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Abstract. This paper studies Colonel Blotto games with two battlefields where one player has a

head start in the form of additional troops on one of the battlefields. Such games arise naturally in

marketing, electoral competition, and military conflict. Sion and Wolfe (1957) have shown that, if

the strategy space is continuous, a mixed-strategy Nash equilibrium need not exist. Therefore, we

consider a finite approximation. Using the iterated elimination of (weakly) dominated strategies,

we identify an equilibrium for all parameter constellations and discuss its uniqueness properties.

In equilibrium, resource decisions are typically not uniform but tend to concern units that roughly

correspond in size to multiples of the head start. Moreover, competition takes the form of a hide-

and-seek game, where the favorite tries to outguess the number of units that the underdog commits

to the balanced battlefield. Somewhat unexpectedly, equilibrium payoffs of finite approximations

of the Sion-Wolfe game accumulate around precisely three values. We also discuss the relation to

the model with heterogeneous budgets but no head start.
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1. Introduction

In the early years of game-theoretic research, fundamental contributions established the existence

of mixed-strategy solutions for noncooperative games in increasing generality. Notable results

have been achieved, in particular, for finite two-person zero-sum games (von Neumann, 1928;

von Neumann and Morgenstern, 1945), finite n-player games (Nash, 1950, 1951), and games with

infinite strategy spaces (Glicksberg, 1952; Fan, 1952; Debreu, 1952). This line of research came

to a sudden halt, however, when Sion and Wolfe (1957) presented an example of a two-person

zero-sum game that does not have a value. What that example means for the modern theory

of games that are not restricted by the zero-sum condition is indeed, that a game with infinite

strategy spaces need not possess a Nash equilibrium in mixed strategies.

Incidentally, the game used by Sion and Wolfe (1957) is strategically equivalent to a Colonel

Blotto game with two battlefields in which one player has a head start in the form of additional

troops in one battlefield. In a standard Colonel Blotto game without a head start (Borel, 1921),

each player allocates a budget of one unit of a perfectly divisible resource across several equivalued

battlefields where, on each battlefield separately, the highest bidder wins (and the winner is drawn

randomly in the case of a tie). Moreover, the resource is either used or lost. In a Colonel Blotto

game with a head start, however, the bid of the privileged player in one battlefield is raised by

the head start. The analysis of Sion and Wolfe (1957) assumed that the head start corresponds

to precisely one half of the homogeneous budget. Even though this is just a special case, the

non-existence clearly is a severe obstacle for the game-theoretic analysis of Colonel Blotto games.

On the other hand, Colonel Blotto games with a head start have numerous applications, e.g., in

marketing, electoral competition, and military conflict.

This paper continues the exploration of the nature of strategic interaction in Colonel Blotto

games with a head start. To this end, we consider a class of discrete Colonel Blotto games

with two battlefields, referred to as battlefield A and battlefield B, in which one player has a

head start in the form of additional troops on battlefield A. The continuous strategy space is

replaced by a finite equidistant grid, following prior work by Hart (2008), Hortala-Vallve and

Llorente-Saguer (2012), and Liang et al. (2019), in particular. Denoting by n the number of

soldiers available for allocation (assumed to be the same for each player), and by k the head start
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consisting of additional soldiers for player 1 on battlefield A, we study the set of mixed-strategy

Nash equilibria in the corresponding Colonel Blotto game, which will be denoted by B(n, k). The

analysis naturally leads to the consideration of five cases:

(i) There is no head start or the head start is at least as large as the budget, i.e., k = 0 or k ≥ n;

(ii) the head start is strictly larger than half of the budget but strictly smaller than the budget,

i.e., k ∈ {bn/2c+ 1, . . . , n− 1};1

(iii) the head start consists of precisely one soldier, i.e., k = 1;

(iv) the head start consists of at least two soldiers and is weakly lower than half of the budget,

i.e., k ∈ {2, . . . , bn/2c}, and the budget n is divisible by the head start k;

(v) the head start consists of at least two soldiers and is weakly lower than half of the budget,

i.e., k ∈ {2, . . . , bn/2c}, and the budget n is not divisible by the head start k;

Note that cases (i) through (v) are mutually exclusive yet collectively exhaustive. In each case, we

will identify a Nash equilibrium in mixed strategies and characterize the unique pair of equilibrium

payoffs.

It turns out that, even though B(n, k) is dominance solvable (in the sense of Moulin, 1979)

only in case (i), the identification of equilibrium candidates in Colonel Blotto games with a head

start is largely simplified by the iterated elimination of (weakly) dominated strategies.2 In addition,

while there are in general multiple equilibria, the procedure of iterated elimination of dominated

strategies helps to narrow down the equilibrium set in many cases of interest. In particular, it

is shown that, in cases (ii) and (iii), B(n, k) admits a unique Nash equilibrium in iteratively

undominated strategies. In fact, in case (iv), the equilibrium is unique even without the prior

elimination of dominated strategies. However, in case (v), the equilibrium set, while known to

be a Cartesian product of closed convex simplices by general arguments, may be quite large even

after applying the procedure of iterated elimination of dominated strategies.

Based on the analysis, we discuss the nature of strategic interaction in Colonel Blotto games

1As usual, bxc denotes the largest integer smaller than or equal to x. Note that, with k being an integer,
k ∈ {bn/2c+ 1, . . . , n− 1} is equivalent to n/2 < k < n.

2Throughout the paper, we will use term dominance for what is commonly understood as weak dominance
between pure strategies. See Section 2 for details.
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with a head start. The analysis shows that resource commitments are typically not uniform but

instead occur in units that roughly correspond in size to multiples of the head start. Moreover,

competition takes the form of a hide-and-seek game, where the favorite tries to outguess the

number of units that the underdog commits to the balanced battlefield. Intuitively, the favorite

benefits the most from the head start when she anticipates the underdog’s strategy, because that

allows her to overpower the underdog in both battlefields. The underdog, conversely, tries to

hide her intentions so that, with the highest probability possible, the favorite’s advantage plays

out in one battlefield only. In other words, the underdog aims at a scenario where the favorite’s

advantage creates little impact because units of the resource turn out to be wrongly allocated ex

post, viz. to a battlefield where they are not needed.3

Given the tractability of the discrete Colonel Blotto game with a head start, it seems natural

to relate the findings back to the motivating example by Sion and Wolfe (1957). To this end, we

consider sequences of finite approximations of the Colonel Blotto game with continuous strategy

spaces. Somewhat unexpectedly, we find that the equilibrium payoffs in the finite approximations

accumulate around a finite set consisting of just three values. In addition, there is no simple

relationship between these three values on the one hand and the maximin and minimax values of

the continuous game on the other.

Related literature. More than a century ago, Borel (1921) proposed the study of Colonel Blotto

games. Since then, a sizable literature on Colonel Blotto games has emerged. Notable contribu-

tions concerning continuous strategy spaces include Borel and Ville (1938), Gross and Wagner

(1950), Friedman (1958), and Roberson (2006), in particular.4 Related to the present study is

work by Macdonell and Mastronardi (2015) who solved the two-battlefield case with heteroge-

neous budgets. Washburn (2013, Sec. 5.1.3) constructed equilibria for the Colonel Blotto game

with arbitrary head starts subject to a playability constraint (which amounts to the existence of a

suitable copula that satisfies the budget constraint ex post). Vu and Loiseau (2021, Sec. 5) derived

exact equilibria in Colonel Blotto games with three or more homogeneous battlefields, allowing for

pre-allocated resources and different effectiveness across players. For this, they extended Rober-

3We hasten to add, however, that we do not characterize the entire equilibrium set in all cases, so that it is
perceivable (but intuitively unlikely) that there are other types of equilibria.

4For a survey, see Kovenock and Roberson (2010).
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son’s approach. Further, they obtained approximate equilibria in more general classes of Colonel

Blotto games with favoritism. They achieved this by first drawing realizations of the unilaterally

optimal strategies for a suffi ciently large number of battlefields, and subsequently rescaling the

realizations to ensure the budget constraint.

Colonel Blotto games are particularly appealing if units of the budget are indivisible. E.g.,

Borel considered an example with three battlefields and a budget of n = 7 soldiers. The number

seven was chosen because it is “the smallest integer for which the game does not have simple

manners of playing superior to all others” (Borel, 1921, p. 100).5 An informative review of the

early literature, some of which apparently is still classified, may be found in Beale and Heselden

(1962). More recently, Hart (2008) derived optimal strategies in discrete Colonel Blotto games

from optimal strategies in so-called General Lotto games. In a General Lotto game, each player

chooses a one-dimensional distribution that, if applied to all battlefields in an i.i.d. fashion, satisfies

the budget constraint in expectation. Then, provided that an optimal strategy in a General

Lotto game may be represented as a mixed strategy in a Colonel Blotto game that is symmetric

across all battlefields, the mixed strategy in a Colonel Blotto game is optimal as well, i.e., an

equilibrium is found in the Colonel Blotto game. That method delivers optimal strategies for

Colonel Blotto games in the case of homogeneous budgets, and a variety of partial results in the

case of heterogeneous budgets.6 Note, however, that the introduction of a head start creates an

asymmetry between battlefields. Therefore, the “Lotto approach”just described does not extend

in an obvious way to the setup considered in the present paper.7 Hortala-Vallve and Llorente-

Saguer (2012) studied the properties of pure-strategy equilibria in Colonel Blotto games, allowing

for battlefield valuations that are heterogeneous both across battlefields and across players. The

paper most closely related to the present analysis is Liang et al. (2019), who used brute force to

5Similarly, the analysis below considers the simplest non-trivial case of a Colonel Blotto game with a head start,
viz. the case of two battlefields.

6Cf. the discussion in Dziubiński (2013, Sec. 5).
7When checking the early literature, we found that Beale and Heselden (1962), using an approach that might be

considered a predecessor of Hart’s (2008), allowed for asymmetries between battlefields. A solution is constructed
in three steps. First, given a deterministic allocation of the budget across battlefields, optimal Lotto strategies
in each battlefield are determined. Then, exploiting useful convexity properties, the value in the General Lotto
game is maximized by choosing the deterministic resource allocation. Finally, an algorithm is applied to construct
a mixed strategy in the Colonel Blotto game that induces the mixed strategy in the General Lotto game. While
interesting, that approach leads in general to approximations of optimal strategies only. Therefore, we do not expect
this approach to be useful for the general identification of equilibria in the case of asymmetries across battlefields.
Cf. Washburn (2014, Sec. 6.3) whose discussion suggests a similar conclusion.
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characterize the equilibrium set of the Colonel Blotto game with two battlefields and heterogeneous

budgets (yet no head start). In contrast to the present study, however, they did not apply

dominance arguments to simplify the equilibrium analysis, neither did they exploit the useful

properties of symmetric Toeplitz matrices.8

From the experimental literature on Blotto games, we mention three contributions. Arad and

Rubinstein (2012) conducted a web-based experiment of the Colonel Blotto game. Two subjects

each had to allocate a budget of n = 120 troops across six battlefields. The results very nicely

illustrate the variety of strategic considerations that arise even in simple Colonel Blotto games.

Chowdhury et al. (2013) examined the main qualitative predictions of the (continuous-strategy)

equilibrium theory of Colonel Blotto games in the case of heterogeneous budgets. Avrahami and

Kareev (2009) conducted an analogous study for a class of General Blotto games. However, we

are not aware of any experiment of Colonel Blotto games with a head start.9

The remainder of the paper is structured as follows. Section 2 contains preliminaries. Section

3 presents the equilibrium analysis in the cases (i) through (v) outlined above. Section 4 offers

some discussion. In Section 5, we derive some implications for the Sion-Wolfe example. Section

6 clarifies the relationship between our analysis and the corresponding analysis of Colonel Blotto

games with heterogeneous budgets but no head start. Section 7 concludes. Technical proofs have

been relegated to an Appendix.

2. Preliminaries

2.1 Set-up and notation

Two players, called player 1 and player 2, are competing on two battlefields, called battlefield

A and battlefield B.10 Each player commands an integer number n of indivisible soldiers, where

we assume n ≥ 1 throughout. Players compete by allocating soldiers across battlefields. We

denote by xi the number of soldiers allocated by player i ∈ {1, 2} to battlefield A. Then, without
8We discuss the relationship between the two models in a separate section at the end of the paper.
9According to Beaglehole et al. (2022), the Colonel Blotto game belongs to the most well studied problems in

algorithmic game theory. See, in particular, Ahmadinejad et al. (2019), Behnezhad et al. (2017), and Perchet et
al. (2022). However, purely computational methods cannot be used to identify equilibria for larger classes of games.
10The case of two battlefields with homogeneous budgets is indeed the simplest case to consider with a head start.

However, without a head start, this case is of little interest. See Lemma 2 below.
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loss of generality, the remainder yi = n − xi is the number of soldiers allocated by player i to

battlefield B. Thus, strategy spaces for player 1 and 2 may be specified (in reduced form) as

X1 = {x1 = 0, . . . , x1 = n} and X2 = {x2 = 0, . . . , x2 = n}, respectively.

Player 1 is assumed to have a head start on battlefield A in the form of a nonnegative integer

number k of additional soldiers. Player 2, in contrast, does not have any additional soldiers.

We will therefore refer to battlefields A and B alternatively as the unbalanced and the balanced

battlefield, respectively. If a player has, in total, more soldiers on a battlefield than her opponent,

then she wins on that battlefield and receives a reward of 1, while the loser suffers a penalty of

−1 from that battlefield. In the case of a tie on a battlefield, both players get a payoff of 0 from

that battlefield. Note that, after both players have deployed their troops, player 1 has a total of

x1 + k soldiers on battlefield A, while player 2 has a total of x2 soldiers there. Player 1’s payoff

from battlefield A is therefore given as

ΠA1 (x1, x2) = sgn((x1 + k)− x2), (1)

where the sign function sgn(.) is defined as usual by sgn(ξ) = 1 if ξ > 0, by sgn(ξ) = 0 if ξ = 0, and

by sgn(ξ) = −1 if ξ < 0. Moreover, due to the zero-sum condition, ΠA2 (x1, x2) = −ΠA1 (x1, x2). On

battlefield B, player 1 has a total of y1 = n−x1 soldiers, while player 2 has a total of y2 = n−x2

soldiers. From the accounting identity

y1 − y2 = (n− x1)− (n− x2) = x2 − x1, (2)

player 1’s payoff from battlefield B is therefore seen to be given as

ΠB1 (x1, x2) = sgn(x2 − x1). (3)

Again, we have ΠB2 (x1, x2) = −ΠB1 (x1, x2). Payoffs are assumed additively separable across bat-

tlefields. Consequently, player i’s total payoff is Πi(x1, x2) = ΠAi (x1, x2) + ΠBi (x1, x2), for i = 1, 2.

The two-person zero-sum game just defined will be referred to as the Colonel Blotto game with

budget n and head start k, in short B(n, k). For convenience, we will refer to the privileged player

1 alternatively as the favorite, and to player 2 as the underdog.

The general structure of the payoff matrix is illustrated in Figure 1. Only player 1’s payoffs

are shown. Below the main diagonal, all entries vanish (player 1 wins on battlefield A, but loses

6



on battlefield B). On the main diagonal, all entries equal 1 (player 1 wins on battlefield A, but

ties with player 2 on battlefield B). The entries of the neighboring k − 1 upper off-diagonals

equal 2 (player 1 wins on both battlefields), while the entries of the k-th upper off-diagonal equal

one (player 1 ties with player 2 on battlefield A, but wins on battlefield B). The entries in the

remaining upper off-diagonals vanish (player 1 loses on battlefield A, but wins on battlefield B).11

Figure 1. Player 1’s payoff matrix in B(n, k).

The set of probability distributions over the finite set Xi will be denoted by ∆(Xi), and any

element µi thereof will be referred to as a mixed strategy. Given any pure strategy realization

ν ∈ {0, . . . , n}, the Dirac distribution δν is the probability distribution on {0, . . . , n} that gives

all probability weight to the realization ν, i.e., δν({ν}) = 1, and δν({ν̂}) = 0 for any ν̂ 6= ν. Then,

any probability distribution µi ∈ ∆(Xi) may be expressed in a unique way as a weighted sum

µi =
∑n

ν=0 pνδv, where pν ∈ [0, 1] is the probability that player i’s mixed strategy µi realizes as

11While Figure 1 illustrates the payoffmatrix in general, some caveats apply. Specifically, depending on parameter
values, the payoff matrix may degenerate in several ways. First, if k = 0, then all entries vanish (by symmetry).
Second, in the special case k = 1, the matrix does not contain any off-diagonals with entries equal to 2. Third, if
k = n, then the payoff matrix does not contain any zero above the diagonal, and there is only one entry of 1 at
(x1, x2) = (0, n). Fourth and finally, if k ≥ n+ 1, then all upper diagonal entries equal 2. One should also note that
the relative ordering of the strategies xi = k and xi = n− k suggested by the illustration is not valid in general. As
will become clear, these differences are part of the reason why we will need to differentiate between several cases in
the equilibrium analysis.

7



xi = ν, and where
∑n

ν=0 pν = 1. For any µi ∈ ∆(Xi), we call the set supp{µ∗i } = {ν : pν > 0} ⊆ Xi

the support of µi. As usual, players’payoff functions are extended to mixed strategies by taking

expectations. We will use notation such as Eµi [·] and Eµ1,µ2 [·] for the respective expected values. A

mixed-strategy Nash equilibrium is a pair (µ∗1, µ
∗
2) ∈ ∆(X1)×∆(X2) such that Eµ∗1,µ∗2 [Π1(x1, x2)] ≥

Eµ1,µ∗2 [Π1(x1, x2)] for any µ1 ∈ ∆(X1), and Eµ∗1,µ∗2 [Π2(x1, x2)] ≥ Eµ∗1,µ2 [Π2(x1, x2)] for any µ2 ∈

∆(X2).

Given that the game is finite, a mixed-strategy Nash equilibrium exists by Nash’s theorem.

Moreover, B(n, k) is zero-sum, so that all equilibria are payoff-equivalent. We will refer to player

1’s equilibrium payoff v1 as the value of the game. Since player 1 has an advantage on one

battlefield, but not in both, we (correctly) anticipate that v1 ∈ [0, 1].

2.2 Dominated strategies

The consideration of dominance relationships between strategies (Farquharson, 1969; Brams, 1975;

Moulin, 1979) turns out to be a useful tool for identifying equilibria in Colonel Blotto games with

a head start. This will be so especially in the cases (i) through (iii) outlined in the Introduction.

We recall the definitions.

Let X̂1 ⊆ X1 and X̂2 ⊆ X2 be nonempty sets of strategies for both players. We will say that

x1 ∈ X̂1 is dominated by x̂1 ∈ X̂1 for player 1 in X̂1 × X̂2 if the following two conditions are

simultaneously satisfied. First, for any pure strategy x2 ∈ X̂2, we have Π1(x1, x2) ≤ Π1(x̂1, x2).

Second, there exists a strategy x̂2 ∈ X̂2 such that Π1(x1, x̂2) < Π1(x̂1, x̂2). Similarly, we will say

that a pure strategy x2 ∈ X̂2 is dominated by a strategy x̂2 ∈ X̂2 for player 2 in X̂1 × X̂2 if

analogous conditions hold with the roles of players 1 and 2 exchanged. We will say that xi ∈ X̂i

is dominated in X̂1 × X̂2 if there exists a strategy x̂i ∈ X̂i such that xi is dominated by x̂i for

player i in X̂1 × X̂2.12

We are interested in undominated strategies. Let, therefore, X(1)
1 and X(1)

2 denote the sets

of strategies for player 1 and 2, respectively, that are not dominated in X1 ×X2. The following

result characterizes these sets in the Colonel Blotto game with budget n and head start k.

12As mentioned in the Introduction, the term dominance is used in this paper to refer to what is commonly known
as weak dominance between pure strategies. In general, a pure strategy may be dominated by a mixed strategy
even though it is not dominated by any pure strategy (cf. Pearce, 1984). However, the additional mileage gained
by using the more powerful definition is limited in our present application. Hence, we stick to the basic concept.
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Lemma 1. The respective sets of undominated strategies X(1)
1 and X(1)

2 in B(n, k) are as follows.

(i) If k = 0, then X(1)
1 = X

(1)
2 = {0, . . . , n};

(ii) if k = 1, then X(1)
1 = {0, . . . , n− 1} and X(1)

2 = {0} ∪ {2, . . . , n};

(iii) if k ∈ {2, . . . , n}, then X(1)
1 = {0, . . . , n− k + 1} and X(1)

2 = {0} ∪ {k + 1, . . . , n};

(iv) if k ≥ n+ 1, then X(1)
1 = X

(1)
2 = {0}.

Proof. (i) For k = 0, payoff functions are constant, and all strategies are equivalent. Hence, the

claim is immediate. (ii) For k = 1, player 1’s payoff matrix has entries of 1 on the main diagonal

and on the first upper off-diagonal, while all other entries vanish. Therefore, for player 1, strategy

x1 = n is dominated by x̂1 = n − 1, and no other strategy is dominated. Similarly, for player 2,

exploiting the zero-sum property, strategy x2 = 1 is dominated by x̂2 = 0, and no other strategy

is dominated. The claim follows. (iii) Suppose that k ∈ {2, . . . , n}. Then, as suggested by Figure

1, the pure strategy x̂1 = n − k + 1 dominates all strategies x1 ∈ {n − k + 2, . . . , n} for player

1. Moreover, there are no other dominated strategies for player 1. Similarly, the pure strategy

x̂2 = 0 dominates all strategies x2 ∈ {1, . . . , k} for player 2, while no other strategy is dominated

for player 2. (iv) If k ≥ n+ 1, player 1’s payoff matrix has entries of 0 below the main diagonal,

entries of 1 on the main diagonal, and entries of 2 above the main diagonal. Clearly, therefore,

all strategies x1 ∈ {1, . . . , n} for player 1 are dominated by x̂1 = 0, and similarly, all strategies

x2 ∈ {1, . . . , n} for player 2 are dominated by x̂2 = 0. �

We provide some intuition for the case k ∈ {2, . . . , n}. In this case, strategy x̂1 = n − k + 1

dominates all higher strategies for player 1. Indeed, any strategy x1 ≥ n− k+ 1 secures a win on

battlefield A, but x̂1 = n − k + 1 is the most parsimonious in doing so, i.e., it leaves the largest

number of soldiers for battlefield B. Similarly, for player 2, bidding any x2 ∈ {1, . . . , k − 1} is

dominated by x̂2 = 0, because out of all strategies that imply a certain loss on battlefield A,

x̂2 = 0 brings most soldiers to battlefield B. In fact, also x2 = k is dominated by x̂2 = 0 because

the only scenario in which player 2 achieves a tie on battlefield A with x2 = k entails that player

1 sends n soldiers to battlefield B, so that player 2 loses on battlefield B rather than achieving a

tie there with x̂2 = 0.
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Starting from players’unrestricted strategy spaces, we may recursively define

X
(0)
i = Xi (i ∈ {1, 2}), (4)

X
(t)
i =

{
xi ∈ X(t−1)

i s.t. xi is not

dominated in X(t−1)
1 ×X(t−1)

2

}
(i ∈ {1, 2}; t ∈ {1, 2, . . .}). (5)

Needless to say, this extends our earlier definition of X(1)
1 and X(1)

2 . A simple induction argument

shows that X(t)
i 6= ∅ for any i and t. Since B(n, k) is a finite game, no further eliminations

take place for suffi ciently high t, so that X(t)
1 × X

(t)
2 = X

(t−1)
1 × X(t−1)

2 . In this case, we refer

to X(∞)
i ≡ X

(t)
i as the set of strategies surviving the IEDS (iterated elimination of dominated

strategies) procedure. If payoff functions are even constant on X(∞)
1 × X(∞)

2 , then we say that

B(n, k) is dominance-solvable.

Two well-known facts about dominated strategies should be recalled. First, the elimination

of dominated strategies may eliminate Nash equilibria.13 Second, and more importantly for the

identification of equilibrium strategies, a Nash equilibrium found in a reduced game obtained by

iteratively eliminating dominated strategies remains a Nash equilibrium in the original game.14

We will say that a mixed strategy Nash equilibrium (µ∗1, µ
∗
2) in B(n, k) is an equilibrium in

undominated strategies (an equilibrium in iteratively undominated strategies) if supp{µ∗i } ⊆ X
(1)
i

(if supp{µ∗i } ⊆ X
(∞)
i ) for i ∈ {1, 2}. Since X(∞)

i ⊆ X(1)
i ⊆ Xi for i = 1, 2, any equilibrium in iter-

atively undominated strategies is an equilibrium in undominated strategies, and any equilibrium

in undominated strategies is an equilibrium. Moreover, using the second fact recalled above, the

set of equilibria in undominated strategies (in iteratively undominated strategies) is isomorphic to

the set of equilibria in reduced games obtained by eliminating dominated strategies (by iteratively

eliminating dominated strategies) in B(n, k).

3. Equilibrium analysis

In this section, we will identify Nash equilibria in the finite Blotto game with homogeneous budget

n and head start k, i.e., in the game B(n, k). As discussed in the Introduction, there are several

cases. These will be dealt with below.
13The analogous statement for strictly dominated strategies is not true, of course.
14For a formal argument, see the proof of Proposition 1 in Moulin (1979).
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3.1 The trivial cases where either k = 0 or k ≥ n

This section presents the equilibrium analysis for two trivial cases. First, for k = 0, there is no head

start. Payoff functions are constant and, therefore, any resource allocation is optimal. Second,

for k ≥ n, the underdog is unable to secure a win on battlefield A. Even if she concentrates all

her forces on battlefield A, the favorite’s head start will at least match them, and even overpower

them if k ≥ n+1. Thus, the conflict is essentially about battlefield B, and it is therefore intuitively

optimal for both players to commit all their troops to that battlefield.

Lemma 2.

(i) For k = 0, any combination of mixed strategies is an equilibrium in B(n, k). The value is

v1 = 0.

(ii) For k ≥ n, there is a unique equilibrium in undominated strategies in B(n, k), viz. (µ∗1, µ
∗
2) =

(δ0, δ0). The value is v1 = 1.15

(iii) In both cases, B(n, k) is dominance-solvable.

Proof. (i) If k = 0, then Π1(x1, x2) = sgn(x1 − x2) + sgn(x2 − x1) = 0, for any x1 and x2.

Thus, in this case, payoff functions are constant and independent of strategic choices made by

the players. The claim follows. (ii) Suppose first that k ≥ n + 1. Then, player 1 wins on

battlefield A regardless of the strategies chosen by the two players. Thus, Π1(x1, x2) = 1 +

sgn(x2 − x1). The corresponding payoff matrix for this case is illustrated in panel (a) of Figure

2, where dominated strategies are marked in grey. As can be seen, (x1, x2) = (0, 0) is a strict

pure-strategy Nash equilibrium. The corresponding value is v1 = 1. However, as a consequence of

exchangeability, any strict Nash equilibrium in a two-person zero-sum game is unique. Therefore,

the claim follows in the case k ≥ n + 1. Suppose finally that k = n. Then, Π1(x1, x2) =

sgn(x1 +n− x2) + sgn(x2− x1). The payoff matrix differs from the previous case at the strategy

profile (x1, x2) = (0, n) only. See panel (b) of Figure 2 for illustration, where again, dominated

strategies are marked in grey. As before, (x1, x2) = (0, 0) is a pure-strategy Nash equilibrium. In

fact, player 1’s best response to x2 = 0 is unique, so that by exchangeability, player 1 chooses

x1 = 0 in any equilibrium. Hence, µ∗1 = δ0. The set of player 2’s best responses to x1 = 0

15With dominated strategies admitted, the equilibrium remains unique if k ≥ n+ 1.
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is {x2 = 0, x2 = n}. Therefore, µ∗2 = (1 − λ)δ0 + λδn for some λ ∈ [0, 1]. Clearly, this is an

equilibrium if and only if λ ∈ [0, 12 ]. Moreover, strategy x2 = n is dominated by x̂2 = 0 for player

2, so that only the equilibrium where λ = 0 is in undominated strategies. (iii) Immediate in view

of Figure 2. �

Figure 2. Payoff matrices and dominated strategies in the cases (a) k ≥ n+ 1, and (b) k = n.

Lemma 2 characterizes the equilibrium in the Colonel Blotto game for the trivial cases where

k = 0 or k ≥ n. These cases will, therefore, be excluded from the further analysis. In the sequel,

it will be assumed that k ∈ {1, . . . , n− 1}.

3.2 The case k ∈ {bn/2c+ 1, . . . , n− 1}

Suppose that the head start is strictly larger than half of the budget and strictly smaller than the

budget. In this case, dominance arguments turn out to have a lot of bite and guide quickly to an

equilibrium. The following example illustrates this fact.

Example 1. Let n = 5 and k = 3. The payoff matrix of B(n, k) is shown in panel (a) of Figure

3, where dominated strategies are marked in grey. Panels (b) and (c) exhibit the reduced game

after one and two rounds of elimination, respectively. As can be seen, the reduced game obtained

after application of IEDS is represented by a simple two-by-two matrix. Player 1 either sends

x1 = 3 soldiers to battlefield A (the minimum necessary to win with certainty there), or she sends

all her troops to battlefield B (if x1 = 0 so that y1 = 5). Similarly, Player 2 throws all her troops

either on battlefield A (if x2 = 5) or on battlefield B (if x2 = 0, so that y2 = 5). In terms of

payoffs, it is a game of hide and seek. Indeed, given the head start, player 1 tries to track down

player 2’s forces, whereas player 2 tries to avoid this scenario. We conclude that the strategies

12



µ∗1 = 2
3δ0 + 1

3δ3 and µ∗2 = 2
3δ0 + 1

3δ5 form the unique equilibrium in iteratively undominated

strategies.16 Moreover, player 1’s expected payoff is v1 = 2
3 .

Figure 3. Iterated elimination of dominated strategies in the case (n, k) = (5, 3).

The general analysis in the case k ∈ {bn/2c + 1, . . . , n − 1} is entirely analogous. We, therefore,

arrive at our first result.

Theorem 1. Suppose that k ∈ {bn/2c + 1, . . . , n − 1}. Then, IEDS identifies after two rounds

the reduced strategy set X(∞)
1 = X

(2)
1 = {0, n− k+ 1} for player 1, and X(∞)

2 = X
(2)
2 = {0, n} for

player 2, respectively. Moreover, there is a unique equilibrium in iteratively undominated strategies

in B(n, k), which is given by µ∗1 = 2
3δ0 + 1

3δn−k+1 and µ
∗
2 = 2

3δ0 + 1
3δn. The value is v1 = 2

3 .

Proof. See the Appendix. �

The identified equilibrium keeps the simple form suggested by Example 1. As before, the conflict

leads to a hide and seek game between an evasive underdog and a searching favorite. Indeed,

the underdog randomizes between sending all her soldiers to battlefield A, which occurs with

probability 1/3, and sending all her troops to battlefield B, which occurs with probability 2/3. The

favorite, in turn, randomizes between sending just as many soldiers to battlefield A to guarantee a

victory there, which occurs with probability 1/3, and sending all her troops to battlefield B, which

16For this, we make use of the aforementioned fact that a Nash equilibrium in a given game remains a Nash
equilibrium if a dominated strategy is added to the game. Starting from the mixed equilibrium in the 2x2 game,
and iteratively adding strategies in reversed order of the IEDS procedure shows that the Nash equilibrium in the
reduced form is a Nash equilibrium also in B(n, k).

13



occurs with probability 2/3. Thus, both players focus with higher probability on the balanced

battlefield B (intuitively because the underdog’s chances of winning or reaching a tie are higher

there), but they also hide and seek in the unbalanced battlefield A.

Admitting strategies eliminated by the IEDS procedure, the equilibrium is no longer unique.

In Example 1, e.g., any strategy for player 2 of the form µλ2 = 2
3δ0 + λ

3 δ4 + 1−λ
3 δ5, with λ ∈ [0, 1]

is optimal. However, only for λ = 0, the corresponding equilibrium (µ∗1, µ
λ
2) is in iteratively

undominated strategies.

3.3 The case k = 1

The case k = 1 is special because the head start is too small to allow player 1 to win both

battlefields with certainty in any outcome of the game. As in the previously considered case, the

iterated elimination of dominated strategies is a route to identifying the support of an equilibrium

candidate. In contrast, however, the IEDS procedure does not stop after two rounds for k = 1

but goes on for quite a while. We illustrate this point with an example.

Example 2. Let (n, k) = (6, 1). The corresponding payoffmatrix is shown in panel (a) of Figure

4. The IEDS procedure yields a sequence of reduced games shown in panels (b) through (d). For

player 1, the set of iteratively undominated strategies is X(∞)
1 = {0, 2, 3, 5}. For player 2, we

have X(∞)
2 = {0, 2, 4, 6}. Given that the corresponding payoff matrix, shown in panel (d), is an

identity matrix, it is easy to see that uniform randomizations over X(∞)
1 and X(∞)

2 constitute the

unique equilibrium in iteratively undominated strategies.

Figure 4. Iterated elimination of dominated strategies in B(6, 1).
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We now turn to the general analysis of the case k = 1. We start with identifying the set of

strategies that survive the iterated elimination of dominated strategies.

Lemma 3. Suppose that the head start is k = 1. Then, the set of strategies X(∞)
1 and X

(∞)
2

surviving the iterated elimination of dominated strategies are the following:

(i) If n is even, then X
(∞)
1 = {0, 2, . . . , 2q, 2q + 1, . . . , n − 1} and X

(∞)
2 = {0, 2, . . . , n}, with

q = bn/4c;

(ii) if n is odd, then X(∞)
1 = {0, 2, . . . , n− 1} and X(∞)

2 = {0, 2, . . . , 2q, 2q + 3, . . . , n}.

Proof. See the Appendix. �

As the example suggests, the IEDS procedure eliminates precisely one strategy for each player in

each round. It starts at extremal strategies, viz. at x1 = n, which is dominated by x̂1 = n − 1,

and at x2 = 1, which is dominated by x̂2 = 0. In each round, the procedure then picks on the

respective opposite side of the strategy space an extremal strategy, skipping one strategy each

time. Specifically, in the second round, one deletes x1 = 1, which is dominated by x̂1 = 2, and

x2 = n − 1, which is dominated by x̂2 = n. In the third round, unless the procedure has already

stopped, one deletes x1 = n−2, which is dominated by x̂1 = n−3, and x2 = 3, which is dominated

by x̂2 = 2. And so on. Jumping back and forth in this way, the procedure continues until that

strategy x̂i that would dominate the next strategy xi of player i has already been eliminated in

prior rounds. One can convince oneself that, for n even (odd), the procedure stops within player

1’s (player 2’s) strategy set, which leads to the characterization of X(∞)
1 and X(∞)

2 given in the

lemma.

After the reduction of the strategy spaces, the equilibrium has a simple structure.

Theorem 2. Suppose that k = 1. Then, there exists a unique Nash equilibrium in iteratively un-

dominated strategies in B(n, k). In this equilibrium, each player i ∈ {1, 2} randomizes uniformly

over the set X(∞)
i characterized in Lemma 3. The value of the game is

v1 =
1

1 + bn/2c . (6)

Proof. See the Appendix. �
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Theorem 2 identifies an equilibrium in the Colonel Blotto game for the case k = 1. The equilibrium

strategies randomize uniformly over a subset of the strategy space that includes, roughly speaking,

every second strategy.

As in the previous cases, there are additional equilibria involving dominated strategies. For

example, for n even, there is a Nash equilibrium in which both players randomize uniformly over

all even strategies. The equilibrium in undominated strategies characterized in Theorem 2 is

a variant thereof, where dominated strategies are replaced by undominated strategies that are

equivalent in terms of expected payoffs against the opponent’s optimal strategy.

3.4 The case k ∈ {2, . . . , bn/2c}, with n divisible by k

This section deals with the case k ∈ {2, . . . , bn/2c}, where n is divisible by k. Recall our general

notational convention that m = bn/kc. Since n is divisible by k, of course m = n/k holds in this

subsection.

In the considered case, the iterated elimination of dominated strategies proves to be less

effective in general. However, this fact ultimately does not cause any problems for the analysis

because the equilibrium turns out to be unique.

Theorem 3. Suppose that n is divisible by k, where k ∈ {2, . . . , bn/2c}. Then, the following is

the unique Nash equilibrium in B(n, k): Player 1 chooses a mixed strategy µ∗1 specified as follows:

• x1 = 0 with probability µ∗1(x1) = 2m−1
m2+m−1 ,

• x1 = s1k with probability µ∗1(x1) = m−s1
m2+m−1 , for s1 ∈ {1, . . . ,m− 1},

• x1 = s1k + 1 with probability µ∗1(x1) = s1
m2+m−1 , for s1 ∈ {1, . . . ,m− 1}.

Player 2 chooses the following strategy µ∗2:

• x2 = 0 with probability µ∗2(x2) = 2m−1
m2+m−1 ,

• x2 = s2k with probability µ∗2(x2) = s2−1
m2+m−1 , for s2 ∈ {2, . . . ,m},

• x2 = s2k + 1 with probability µ∗2(x2) = m−s2
m2+m−1 , for s2 ∈ {1, . . . ,m− 1},
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All other pure strategies are strictly suboptimal and chosen with probability zero. The value of

B(n, k) is

v1 =
2m− 1

m2 +m− 1
. (7)

Proof. See the Appendix. �

Theorem 3 characterizes the unique equilibrium in the considered case. Thus, the uniqueness

property is stronger than those obtainable in the cases dealt with before.

It should be noted that player 2 uses the bid x2 = n with positive probability, because

n = mk. Further, the support of the equilibrium strategy is “thin”in the sense that it contains,

in addition to the boundary strategies xi ∈ {0, n}, strategies of the form sik and sik + 1 only,

where si ∈ {1, . . . ,m − 1}. Thus, resource decisions tend to concern multiple units of k soldiers

(or “battalions”) rather than individual soldiers. Indeed, given that n is divisible by k, pure-

strategy realizations of randomized equilibrium strategies may be thought of as sending a number

of si ∈ {0, . . . ,m} units to battlefield A and m − si units to battlefield B. Moreover, in cases

where si 6= m, one additional soldier (or “messenger”) may be withdrawn from battlefield B and

sent to battlefield A. As in the case where k ∈ {bn/2c , . . . , n − 1}, competition takes the form

of a hide-and-seek game, where the favorite (player 1) tries to anticipate the hiding underdog’s

(player 2) strategy, so as to slightly overpower her on both battlefields.

The proof of the equilibrium property in Theorem 3 is not particularly original. To verify

that (µ∗1, µ
∗
2) is a Nash equilibrium, we check the optimality conditions for each player. Careful

computations show that

Eµ∗2 [Π1(x1, x2)] = v1 (x1 ∈ Supp(µ∗1)) (8)

and

Eµ∗2 [Π1(x1, x2)] < v1 (x1 /∈ Supp(µ∗1)). (9)

Clearly, this shows that player 1’s optimality condition is satisfied. The analysis of player 2’s

optimality condition is similar, which establishes existence.

Relationship (9) implies that pure strategies not contained in the support of µ∗1 are even

strictly suboptimal for player 1. Again, a similar relationship holds for player 2. Jointly, these
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observations are used to prove uniqueness. Indeed, interchangeability of Nash equilibria in two-

person constant-sum games implies that only pure best responses to µ1 and µ2 appear with positive

probability in any Nash equilibrium. It therefore suffi ces to show that the payoff matrices, cut

back to represent only the set of pure best responses, are invertible. These matrices turn out to

be closely related to what is known as finite symmetric Toeplitz matrices (Gohberg and Semencul,

1972; Rodman and Shalom, 1992).17 We show by induction that invertibility is given, and thereby

establish uniqueness.

3.5 The case k ∈ {2, . . . , bn/2c}, with n not divisible by k

If n is not divisible by k, the structure of equilibrium changes slightly compared to the previous

case. We start again with an example.

Example 3. Let n = 5 and k = 2. The IEDS procedure simplifies the game, as shown in panels

(a) through (c) of Figure 5. The unique equilibrium in iteratively undominated strategies is given

by µ∗1 = 1
2δ0 + 1

4δ2 + 1
4δ4 and µ

∗
2 = 1

2δ0 + 1
4δ3 + 1

4δ5. The value is v1 = 1
2 .

Figure 5. Iterated elimination of weakly dominated strategies in the case (n, k) = (5, 2).

The following result identifies an equilibrium in this case.

17A symmetric Toeplitz matrix is a square matrix {xν1ν2} such that (i) xν1ν2 depends only on ν1 − ν2 (Toeplitz
property), and (ii) xν1ν2 = xν2ν1 (symmetry). E.g., the lower three-by-three principal submatrix of the payoff
matrix shown in panel (c) of Figure 5 is a symmetric Toeplitz matrix.
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Theorem 4. Let n ≥ 3 and k ∈ {2, . . . , bn/2c}, with n not divisible by k. Then, n = mk + r

for m = bn/kc ≥ 2 and r ∈ {1, . . . , k − 1}. Then, an equilibrium in B(n, k) is given by

µ∗1 =
2

m+ 2
δ0 +

(
1

m+ 2

∑m−1

ν=1
δkν

)
+

1

m+ 2
δn−k+1, (10)

µ∗2 =
2

m+ 2
δ0 +

1

m+ 2

∑m

ν=1
δkν+r. (11)

The value is

v1 =
2

m+ 2
. (12)

Proof. See the Appendix. �

Like in the previous case, resource decisions concern units of k soldiers rather than individual

soldiers. This becomes most evident by focusing on the underdog’s resource commitments to

battlefield B. Indeed, y2 = n− x2 ranges over the set {0, k, 2k, . . . ,mk} ∪ {n}, i.e., the underdog

essentially decides about the number of units she sends to battlefield B, where the option of “all

in” on battlefield B is used with positive probability as well. The favorite in response tries to

outguess the underdog’s decision by sending between zero and (m−1) units of size k to battlefield

A, while also sending with positive probability the minimum number of troops x1 = n − k + 1

suffi cient to guarantee a victory there.

From the zero-sum property, the value of the discrete Colonel Blotto game with head start

is always unique. It should be noted, however, that Theorem 4 does not contain any general

assertion regarding equilibrium uniqueness. The following result, which holds under additional

parameter restrictions, generalizes Example 3.

Lemma 4. The equilibrium specified in Theorem 4 is unique in iteratively undominated strategies

if one of the following two conditions holds:

(i) k = 2;

(ii) n = mk + r, for m = bn/kc = 2 and some r ∈ {2, . . . , k − 1}.

Proof. See the Appendix. �

It should be noted that Lemma 4 provides suffi cient conditions only. As part (i) shows, uniqueness

in iteratively undominated strategies holds for k = 2 and n odd. In that case, IEDS ends after
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two rounds, and the resulting matrix is essentially a symmetric Toeplitz matrix that is invertible,

as in panel (c) of Figure 5. Part (ii) requires that m = 2 and that the residue term r differs from

one. In that case, the equilibrium is given by

µ∗1 =
1

2
δ0 +

1

4
δk +

1

4
δn−k+1, (13)

µ∗2 =
1

2
δ0 +

1

4
δk+r +

1

4
δn. (14)

Moreover, the corresponding value is v1 = 1
2 . This latter observation will be useful for our review

of the Sion-Wolfe example.

4. Discussion

Combining the results from the previous section, we obtain the following characterization of

equilibrium values.

Corollary 1. Let m = bn/kc. Then, player 1’s value v1 = V (n, k) in a discrete Colonel Blotto

game with homogeneous budget of size n and head start k for player 1 is given by

V (n, k) =



0 if k = 0
1

bn/2c+1 if k = 1
2m−1

m2+m−1 if n is divisible by k , and k ∈ {2, . . . , n− 1}
2

m+2 if n is not divisible by k , and k ∈ {2, . . . , n− 1}
1 if k ≥ n

(15)

Proof. Immediate from Lemma 2 and Theorems 1 through 4. �

Table I exhibits the value v1 as a function of the budget n, represented as rows, and the head

start k, represented as columns. The table suggests that, for n kept fixed, v1 is weakly increasing

in the head start, which of course makes sense. Conversely, for k kept fixed, the value is weakly

decreasing in n. Again, this is in line with intuition because a head start of given size becomes less

valuable as the budget grows. Going over the possible cases suggested by Lemma 2 and Theorems

1 through 4, we obtain this as a formal result as well.

Lemma 5. V (n, k) is (i) weakly increasing in k, and (ii) weakly decreasing in n.

Proof. See the Appendix. �
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Table I. Player 1’s equilibrium payoff as a function of the budget n and the head start k.

We end this section with a brief discussion of the nature of competition in B(n, k). In the

equilibria identified in the previous section, the favorite with a head start of at least two soldiers

and strictly less than n + 1 soldiers wins on both battlefields only if she correctly anticipates

how many units of soldiers the underdog sends to the balanced battlefield. While this intuitive

description of the equilibrium as a game of hide and seek may be appealing, it should be noted

that it is somewhat at odds with the principle of concentration that features quite prominently

in the applied military literature (e.g., Mixon, 1988). We see the reason for this discrepancy in

the assumed auction technology. I.e., the fact that one or two additional soldiers may entirely

tip the balance in a battlefield is clearly a strong assumption. To bring the theoretical analysis

closer to military application, it therefore seems desirable to study, in future work, also contest

technologies that are less decisive than the auction.

5. Implications for the Sion-Wolfe example

Sion and Wolfe (1957, Sec. 2) considered a Colonel Blotto game with two battlefields and homoge-

neous budgets in which one player has a head start in one battlefield corresponding in size to half

of the budget. In contrast to the model considered above, however, they worked with continuous

strategy spaces. In this section, we will review their main result and relate it to our analysis of

finite approximations.
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The continuous model is defined in analogy to the finite case. Given κ ≥ 0, let the two-person

zero-sum game Bκ on the unit square be given by payoff functions

π1(x1, x2) = sgn((x1 + κ)− x2) + sgn(x2 − x1), (16)

and π2(x1, x2) = −π1(x1, x2), respectively. In the mixed extension, players choose arbitrary

probability distributions on the Borel sets of the interval [0, 1]. We denote by µ̃i the mixed

strategy of player i ∈ {1, 2}. The main result in Sion and Wolfe (1957) may now be summarized

as follows.

Lemma 6. (Sion and Wolfe) Suppose that players choose probability distributions µ̃1 and µ̃2,

respectively, on the unit interval. Then,

v1 ≡ inf sup
µ̃1 µ̃2

∫∫
[0,1]×[0,1]

π1(x1, x2)dµ̃1(x1)dµ̃2(x2) =
4

7
' 0.571, (17)

v1 ≡ inf sup
µ̃2 µ̃1

∫∫
[0,1]×[0,1]

π1(x1, x2)dµ̃1(x1)dµ̃2(x2) =
2

3
' 0.667. (18)

In particular, the game B0.5 has no value.

Proof. See the Appendix. �

The maximin value v1 of B0.5 (from player 1’s perspective) is defined through equation (17).

Intuitively, this value is the expected payoff level that player 1 can guarantee herself in a sequential

setting in which a first-moving player 1’s mixed strategy (but not its pure-strategy realization) is

observed by a second-moving player 2. The minimax value v1 of B0.5 is, in turn, defined through

equation (18). The easiest way to interpret this number in a game-theoretic setting is to consider

it as the negative of the maximin value from player 2’s perspective, i.e., v1 = −v2, where v2 is

defined in analogy to (17) with the roles of players 1 and 2 exchanged. The remarkable point

about Lemma 6 is that v1 < v1, i.e., the maximin value is strictly smaller than the corresponding

minimax value. As a result, the game B0.5 has no value, and there is no Nash equilibrium in

mixed strategies.18

18 It may be noted that we departed from Sion and Wolfe’s (1957) original notation, which leads to the potentially
unfamiliar values for the maximin and minimax values shown in equations (17) and (18). Details on the transfor-
mation applied may be found in the Appendix. In a nutshell, we swapped the roles of the two players, and likewise
the roles of the two battlefields. Moreover, we normalized payoffs so that a tie on a battlefield implies a payoff of
zero from the battlefield. In fact, that same payoff normalization is proposed in the original article as well when
the abstract game is interpreted as a Colonel Blotto game with head start.
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We briefly survey existing approaches to resolving the non-existence problem. First, as pointed

out by Parthasarathy (1970), if one of the players is restricted to use an absolutely continuous

strategy, then the resulting game has a value. Second, Kindler (1983) proposed the use of finitely

additive measures. While that approach is intuitive, it is not straightforward to give the resulting

solution an economic interpretation.19 Finally, Boudreau and Schwartz (2019) proposed to modify

the Sion-Wolfe game at points of discontinuity. Even though this approach is consistent with

Simon and Zame’s (1990) idea of endogenizing the payoff implications of ties, it does not resolve

the nonexistence problem for the original game.

As discussed in the Introduction, we try to shed light on the result above by considering

discrete-grid approximations of B0.5. Thus, we consider sequences of finite Colonel Blotto games

B(n, k), where n, k → ∞ and n/k ' 2. By the results obtained so far, each such B(n, k), for

n suffi ciently large and for n/k not too far away from 2, admits a unique Nash equilibria in

iteratively undominated strategies. Taking the respective limits of these sequences, we arrive at

the three mixed strategy profiles

µ̃Huey =
(
1
2δ0 + 1

2δ1/2,
1
2δ0 + 1

4δ1/2 + 1
4δ1
)
, (19)

µ̃Dewey =
(
3
5δ0 + 2

5δ1/2,
3
5δ0 + 1

5δ1/2 + 1
5δ1
)
, (20)

µ̃Louie =
(
2
3δ0 + 1

3δ1/2,
2
3δ0 + 1

3δ1
)
, (21)

where the Dirac distributions are defined in straightforward extension of the finite case. For

example, in the profile µ̃Dewey, derived using Theorem 3 in the case where n = 2k, the privileged

player 1 sends all of her troops to battlefield B with probability 3/5, and splits her troops equally

across the two battlefields with probability 2/5. Player 2, however, sends all of her troops to

battlefield B with probability 3/5, splits her troops equally with probability 1/5, and send all of her

troops to battlefield A with probability 1/5. The other profiles admit analogous interpretations.

Using this notation, we can make the following observation.

19Finitely additive measures are a more flexible notion of probability distribution, where σ-additivity is replaced
by finite additivity (Yanovskaya, 1970). Intuitively, this means that it is feasible to define a bid that exceeds a
given (deterministic) bid by an arbitrarily small amount. However, from an economic perspective, finitely additive
measures suffer from the problem that Fubini’s theorem does not in general hold. In plain English, this means that
ex-ante expected payoffs need not be well-defined. The reason is that, should both players make use of an arbitrarily
small increment over an existing bid, then there would be ambiguity regarding who wins with what probability.
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Corollary 2. Consider a sequence of discrete Colonel Blotto games B(n, k) with n, k → ∞

such that n/k → 2. Then, the accumulation points of the corresponding sequence of unique Nash

equilibria in iteratively undominated strategies are contained in the set

M3= {µ̃Huey, µ̃Dewey, µ̃Louie}. (22)

Conversely, there exists a sequence of discrete Colonel Blotto games with n, k → ∞ such that

n/k → 2 and such that the accumulation points of the corresponding sequence of unique Nash

equilibria in iteratively undominated strategies are precisely the elements of M3.

Proof. Consider a sequence of discrete Colonel Blotto games B(n, k) with n, k → ∞, n/k < 2,

and n−2k = o(n).20 Then, the corresponding sequence of iteratively undominated Nash equilibria

characterized in Theorem 1 converges weakly to the limit profile µ̃Louie. Next, by Theorem 3, any

sequence of unique Nash equilibria in B(n, k) with n, k → ∞ such that n/k = 2 converges

weakly to the limit profile µ̃Dewey. Consider, finally, the sequence of discrete Colonel Blotto

games B(n, k) with n, k → ∞, n/k > 2, and n − 2k = o(n). Then, the corresponding sequence

of Nash equilibria characterized in Theorem 4, which have been seen to be unique in iteratively

undominated strategies for n large enough, converges weakly to the limit profile µ̃Huey. This

proves the claim. �

The corresponding limit values are given by

vHuey =
2

3
' 0.667 (23)

vDewey =
3

5
' 0.600 (24)

vLouie =
1

2
' 0.500. (25)

These values can alternatively be retrieved from the numerical values shown in Table I. What is

a bit strange about Corollary 2 is that the accumulation points of values of finite discretizations

of the Sion-Wolfe game do not correspond in a simple way to the minimax and maximin values of

the continuous game shown in Lemma 6. Specifically, v1 lies strictly between v
Louie and vDewey,

while v1 equals vHuey. Moreover, vDewey = 3
5 is the limit of V (n, k) as n = 2k →∞, but this value

does not appear in the statement of Lemma 6.
20As usual, the notation f(n) = o(n) means that limn→∞ f(n)/n = 0.
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The situation does not become clearer when one compares the underlying strategy profiles.

Using our notation, players’maximin strategies identified by Sion and Wolfe (1957) read

µSW571 = 4
7δ0 + 2

7δ1/2 + 1
7δ3/4, (26)

µSW572 = 1
3δ0 + 1

3δ1/2 + 1
3δ1. (27)

These strategies are not components of any element ofM3, neither do they relate to the members

M3 in any transparent way. In fact, player 1’s respective component strategies µ̃
Huey
1 , µ̃Dewey1 ,

and µ̃Louie1 fail to be maximin strategies in the continuous game.21 For player 2, it turns out that

µ̃Louie2 is actually a maximin strategy since

inf
x1∈[0,1]

Eµ̃Louie2
[π2(x1, x2)]

= inf
x1∈[0,1]

2
3π2(x1, 0) + 1

3π2(x1, 1) (28)

= inf
x1∈[0,1]

−23
(
sgn(x1 + 1

2)− sgn(x1)
)
− 1

3

(
sgn(x1 − 1

2) + sgn(1− x1)
)

(29)

= −23 = v2. (30)

However, µ̃Dewey2 and µ̃Huey2 fail to be maximin strategies for player 2.22 Further, none of the

six strategies appearing as components of a profile in M3 plays any role in the analysis of Sion

and Wolfe (1957). Thus, there does not seem to be any straightforward connection between the

limits of maximin values and strategies in the finite approximations and the maximin values and

strategies in the continuous game.

21To see this for µ̃Louie1 , for example, it suffi ces to check that

Eµ̃L o u ie1
[π1(x1, 1)] = 2

3
π1(0, 1) + 1

3
π2(

1
2
, 1)

= 2
3

(
sgn((0 + 1

2
)− 1) + sgn(1− 0)

)
+ 1

3

(
sgn(( 1

2
+ 1

2
)− 1) + sgn(1− 1

2
)
)

= 1
3
< v1.

Analogous strict inequalities, likewise for x2 = 1, hold for µ̃Dewey1 and µ̃Huey1 .
22 Indeed, we have

E
µ̃
D ew e y
2

[π2(0, x2)] = 3
5
π2(0, 0) + 1

5
π2(0,

1
2
) + 1

5
π2(0, 1)

= − 3
5

(
sgn((0 + 1

2
)− 0) + sgn(0− 0)

)
− 1

5

(
sgn((0 + 1

2
)− 1

2
) + sgn( 1

2
− 0)

)
− 1

5

(
sgn((0 + 1

2
)− 1) + sgn(1− 0)

)
= − 4

5
< v2.

A similar inequality holds for µ̃Huey2 , again with x1 = 0.
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6. Comparison with the case of heterogeneous budgets but no head start

A class of games related to those considered above are finite Colonel Blotto games with heteroge-

neous budgets yet no head start. As discussed in the Introduction, that type of model was first

considered in some generality by Hart (2008) who established, in particular, general bounds on

the values. Our analysis below draws from the precise characterization of values accomplished by

Liang et al. (2019).

To compare the two models, note that our homogeneous-budgets model B(n, k) may be rein-

terpreted as a variant of the heterogeneous-budgets model in which the favorite’s budget is n+ k

while the underdog’s budget is n, and where the favorite’s strategy is constrained by the additional

requirements that at least k soldiers must be sent to battlefield A. For clarity, we will refer to

this additional constraint in the heterogeneous-budgets model as the head start constraint. In the

absence of this constraint, we have a heterogeneous-budgets model B̂(n, k) without head start, as

considered in the literature. We will denote by V̂ (n, k) player 1’s value in B̂(n, k). The following

result quantifies the economic cost for the favorite of being restricted by this constraint.

Corollary 3. Let k ≥ 1 and m = bn/kc. Then,

V̂ (n, k)− V (n, k) = (31)

0 if k = 1
2

(m+2)(m+1) if neither n nor n+ 1 is divisible by k, and k ∈ {2, . . . , n− 1}
m−1

(m+1)(m+m2−1) if n is divisible by k, but n+ 1 is not, and k ∈ {2, . . . , n}
1

(m+2)(m+1) if n+ 1 is divisible by k, but n is not, and k ∈ {2, . . . , n− 1} ∪ {n+ 1}
1 if k ≥ n+ 2.

Proof. See the Appendix. �

Corollary 3 gives an explicit expression for the shadow cost of the head start constraint. As can

be seen, the shadow cost vanishes for k = 1.23 This may not be too surprising. In this case, the

head start constraint implies that the favorite cannot send n+ 1 soldiers to battlefield B. Sending

n + 1 soldiers to battlefield B, however, is payoff-equivalent to sending n soldiers to battlefield

B, because the only scenario where the difference could matter is that the underdog sends all

23 It obviously also vanishes for k = 0.
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her soldiers to battlefield B. In that case, however, the two strategies each yield a draw in one

battlefield and a win for the favorite in the other, so the payoff is indeed the same between the

two models.

The shadow cost also vanishes for m = 1 if n is divisible by k but n + 1 is not. A moment’s

reflection shows that this is the case where k = n. In the model with heterogeneous budgets, this

means that the favorite’s budget is just twice the size of the underdog’s budget. The head start

constraint has no implications on the value in that case because it is an optimal strategy for the

favorite in both models to bid equally on both battlefields. For k = n + 1, however, the shadow

cost is 12 , which is due to the fact that the head start constraint prohibits a type of randomization

that is optimal in the heterogeneous-budgets model.

The shadow cost is highest in the case where k ≥ n + 2. This is intuitive because these are

the cases where being able to move troops from one battlefield to the other is most valuable.

In all intermediate cases, the shadow cost lies strictly between 0 and 1. Moreover, it is strictly

declining in m within each of the three “interior”cases distinguished in Corollary 3.

7. Conclusion

The research efforts documented in this paper have been motivated by the desire to better un-

derstand the nature of the Sion-Wolfe example. It is simply hard to accept that noncooperative

game theory fails to deliver any prediction for the outcome of a simple game with straightforward

economic interpretation. In an attempt to resolve the issue, we have fully characterized the values

of discrete-grid approximations of homogeneous-budget Blotto games with a head start. In some

but not all cases, the equilibrium was shown to be unique in iteratively undominated strategies,

unique in undominated strategies, or even unique without qualification. Linking the findings back

to the motivating example, two main observations have been made. First, the set of limit points

of values in approximating finite game consists of three points. Second, one of the three limit

points lies outside of the interval formed by the maximin and minimax values in the continuous

Blotto game. We do not have an explanation for why this is happening. We conclude, however,

that finite approximations are highly ineffective as a remedy against the equilibrium non-existence

problem in Colonel Blotto Games with a head start and continuous strategy spaces.
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Appendix

This Appendix contains technical material omitted from the body of the paper. The following

lemma is needed in the proof of Theorem 1.

Lemma A.1. Suppose that n ≥ 2 and k ∈ {bn/2c + 1, . . . , n − 1}. Then, the set of iteratively

undominated strategies is X(∞)
1 = X

(2)
1 = {0, n− k + 1} and X(∞)

2 = X
(2)
2 = {0, n}.

Proof. By Lemma 1, the respective sets of undominated strategies are given byX(1)
1 = {0, . . . , n−

k + 1} and X(1)
2 = {0} ∪ {k + 1, . . . , n}. See panel (a) of Figure A.1 for illustration.

Figure A.1 Iterated elimination of dominated strategies in the case k ∈ {bn/2c+ 1, . . . , n− 1}.

In round 2, x̂1 = n − k + 1 dominates any x1 ∈ {1, . . . , n − k} for player 1. See panel (b)

for illustration. Indeed, we know from the first round of elimination that player 2 either ignores

battlefield A or sends at least k + 1 soldiers to battlefield A. In the former case, x̂1 = n − k + 1

is payoff-equivalent to any x1 ∈ {1, . . . , n− k} for player 1, because she wins on battlefield A but

loses on battlefield B, i.e., player 1’s payoff is zero in that case. In the latter case, however, player
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2 sends at most n− (k + 1) soldiers to battlefield B, i.e., y2 ≤ n− (k + 1). Since n ≤ 2 bn/2c+ 1

and, by assumption, bn/2c ≤ k − 1, we know that

y2 ≤ n− (k + 1) ≤ 2 bn/2c − k ≤ k − 2. (32)

For player 1, this means that sending ŷ1 = k − 1 soldiers to battlefield B, as the strategy x̂1 =

n− k+ 1 does, wins on both battlefields for sure if player 2 sends any number x2 ∈ {k+ 1, . . . , n}

of soldiers to battlefield A. Moreover, in the case where x̂2 = n, any strategy x1 ∈ {1, . . . , n− k}

is strictly inferior to x̂1 = n − k + 1, because player 1 either loses or ties on battlefield A. Thus,

x̂1 = n − k + 1 indeed dominates any x1 ∈ {1, . . . , n − k} for player 1. For player 2, a similar

consideration shows that any x2 ∈ {k + 1, . . . , n − 1} is dominated by the strategy x̂2 = n.

Indeed, if x1 = 0, then player 2’s payoff is zero for any x2 ≥ k + 1 (player 2 wins on battlefield

A, but loses on battlefield B). Further, if x1 ∈ {1, . . . , n − k − 1}, then player 2’s payoff from

x̂2 = n is zero (she wins on battlefield A, but loses on battlefield B), whereas her payoff from any

x2 ∈ {k + 1, . . . , n− 1} is weakly lower simply because a positive payoff is not feasible for player

2. If x1 = n − k, then x̂2 = n is even strictly better than any x2 = {k + 1, . . . , n − 1}, because

x̂2 = n yields a tie on battlefield A rather than a loss. Finally, if x1 = n − k + 1, then player 2

loses on battlefield A for sure, but player 2 loses also on battlefield B for any x2 ≥ k+ 1, because

in that case, y1 = k − 1 and y2 ≤ n − (k + 1) ≤ k − 2 by relationship (32). The reduced payoff

matrix obtained after two rounds of elimination is, consequently, the two-by-two diagonal matrix

shown in panel (c). Clearly, further eliminations are not feasible. �

Proof of Theorem 1. The game shown in panel (c) of Figure A.1 admits a unique equilibrium

(µ∗1, µ
∗
2), given by strategies µ

∗
1 = 2

3δ0 + 1
3δn−k+1 and µ

∗
2 = 2

3δ0 + 1
3δn. As explained in the body

of the paper, (µ∗1, µ
∗
2) is an equilibrium also in the game shown in panel (a), i.e., in B(n, k).

It is, therefore, the unique equilibrium in strictly undominated strategies. Obviously, player 1’s

equilibrium payoff is v1 = 2
3 . �

Proof of Lemma 3. The payoff matrix in the case k = 1, with n general, is outlined in Figure

A.2.
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Figure A.2 Iterated elimination of dominated strategies in the case k = 1.

In round 1, x1 = n is dominated by x̂1 = n−1. Moreover, x2 = 1 is dominated by x̂2 = 0. In round

2, strategy x1 = 1 is dominated by x̂1 = 2, provided that the latter exists (the strategy either may

have never existed or may have been deleted in an earlier round). Moreover, strategy x2 = n−1 is

dominated by strategy x̂2 = n, provided the latter exists. In round 3, x1 = n− 2 is dominated by

x̂1 = n−3, provided the latter strategy exists. Moreover, x2 = 3 is dominated by x̂2 = 2, provided

that the latter exists. In round 4, x1 = 3 is dominated by x̂1 = 4, provided the latter exists.

A pattern emerges. As illustrated in Figure A.2, for player 1, odd strategies x1 = 1, 3, . . . get

sequentially eliminated starting from the bottom, and “co-even”strategies x1 = n, n − 2, . . . get

sequentially eliminated starting from the top. Similarly, for player 1, odd strategies x1 = 1, 3, . . .

get eliminated sequentially starting from the bottom, and “co-odd”strategies x1 = n−1, n−3, . . .

get sequentially eliminated starting from the top. The procedure stops once one of the dominating

strategies fails to exist. Consider first player 1. If n is odd, then only odd strategies are eliminated.

Therefore, in this case, all even strategies survive the iterated elimination of dominated strategies,

i.e., X(∞)
1 = {0, 2, . . . , n− 1}. If n is even, there are two cases. Suppose first that n = 4q. Then,

the set of iteratively undominated strategies is X(∞)
1 = {0, 2, . . . , 2q, 2q + 1, . . . , n− 1}. Suppose,

next that n = 4q+2. Then, again, X(∞)
1 = {0, 2, . . . , 2q, 2q+1, . . . , n−1}. Consider next player 2.

If n is even, then all odd strategies are sequentially eliminated, so that X(∞)
2 = {0, 2, . . . , n}. If n

is odd, however, there are again two cases. If n = 4q+1, then X(∞)
2 = {0, 2, . . . , 2q, 2q+3, . . . , n}.
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But also if n = 4q + 3, then X(∞)
2 = {0, 2, . . . , 2q, 2q + 3, . . . , n}. This proves the lemma. �

Proof of Theorem 2. We have to check that no pure strategy for player 1 can get a payoff

exceeding v1. But this is immediate from the fact that player 2 does not use any two neighboring

pure strategies in the candidate equilibrium. We have to check that, likewise, no pure strategy

for player 2 can get a payoff exceeding −v1. Indeed, as player 1 randomizes uniformly over

X1 = {0, 2, . . . , 2q, 2q+1, . . . , n−1}, and player 2 loses one util against x1 and x1+1 alike (unless

x1 = n), it is not feasible for player 2 to get more than −v1. If n = 4q or n = 4q+1, then both X1

and X2 have a cardinality of 2q + 1, and the reduced payoff matrix is an identity matrix. Since

this matrix is invertible, the equilibrium is unique. If n = 4q+ 2 or n = 4q+ 3, then both X1 and

X2 have a cardinality of 2q + 2, but the reduced payoff matrix is again an identity matrix. This

proves the claim. �

Proof of Theorem 3. It can be readily verified that the respective probabilities sum up to one

for each player. For player 1, for example, we have

∑
x1∈X1

µ∗1(x1) =
2ρ− 1

ρ2 + ρ− 1
+

ρ−1∑
r1=1

(
ρ− r1

ρ2 + ρ− 1
+

r1
ρ2 + ρ− 1

)
(33)

=
2ρ− 1

ρ2 + ρ− 1
+

ρ(ρ− 1)

ρ2 + ρ− 1
= 1. (34)

For µ∗2, the calculation is similar. Thus, µ
∗
1 and µ

∗
2 indeed define mixed strategies.

Next, we check the optimality of player 1’s strategy µ∗1 against µ
∗
2. This is done by testing all

pure strategies x1 ∈ X1. Player 1’s expected payoff against µ∗2 is given by

Eµ∗2 [Π1(x1, x2)] =

n∑
x̃2=0

µ∗2({x̃2})Π1(x1, x̃2) (35)

=
2m− 1

m2 +m− 1
Π1(x1, 0) +

(
m∑

s2=2

s2 − 1

m2 +m− 1
Π1(x1, s2k)

)
(36)

+

(
m−1∑
s2=1

m− s2
m2 +m− 1

Π1(x1, s2k + 1)

)
.

To evaluate the right-hand side of (36) for a given pure strategy x1 ∈ X1, we compute the terms

Π1(x1, 0), Π1(x1, s2k), Π1(x1, s2k + 1), and subsequently simplify the resulting expression. For a

start, suppose that player 1 chooses x1 = 0. In this case, we know that Π1(0, 0) = 1 (player 1
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wins on battlefield A and ties on battlefield B), and Π1(0, x2) = 0 for any x2 > k (player 1 loses

on battlefield A but wins on battlefield B). Plugging this into (36) for x1 = 0, one finds

Eµ∗2 [Π1(0, x2)] =
2m− 1

m2 +m− 1
= Π∗1, (37)

which is just the equilibrium payoff for player 1. Suppose next that player 1 chooses x1 = s1k,

for some s1 ∈ {1, . . . ,m − 1}. Note that Π1(x1, 0) = 0 if x1 > 0 (player 1 wins on battlefield A,

but loses on battlefield B). Moreover,

Π1(s1k, s2k) =

{
1 if s2 = s1 or s2 = s1 + 1
0 otherwise,

(38)

Π1(s1k, s2k + 1) =

{
2 if s2 = s1
0 otherwise.

(39)

Hence,

Eµ∗2 [Π1(s1k, x2)] =
s1 − 1

m2 +m− 1
· 1 +

(s1 + 1)− 1

m2 +m− 1
· 1 +

m− s1
m2 +m− 1

· 2 = Π∗1, (40)

as claimed. Suppose next that player 1 chooses x1 = s1k + 1 for some s1 ∈ {1, . . . ,m− 1}. Note

that

Π1(s1k + 1, s2k) =

{
2 if s2 = s1 + 1
0 otherwise,

(41)

Π1(s1k + 1, s2k + 1) =

{
1 if s2 = s1 or s2 = s1 + 1
0 otherwise.

(42)

Hence,

Eµ∗2 [Π1(s1k + 1, x2)] =
(s1 + 1)− 1

m2 +m− 1
· 2 +

m− s1
m2 +m− 1

· 1 +
m− (s1 + 1)

m2 +m− 1
· 1 = Π∗1. (43)

We have shown that each pure strategy x1 ∈supp(µ∗1) yields the same payoff against µ
∗
2. To

establish that µ∗1 is a best response to µ
∗
2, we still have to check that any x1 ∈ X1\supp(µ∗1) gives

player 1 a weakly lower expected payoff than Π∗1. In fact, we will show that the expected payoff

is strictly lower than Π∗1 in these cases. Suppose that player 1 chooses x1 = s1k + r, for some

s1 ∈ {1, . . . ,m− 1} and some r ∈ {2, . . . , k − 1}. We note that

Π1(s1k + r, s2k) = Π1(s1k + r, s2k + 1) =

{
2 if s2 = s1 + 1
0 otherwise.

(44)

32



Therefore,

Eµ∗2 [Π1(s1k + r, x2)] =
(s1 + 1)− 1

m2 +m− 1
· 2 +

m− (s1 + 1)

m2 +m− 1
· 2 =

2m− 2

m2 +m− 1
< Π∗1, (45)

which proves the claim for any strategy x1 = s1k + r, where s1 ∈ {1, . . . ,m − 1} and r ∈

{2, . . . , k − 1} yields. Suppose next that player 1 chooses x1 ∈ {1, . . . , k − 1}. In this case,

Π1(x1, s2k) = 0 for any s2 ∈ {2, . . . , n} (player 1 loses on battlefield A but wins on battlefield B).

If x1 = 1, then,

Π1(x1, s2k + 1) =

{
1 if s2 = 1
0 if s2 ≥ 2.

(46)

Thus,

Eµ∗2 [Π1(x1, x2)] =
m− 1

m2 +m− 1
· 1 < Π∗1. (47)

If, however, x1 ∈ {2, . . . , k − 1}, then

Π1(x1, s2k + 1) =

{
2 if s2 = 1
0 if s2 ≥ 2.

(48)

Therefore,

Eµ∗2 [Π1(x1, x2)] =
m− 1

m2 +m− 1
· 2 < Π∗1. (49)

Finally, suppose that player 1 chooses x1 = n. One notes that

Π1(n, s2k) = Π1(n, s2k + 1) = 0 (s2 ∈ {2, . . . ,m− 1}), (50)

Π1(n, n) = 1. (51)

Therefore,

Eµ∗2 [Π1(n, x2)] =
m− 1

m2 +m− 1
< Π∗1. (52)

We have shown that no pure strategy in X1 yields a higher expected payoff against µ∗2 than µ
∗
1.

Thus, we have shown that µ∗1 is a best response to µ
∗
2.

We now show that µ∗2 in turn is a best response to µ
∗
1. Player 2’s expected payoff from playing

x2 against µ∗1 is

Eµ∗1 [Π2(x1, x2)] =
2m− 1

m2 +m− 1
Π2(0, x2) +

(
m−1∑
s1=1

m− s1
m2 +m− 1

Π2(s1k, x2)

)
(53)

+

(
m−1∑
s1=1

s1
m2 +m− 1

Π2(s1k + 1, x2)

)
.
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Suppose first that x2 = 0. We have Π2(0, 0) = −Π1(0, 0) = −1. Moreover, Π2(x1, 0) = 0 for any

x1 > 0 (because player 2 loses on battlefield A yet wins on battlefield B). Hence,

Eµ∗1 [Π2(x1, 0)] = − 2m− 1

m2 +m− 1
= Π∗2, (54)

where Π∗2 is the equilibrium payoff for player 2. Suppose next that player 2 chooses x2 = s2k, for

some s2 ∈ {2, . . . ,m− 1}. We know that

Π2(s1k, s2k) =

{
−1 if s1 = s2 or s1 = s2 − 1
0 otherwise,

(55)

Π2(s1k + 1, s2k) =

{
−2 if s1 = s2 − 1
0 otherwise.

(56)

Therefore,

Eµ∗1 [Π2(x1, s2k] =
m− s2

m2 +m− 1
· (−1) +

m− (s2 − 1)

m2 +m− 1
· (−1) +

s2 − 1

m2 +m− 1
· (−2) = Π∗2, (57)

as claimed. Suppose now that player 2 chooses x2 = s2k + 1, for some s2 ∈ {1, . . . ,m− 1}. Note

that, since k ≥ 2,

Π2(s1k, s2k + 1) =

{
−2 if s1 = s2
0 otherwise,

(58)

Π2(s1k + 1, s2k + 1) =

{
−1 if s1 = s2 or s1 = s2 − 1
0 otherwise.

(59)

Therefore,

Eµ∗1 [Π2(x1, s2k+ 1)] =
m− s2

m2 +m− 1
· (−2) +

s2
m2 +m− 1

· (−1) +
s2 − 1

m2 +m− 1
· (−1) = Π∗2, (60)

as claimed. Finally, suppose that player 2 chooses x2 = n. Since k ≥ 2, we have

Π2(s1k, n) =

{
−1 if s1 = m− 1
0 otherwise,

(61)

Π2(s1k + 1, n) =

{
−2 if s1 = m− 1
0 otherwise.

(62)

Hence,

Eµ∗1 [Π2(x1, n)] =
1

m2 +m− 1
· (−1) +

m− 1

m2 +m− 1
· (−2) = − 2m− 1

m+m2 − 1
= Π∗2. (63)

We have shown that each strategy x2 that is chosen with positive probability against the proposed

strategy µ∗1 yields the same payoff. We now have to show that no other strategy x2 gives player
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2 a payoff strictly higher than Π∗2. Suppose that player 2 chooses x2 = s2k + r, for some s2 ∈

{1, . . . ,m− 1} and some r ∈ {2, . . . , k − 1}. Note that, since k ≥ 2,

Π2(0, s2k + r) = 0, (64)

Π2(s1k, s2k + r) = Π2(s1k + 1, s2k + r) =

{
−2 if s2 = s1
0 if s2 6= s1.

(65)

Therefore

Eµ∗1 [Π2(x1, s2k + r)] =
m− s2

m2 +m− 1
· (−2) +

s2
m2 +m− 1

· (−2) = − 2m

m+m2 − 1
< Π∗2. (66)

Suppose next that player 2 chooses x2 ∈ {1, . . . , k − 1}. Then, Π2(0, x2) = −2 (player 2 loses on

both battlefields). Moreover, Π2(s1k, x2) = Π2(s1k + 1, x2) = 0 (player 2 loses on battlefield A,

but wins on battlefield B). Therefore,

Eµ∗1 [Π2(x1, x2)] =
2m− 1

m2 +m− 1
· (−2) < Π∗2. (67)

Finally, we have to check the payoff if player 2 plays x2 = k against µ∗1. In this case, Π2(0, k) = −1

(player 2 ties on battlefield A but loses on battlefield B). Moreover,

Π2(s1k, k) =

{
−1 if s1 = 1
0 if s1 ≥ 2,

(68)

and Π2(s1k + 1, k) = 0 (player 2 loses on battlefield A but wins on battlefield B). Hence,

Eµ∗1 [Π2(x1, k)] =
2m− 1

m2 +m− 1
· (−1) +

m− 1

m2 +m− 1
· (−1) = − 3m− 2

m2 +m− 1
< Π∗2. (69)

Every strategy x2 that is played with probability µ∗2(x2) = 0 yields a strictly smaller payoff than

µ∗2 against µ
∗
1. Thus, we have shown that µ

∗
2 is a best response to µ

∗
1. Hence, both players play a

best response and we have identified a Nash equilibrium.

We claim that, under the assumptions of Theorem 3, (µ∗1, µ
∗
2) is the unique mixed-strategy

Nash equilibrium. To provoke a contradiction, suppose that (µ∗∗1 , µ
∗∗
2 ) 6= (µ∗1, µ

∗
2) is another

equilibrium. Since B(n, k) is a zero-sum game, Nash equilibria in B(n, k) are interchangeable

(see, e.g., Osborne and Rubinstein, 1994, Section 2.5). Therefore, the profile (µ∗1, µ
∗∗
2 ) is an

equilibrium. Now, as shown above, the set of pure best responses to µ∗1 is

B2 = {x12, . . . , xL2 } (70)
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≡ {0, k + 1, 2k, 2k + 1, . . . , n− k, n− k + 1, n}, (71)

where L = 2m− 1. Since µ∗∗2 is a best response to µ∗1, the support of µ
∗∗
2 is necessarily a subset

of B2, i.e., supp(µ∗∗2 ) ⊆ B2. Hence,

µ∗∗2 =
L∑
l=1

pl2δxl2
, (72)

for probabilities p12, . . . , p
L
2 ∈ [0, 1] such that p12 + . . .+ pL2 = 1. But also µ∗1 is a best response to

µ∗∗2 . Therefore, any pure strategy in the support of µ
∗
1,

B1 = supp(µ∗1) (73)

= {x11, . . . , xL1 } (74)

≡ {0, k, k + 1, 2k, 2k + 1, . . . , n− k, n− k + 1}, (75)

yields the same expected payoff Π∗1 against µ
∗∗
2 . Thus,Π1(x

1
1, x

1
2) · · · Π1(x

1
1, x

L
2 )

...
. . .

...
Π1(x

L
1 , x

1
2) · · · Π1(x

L
1 , x

L
2 )


︸ ︷︷ ︸

≡M1

p
1
2
...
pL2

 =

Π∗1
...

Π∗1

 . (76)

From Lemma A.2 below, the matrixM1 is invertible. Therefore, there is at most one solution for

the probabilities vector (p12, . . . , p
L
2 ). In particular, pl2 = µ∗2({xl2}) for all l ∈ {1, . . . , L}, so that

µ∗∗2 = µ∗2. An analogous argument, using that (µ∗∗1 , µ
∗
2) is an equilibrium and that the matrix

M2 = −MT
1 is invertible, shows that µ

∗∗
1 = µ∗1. However, we assumed that (µ∗1, µ

∗
2) 6= (µ∗∗1 , µ

∗∗
2 ).

The contradiction shows that the equilibrium is indeed unique. �

Lemma A.2 Player 1’s restricted payoff matrix,

M1 =



1 0 0 0 · · · 0

0 2 1 0
...

0 1 2 1
. . .

...

0 0 1 2
. . . 0

...
. . . . . . . . . 1

0 · · · · · · 0 1 2


, (77)

is invertible, and so is player 2’s restricted payoff matrix, M2 = −MT
1 .
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Proof. For ν ∈ {1, 2, . . .}, consider the symmetric Toeplitz matrix

S(ν) =



2 1 0 · · · 0

1 2 1
. . .

...

0 1 2
. . . 0

...
. . . . . . . . . 1

0 · · · 0 1 2


∈ Rν×ν . (78)

Recalling that L = 2m−1 is odd, it can be readily verified that detM1 = detM2 = detS(L−1).

Moreover, since n is divisible by k, but k ≤ bn/2c ≤ n/2, we have n/k ≥ 2, so thatm = bn/kc ≥ 2.

Hence, L = 2m− 1 ≥ 3. To prove the lemma, it therefore suffi ces to show that S(ν) is invertible

for all ν ≥ 2. But, clearly,

detS(1) = 2, (79)

detS(2) =

∣∣∣∣ 2 1
1 2

∣∣∣∣ = 3. (80)

Moreover, by Laplacian expansion with respect to the first row, it is easy to see that

detS(ν) = 2 detS(ν − 1)− det



1 1 0 · · · 0

0 2 1
. . .

...
... 1 2

. . . 0
...
. . . . . . . . . 1

0 0 · · · 1 2


︸ ︷︷ ︸

∈R(ν−1)×(ν−1)

(ν ≥ 3). (81)

Expanding the second determinant on the right-hand side another time with respect to the first

row yields

detS(ν) = 2 detS(ν − 1)− detS(ν − 2) (ν ≥ 3). (82)

Based on equations (79) and (80), an induction argument using relationship (82) shows that

det S(ν) = ν+1 holds for any ν ≥ 1. Thus, detM1 6= 0, so thatM1 andM2 = −MT
1 are indeed

invertible. This proves the claim. �

Proof of Theorem 4. The idea of the proof is to compute expected payoffs against the candidate

equilibrium strategies in an effi cient way. We start with player 1’s expected payoff against µ∗2.

We decompose µ∗2 as follows:

µ∗2 =

(
2

m+ 2
δ0 −

1

m+ 2
δr

)
︸ ︷︷ ︸

=µ′2

+

(
1

m+ 2

∑m

ν=0
δkν+r

)
︸ ︷︷ ︸

=µ′′2

. (83)
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It should be noted that µ′2 and µ
′′
2 are signed measures and therefore expected payoffs against

those measures are well-defined (even they lack a direct intuitive interpretation). It is then not

hard to check that

Π1(x1, µ
′
2) =


− 2
m+2 if x1 ∈ {1, . . . , r − 1}
− 1
m+2 if x1 = r

0 otherwise,
(84)

Π1(x1, µ
′′
2) =

{ 1
m+2 if x1 = n
2

m+2 otherwise.
(85)

If follows that

Π1(x1, µ
∗
2) = Π1(x1, µ

′
2) + Π1(x1, µ

′′
2) (86)

=


0 if x1 ∈ {1, . . . , r − 1}
1

m+2 if x1 ∈ {r, n}
2

m+2 otherwise,
(87)

i.e., any pure strategy x1 ∈ {0} ∪ {r + 1, . . . , n− 1} is a best response to µ∗2. This shows that µ∗1
is a best response against µ∗2. Turning to player 2’s expected payoff against µ

∗
1, we decompose µ

∗
1

as follows:

µ∗1 =
2

m+ 2
δ0 +

(
1

m+ 2

∑m−1

ν=1
δkν

)
+

1

m+ 2
δn−k+1 (88)

=
1

m+ 2
δ0︸ ︷︷ ︸

=µ′1

+

(
1

m+ 2

∑m

ν=0
δkν

)
︸ ︷︷ ︸

=µ′′1

+
1

m+ 2
δn−k+1︸ ︷︷ ︸

=µ′′′1

+

(
− 1

m+ 2
δkm

)
︸ ︷︷ ︸

=µ′′′′1

. (89)

We find

Π2(µ
′
1, x2) =


− 1
m+2 if x2 ∈ {0, k}
− 2
m+2 if x2 ∈ {1, . . . , k − 1}
0 otherwise,

(90)

Π2(µ
′′
1, x2) =

{
− 1
m+2 if x2 = 0

− 2
m+2 otherwise.

(91)

Since n − r = km, there are now two cases. Suppose first that r = k − 1. Then, µ′′′1 + µ′′′′1 = 0,

and we may ignore the last two signed measures. This yields

Π2(µ
∗
1, x2) = Π2(µ

′
1, x2) + Π2(µ

′′
1, x2) (92)

=


− 4
m+2 if x2 ∈ {1, . . . , k − 1}
− 3
m+2 if x2 = k

− 2
m+2 otherwise.

(93)
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Thus, in the case r = k − 1, all pure strategies x2 ∈ {0} ∪ {k + 1, . . . , n} are best responses to

µ∗1. This proves the equilibrium property in this case. Suppose next that r 6= k − 1, which is

equivalent to r ∈ {1, . . . , k − 2}. Then,

Π2(µ
′′′
1 , x2) =

1

m+ 2
Π2(n− k + 1, x2) (94)

=


− 2
m+2 if x2 ∈ {n− k + 2, . . . , n}
− 1
m+2 if x2 = n− k + 1

0 otherwise,
(95)

and

Π2(µ
′′′′
1 , x2) = − 1

m+ 2
Π2(n− r, x2) (96)

=


2

m+2 if x2 ∈ {n− r + 1, . . . , n}
1

m+2 if x2 = n− r
0 otherwise.

. (97)

Recall that m ≥ 2 by assumption. Therefore, n− k+ 1 = k(m− 1) + r− 1 ≥ k, so that the cases

do not overlap. Summing up yields

Π2(µ
∗
1, x2) = Π2(µ

′
1, x2) + Π2(µ

′′
1, x2) + Π2(µ

′′′
1 , x2) + Π2(µ

′′′′
1 , x2) (98)

=


− 4
m+2 if x2 ∈ {1, . . . , k − 1} ∪ {n− k + 2, . . . , n− r − 1}
− 3
m+2 if x2 ∈ {k, n− k + 1, n− r}
− 2
m+2 otherwise.

(99)

Thus, in the case r ∈ {1, . . . , k−2}, all strategies x2 ∈ {0}∪{k+ 1, . . . , n−k}∪{n− r+ 1, . . . , n}

are best responses to µ∗1. But

µ∗2 =
2

m+ 2
δ0 +

(
1

m+ 2

∑m−1

ν=1
δkν+r

)
+

1

m+ 2
δn. (100)

It follows that, likewise, µ∗2 is a best response to µ
∗
1. This proves the theorem. �

Figure A.3 IEDS in the case k = 2.

39



Proof of Lemma 4. (i) By assumption, k = 2. For n = 1, the claim follows from Lemma

1(iv). Suppose, therefore, that n ≥ 2. Then, in round 1, as evident from panel (a) of Figure

A.3, x1 = n is dominated by x̂1 = n − 1, and x2 ∈ {1, 2} are dominated by x̂2 = 0. Hence,

X
(1)
1 = {0 . . . , n − 1} and X

(1)
2 = {0} ∪ {3, . . . , n}.24 In round two, x1 = 1 is dominated by

x̂1 = 2 for player 1. No other strategies are dominated, however. See panel (b) of Figure A.3

for illustration. The reduced-form payoff matrix is, therefore, essentially a symmetric Toeplitz

matrix, which has been seen to be invertible above. Hence, X(∞)
1 = X

(2)
1 = {0} ∪ {2, . . . , n − 1}

and X(∞)
2 = X

(2)
2 = {0} ∪ {3, . . . , n}, and the equilibrium in iteratively undominated strategies is

unique. (ii) By assumption, n = 2k + r, with r ∈ {2, . . . , k − 1}. We start by determining X(∞)
1

and X(∞)
2 in B(n, k). Clearly, k ∈ {3, . . . , n− 1}. Therefore, invoking Lemma 1(iii), we see that

X
(1)
1 = {0, . . . , n− k + 1} and X(1)

2 = {0} ∪ {k + 1, . . . , n}. The reduced game obtained after the

elimination of dominated strategies therefore looks as shown in Figure A.4. In round 2 of the IEDS

procedure, we see that strategies x1 ∈ {1, . . . , k−1}, marked in grey, are dominated by x̂1 = k for

player 1. Moreover, strategies x2 ∈ {k+r+2, . . . , 2k+r−1} are dominated by x̂2 = 2k+r = n for

player 2. Therefore, X(2)
1 = {0}∪ {k, . . . , n+ r+ 1} and X(2)

2 = {0}∪ {k+ 1, . . . , k+ r+ 1}∪ {n}.

Figure A.4 2nd round eliminations in the case m = 2.

In round 3 of IEDS, there are two cases. Suppose first that r = k − 1. Then, clearly, k 6= 2.

Panels (a) through (d) of Figure A.5 illustrate further eliminations in this case. It can be readily

verified that X(∞)
1 = X

(5)
1 = {0} ∪ {k} ∪ {n − k + 1} and X(∞)

2 = X
(5)
2 = {0} ∪ {k + 1} ∪ {n}.

24This, of course, is simply Lemma 1(iii) in the case k = 2.
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Moreover, the resulting reduced payoff matrix is a diagonal matrix, which implies uniqueness of

the equilibrium.

Figure A.5 Higher round eliminations in the case m = 2 and r = k − 1.

Suppose next that r ∈ {2, . . . , k − 2}. In this case, going through a sequence of eliminations

outlined in panels (a) through (c) of Figure A.6, we get X(∞)
1 = X

(4)
1 = {0} ∪ {k} ∪ {n− k + 1}

and X(∞)
2 = X

(4)
2 = {0} ∪ {k+ 1} ∪ {n}. Again, the resulting payoff matrix is a diagonal matrix,

which implies uniqueness.

Figure A.6 Higher round eliminations in the case m = 2 and r ∈ {2, . . . , k − 2}.

The rest of the proof is now immediate. �
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Proof of Lemma 5. (i) Fix n ≥ 1. For k ∈ {0, . . . , n}, we denote the corresponding value

as v1 = V (n, k). Because of Lemma 2(ii), it suffi ces to show that V (n, k) ≤ V (n, k + 1) for

k ∈ {0, . . . , n − 1}. Suppose first that k = 0. Then, V (n, k) = V (n, 0) = 0 by Lemma 2(i).

Moreover, by Theorem 2, V (n, k + 1) is given

V (n, 1) =
1

1 + bn/2c > 0. (101)

This proves the claim for k = 0. Suppose next that k = 1. Note that this implies n ≥ 2. Then,

V (n, k) is given by (101). Moreover, using Theorems 3 and 4, V (n, k + 1) is given by

V (n, 2) =

{ 2
m+2 if n is odd
2m−1

m2+m−1 if n is even,
(102)

where m = bn/2c ≥ 1. Hence, if n is odd, then V (n, 1) = 1
1+m < 2

2+m = V (n, 2). Similarly, if n

is even, then V (n, 1) = 1
1+m < 2m−1

m2+m−1 = V (n, 2). Thus, the claim holds for k = 1 as well. Next,

suppose that k ∈ {2, . . . , n− 1}. Then, proceeding as before, and invoking additionally Theorem

1 if k > n/2, we have

V (n, k) =

{ 2
m+2 if n is not divisible by k
2m−1

m2+m−1 if n is divisible by k,
(103)

where m = bn/kc. To compare this with V (n, k), note first that m ≥ bn/(k + 1)c = m′ ≥ 1.

There are now four subcases. Suppose first that n is not divisible by k and neither by k + 1.

Then,

V (n, k) =
2

m+ 2
≤ 2

m′ + 2
= V (n, k + 1), (104)

as claimed. Suppose next that n is not divisible by k, but by k + 1.25 Then, using m ≥ m′ ≥ 1,

V (n, k) =
2

m+ 2
≤ 2

m′ + 2
<

2m′ − 1

m′2 +m′ − 1
= V (n, k + 1). (105)

Suppose now that n is divisible by k, but not by k+1. Then, we have both m ≥ 1 and m ≥ m′+1,

so that

V (n, k) =
2m− 1

m2 +m− 1
≤ 2

m+ 1
≤ 2

m′ + 2
= V (n, k + 1). (106)

Suppose, finally, that n is divisible by both k and k + 1. Then, as before,

V (n, k) =
2m− 1

m2 +m− 1
≤ 2

m+ 1
≤ 2

m′ + 2
≤ 2m′ − 1

m′2 +m′ − 1
= V (n, k + 1). (107)

25For any example, think of n = 12 and k = 5.
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This proves the claim. (ii) Fix n ≥ 1 and k ≥ 0. We wish to show that V (n, k) ≥ V (n + 1, k).

The claim is immediate for k = 0, since V (n, 0) = V (n + 1, 0) = 0 by Lemma 2(i). Similarly,

for k = 1, we see from Theorem 2 that V (n, 1) = 1
1+bn/2c ≥

1
1+b(n+1)/2c = V (n + 1, 1). Let

now k ∈ {2, . . . , n − 1}. Then, as noted above, V (n, k) is given by (103), where m = bn/kc.

To compare this with V (n + 1, k), note first that m ≤ b(n+ 1)/kc = m̂. Again, we have four

subcases. Suppose first that neither n nor n+ 1 are divisible by k. Then,

V (n, k) =
2

m+ 2
≥ 2

m̂+ 2
= V (n+ 1, k). (108)

Suppose instead that n is divisible by k, but that n + 1 is not. Then, it is not hard to see that

m = m̂, and therefore

V (n, k) =
2m− 1

m2 +m− 1
=

2m̂− 1

m̂2 + m̂− 1
>

2

m′ + 2
= V (n+ 1, k). (109)

Next, suppose that n is not divisible by k, while n + 1 is divisible by k. Then, m + 1 ≤ m̂, and

therefore

V (n, k) =
2

m+ 2
≥ 2

m̂+ 1
=

2m̂− 1

m̂2 + m̂− 1
= V (n+ 1, k). (110)

Finally, suppose that both n and n+ 1 are divisible by k. Clearly this is in conflict with k ≥ 2, so

this case cannot occur. The case k ≥ n is again trivial. As all cases have been covered, the claim

has been proved. �

Proof of Lemma 6. Sion and Wolfe (1957) consider a two-person zero-sum game on the square,

with player 1 choosing x and player 2 choosing y, where player 1’s payoff function is given as

K(x,y) =


−1 if x < y < x+ 1

2
0 if x = y or y = x+ 1

2
1 otherwise.

(111)

In comparison, one notes that in B0.5,

π1(x1, x2) =


2 if x1 < x2 < x1 + 1

2
1 if x2 = x1 or x2 = x1 + 1

2
0 otherwise.

(112)

It is now easy to check that, by letting x = 1− x2 and y = 1− x1, we obtain

π1(x1, x2) = 1−K(x,y). (113)
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Thus, exchanging the roles of players 1 and 2, and applying the linear transformations of strat-

egy spaces and payoff functions, the Sion-Wolfe game is indeed strategically equivalent to B0.5.

Moreover, as the maximin value in the Sion-Wolfe game is sup infK = 1
3 and the minimax value

is inf supK = 3
7 , we obtain

sup inf
µ̃1 µ̃2

∫∫
[0,1]×[0,1]

π1(x1, x2)dµ̃1(x1)dµ̃2(x2) = 1− inf supK =
4

7
, (114)

inf sup
µ̃2 µ̃1

∫∫
[0,1]×[0,1]

π1(x1, x2)dµ̃1(x1)dµ̃2(x2) = 1− sup infK =
2

3
, (115)

as claimed. �

We prepare the proof of Corollary 2. The following result is essentially due to Liang et al. (2019).

It has, however, been reformulated and also been enriched by the inclusion of trivial cases for

better comparability with our Corollary 1.

Lemma A.3 (Liang, Wang, Cao, and Yang) Let V̂ (n, k) denote player 1’s value in a

heterogeneous-budgets discrete Colonel Blotto game with budget n + k for player 1 and budget

n for player 2 (but no head start). Then,

V̂ (n, k) =



0 if k = 0
1

bn/2c+1 if k = 1
2

m+1 if n+ 1 is not divisible by k, and k ∈ {2, . . . , n+ 1}
1

m+1 + 1
m+2 if n+ 1 is divisible by k, and k ∈ {2, . . . , n+ 1}

2 if k ≥ n+ 2.

(116)

Proof. We go over the cases in equation (116). The case k = 0 follows from a straightforward

symmetry consideration in zero-sum games. For the remaining cases, let k ≥ 1 and denote by

r ∈ {0, . . . , k − 1} the remainder of an integer division of n by k, as before. Table 2 presents in

bold face the symbols used by Liang et al. (2019).26 Considering the case k = 1 first, we have

∆ = 1 (the “small-gap case”). For that case, Liang et al. (2019, Thm. 3(i)) says that

v(A,B) =

{
1
k if A is even
1
k+1 if A is odd.

(117)

26Thus, in B̂(n, k), the budget of the favorite is A = n+k, while the budget of the underdog is B = n. Moreover,
the gap between the budgets is ∆ = A−B = k. It is easy to see that with r ∈ {0, . . . ,∆− 1} being the remainder
of an integer division of A = n + k by ∆ = k, we have r = r. Moreover, from A = k∆ + r, we see that
k = m+ 1 = bn/kc+ 1. Note, finally, that the value v(A,B) in Liang et al.’s (2019) corresponds to precisely half
of our value V̂ (n, k).
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Using that m = n holds for k = 1, this translates into the desired

V̂ (n, k) = 2v(A,B) =

{ 2
m+1 if n is odd
2

m+2 if n is even

}
=

1

bn/2c+ 1
. (118)

Let now k ∈ {2, . . . , n+ 1}. For that case, Liang et al. (2019, Thm. 3, ii-iii) show that

v(A,B) =

{
1
k if r ∈ {0, . . . ,∆− 2}

1
2

(
1
k + 1

k+1

)
if r = ∆− 1.

(119)

Translating into our notation, this reads

V̂ (n, k) = 2v(A,B) =

{ 2
m+1 if r ∈ {0, . . . , k − 2}

1
m+1 + 1

m+2 if r = k − 1,
(120)

as claimed. Finally, consider the case where k ≥ n+ 2. Then, clearly, the favorite can easily win

both battlefields by sending at least n + 1 soldiers to each of them. Thus, V̂ (n, k) = 2 in that

case. As all cases have been covered, the proof is complete. �

Table A.1 Notation used by Liang et al. (2019).

Proof of Corollary 3. We will make use of Corollary 1 and Lemma A.3 without explicit

reference. Suppose first that k ∈ {0, 1}. Then, V̂ (n, k) = V (n, k), so that V̂ (n, k)− V (n, k) = 0,

as claimed. Suppose next that neither n nor n+ 1 is divisible by k, and that k ∈ {2, . . . , n− 1}.

Then, V̂ (n, k) = 2
m+1 , while V (n, k) = 2

m+2 . Hence, V̂ (n, k)− V (n, k) = 2
(m+2)(m+1) , as claimed.
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Suppose now that n is divisible by k, but that n + 1 is not, and that k ∈ {2, . . . , n}. Then,

V̂ (n, k) = 2
m+1 , while V (n, k) = 2m−1

m2+m−1 (resorting to Lemma 2(ii) in the case k = n, where

m = 1 and V (n, k) = 1). Therefore, V̂ (n, k) − V (n, k) = m−1
(m+1)(m+m2−1) in this case. Assume

further that n+ 1 is divisible by k, but that n is not, and that k ∈ {2, . . . , n− 1}∪{n+ 1}. Then,

V̂ (n, k) = 1
m+1 + 1

m+2 , while V (n, k) = 2
m+2 , where we used the fact that m = 0 if k = n + 1.

Hence, in the considered case, V̂ (n, k) − V (n, k) = 1
(m+2)(m+1) . Suppose, finally, that k ≥ n + 2.

Then, V̂ (n, k)− V (n, k) = 2− 1 = 1. This concludes the proof. �
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