X1, X2, ..., Xn). Note that φX(t1, ..., tn) =

E[eit1X1 · ... · eitnXn ] and φY (t1, ..., tn) = E[eit1(−X1) · ... · eitnXn ].

1) ⇔ 2): If X
d
=Y then φX(t1, ..., tn) = φY (t1, ..., tn) = E[ei(−t1)X1 · ... · eitnXn ] = φX(−t1, ..., tn). For the

converse, note that φX(t1, ..., tn) = φX(−t1, ..., tn) = E[eit1(−X1) · ... · eitnXn ] = φY (t1, ..., tn), which implies

X
d
=Y .

1) ⇔ 3): Follows from the previous proof as mX(t1, ..., tn) = E[et1X1 · ... · etnXn ] and mY (t1, ..., tn) =

E[et1(−X1) · ... · etnXn ]. ■

Proof Proposition 6 By presumption and Proposition 4 we have for every i = 1, ..., n an equation

φX(t1, ..., tn) = φX(t1, ...,−ti, ..., tn) (ei),

is valid for every (t1, ..., tn) ∈ Rn. Then

φX(t1, ..., tn)
by (e1)
= φX(−t1, t2, ..., tn)

by (e2)
= φX(−t1,−t2, ..., tn)

...
by (en−1)

= φX(−t1,−t2...,−tn−1, tn)
by (en)
= φX(−t1,−t2...,−tn−1,−tn)

,

showing that X is zero symmetric by Proposition 5. It is straightforward to modify the above argument to see

that, e.g., φX(t1, ..., tn) = φX(−t1, t2,−t3, ..., tn), which implies the second claim. ■

Proof Lemma 2 The proof is organized in two steps.

Step 1: For every A,B ∈ Bn: µ(−A ∩ B) = µ(A ∩ −B). Wlog, we can assume that A,B ̸= ∅. Note that

x ∈ (−A ∩ B) ⇔ −x ∈ (A ∩ −B). Thus if Z ≡ (−A ∩ B), then −Z = (A ∩ −B). The claim now follows as

µ(Z) = µ(−Z) by presumption.

Step 2: Let B ∈ Bn be nonempty. We first show (2) if f is a simple function. For A ∈ Bn let IA(x) denote

the indicator function of subset A. A simple function is a measurable function f : Rn → R+ which takes on only
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finitely many different values {a1, ..., aK}. It is well known that any simple function f(x) can be represented as

a finite sum of “disjoint” indicator functions, such that f(x) =
∑K

k=1 akIAk
(x), where Ak = f−1({ak}) ∈ Bn.

The µ-integral for simple functions then is defined as
∫
fdµ =

∑K
k=1 akµ(Ak). Then

∫
−B

f(x)dµ(x) =

∫
Rn

I−B(x)f(x)dµ(x) =

K∑
k=1

akµ(Ak ∩ −B) =

K∑
k=1

akµ(−Ak ∩B), (4)

where the last equality follows from Step 1. Next, note that always IB(−x) = I−B(x). In particular, this means

that IAk
(−x) = I−Ak

(x). Thus f(−x) =
∑K

k=1 akIAk
(−x) =

∑K
k=1 akI−Ak

(x) and hence

∫
B

f(−x)dµ(x) =

∫
Rn

IB(x)f(−x)dµ(x) =

K∑
k=1

akµ(−Ak ∩B). (5)

Comparing (4) and (5) shows that
∫
−B

f(x)dµ(x) =
∫
B
f(−x)dµ(x).

We now show the claim if f is an arbitrary measurable and non-negative function. Then, there exists a

sequence (gn(x))n of simple functions that converge pointwise from below to f(x), and the µ−integral of f

is defined as
∫
fdµ = limn→∞

∫
gndµ. Note that, for any given B ∈ Bn, IBf then also is non-negative and

measurable. Moreover, the sequence (IB(x)gn(x))n converges pointwise from below to IBf . Thus∫
−B

f(x)dµ(x) =
∫
Rn I−B(x)f(x)dµ(x) = limn→∞

∫
Rn I−B(x)gn(x)dµ∫

B
f(−x)dµ(x) =

∫
Rn IB(x)f(−x)dµ(x) = limn→∞

∫
Rn IB(x)gn(−x)dµ

By the previous step, the two integrals on the right must coincide for every n, which implies that
∫
−B

f(x)dµ(x) =∫
B
f(−x)dµ(x). ■

Proof Proposition 9 By the Radon-Nikodym Theorem dFX(B) =
∫
B
f(x)dµ(x), B ∈ Bn, where f : Rn →

R+ is a density function. Moreover, we have dF−X(B) = P (−X ∈ B) = P (X ∈ −B) =
∫
−B

f(x)dµ(x). But,

as µ(B) = µ(−B), Lemma 2 assures that for every B ∈ Bn: dF−X(B) =
∫
−B

f(x)dµ(x) =
∫
B
f(−x)dµ(x).

Thus, g(x) ≡ f(−x) is a density for −X. Now, X
d
=−X implies that dF−X(B) = dFX(B) on Bn. As also

dF−X(B) =
∫
B
f(−x)dµ(x) and dFX(B) =

∫
B
f(x)dµ(x), we must have

∫
B
f(−x)dµ(x) =

∫
B
f(x)dµ(x) for

any B ∈ Bn, which assures that f(x) = f(−x) µ-almost everywhere. Conversely, let the density of X verify

f(x) = f(−x) µ-almost everywhere. Thus using Lemma 2: dF−X(B) = P (X ∈ −B) =
∫
−B

f(x)dµ(x) =∫
B
f(−x)dµ(x) =

∫
B
f(x)dµ(x) = dFX(B), and hence X

d
=−X. ■

Proof Corollary 4 For any nonempty set B ∈ Bn define B−i ≡ {(b1, ...,−bi, ..., bn) : (b1, ..., bn) ∈ B} as the

sets of all elements in B where the sign of the i-th coordinate is flipped. We confine attention to the case where

X is 1-axially symmetrically distributed; all arguments equally apply if X is i-axially symmetrically distributed

for any i ∈ {1, ..., n}.

Let X = (X1, ..., Xn) be absolutely continuous with respect to some measure µ that satisfies µ(B) = µ(B−1)

for every B ∈ Bn. We claim that then X has a density fX(x), and X is 1-symmetrically distributed if and

only if X has a density fX(x) that satisfies fX(x1, x2, ..., xn) = fX(−x1, x2, ..., xn) almost everywhere. This is

analogous to Proposition 9. We first note that µ(A ∩ B−1) = µ(A−1 ∩ B) for any nonempty A,B ∈ Bn. This
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follows by exchanging −B with B−1, −x with (−x1, x2, ..., xn) and Z with Z−1 in the proof of Step 1 in Lemma

2. The next step is to show that
∫
B−1

f(x1, x2, ..., xn)dµ(x) =
∫
B
f(−x1, x2, ..., xn) if f is a measurable and

non-negative function. Again, this result is obtained by completely mimicking the proof of Step 2 in Lemma 2.

The proof is completed by repeating all the remaining arguments in the proof of Proposition 9.

As for the claim in Corollary 4, we can proceed as in the proof of Corollary 3. The Counting measure γ

obviously verifies γ(B−1) = γ(B), and so does the Lebesgue measure λ: If I−1 denotes the n×n identity matrix

with first entry a11 = −1 and T (b) = I−1b, then T (B) = B−1 and thus λ(B−1) = λ(T (B)) = λ(B). ■

Proof Proposition 11 First, note that if X = (X1, ..., Xn), the marginal distribution dFXi
can be derived

from transforming X with the function fi(X), where fi : Rn → R, fi(x1, ..., xn) = xi. To see this, suppose

that i = 1, noting that f1 is measurable. Let B ∈ B. Then f−1
1 (B) = B × Rn−1, and hence P (f1(X) ∈ B) =

P (X−1f−1
1 (B)) = P (X ∈ B×Rn−1) = dFX1

(B). A similar argument holds for any i = 2, ...n. Suppose now that

X = (X1, ..., Xn) is ij-exchangeable. Let Y be the random vector where Xi and Xj are exchanged. Consider the

continuous map fi : Rn → R defined by fi(x1, ..., xi, ..., xn) = xi. Because X
d
=Y we also have fi(X)

d
= fi(Y ),

which shows that Xi
d
=Xj . Suppose next that X is i-axially symmetrically distributed. Consider the continuous

map fi : Rn → R defined by fi(x1, ..., xi, ..., xn) = −xi. Because (X1, ..., Xi, ..., Xn)
d
=(X1, ...,−Xi, ..., Xn)

we also have fi(X1, ..., Xi, ..., Xn)
d
= fi(X1, ...,−Xi, ..., Xn), which shows that Xi

d
=−Xi. Let X

d
=−X, and

consider any sub-collection (Xa, ..., Xm), a ≤ m ≤ n, of the RV’s in X. Then the corresponding continuous map

f(x1, ..., xn) = (xa, ..., xm) verifies (Xa, ..., Xm) = f(X)
d
= f(−X) = −(Xa, ..., Xm), showing the last claim. ■

Proof Proposition 12 By Proposition 12, Xi andXj have the same marginals, i.e., P (Xj ∈ B) = P (Xi ∈ B).

Likewise, the marginals (Xi, Xj) and (Xj , Xi) must be the same, i.e., (Xi, Xj)
d
=(Xj , Xi). Therefore P (Xi ∈

A,Xj ∈ B) = P (Xj ∈ A,Xi ∈ B), and thus

P (Xi ∈ A|Xj ∈ B) =
P (Xi ∈ A,Xj ∈ B)

P (Xj ∈ B)
=

P (Xj ∈ A,Xi ∈ B)

P (Xi ∈ B)
= P (Xj ∈ A|Xi ∈ B).

The same type of argument also gives P (Xi ∈ A|Xk ∈ B) = P (Xj ∈ A|Xk ∈ B) under the presumptions of the

proposition. If X is i-axially symmetrically distributed, then Xi
d
=−Xi and also (Xi, Xj)

d
=(−Xi, Xj) for j ̸= i.

Therefore

P (Xi ∈ A|Xj ∈ B) =
P (Xi ∈ A,Xj ∈ B)

P (Xj ∈ B)
=

P (−Xi ∈ A,Xj ∈ B)

P (Xj ∈ B)
= P (−Xi ∈ A|Xj ∈ B),

completing the proof. ■

Proof Proposition 13 Let fXi,Xj
(a, b) denote the marginal density of (Xi, Xj). As (Xi, Xj)

d
=(Xj , Xi),

Corollary implies 1 that this density is exchangeable almost everywhere. Likewise, we have fXj
(x) = fXi

(x)

almost everywhere, so take fXj (b) > 0 such that fXj (b) = fXi(b) almost surely. By definition of the conditional

density we obtain

fXi|Xj
(a|b) =

f(Xi,Xj)(a, b)

fXj
(b)

=
f(Xj ,Xi)(a, b)

fXi
(b)

= fXj |Xi
(a|b)
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almost everywhere. As for the last claim, (Xi, Xj)
d
=(−Xi, Xj) and Corollary 4 imply that fXi,Xj

(a, b) =

fXi,Xj
(−a, b) almost everywhere. Hence as in the previous step fXi|Xj

(a|b) =
f(Xi,Xj)

(a,b)

fXj
(b) =

f(Xi,Xj)
(−a,b)

fXi
(b) =

fXi|Xj
(−a|b) almost everywhere. ■
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