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Abstract

In many situations, agents take risks by choosing an action that increases their perfor-

mance immediately, but that potentially leads to a large loss. The current paper studies

how such risk-taking behavior depends on the level of competition that the agents face.

We study a tournament model and we find that more intense competition, measured

by the number of competitors as well as their relative standing, induces agents to take

higher risks. We use a rich panel data set on professional biathlon competitions as well

as survey data from professional biathletes to confirm the model predictions. Finally,

we discuss implications for organizational decision-making.
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and participants at the 7th Annual Conference on “Contests: Theory and Evidence”, the YEP-Seminar of
ECONtribute (jointly organized by the University of Cologne and the University of Bonn), the WiP-Seminar
and the Workshop for Behavioral Management Science at the University of Cologne, the 22th Colloquium
on Personnel Economics, the 14th Workshop on Labour Economics at Trier University, the 19th Summer
Academy for Institutional and Organizational Economics, the Munich Summer Institute 2022, the Annual
Conference of the Verein für Socialpolitik 2022, and at the XXI. Symposium of the GEABA for helpful
comments. We further thank our student assistants Alyssa Gunnemann, Christoph von Helden, Eva Oess,
Gerrit Quaremba, David Stommel, and Kateryna Sytkina, for their great research assistance. Funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence
Strategy – EXC 2126/1 – 390838866. The study is approved by the Ethics Committee of the University
of Cologne (Reference: 220020MT). Our survey among the professional biathletes was preregistered on the
OSF Registries portal of the Center for Open Science (Registration DOI: 10.17605/OSF.IO/7K5HS).
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1. Introduction

Consider an associate at a prestigious law firm whose goal is to become partner. To outshine

the coworkers, the associate regularly works 80 to 100 hours a week. On the evening of

a particularly stressful day, the associate accidentally sends an e-mail to the wrong client,

thereby revealing sensitive information about another client. The associate apologizes to the

firm whose information was disclosed, but the law firm loses this client anyhow. As a result,

the associate’s striving for partnership suffers a significant setback.1

As a second example, consider a young researcher who is not yet tenured. The researcher

has gathered experimental data to test an innovative hypothesis. The statistical tests point

in the correct direction, but the results are not quite significant. The researcher is convinced

that some of the subjects did not fully understand the experiment and decides to drop these

“outliers”. In consequence, the results become significant and the researcher publishes the

study in a high-quality journal, thereby improving the chance to get tenure.2

As a third example, consider the manager of a publicly financed hospital. The manager

is informed that several of the hospitals in the county will be closed and that this decision

will depend on the hospitals’ financial health. The manager advises the medical directors to

talk patients into expensive treatments and to admit as many patients as possible. During

one unnecessary surgery complications occur, and the patient sues the hospital afterwards

for damages. The case is settled, but the hospital pays a large sum in compensation to the

patient and it is more likely to be closed as a result.3

Although these examples describe very different decision problems, they have several
1There is a lot of evidence that people are more likely to make mistakes when working long hours. Related

to the example, 52% (43%) of the respondents to a recent survey by Tessian say that they are more likely
to make mistakes with serious cybersecurity implications if they are stressed (tired) (Bishop 2022). DeVaro
(2022) presents additional examples of long working hours leading to grave errors.

2There are several high-profile cases in which researchers were caught falsifying data and making up
studies. Moreover, about one in 12 of the PhD students recruited for a recent study admit that they would
publish fraudulent results if it helped them to get ahead in academia (van de Schoot et al. 2021).

3A study by the SOCIUM research center of the University of Bremen conducted interviews with around
sixty doctors and hospital directors. The study finds evidence that the economization of hospitals in Germany
and the associated financial incentives as well as economic pressure of doctors may endanger patients’ health
by talking them into expensive and unnecessary treatments (Knight 2017).
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important commonalities. In all of the examples, the decision-makers find themselves in

some type of competition against other agents. The decision-makers can take an action that

increases their performance immediately (working long hours, manipulating data, recom-

mending unnecessary treatments), but that comes at the risk of a potentially large loss to

their performance (due to a mistake, being caught, or complications). Comparable decision

problems are prevalent in practice, and the goal of our paper is to study such type of risk-

taking. More specifically, we aim to investigate how this type of risk-taking is affected by

the intensity of competition.

Our study comprises a theoretical and an empirical part. The theoretical part follows the

seminal work of Lazear and Rosen (1981) and it models the competition among the agents

as a rank-order tournament. There are several agents competing against each other, and the

best-performing one receives a prize.4 The agents are heterogeneous in that they start the

tournament from different positions. They decide about the speed with which they perform

their tasks, and they possibly make mistakes, reducing their performance. Quicker speed

leads to a larger maximum performance, but also to more mistakes on average and can thus

be understood as a riskier strategy.5 We model the intensity of competition both by the

proximity in the starting positions and the number of competing agents.

The model’s main finding is that agents take more risks when the intensity of competition

becomes higher, that is, when they are located close to each other and when the number of

competitors is large. Intuitively, when agents act excessively restrained in such situations,

they have almost no chance of winning the tournament. Thus, they are willing to take more

risks and they decide to work at a faster pace. An immediate consequence is that agents

make more mistakes on average when the level of competition is high.

The paper’s empirical part uses data from professional biathlon competitions to verify
4Depending on the specific application of our model, “agents” could be employees, researchers, managers,

and so on.
5While we refer to the choice variable as task speed in our model (which is closely related to the long

working hours in the first of the three introductory examples), alternative interpretations such as those from
the other examples are possible as well.
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the model’s main predictions.6 Biathlon is a winter sport that combines cross-country skiing

and rifle-shooting. The total skiing distance is divided into multiple laps, and at the end of

each lap (except for the last one), athletes enter the shooting range to shoot at five targets.

Missed shots result in a penalty. Depending on the discipline, the penalty is given by either

an additional distance athletes have to ski before entering the next lap, or by time added

to their total course time. In the disciplines that we focus on in our study, which are Mass

Start and Pursuit, all athletes are on the course at the same time, and the final ranking is

determined by the order of finishing the course. Accordingly, athletes are informed about

their intermediate rank and the distance to their competitors throughout the race. In both

disciplines, athletes have to complete five laps and thus four shooting bouts. As a measure

of risk-taking, we use the time that the athletes require to complete the last course section

of the fourth round. The argument is that rifle shooting is a precision task that requires the

athlete to be calm and concentrated. A higher intensity in skiing right before the shooting

is physiologically demanding and therefore leads to worse shooting accuracy. We are able to

verify this argument empirically by showing that faster skiing increases the average number

of missed shots in the following shooting bout.7

Consistent with our theoretical model, we use different measures for the intensity of

competition. First, we use the number of athletes who are located within a short time

interval in front of and behind the athlete at the start of the last course section of the fourth

round. Second, we use the distance (in seconds) between athletes and the next competitors

in front of and behind them. Our empirical analysis supports the results of our model. For

both of our competition measures, we find that higher intensity of competition is associated

with a faster skiing time in the last section of the fourth round, that is, with more risky
6Data from biathlon have been used in other recent research in management and economics. See, e.g.,

Harb-Wu and Krumer (2019) on performance under pressure, and Krumer (2021) on discouragement when
lagging behind.

7Because of the observed relationship between the skiing speed (i.e., task speed) and the number of missed
shots (i.e., mistakes), we feel that biathlon data are particularly suited to verify the model’s predictions.
More generally, Kahn (2000) and Bar-Eli et al. (2020) highlight the benefits of using professional sports data
to test predictions in the context of labor-market research.
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behavior.

We conduct several robustness checks. Among other things, we issued a survey among

the biathletes to elicit their risk preferences. We find that more risk-loving biathletes gen-

erally take higher risks, thus substantiating the validity of our measure of risk-taking. We

further observe that controlling for risk preferences does not have an impact on our main em-

pirical results. Accordingly, we can rule out heterogeneities in risk preferences as a potential

explanation for our findings.

Baron and Kreps (1999, p. 27) provide a general classification of jobs according to the

risk that managers wish their employees to take. The three classes of jobs are denoted as

“guardians”, “stars”, and “foot soldiers”. In a guardian job, bad performance is disastrous

from the firm’s point of view, whereas good performance is only slightly better than average

performance. Hence, in a guardian job, managers want their employees to be careful at all

times and to refrain from taking unnecessary risks. A star job is the exact opposite in that bad

performance is not too problematic for the firm, but good performance is extremely valuable.

In these jobs, managers want to induce their employees to take risks, since the upsides

to great performance are much more important than the downsides to poor performance.

Finally, a foot soldier job is in-between these two extremes, meaning that both good and

bad performances have moderate effects on the firms’ profit.

Regardless of the exact level of risk that is desirable from the firm’s point of view, a

conflict of interest between managers and their employees is conceivable when employees have

an incentive to take levels of risk that are different from those preferred by the managers. Our

study allows us to understand when such a conflict of interest arises, and how to potentially

address it. We find that employees take large risks when they face strong competition within

their firm. An implication is that managers that desire their employees to refrain from

any unnecessary risk should ensure that employees are by no means inclined to compete

against their fellow employees. Not only does this mean that the managers should not award

bonuses or promotions based on relative performance, but also that any information about
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the employees’ relative performance should be withheld even if it is of no direct consequence

for employee remuneration (Sheremeta 2010, Blanes i Vidal and Nossol 2011). Furthermore,

if managers are unable to eliminate all incentives to take risks, they need to ensure that

these incentives are not very salient (Englmaier et al. 2017). On the contrary, managers that

desire their employees to take risks should make use of instruments to foster competition

among the employees.

The paper is structured as follows. The next section discusses related literature, while

Section 3 presents the theoretical model. Section 4 contains the empirical investigation, and

Section 5 provides robustness checks for our results. Section 6 discusses implications for

organizational decision-making and concludes.

2. Related literature

Our paper contributes to the theoretical literature on risk-taking in tournaments. Hvide

(2002) and Nieken and Sliwka (2010) study risk-taking behavior in tournaments with two

homogeneous contestants. Taylor (2003), Kräkel and Sliwka (2004), and Kräkel (2008)

extend the analysis by allowing the two contestants to be heterogeneous, while Gilpatric

(2009) considers more than two homogeneous contestants. To our knowledge, our model is

the first to study risk-taking in a tournament with more than two heterogeneous contestants.8

While such a model becomes quickly intractable, we impose distributional assumptions that

allow us to solve the model and investigate how the intensity of competition, as measured

by the number of contestants and the degree of heterogeneity, affects risk-taking behavior.

Our paper further contributes to the empirical literature by analyzing the impact of

competition on risk-taking. The existing work has focused on the financial industry and on

sports. An observation from the financial industry is that the inflow into a fund tends to be

a convex function of the fund’s return relative to other funds. As a consequence, managers

whose funds are underperforming have an incentive to invest in more risky assets (e.g., Brown
8More precisely, we consider a model with n ≥ 2 contestants on two starting positions.
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et al. 1996, Chevalier and Ellison 1997, and Kirchler et al. 2018). While the literature is able

to explain risk-taking behavior resulting from performance differences relative to a single

benchmark (the average market return), our paper focuses on the effects of the intensity of

competition among individual agents on their risk-taking behavior.

Studies using data from sports competitions mirror the results from the financial litera-

ture and show that athletes who are trailing during the tournament tend to deviate to riskier

strategies (e.g., Grund and Gürtler 2005, Genakos and Pagliero 2012, Grund et al. 2013, and

Feess et al. 2016). We also control for athletes’ (intermediate) ranks in our analysis; however,

the focus of our paper is on the relation between the intensity of competition and risk-taking

behavior. In contrast to the existing literature, we are able directly to measure competition

in two different ways by using the number of competitors surrounding the athlete, as well

as their respective distances. Another important finding in the literature is the existence of

gender differences, with female athletes taking fewer risks than male athletes (e.g., Böheim

and Lackner 2015, Feess et al. 2016, and Böheim et al. 2016). While our data set also covers

both female and male athletes, we do not find any significant gender effects on risk-taking.

As our results are driven by strategic decisions, this is in line with the findings of Bandiera

et al. (2021), who show, by aggregating existing literature, that gender differences in response

to incentives are close to zero.

Moreover, since we have detailed data on athletes’ risk-taking decisions as well as their risk

preferences, we are able to verify our risk measure empirically and to exclude heterogeneities

in risk preferences as a potential explanation for our findings.

Finally, since in both our theoretical model and the empirical investigation, higher risks

result from the decision to work at a faster pace and to make more mistakes as a result, our

paper is also related to the literature on the quantity-quality tradeoff. The famous paper by

Kerr (1975) contains real-world examples illustrating this tradeoff, and a recent empirical

investigation is provided by Hong et al. (2018).9 We confirm that such a tradeoff exists in
9The quantity-quality tradeoff can be understood as a special case of the multitasking problem. This

problem has been studied, among others, by Feltham and Xie (1994) and Baker (2002).
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biathlon and that the athletes who ski relatively fast right before the final shooting bout

tend to make more mistakes. We use this finding in the construction of our measure of

risk-taking.

3. Model

3.1. Model description

We consider a tournament model with n ≥ 2 agents who compete for a single prize v > 0.

The performance yi of agent i ∈ {1, ..., n} is given by yi = pi + si + εi, where pi denotes

the agent’s actual position in the contest (and/or skill), si is the speed with which tasks are

performed, and εi denotes a random variable capturing mistakes the agent possibly makes.10

When agents make mistakes, their output is reduced, meaning that the realizations of εi are

non-positive. Furthermore, mistakes are more likely when working faster. A relatively simple

and tractable way to capture this is to assume that the εi are distributed according to the

reflected exponential distribution, with density fεi
(x) = λ(si) exp(λ(si)x) and distribution

function Fεi
(x) = exp (λ(si)x) for x ≤ 0, where λ is a continuously differentiable, strictly

decreasing, and positive function. The assumption λ′ < 0 furthermore ensures that the mean

µεi
= −1/λ(si) is decreasing in si, which implies that working faster leads to more mistakes

on average.

Moreover, we assume that the agents’ average output does not depend on the individual

working speed, that is, the higher output due to the higher speed with which the tasks are

performed, and the additional mistakes offset each other on average. Formally, this means

that d
dsi

(
si − 1

λ(si)

)
= 0, or, equivalently, λ′(si) = − (λ(si))2 for all si.11 Agents have a

10In our analysis, we disregard actions that affect the performance of other agents, such as sabotage.
For studies of sabotage in tournaments, see, e.g., Lazear (1989) and Carpenter et al. (2010). Gürtler and
Chowdhury (2015) provide a survey of the literature.

11Note that the differential equation λ′(si) = − (λ(si))2 is solved by λ(si) = 1/(cλ + si), where cλ ∈ R.
Then, λ is well-defined for all si ̸= −cλ. Hence, in the following, we restrict the domain of λ, and therefore
the set of work speeds the agents choose to si > −cλ. Furthermore, we assume parameters to be such that
s̄ > −cλ.
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preferred speed s̄ at which they wish to perform their tasks. A deviation from that speed

to another level (in either direction) leads to costs kc(si − s̄), where k > 0 is a parameter,

the function c is twice continuously differentiable and satisfies c′(si − s̄) > 0 if and only if

si > s̄, and c′′ is bounded from below by a positive number. Together the assumptions from

this paragraph imply that s̄ represents the efficient work pace, since other levels of si yield

the same expected output, but higher cost.12 Additionally, the assumptions ensure that the

agents’ choice of the working speed is (purely) a choice of risk. Since the deterministic gain

on their performance through the increased speed is in expectation offset by the negative

effect of probabilistic mistakes, a larger speed leaves the mean unchanged, but spreads the

distribution of the overall performance, that is, it corresponds to a riskier strategy.

Agents are heterogeneous with regard to their actual position in the tournament. In

particular, nt ≥ 1 of the agents are trailing behind at position pt, whereas the remaining

nl = n − nt ≥ 1 agents are leading at position pl > pt. The agent with the relatively largest

output wins the prize. Agents choose their speed si so as to maximize their expected payoff.

3.2. Equilibrium characterization and comparative statics results

Denoting agent i’s winning probability when choosing working speed si by Pi(si), the ex-

pected payoff Ui, as a function of the work pace si, is given by

Ui(si) = vPi(si) − kc(si − s̄). (1)

Agent i wins the tournament only if yj < yi, or, equivalently, εj < pi − pj + si − sj + εi, for

all j ̸= i. Hence, the winning probability Pi is given by

Pi(si) =
∫

Πj ̸=iFεj
(pi − pj + si − sj + x)fεi

(x)dx. (2)

12We believe that a model in which deviations from s̄ yield no direct cost, but lower expected output,
would lead to implications very similar to ours. We opt for the current modeling approach for tractability
reasons. A similar modeling approach, where changes in risk lead to cost, but do not affect the expected
output, is adopted by Gilpatric (2009).
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As it is standard in the literature, we follow a first-order approach and determine the equi-

librium by the first-order conditions to the agents’ maximization problems. Thus, we assume

that k is sufficiently large such that the objective functions are quasiconcave and the first-

order approach is valid.

Defining the difference in positions by ∆p := pl − pt and simplifying notation by setting

λi = λ(si), λ∗
t = λ(s∗

t ) and λ∗
l = λ(s∗

l ), the following Proposition 1 characterizes the agents’

equilibrium behavior.

Proposition 1. If k is sufficiently large, there exists an equilibrium in which all trailing

agents at position pt choose the work pace s∗
t , and all leading agents at pl choose s∗

l , where

s∗
t and s∗

l are jointly determined by

v exp (nlλ
∗
l (s∗

t − s∗
l − ∆p)) λ∗

t

(
(nt − 1)λ∗

t + nlλ
∗
l

ntλ∗
t + nlλ∗

l

)2

− kc′(s∗
t − s̄) = 0 (3)

and

− v
exp(nlλ

∗
l (s∗

t − s∗
l − ∆p))

ntλ∗
t + nlλ∗

l

(λ∗
l )2

(
ntλ

∗
t + (nl − 1)λ∗

l

ntλ∗
t + nlλ∗

l

+ λ∗
l (s∗

t − s∗
l − ∆p) + 1

)

+ v
exp(nlλ

∗
l (s∗

t − s∗
l − ∆p))

nl

λ∗
l

(2nl − 1
nl

+ λ∗
l (s∗

t − s∗
l − ∆p)

)
+ v

(
nl − 1

nl

)2
λ∗

l

− kc′(s∗
l − s̄) = 0.

(4)

In this equilibrium, it holds that s∗
t > s̄, while it is not clear whether s∗

l > s̄.

In equilibrium, agents choose their work pace such that the gain from marginally working

faster, that is, the marginal winning probability times the prize, equals the marginal cost.

For the trailing agents at position pt, this implies that they decide to work faster than

they would do in the absence of tournament incentives and that, in consequence, they make

more mistakes. Intuitively, the trailing agents have a lot to gain by working faster, but not

much to lose in case they make a lot of mistakes. The situation is different for the leading

agents at position pl. For them, it is unclear whether they work faster or slower than in the
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absence of tournament incentives. The leading agents might have a decent chance to win

the tournament if they manage to avoid too many mistakes, and then it could be optimal to

be rather careful and to work at a slower pace.

Next, we investigate how the equilibrium choices of working speeds s∗
t and s∗

l depend

on the difference in starting positions ∆p and on the number of competitors nt and nl in

each of the two positions. In general, a change in one of the parameters has a direct and

an indirect effect on the equilibrium work pace. The parameter change affects an agent’s

optimal work pace directly by affecting the marginal gain from working faster. The indirect

effect arises, since the change in the parameter also affects the work pace of the agents in the

other position, and this also has an impact on the own incentive to work fast. In line with

our earlier assumptions, we assume that the cost function is sufficiently convex. In this case,

the direct effects always prevail, which enables us to investigate the impact of parameter

changes on the equilibrium work paces s∗
t and s∗

l .

Proposition 2. If k is sufficiently large, the trailing agents work slower when the difference

in initial positions becomes larger, that is, it holds that ∂s∗
t

∂∆p
< 0. Furthermore, they work

faster the more competitors are at the trailing position, that is, it holds that ∂s∗
t

∂nt
> 0. If, in

addition, ∆p is sufficiently low, similar results also hold true for the leading agents, that is,

it holds that ∂s∗
l

∂∆p
< 0 and ∂s∗

l

∂nl
> 0. Furthermore, if ∆p is sufficiently low, all agents increase

their working speed the more competitors they face on the other positions, that is, it holds

that ∂s∗
t

∂nl
> 0 as well as ∂s∗

l

∂nt
> 0.

The proposition states that the agents tend to work relatively fast if the level of com-

petition is large in the sense that all agents are located close to each other, that is, when

∆p is small, and there are many agents at the two positions, that is, when nt and nl are

large. Intuitively, if agents act excessively restrained in such a situation, they have almost

no chance to win the tournament. Thus, they are willing to take more risks, and they decide

to work at a faster pace. An immediate consequence is that agents make more mistakes on

average when the level of competition is high.
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4. Empirical analysis

In our empirical analyses, we use race data from professional biathlon competitions. Before

we describe the data set in more detail in the following section, we briefly introduce the

sport and explain why it yields an ideal test bed for our model predictions.

4.1. Biathlon competitions

Professional biathlon is an individual sport that combines cross-country skiing and rifle

shooting in the following way: A given distance - the precise number of kilometers depends

on discipline and gender - has to be completed on the skiing course from start to finish.

The total distance is divided into three or five laps. At the end of each lap, except for the

last one, the athletes enter the shooting range, in which they shoot on five targets. Every

missed shot results in a penalty that is defined as additional skiing distance in a separate

penalty loop, or penalty time added to the athletes’ total race time. Hence, the athletes’

success in a biathlon competition depends both on their skiing performance as well as on

their shooting performance throughout the race. In particular, a good result requires the

ability to perform well in the precision task of rifle shooting between the physically intense

cross-country skiing intervals on the course.13 At the end of the competition, the athletes’

final ranks are determined by the relative total time, that is, the fastest athlete wins the

race, the second-fastest athlete is runner-up, and so on.14 Rewards are allocated according

to the final rank.

In our analyses, we mainly restrict attention to the disciplines Pursuit and Mass Start,

since these are the only individual biathlon competitions in which all athletes are on the

course simultaneously and the final ranking is determined by the order in which athletes

cross the finish line, that is, the athlete reaching the finish first receives the first prize, the
13The overall performance in biathlon competitions is therefore comparable to agents’ output in our model.

Here, the speed with which tasks are performed is represented by the athletes’ skiing speed, while the number
of mistakes is represented by the number of missed shots in biathlon races.

14In a biathlon competition, the clock never stops; that is, the total time is measured from the start of
the race until the athlete crosses the finish line. In particular, this includes the time on the skiing course,
the time in the shooting range, and the penalty.
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next athlete receives the second prize, and so on. Therefore, it is reasonable to assume that

athletes are informed at all times during the race about their relative intermediate position

and, in particular, of other competitors who are close to their own position.15

In this paper, we consider data from the IBU World Cup, organized by the International

Biathlon Union (IBU). The World Cup is a competition in which athletes compete in a

number of races in one season. While for every race there are direct incentives in form of

prize money that is distributed according to the final rank in the specific race, the result

also counts toward a total World-Cup score for the whole season. At the end of the season,

the athlete with the highest total sum of World-Cup points is the winner of that season’s

World-Cup.16

Figure 1: Reward structure in biathlon competitions

(a) Prize money (b) World-Cup Points

Figure 1 displays the incentive structure more closely. The distribution of prize money

for each individual race has been equal for Mass Start and Pursuit since the season 2016/17,
15This will be an important assumption in our main analyses. In the other individual disciplines Sprint and

Individual, the race starts at a different time for every athlete. The final rank is then determined according
to the relative time it took the athletes to complete the course, including penalty times for missed shots.
Therefore, in these disciplines, during the race, athletes only have information about their competitors’ split
times who started the race before them (if they have not been overtaken until then) and, thus, they have no
information about their intermediate rank relative to all other athletes, as it is the case in Pursuit and Mass
Start.

16In addition to the overall World-Cup ranking that includes all races there are rankings for each of
the disciplines. Since the overall World Cup is the most prestigious ranking and captures the athletes’
performance in all disciplines, we restrict attention to the overall World-Cup standings.
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but differed between the years. In Panel 1a, the prize money is plotted on the athletes’ final

rank in a race. Panel 1a also includes the distribution of prize money for the final standing

in the World Cup, that is, the rank of the accumulated points across all races throughout a

season. We show only one graph for this competition, since the amount of prize money has

not changed over the seasons.

Note that, in all seasons, only the first 20 athletes in each race received any prize money,

while the remaining 10 (in Mass Start races) or 40 (in Pursuit races) athletes do not receive

any prize money. For the World Cup, only the best 10 athletes get rewarded. All prize

structures are highly convex with regard to the final rank.

In Panel 1b, we plot the distribution of World-Cup Points that are rewarded in Mass

Start and Pursuit races. While in Mass Start races all qualified athletes who finish the race

receive some points, in Pursuit races only the best 40 athletes are rewarded.17

4.2. Data

Our data set consists of all IBU World Cup races in the disciplines Pursuit and Mass Start

between the seasons 2016/17 and 2021/22.18 While the two disciplines we consider in this

paper, Mass Start and Pursuit, are almost identical regarding the general structure of the

race, the important difference is the schedule according to which athletes begin the race.

As the name suggests, in Mass-Start races all 30 biathletes start the race together at the

same time and enter the course simultaneously. In Pursuit races, the athletes’ starting

time is determined by the results of the previous race, that is, the winner of the previous

Sprint/Individual competition starts first, the runner-up enters the course next, and so on.

The time between athletes’ starting time equals the difference in the finishing time in the

previous race. As in Mass-Start races, however, the final ranking of the Pursuit race is

determined by the order in which the biathletes cross the finish line. Since by this rule
17Since in Pursuit races the worst 20 athletes do not receive any reward, we exclude these (intermediate)

ranks in the main analyses, since these athletes do not have strong individual incentives to perform well. We
elaborate more on this in the corresponding sections.

18All data were downloaded from realbiathlon.com on 28 March 2022.
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athletes head into the race with a predetermined handicap, we control for the difference at

the start in all of the analyses.

To illustrate the race structure, and in particular the split times we use for our analysis,

Figure 2 shows the sequence of tasks athletes have to perform during a race.

Figure 2: Illustration of race structure in a biathlon competition
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Right with the start of the race, the athletes enter the first skiing lap on the course.

After the first lap of skiing, all competitors arrive at the shooting range and have to shoot

at five targets. For every miss of those five shots, athletes have to ski one penalty loop,

which makes an additional skiing distance of 150 meters per missed shot, before entering

the second skiing lap. An athlete who hits all five targets enters the regular skiing course

immediately after the shooting bout. In each race, there are four shooting bouts in total.

The first and second round are shot in prone position (lying on a mat in the shooting range),

while the third and fourth round are taken in standing position. Targets are larger in the

latter position. After the fourth shooting bout, the athletes have to ski the regular lap one

last time before reaching the finish line.

The number of split times that are taken in each lap differs between event locations.

While we have data on the athletes’ total net times right before and after the shooting

bouts, there are also split times during the skiing lap. Since the time is taken at least twice

15



between the shooting bouts in all races, we always consider the last two split times during

the lap and label them as Split time 1 and Split time 2 in the order they are taken.

In the main analyses, we will refer to the skiing distance from Split time 1 and Split

time 2 until the end of the skiing lap as last half and last quarter, respectively. This is

not accurate in the sense that the last half (quarter) covers exactly the second half (fourth

quarter) of the course, but it simplifies the terminology.19

Our data set consists of 130 races between the seasons 2016/17 and 2021/22, including 50

Mass Start races (equal number of races by gender), each with 30 participants and 80 Pursuit

races (equal number of races by gender), each with 60 competitors. In order to interpret the

estimated coefficients in our empirical analyses, in Table 1 we report the summary statistics

of the variables that are most important to our analyses, that is, the individual-level race data

in the last two laps, separated by gender and discipline from the IBU World Championships

2017 in Hochfilzen. All split times are measured in seconds.

The variable Ski time lap 4 describes the time the athletes need to complete the skiing

course in the fourth lap. The next variables, Ski time last half lap 4 and Ski time last quarter

lap 4, are given by the skiing times in the last half/quarter of the skiing course, as explained

in the discussion of Figure 2. The number of missed shots in the final shooting bout is given

by the variable Missed shots bout 4, with the corresponding penalty time Penalty time lap

4. Finally, the table includes the ski time in the last lap and the total race time.

Additionally, in cooperation with the International Biathlon Union (IBU), we issued a
19Since the terrain as well as the distance between the split times differ between event locations, for all

analyses we normalize all skiing times on the race level by subtracting its mean and dividing by the standard
deviation. Normalizing on the level of gender and discipline instead, which is necessary since the total race
distance differs between those does not qualitatively change our results.
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Table 1: Race data from the IBU World Championships 2017 – Mean (standard deviation)

MS Male MS Female PU Male PU Female
Ski time lap 4 398.9 368.3 327.4 287.9

(8.862) (11.73) (7.380) (7.008)

Ski time last half lap 4 172.3 201.0 176.6 121.8
(5.046) (6.423) (4.350) (3.173)

Ski time last quarter lap 4 101.2 124.9 111.8 47.11
(2.855) (3.443) (2.732) (1.015)

Missed shots bout 4 0.633 0.567 0.842 0.672
(0.765) (1.073) (0.727) (0.758)

Penalty time lap 4 18.19 18.43 22.63 21.23
(16.22) (24.71) (15.06) (17.78)

Ski time lap 5 390.4 362.7 318.9 282.4
(14.79) (15.39) (12.76) (9.662)

Total race time 2213.6 2109.5 1970.7 1819.7
(49.63) (79.67) (84.69) (78.40)

survey among professional biathletes to elicit their risk preferences.20 We measured risk

preferences qualitatively based on the method of Dohmen et al. (2011). We asked two

questions measuring risk preferences in general and six questions measuring context-specific

risk preferences. Two of these six questions specifically asked for athletes’ risk preferences in

a biathlon race. All questions are answered on a scale from zero to ten, with lower numbers

indicating greater aversion to risk. Summary statistics of all survey items, split by gender,

can be found in Table 2. Detailed statistics, a full list of all questions as well as a discussion
20The survey was preregistered on the OSF Registries portal of the Center for Open Science (Registration

DOI: (textf10.17605/OSF:.IO/7K5HS/). Potential survey participants included all athletes who appeared
as observations in our main analysis sample in Section 4. From these 426 potential participants, we reached
out to a total of 341 athletes. Of these, the IBU contacted 246 athletes who were mainly active in the season
2021/22 via e-mail. For the remaining athletes who were not contacted by the IBU, we searched for publicly
available contact addresses. We managed to reach out to 95 additional athletes via social media (LinkedIn
and Instagram) or via publicly available e-mail adresses. The online survey was open from 19 April to 31
May 2022. Overall, we received 111 valid survey responses, which corresponds to an overall response rate of
approximately 0.326. 102 of those responses stem from the IBU outreach, corresponding to an IBU-specific
response rate of 0.439. The remaining responses stem from the social-media outreach, corresponding to a
social media-specific response rate of 0.084. For each valid answer, each athlete received a compensation
payment of 50 Euros.
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Table 2: Summary statistics of survey data

Female Survey Participants Male Survey Participants

Mean SD Min Max N Mean SD Min Max N

General
General risk 5.6 2.2 1 10 36 6.1 2.0 3 10 37

Context
Biathlon risk 5.8 2.1 2 9 36 6.6 1.8 2 10 37
Health risk 3.0 2.6 0 8 36 3.9 2.1 0 10 37
Finance risk 4.1 2.5 0 10 36 5.2 2.4 0 10 37
Leisure risk 5.5 2.5 1 9 36 5.4 1.8 0 10 37
Career risk 5.3 2.3 0 9 36 5.5 1.7 2 8 37

Notes: In this Table, we only show the summary statistics of the answers of those athletes whose data are
used in our empirical analyses. This corresponds to the first 40 athletes at the point in time when the last
course section of the fourth lap starts. 73 out of the total of 111 athletes who took part in the survey were
among those 40 during our observation period at least once.

related to potential selection biases of survey participation can be found in Section 7.7 of the

Appendix. The data allow us to conduct robustness checks as well as heterogeneity analyses

of our main results, which will be presented in Section 5.

4.3. Risk measure

As outlined in the introduction, we associate an increase in the skiing speed towards the end

of a lap compared to the otherwise optimal choice of speed as a deviation from standard

behavior towards a more risky strategy. The argument to support this claim is as follows.

From an intuitive viewpoint, it seems reasonable to expect a tradeoff between the per-

formance in the two tasks in a biathlon race: While cross-country skiing is a physiologically

demanding sport, rifle shooting is a precision task that requires the athlete to be calm and
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concentrated. A higher intensity in skiing therefore leads to worse shooting accuracy.21 We

will verify this claim empirically later in the section; for now, we assume that the described

tradeoff between the two tasks indeed exists. Then, since only the overall performance is

rewarded in biathlon competitions, we can assume that every athlete has an individual-

specific optimal strategy of physiological intensity in skiing to maximize the overall perfor-

mance. This assumption is reasonable, since our data set comprises only competitions of

highly-trained athletes who are the world’s best in their sport.

Suppose now that an athlete deviates from the optimal behavior and increases the skiing

speed towards the end of a lap. The faster skiing enhances the overall performance, but

also comes with the higher risk of missing the target in the upcoming shooting bout. Since

every missed shot results in a penalty, which again reduces the overall performance, the

initial deviation from the optimal behavior to an increase in skiing speed leads to potentially

better (in case the athlete does not receive an additional penalty) or worse (in case of an

additional penalty) overall performance. This mirrors the assumptions imposed in our model

that the gain in performance through a deviation from the optimal speed with which tasks

are performed leads to an increase in the probability of making costly mistakes. Thus,

increasing the skiing speed results in a more dispersed overall performance, that is, it is a

riskier strategy.

Next, we show empirically that the previous claim holds true and that there indeed exists

a tradeoff between skiing and shooting performance. More precisely, we show that a faster

skiing time in the last section of the fourth lap corresponds to a larger number of missed
21This tradeoff is known in the sports-science literature investigating the determinants of shooting perfor-

mance in biathlon. See Hoffman et al. (1992) or Laaksonen et al. (2018) for an overview. It should be noted
that the effect is highly recognized in standing shootings (bout 3 and 4). In contrast, for prone shootings
(bout 1 and 2) the evidence is mixed and ambiguous. The reason is that stance as well as shooting at the
right point in time of the cardiac cycle are the most relevant determinants of shooting performance. Both
are harder to control in a standing position and thus more affected by exerting higher physical efforts shortly
before. Harb-Wu and Krumer (2019) do not find a statistically significant effect of skiing time on shooting
performance. There are two reasons why their results differ from ours. First, they focus on the first shooting
bout, which is prone and not standing as in our analysis. Second, they analyze the impact of total skiing
time, while we only focus on the skiing time of the last course section before the shooting bout is entered.
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shots.22

Since we want to regress the number of missed shots in a shooting bout on the skiing time

and potential confounders, we face a similar estimation problem to Harb-Wu and Krumer

(2019) in their analysis of biathletes’ shooting performance in front of a supporting audience.

Thus, we rely on similar estimation methods. We estimate the following equation.23

msist = α + β · splitist + γ · xist + µis + ϕt + ϵist. (5)

The dependent variable msist on the left-hand side denotes the number of missed shots

of athlete i, in season s and race t, at the shooting bout of lap 4. Our regressor of interest,

splitist, describes the net skiing time in the last course section (last quarter) of the fourth

lap. As illustrated in Figure 2, this is the time between the last split time, Split time 2, and

the time the athlete arrives at the shooting range. We furthermore add control variables xist

as well as fixed effects on athlete-season-level and race-level with µis and ϕt, respectively, to

the right-hand side of equation (5).

Since the dependent variable, the number of missed shots in the fourth shooting bout, is

a count variable with integer values between zero and five, we estimate equation (5) using

a Poisson model. More specifically, due to overdispersion and inflated zeros, we rely on the

Poisson Pseudo Maximum Likelihood estimator.24 Table 3 shows the estimated coefficients.25

22Since in the considered disciplines the athletes have to pass four shooting bouts, we could in principle
use any of the first four laps. It seems reasonable to us, though, that particularly the last shooting bout and
therefore the lap before the last shooting is subject to strategic decisions by the athletes. Deviations from
trained behavior in the first three laps might rather be driven by unobservable confounders and are therefore
omitted in our analysis. The main analyses in the next sections also focus on the fourth lap of every race.

23Since unobserved heterogeneity is likely to be correlated with regressors, we rely on a fixed-effects model.
24We implement the estimation in Stata using the ppmlhdfe command of the ppml package; see Correia

et al. (2020).
25As a robustness check regarding the choice of the course section, we repeated the estimation with the

second half of the lap. The results can be found in Table A.8 in Appendix 7.2.1 and yield qualitatively
similar results.
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Table 3: Tradeoff between skiing performance and shooting accuracy

Total number of missed shots

(1) (2) (3) (4)

Ski time last quarter -0.074∗∗∗ -0.061∗∗∗ -0.063∗∗∗ -0.062∗∗∗
(0.014) (0.016) (0.017) (0.017)

Time first shot bout 4 0.018∗∗∗
(0.004)

N 5501 5501 5501 5501
Race FE Yes Yes Yes Yes
Athlete season FE Yes Yes Yes Yes
Difference at start Yes Yes Yes Yes
Intermediate rank No Yes Yes Yes
Previous ski times lap 1-3 No Yes Yes Yes
Sum of previous missed shots No Yes Yes Yes
Previous ski time lap 4 No No Yes Yes

Notes: The table shows the tradeoff between skiing performance and shooting accuracy. The estimates
are obtained using a Poisson Pseudo Maximum Likelihood estimator. The dependent variable is the total
number of missed shots in the last shooting bout. The skiing times are normalized and thus need to be
interpreted in terms of standard deviations. The richest specification includes race and athlete season fixed
effects, as well as controls for past skiing performance, shooting performance, and for the intermediate rank.
Standard errors are clustered on race level in parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

From specifications (1) to (4), we add further control variables that could confound the

effect of interest. The estimated equation in the first Column only includes the ski time in

the last course section, the fixed effects, as well as the difference in starting time in Pursuit

races. In Column (2), we add the intermediate rank and the absolute values of previous

skiing and shooting performance in the race until the end of the third lap, in order to proxy

the daily form in the specific race.26 The third specification additionally includes the skiing

time in the fourth lap until the last course section to control for the physiological intensity

that could confound the strategic choice on the skiing speed in the last course section. In

the final specification in Column (4), we add the variable Time first shot bout 4. The value
26The intermediate rank is the relative position of an athlete at the point in the race at which the mea-

surement of the considered skiing time starts, that is, the leading athlete is on rank 1, the following athlete
is on rank 2, and so on. In this context, this refers to Split time 2 in Figure 2. We include the intermediate
rank, as it can be expected to influence the athletes’ incentives in a race (see, e.g., Genakos and Pagliero
2012).
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of this variable is the time the athlete needs between arriving at the shooting range and

taking the first shot. As one can see, the corresponding estimated coefficient is positive

and statistically significant. This is reasonable as there is evidence for a positive correlation

between the required preparation time and the probability for failure in precision tasks such

as rifle shooting.27 The estimated coefficient of interest remains at a similar size and is

statistically significant across all specifications.

Since the interpretation of the size of estimated coefficients in a Poisson model is rather

inconvenient, we report in Table 4 the corresponding incidence ratios.

Table 4: Tradeoff between skiing performance and shooting accuracy (incidence ratios)

Total number of missed shots

(1) (2) (3) (4)

Ski time last quarter 0.929∗∗∗ 0.940∗∗∗ 0.939∗∗∗ 0.940∗∗∗
(0.013) (0.015) (0.016) (0.016)

Time first shot bout 4 1.018∗∗∗
(0.004)

N 5501 5501 5501 5501
Race FE Yes Yes Yes Yes
Athlete Season FE Yes Yes Yes Yes
Difference at start Yes Yes Yes Yes
Intermediate Rank No Yes Yes Yes
Previous ski times lap 1-3 No Yes Yes Yes
Sum of previous missed shots No Yes Yes Yes
Previous ski time lap 4 No No Yes Yes

Notes: The table shows the tradeoff between skiing performance and shooting accuracy. The estimates
are obtained using a Poisson Pseudo Maximum Likelihood estimator. The dependent variable is the total
number of missed shots in the last shooting bout. The skiing times are normalized and thus need to be
interpreted in terms of standard deviations. The table shows the exponential of the estimated coefficents
and thus the factor by which the average of the dependent variable changes upon an increase of the regressor
by one standard deviation. The richest specification includes race and athlete season fixed effects, as well as
controls for past skiing performance, shooting performance, and for the intermediate rank. Standard errors
are clustered on race level in parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

The interpretation of the coefficients is as follows. Consider the estimated coefficient in
27The explanation is that shooting is a precision task in which athletes recall a trained automatism. In

such tasks, it is common that a faster execution is associated with better performance. See Strittmatter
et al. (2022).
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the fourth Column of Table 4. The point estimate of 0.94 for the coefficient for Ski time last

quarter means that a decrease in skiing time on the last quarter of the fourth lap by one

standard deviation yields a 6% decrease in shooting accuracy. This means that, taking the

example of the data from the IBU World Championships in male Mass Start races shown in

the first Column of Table 1, skiing about 2.8 % faster (2.855 seconds) results in an increase

in the average number (for a mean of 0.633) of missed shots of 6% in the final shooting bout.

This tradeoff between skiing performance on the course and potential missed shots at the

shooting bout mirrors the distributional assumptions in our model, in which a higher working

pace, deterministically enhancing the overall performance, comes at the cost of an increase in

the probability of making mistakes, potentially reducing the overall performance. Therefore,

the analyses on the effect of competition on risk-taking behavior in biathlon competitions

serve as well-suited tests of our model predictions.

4.4. Effect of competition

In this section, we analyze the effect of an increase in competition on the athletes’ skiing

speed. As we have argued in Section 4.3, we interpret a deviation to a faster (slower) skiing

speed in the last course section of the fourth lap as the choice of a more (less) risky strategy.

In the following subsections, we empirically confirm the model predictions of Proposition 2

regarding the effects of competition, namely the number of competitors who are close to an

athlete, as well as the distance to the next competitors, on athletes’ decisions to increase the

skiing speed in the relevant section of the fourth lap.

4.4.1. Effect of the number of competitors on risk-taking

First, we consider the effect on risk-taking of the number of competitors who are in close

distance to an athlete, that is, we estimate a fixed-effects model of the following form.

splitist = α + β · compist + γ · xist + µis + ϕt + ϵist. (6)
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Here, the dependent variable splitist denotes the skiing time of athlete i in race t of

season s for the last quarter of the fourth lap. The variables of interest on the right-hand

side are summarized in the vector compist, which denotes the level of competition for athlete

i. The vector xist contains additional control variables, such as the intermediate rank and

previous performances, while the variables µis and ϕt again denote athlete-season and race

fixed effects, respectively.

In this subsection, we measure the level of competition by the number of competitors

who are close to an athlete. More precisely, the variable vector of interest in the estimated

equation (6) is set to

compist = (nb frontist, nb front2
ist, nb behindist, nb behind2

ist), (7)

where nb frontist and nb behindist are defined as the number of competitors who are, at the

last split time before the fourth shooting bout, within an interval of five seconds in front of

or behind the respective athlete.28

While the choice of five seconds for the length of the interval seems arbitrary, a sufficiently

small length ensures two assumptions to hold. First, an athlete views contestants within that

distance at the intermediate point in the race as direct competitors who are at a comparable

intermediate standing and can be overtaken or are able to overtake the athlete. Hence,

the variable compist captures the incentive regarding the number of ranks an athlete could

improve or lose. Second, if the length of the interval is sufficiently small, it seems reasonable

that, conditional on the control variables which include the complete past race performance

as well as fixed effects to account for unobserved heterogeneity, the number of athletes in
28In Appendix 7.4, we also consider a specification in which we set the vector compist to the potential

prize money an athlete can gain or lose by overtaking or being overtaken by all athletes close in front of
or behind the athlete, respectively. The results show that the higher the potential gain/loss is in terms of
potential prize money, the more risk the athletes are willing to take. Moreover, we expect the effect to be
non-linear, as an increase in the skiing speed, the left-hand side, is limited by the physiological ability to
intensify even further the effort during a highly demanding professional race. However, as a robustness check
we also present estimates of a specification using only linear terms in Figure A.3, which yields qualitatively
the same results.
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that interval is exogenous.29

As we have discussed in the model, we would expect that not only the number of com-

petitors who are close to an athlete influences strategic behavior, but also the distance to

the competitors. Rather than including the effect of the distance in this part of the paper,

we separate the analyses of these two dimensions of competition; subsection 4.4.2 analyzes

the effect of the distance to an athlete’s competitors on risk-taking decisions.30

Table 5 presents the estimation results.
29To ensure that our results are not driven by the specific choice of the interval, we re-estimated the model

for lengths of 1, 2, ..., 10 seconds, and we obtain very similar results. In Appendix 7.3, we plot in Figure A.3
the estimated coefficients for all integers between 1 and 10 seconds. Additionally, we also considered the
skiing time in the last half of the fourth lap as the dependent variable instead, which leads qualitatively to
the same results. Detailed regression results are presented in Table A.10.

30One might wonder, though, whether the distance to the competitors is an omitted confounder for the
effect of the number of close competitors. To address this concern, observe that the length of the interval is
sufficiently small such that an athlete can be expected to be able to overtake (be overtaken by) any athlete
within this short distance in front (behind). Furthermore, including the distance to the next athlete in front
and behind in the regressions does not qualitatively change the point estimates for the coefficients of the
number of close competitors.

25



Table 5: Effect of competition on skiing speed

Ski time last quarter

(1) (2) (3) (4)

Nb front -0.270∗∗∗ -0.284∗∗∗ -0.279∗∗∗ -0.224∗∗∗
(0.023) (0.020) (0.018) (0.019)

Nb front2 0.029∗∗∗ 0.028∗∗∗ 0.029∗∗∗ 0.024∗∗∗
(0.004) (0.004) (0.003) (0.003)

Nb behind -0.112∗∗∗ -0.101∗∗∗ -0.069∗∗∗ -0.057∗∗∗
(0.024) (0.022) (0.021) (0.020)

Nb behind2 0.011∗∗ 0.010∗ 0.005 0.004
(0.006) (0.005) (0.005) (0.005)

N 4326 4326 4326 4326
Race FE Yes Yes Yes Yes
Athlete Season FE Yes Yes Yes Yes
Difference at start Yes Yes Yes Yes
Intermediate Rank No Yes Yes Yes
Previous ski times lap 1-3 No No Yes Yes
Sum of previous missed shots No No Yes Yes
Previous ski time lap 4 No No No Yes

Notes: The table shows the effect of increased competition measured by the number of competitors close in
front and behind on skiing time of the last quarter of the fourth lap. The dependent variable is normalized
on race level; thus, marginal effects need to be interpreted in standard deviations. The richest specification
includes race and athlete season fixed effects, as well as controls for past skiing performance, shooting
performance, and for the intermediate rank. Standard errors are clustered on race level in parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

From specifications (1) to (4) in Table 5, we increase the number of control variables that

could possibly confound the effect of interest. While the specification in Column (1) only

includes the fixed effects as well as the difference in starting time in Pursuit races as control

variables, we add the intermediate rank in the second Column. In the third specification, we

also control for the athletes’ form on the day by including the net ski times in the previous

laps, as well as the total number of missed shots in the first three laps. Since the dependent

variable is the ski time in the last course section, the last quarter, the effect of interest could

also be confounded by athletes’ decisions on skiing intensity earlier in the same lap. To

control for that, we also include the ski time in the fourth lap until the last course section.

Therefore, the estimated specification in Column (4) includes all available data on skiing
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and shooting performance until the dependent variable is measured.

We can see across all specifications, (1) to (4), that estimated coefficients for the number

of competitors close to an athlete are statistically significant, indicating that there exists an

effect of the intensity of competition on the athletes’ risk-taking decisions. Taking the richest

specification in Column (4), the point estimates can be interpreted as follows: If an athlete

has one competitor close in front within a range of five seconds, the athlete on average skis

about 0.2 standard deviations faster, compared to when there is no competitor close in front

(as the sum of the corresponding linear and quadratic term is -0.2).

Furthermore, it is worth emphasizing that the effect is much more pronounced if athletes

face competition in front of them rather than behind. As can be seen from Column (4), the

point estimate for the linear effect of the number of competitors in front is more than three

times as large as the corresponding point estimate for the competitors behind an athlete, in

absolute value. One might conjecture that athletes are generally more aware of competitors

who are close in front rather than of those who are close behind such that the strategic

reaction to increase the skiing speed is more pronounced for the number of competitors close

in front.

To conclude, the estimation results in Table 5 yield robust evidence that a higher intensity

of competition leads to a faster skiing time. Since we are using a rich panel data set, we

have the opportunity to control for many sources of observed and unobserved heterogeneity.

Given the assumptions regarding our measure of competition, as discussed above, we are

relatively confident that the observed effect represents a causal relationship.31 This confirms

the corresponding prediction from our model in Proposition 2.
31A potential concern regarding our results is that they are driven by “grouping behavior”, that is, that

athletes ski faster because they are surrounded by competitors, rather than strategic decisions on risk-taking
behavior. We address this concern in Section 5.
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4.4.2. Effect of distance on risk-taking

In this section, we consider the effect of the athletes’ distance to other competitors on risk-

taking behavior, and again confirm the model predictions regarding this second dimension

of competition.

To tackle this question, we reshape the data into a network format. In the previous

analyses, one observation corresponds to an athlete i in race t in season s. Now, one obser-

vation corresponds to an athlete/co-athlete tuple.32 This data structure allows us to identify

exactly how the distance between athletes affects their skiing speed.33

We are again interested in estimating equation (6). However, the competition vector now

includes variables measuring the distance between athletes. Specifically,

β · compj
ist = β1 |∆timej

ist| + β2 1∆timej
ist<0 + β3 1∆timej

ist<0 × |∆timej
ist|

+
n∑

k=2
β4k1∆rankj

ist=k +
n∑

k=2
β5k1∆rankj

ist=k × |∆timej
ist|

+
n∑

k=2
β6k1∆rankj

ist=k × |∆timej
ist| × 1∆timej

ist<0.

Here ∆timej
ist := net timeist − net timejst measures the distance of athlete i to athlete j in

time, with the variable net timeist denoting the cumulative skiing time of athlete i until the

point in time the last course section starts. The variable 1∆timej
ist<0 is an indicator equal

to one in case athlete j is behind athlete i. The third component is an interaction of the

latter two. The regressor 1∆rankj
ist=k denotes an indicator which is equal to one in case the

distance of athlete i to athlete j in absolute ranks is equal to k at the beginning of the last

course section. For instance, 1∆rankj
ist=2 is equal to one in case athlete j is two ranks apart

from athlete i, either in front or behind.

Thus, −(β1 + β5k) measures the marginal effect on skiing time when athlete j is located
32Let R be the set of all athletes i in race t. Now our sample consists of all athlete/co-athlete tuples

(i, j) ∈ R × R with j ̸= i.
33Network data structures are, for instance, used in the education economics literature. See Isphording

and Zölitz (2020).
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in front of athlete i, comes one second closer, and is at a distance of k ranks. On the other

hand, −(β1 + β3 + β5k + β6k) measures the marginal effect on skiing time when athlete j is

located behind athlete i, comes one second closer and is at a distance of k ranks.34

We restrict our sample to athlete/co-athlete tuples with |∆timej
ist| < 30; that is, we

consider only tuples who are up to 30 seconds apart from each other. Moreover, we only

consider athlete/co-athlete tuples who are five ranks away from each other.35

34Thus, our specification reflects the possibility that marginal effects of distance of athlete j to i are
heterogeneous with regard to the distance in ranks.

35We therefore assume that only the five closest athletes within a distance of 30 seconds play a role in
explaining athlete i’s skiing time on the last course section, and we consider only the corresponding subset
of athlete/co-athlete tuples. While we believe that this is a reasonable assumption, our results are robust
with regard to other sample selections.
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Table 6: Effect of competition measured by absolute distance on skiing speed

Ski time last quarter

(1) (2) (3) (4)

Distance (β̂1) 0.015∗∗∗ 0.014∗∗∗ 0.009∗∗∗ 0.018∗∗∗
(0.002) (0.001) (0.001) (0.002)

Behind × Distance (β̂3) -0.013∗∗∗ -0.013∗∗∗ -0.007∗∗∗ -0.011∗∗∗
(0.002) (0.002) (0.001) (0.002)

2 ranks away × Distance (β̂52) -0.003∗
(0.002)

2 ranks away × Behind × Distance (β̂62) -0.004∗
(0.002)

3 ranks away × Distance (β̂53) -0.006∗∗∗
(0.002)

3 ranks away × Behind × Distance (β̂63) -0.006∗∗∗
(0.002)

4 ranks away × Distance (β̂54) -0.008∗∗∗
(0.002)

4 ranks away × Behind × Distance (β̂64) -0.008∗∗∗
(0.002)

5 ranks away × Distance (β̂55) -0.009∗∗∗
(0.002)

5 ranks away × Behind × Distance (β̂65) -0.009∗∗∗
(0.003)

N 28147 28147 28147 28147
Race FE No Yes Yes Yes
Athlete Season FE No Yes Yes Yes
Controls No No Yes Yes

Notes: The table shows the estimates regarding the effect of competition measured by the absolute distance
in time to a competitor in front of/behind on skiing time of the last quarter of the fourth lap. Column (4)
additionally includes interactions of the absolute distance of a competitor with the respective distance in
ranks. Additional controls account for past skiing performance, shooting performance, intermediate rank,
and the distance in World-Cup points pre-race to the respective competitor. The specifications from Columns
(2) to (4) account for race and athlete season fixed effects. Standard errors are clustered on race level in
parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

The results can be found in Table 6. Columns (1) to (3) do not account for heterogeneities

with regard to the distance in rank, and thus the point estimates need to be interpreted as

average marginal effect of competitors in front of or behind within a 30-second interval. As
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−β̂1 < 0 for all three specifications, we see that the closer a competitor is in front, the faster

the athlete skis in the last course section. The marginal effect of a competitor behind coming

closer is given by −(β̂1 + β̂3). The average effect of a competitor behind coming closer is

much smaller and close to zero.

Column (4), in contrast, accounts for heterogeneous effects and additionally shows the

estimates of all interaction terms of the distance measures and the distance rank dummies.

The base line estimates, −β̂1 = −0.018 and −(β̂1 + β̂3) = −(0.018 − 0.011) = −0.007, now

show the average change in skiing time when the first competitor in front of or behind comes

closer. More precisely, the point estimates of specification (4) can be interpreted as follows:

If the first competitor in front is one second closer, the athlete reduces the skiing time in the

last course section by 0.018 standard deviations.

The estimated coefficients of the interaction terms β̂5k and β̂6k with k ∈ {2, 3, 4, 5} are

all negative and increasing in absolute values by rank. This implies that the marginal effect

of reduced distance of an athlete to the competitor decreases in absolute values the further

away the competitor is (in terms of ranks). The interaction effects show that, for athletes

who are located more than two ranks behind, the marginal effect of coming closer is almost

zero. For athletes located close in front, the effect becomes very small, but is still positive

and statistically significant up to a distance of five ranks.

Overall, we conclude that there is a robust correlation between the distance to a competi-

tor and risk-taking decisions, and thus the results support Proposition 2. We find that the

closer an athlete is either in front of or behind a competitor, the shorter the respective skiing

time of the athlete is in the last course section of the fourth lap, and therefore the athlete

takes higher risks. Moreover, the effect is smaller in magnitude for competitors located close

behind, compared to those located close in front. Finally, the effect is heterogeneous with

regard to the distance in ranks, as the closer the athletes are in terms of rank, the larger the

marginal effect is in absolute values.
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5. Robustness

This section has three objectives. First, we would like to confirm the claim that strategic

decisions are more important towards the end of the race, thereby substantiating our as-

sumption to focus on the fourth lap. Second, we want to show that it is unlikely that the

observed effect can be accounted for by grouping behavior. By grouping behavior we mean

that athletes ski faster, simply because they are surrounded by competitors rather than as a

response to a strategic decision. One can think of slipstream or a motivational push caused

by observing other athletes. Third, we use our survey data to analyze whether the results

of Section 4.4 are robust or heterogeneous with regard to the athletes’ risk preferences.

We present the main findings of these robustness checks here, but relegate detailed anal-

yses to the Appendix. In Section 7.5 of the Appendix, we show the results of a dynamic

panel-data estimation in the style of Arellano and Bond (1991) and Anderson and Hsiao

(1982). This approach allows us to pool data from all four laps and to identify, by using

within-race variation, heterogeneities regarding risk-taking behavior across laps. More pre-

cisely, we re-estimate equation (6) including interaction terms of the competition measures

and lap dummies. The results can be found in Table A.12. They show that the marginal ef-

fect of increased competition on skiing speed in the last course section is larger in magnitude

in the fourth lap compared to the third lap. This finding provides evidence that strategic

decisions are more important towards the end of the race compared to earlier points of the

race.36 Moreover, existing heterogeneities make it very unlikely that the observed effect is

due to grouping behavior. For instance, if slipstream is responsible for the observed effect,

one would not expect differences in magnitude across laps.
36This claim is further supported by two other arguments. First, the closer athletes are to the finish line,

the more informative is their intermediate position in the race, that is, their intermediate rank as well as the
number of close competitors and the distance to other athletes. Second, we argue that strategic behavior is
a deviation from otherwise optimal behavior, the optimal trained skiing intensity given the tradeoff between
skiing speed and shooting accuracy. Summary statistics, which are available upon request, show that the
standard deviation of all skiing time variables Ski time lap, Ski time last half and Ski time last quarter
increases over all laps. This clearly indicates that the differences between individual skiing performances
increase during the race, as athletes get more tired and strategic decisions become more important.
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In Section 7.6 of the Appendix, we present a placebo test by using data from a different

discipline, namely Sprint. In sprint races, athletes do not start the race simultaneously,

but instead staggered, with a distance of 30 seconds. Moreover, the final performance is

determined relatively after all athletes finished the race. In contrast to mass start and

pursuit races, athletes ski a total of three laps and enter the shooting bout twice. In case of

a missed shot, the penalty lap amounts to 150 meters as well. The monetary incentives and

incentives with regard to World-Cup points are the same as for Mass Start and Pursuit races.

Due to the staggered start, data from sprint races cannot be used to analyze the effects of

competition on risk-taking. However, athletes encounter other athletes on the course who

may not be in direct competition to them. This allows us to provide suggestive evidence

that the estimated effect is not due to grouping behavior.

In Table A.13 of the Appendix, we present results of regressions using the same compe-

tition vector as in (7); however, the number of athletes in front of and behind only include

the athletes who are in sight. More precisely, we determine the number of competitors who

are close in front (behind) by counting the number of competitors who pass the start of the

last course section up to five seconds before (after) the respective athlete. These athletes

can be close to each other for two reasons. On the one hand, athletes encounter competitors

who started shortly before or after them; on the other, these can also be athletes who are

one lap ahead or behind them.

The results show no statistically significant effect on more athletes in sight behind or in

front. This result again provides evidence against the concern that our results are driven by

grouping behavior.
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Table 7: Effect of risk preferences on skiing speed

Ski time last quarter

(1) (2) (3) (4)

General risk -0.861∗∗
(0.417)

Biathlon race risk -0.436∗∗
(0.212)

Health risk -0.426∗∗
(0.210)

Career risk -0.423∗∗
(0.211)

Nb front -0.139∗∗∗ -0.173∗∗∗ -0.117∗∗∗ -0.151∗∗∗
(0.044) (0.045) (0.023) (0.046)

Nb behind -0.019 -0.017 -0.023 0.004
(0.043) (0.049) (0.026) (0.041)

Nb front×General risk 0.003
(0.007)

Nb behind×General risk -0.001
(0.006)

Nb front×Biathlon race risk 0.008
(0.007)

Nb behind×Biathlon race risk -0.001
(0.007)

Nb front×Health risk -0.002
(0.006)

Nb behind×Health risk 0.000
(0.006)

Nb front×Career risk 0.005
(0.007)

Nb behind×Career risk -0.005
(0.007)

N 1336 1336 1336 1336
Race FE Yes Yes Yes Yes
Athlete Season FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: The table shows the effect of general and context-specific risk preferences and increased competition
measured by the number of competitors close in front and behind on skiing time of the last quarter of the
fourth lap. Moreover, the table shows interaction terms of our competition measures and risk measures.
The dependent variable is normalized on race level; thus, marginal effects need to be interpreted in standard
deviations. All specifications include race and athlete season fixed effects, as well as controls for past skiing
performance, shooting performance, and for the intermediate rank. Standard errors are clustered on race
level in parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

In our model, increased risk-taking as a result of increased competition is due to strategic

behavior by the agents. An important question is whether our empirical results are influenced

or partially confounded by risk preferences of the athletes. Our survey data allow us to answer
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two kinds of questions. First, they allow us to check whether our main empirical results of

Section 4.4 are robust to controlling for individual risk preferences, thus substantiating our

claim that the observed patterns are due to strategic behavior. Second, we are able to check

whether the effect of increased competition on risk-taking is heterogeneous with regard to

the athletes’ risk preferences.

We approach both questions by re-estimating equation (6) and including risk preferences

of the athletes as additional control variables. Moreover, we interact the risk variables with

the variables measuring competition. The results can be found in Table 7.37

First, we observe that more risk-loving athletes generally ski faster in the last course

section of the fourth lap. This holds for our general risk measure and all context-specific

risk measures, thus validating our measure of risk-taking. Second, we observe that our com-

petition effect is robust with regard to the inclusion of risk preferences as control variables.

The coefficient of an increased number of athletes close in front is negative and statistically

significant. Once we control for risk preferences in biathlon races, the estimate jumps about

one third in magnitude (see Column (2) compared to (1) or (4)). Third, we see that none

of the competition and risk-interaction effects is significantly different from zero. This pro-

vides evidence that there exist no heterogeneities in the effect of increased competition on

risk-taking with regard to risk preferences. The observation that the estimates of all risk

measures are negative and statistically significant suggests that risk-loving athletes already

take a rather high level of risk, irrespectively of the level of competition.
37A discussion regarding the representativeness of our survey sample can be found in the Appendix in

Section 7.7. While the relatively weaker athletes were more likely to take the survey, we see no obvious
reason why the results should not be generalizable with regard to the whole sample. Moreover, we ran
regressions classifying the risk preferences categorically and restricted to reliable answers. Following the
approach of Gillen et al. (2019), we asked the general as well as the biathlon-related risk question a second
time with a slightly different wording. A completely consistent answer would yield a zero difference of both
questions. An analysis including observations up to a difference of one yields qualitatively similar results
and is available upon request.

35



6. Conclusion and implications

We have studied how the intensity of competition among agents affects their risk-taking

behavior. We started by developing a theoretical model, in which we found that greater

competition, measured either by the closeness of competing agents or their number, induces

agents to take larger risks. We went on by testing the model’s predictions using data from

professional biathlon, as well as survey data from professional biathletes. We found support

for all the theoretical results. We believe that biathlon data are particularly suited for the

study of our research question. First, the data allowed us to construct and validate precise

measures of risk-taking and the intensity of competition. Second, the specific type of risk

that we considered in biathlon competitions – the risk of making more mistakes when working

faster – is relevant in many different industries, and we are thus confident that our results

are widely transferable beyond biathlon.

Competition is often used by firms as a strategic instrument to motivate employees, but

it may also occur naturally without any additional managerial actions. Thus, the results

of our paper are highly relevant for organizational decision-making. Our analysis highlights

that competition – besides its well-known positive consequences – potentially harms firms,

as it may provide incentives to take undesirably high risks that can result in detrimental

outcomes for the firm.

The implications of our paper’s findings for organizational decisions depend on the type

of job the employees are performing. As mentioned in the introduction, Baron and Kreps

(1999) classify jobs as guardian jobs, star jobs, or foot soldier jobs. In a guardian job, firms

want their employees to be careful at all times and to refrain from taking unnecessary risks.

Accordingly, employees should not feel any desire to compete against their peers. Not only

does this mean that firms should not reward employees based on their performance relative

to other employees, but also that any information about relative employee performance

should be withheld. The reason is that the availability of information regarding relative

employee performance may already be enough to incentivize employees even if monetary
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rewards are not tied to performance (e.g., Sheremeta 2010 and Blanes i Vidal and Nossol

2011). Furthermore, if firms are unable to eliminate all incentives to take risks, they should

make sure that these incentives are not very salient (Englmaier et al. 2017).

The implications are different when employees perform star jobs. In these jobs, firms

want to induce their employees to take risks, since the upsides to great performance are

much more important than the downsides to poor performance. Applying the findings from

our study, this means that employees should be encouraged to compete against each other

and that firms should let their employees know that competition is intense. More specifically,

to induce risk-taking, firms should make sure that the competition includes many employees

and that these employees are comparable in their capabilities. Furthermore, firms should

hide intermediate performance information from their employees, so that they believe the

competition to be close at all times.

Finally, in foot-soldier jobs, firms either do not care about the level of risk that employees

choose, or they find intermediate risk levels desirable. In both cases, optimal decisions are

likely to be between those we described as optimal for guardian and star jobs.
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7. Appendix

7.1. Omitted proofs

Proof of Proposition 1. Consider an agent i at position pt and suppose that the nt − 1 other

agents at position pt choose s∗
t and the nl agents at position pl choose s∗

l .38 Furthermore, let

pl + s∗
l ≥ pt + s∗

t .39 Define λi = λ(si), λ∗
t = λ(s∗

t ), and λ∗
l = λ(s∗

l ).

First, suppose that si ≤ s∗
t .

Then, the winning probability Pi(si) is given by

Pi(si) =
∫

Πj ̸=iFεj
(pi − pj + si − sj + x) fεi

(x)dx

=
∫ 0

−∞
(exp (λ∗

t (si − s∗
t + x)))nt−1 (exp (λ∗

l (pt − pl + si − s∗
l + x)))nl λi exp (λix) dx

=
∫ 0

−∞
exp ((nt − 1) λ∗

t (si − s∗
t + x)) exp (nlλ

∗
l (pt − pl + si − s∗

l + x)) λi exp (λix) dx

= λi exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))

·
∫ 0

−∞
exp (((nt − 1) λ∗

t + nlλ
∗
l + λi) x) dx

= λi exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))

· lim
u→∞

(
exp (((nt − 1) λ∗

t + nlλ
∗
l + λi) x)

(nt − 1) λ∗
t + n2λ∗

l + λi

)0

−u

= λi exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))
(

1
(nt − 1) λ∗

t + nlλ∗
l + λi

)

− λi exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))

· lim
u→∞

(
exp (− ((nt − 1) λ∗

t + nlλ
∗
l + λi) u)

(nt − 1) λ∗
t + nlλ∗

l + λi

)

= λi

(nt − 1) λ∗
t + nlλ∗

l + λi

exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l )) .

38By assumption, we have nt ≥ 1, that is, there is at least one agent at position pt, and therefore it holds
that nt − 1 ≥ 0.

39Note that, if the parameter k > 0 is sufficiently large, in any equilibrium it must hold that pl+s∗
l ≥ pt+s∗

t .
As the cost function is identical for all agents with a minimum at s̄, the equilibrium choices s∗

t and s∗
l are

arbitrarily close to s̄ if k is sufficiently large. Since pt < pl, this ensures that there is no equilibrium in which
pt + s∗

t > pl + s∗
l .
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Hence, agent i’s payoff becomes

Ui(si) = v
λi

(nt − 1) λ∗
t + nlλ∗

l + λi

exp ((nt − 1)λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))

− kc(si − s̄).

The first-order condition is

∂Ui (si)
∂si

= v
λ′

i ((nt − 1) λ∗
t + nlλ

∗
l + λi) − λiλ

′
i

((nt − 1) λ∗
t + nlλ∗

l + λi)2

· exp ((nt − 1)λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))

+ v
λi

(nt − 1) λ∗
t + nlλ∗

l + λi

· exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l )) ((nt − 1) λ∗
t + nlλ

∗
l )

− kc′(si − s̄)

= 0,

which can be rewritten as

v exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))
(nt − 1) λ∗

t + nlλ
∗
l

(nt − 1) λ∗
t + nlλ∗

l + λi

·
(

λ′
i

(nt − 1) λ∗
t + nlλ∗

l + λi

+ λi

)
− kc′ (si − s̄) = 0.

In equilibrium, si = s∗
t and λi = λ∗

t , and the condition simplifies to

v exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

(nt − 1)λ∗
t + nlλ

∗
l

ntλ∗
t + nlλ∗

l

(
λ∗′

t

ntλ∗
t + nlλ∗

l

+ λ∗
t

)
− kc′(s∗

t − s̄) = 0.

Substituting −(λ∗
t )2 for λ∗′

t , we obtain

v exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

(nt − 1) λ∗
t + nlλ

∗
l

ntλ∗
t + nlλ∗

l

(
− (λ∗

t )
2

ntλ∗
t + nlλ∗

l

+ λ∗
t

)

− kc′ (s∗
t − s̄) = 0,
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which is equivalent to

v exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l )) λ∗

t

(
(nt − 1) λ∗

t + nlλ
∗
l

ntλ∗
t + nlλ∗

l

)2

− kc′(s∗
t − s̄) = 0. (8)
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Suppose now that si ≥ s∗
t and pt + si ≤ pl + s∗

l . Then, the winning probability Pi(si)

is given by

Pi(si) =
∫

Πj ̸=iFεj
(pi − pj + si − sj + x) fεi

(x)dx

=
∫ s∗

t −si

−∞
(exp (λ∗

t (si − s∗
t + x)))nt−1 (exp (λ∗

l (pt − pl + si − s∗
l + x)))nl λi exp (λix) dx

+
∫ 0

s∗
t −si

(exp (λ∗
l (pt − pl + si − s∗

l + x)))nl λi exp (λix) dx

=
∫ s∗

t −si

−∞
exp ((nt − 1) λ∗

t (si − s∗
t + x)) exp (nlλ

∗
l (pt − pl + si − s∗

l + x)) λi exp (λix) dx

+
∫ 0

s∗
t −si

exp (nlλ
∗
l (pt − pl + si − s∗

l + x)) λi exp (λix) dx

= λi exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))

·
∫ s∗

t −si

−∞
exp (((nt − 1) λ∗

t + nlλ
∗
l + λi) x) dx

+ λi exp (nlλ
∗
l (pt − pl + si − s∗

l )) ·
∫ 0

s∗
t −si

exp ((nlλ
∗
l + λi) x) dx

= λi exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))

· lim
u→∞

(
exp (((nt − 1) λ∗

t + nlλ
∗
l + λi) x)

(nt − 1) λ∗
t + nlλ∗

l + λi

)s∗
t −si

−u

+ λi exp (nlλ
∗
l (pt − pl + si − s∗

l ))

·
(

exp ((nlλ
∗
l + λi) x)

nlλ∗
l + λi

)0

s∗
t −si

.
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This reduces to

Pi(si) = λi exp ((nt − 1) λ∗
t (si − s∗

t ) + nlλ
∗
l (pt − pl + si − s∗

l ))

·
(

exp (((nt − 1) λ∗
t + nlλ

∗
l + λi) (s∗

t − si))
(nt − 1) λ∗

t + nlλ∗
l + λi

)

+ λi exp (nlλ
∗
l (pt − pl + si − s∗

l ))

·
(

1 − exp ((nlλ
∗
l + λi) (s∗

t − si))
nlλ∗

l + λi

)

= λi

(nt − 1) λ∗
t + nlλ∗

l + λi

exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ) + λi(s∗

t − si))

+ λi

nlλ∗
l + λi

exp (nlλ
∗
l (pt − pl + si − s∗

l ))

− λi

nlλ∗
l + λi

exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ) + λi(s∗

t − si))

=
(

1
(nt − 1) λ∗

t + nlλ∗
l + λi

− 1
nlλ∗

l + λi

)
λi exp(λi(s∗

t − si))

· exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

+ λi

nlλ∗
l + λi

exp (nlλ
∗
l (pt − pl + si − s∗

l )) .

Hence, agent i’s payoff is given by

Ui(si) = v

(
1

(nt − 1) λ∗
t + nlλ∗

l + λi

− 1
nlλ∗

l + λi

)
λi exp(λi(s∗

t − si))

· exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

+ v
λi

nlλ∗
l + λi

exp (nlλ
∗
l (pt − pl + si − s∗

l ))

− kc(si − s̄).
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The first-order condition is

∂Ui (si)
∂si

= v[
(

−λ′
i

((nt − 1)λ∗
t + nlλ∗

l + λi)2 + λ′
i

(nlλ∗
l + λi)2

)
λi exp(λi(s∗

t − si))

+
(

1
(nt − 1) λ∗

t + nlλ∗
l + λi

− 1
nlλ∗

l + λi

)

· (λ′
i exp(λi(s∗

t − si)) + λi(λ′
i(s∗

t − si) − λi) exp(λi(s∗
t − si)))]

· exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

+ v
λ′

i(nlλ
∗
l + λi) − λiλ

′
i

(nlλ∗
l + λi)2 exp (nlλ

∗
l (pt − pl + si − s∗

l ))

+ v
λi

nlλ∗
l + λi

nlλ
∗
l exp (nlλ

∗
l (pt − pl + si − s∗

l ))

− kc′(si − s̄)

= 0.

In equilibrium, si = s∗
t and λi = λ∗

t , and the condition simplifies to

v[
(

−λ∗′
t

(ntλ∗
t + nlλ∗

l )
2 + λ∗′

t

(nlλ∗
l + λ∗

t )2

)
λ∗

t

+
(

1
ntλ∗

t + nlλ∗
l

− 1
nlλ∗

l + λ∗
t

)

·
(
λ∗′

t − (λ∗
t )2
)
]

· exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

+ v
λ∗′

t (nlλ
∗
l + λ∗

t ) − λ∗
t λ

∗′
t

(nlλ∗
l + λ∗

t )2 exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

+ v
λ∗

t

nlλ∗
l + λ∗

t

nlλ
∗
l exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

− kc′(s∗
t − s̄)

= 0.
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Substituting −(λ∗
t )2 for λ∗′

t , we obtain

0 = v

[(
(λ∗

t )2(
ntλ∗

t + nlλ
∗
l

)2 + −(λ∗
t )2

(nlλ
∗
l + λ∗

t )2

)
λ∗

t +
(

1
ntλ∗

t + nlλ
∗
l

− 1
nlλ

∗
l + λ∗

t

)(
−(λ∗

t )2 − (λ∗
t )2
)]

· exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

+ v
−(λ∗

t )2nlλ
∗
l

(nlλ
∗
l + λ∗

t )2 exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

+ v
λ∗

t

nlλ
∗
l + λ∗

t

nlλ
∗
l exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

− kc′(s∗
t − s̄)

= vλ∗
t

[(
(λ∗

t )2(
ntλ∗

t + nlλ
∗
l

)2 + −(λ∗
t )2

(nlλ
∗
l + λ∗

t )2

)
−
(

2λ∗
t

ntλ∗
t + nlλ

∗
l

− 2λ∗
t

nlλ
∗
l + λ∗

t

)]

· exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

+ vλ∗
t

[
−λ∗

t nlλ
∗
l

(nlλ
∗
l + λ∗

t )2 + nlλ
∗
l

nlλ
∗
l + λ∗

t

]
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

− kc′(s∗
t − s̄)

= vλ∗
t

[(
(λ∗

t )2 − 2λ∗
t (ntλ

∗
t + nlλ

∗
l )(

ntλ∗
t + nlλ

∗
l

)2 + −(λ∗
t )2 + 2λ∗

t (nlλ
∗
l + λ∗

t )
(nlλ

∗
l + λ∗

t )2

)]
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

+ vλ∗
t

[
−λ∗

t nlλ
∗
l + nlλ

∗
l (nlλ

∗
l + λ∗

t )
(nlλ

∗
l + λ∗

t )2

]
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

− kc′(s∗
t − s̄)

= vλ∗
t

[(
(λ∗

t )2 − 2λ∗
t (ntλ

∗
t + nlλ

∗
l )(

ntλ∗
t + nlλ

∗
l

)2 + (λ∗
t )2 + 2λ∗

t nlλ
∗
l

(nlλ
∗
l + λ∗

t )2

)]
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

+ vλ∗
t

[
(nlλ

∗
l )2

(nlλ
∗
l + λ∗

t )2

]
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

− kc′(s∗
t − s̄)

= vλ∗
t

[
(λ∗

t )2 − 2λ∗
t (ntλ

∗
t + nlλ

∗
l )(

ntλ∗
t + nlλ

∗
l

)2 + 1
]

exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

− kc′(s∗
t − s̄)

= vλ∗
t

[
(λ∗

t )2 − 2λ∗
t (ntλ

∗
t + nlλ

∗
l ) + (ntλ

∗
t + nlλ

∗
l )2(

ntλ∗
t + nlλ

∗
l

)2
]

exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

− kc′(s∗
t − s̄).
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This is equivalent to

v exp (nlλ
∗
l (s∗

t − s∗
l − ∆p)) λ∗

t

(
(nt − 1)λ∗

t + nlλ
∗
l

ntλ∗
t + nlλ∗

l

)2

− kc′(s∗
t − s̄) = 0, (9)

which is identical to condition (8). Equation (3) follows.

Clearly,

v exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l )) λ∗

t

(
(nt − 1) λ∗

t + nlλ
∗
l

ntλ∗
t + nlλ∗

l

)2

> 0.

Hence, we obtain s∗
t > s̄.
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Next, consider the leading agents. Consider agent i at position pl and suppose

that the nt agents at position pt choose s∗
t and the nl − 1 agents at position pl choose s∗

l .40

Furthermore, suppose that pt + s∗
t ≤ pl + si ≤ pl + s∗

l .41

Then, the agent’s winning probability Pi(si) is given by

Pi(si) =
∫

Πj ̸=iFεj
(pi − pj + si − sj + x)fεi

(x)dx

=
∫ pt−pl+s∗

t −si

−∞
(exp(λ∗

t (pl − pt + si − s∗
t + x)))nt

· (exp(λ∗
l (si − s∗

l + x)))nl−1 λi exp(λix)dx

+
∫ 0

pt−pl+s∗
t −si

(exp (λ∗
l (si − s∗

l + x)))nl−1 λi exp (λix) dx

=
∫ pt−pl+s∗

t −si

−∞
(exp (ntλ

∗
t (pl − pt + si − s∗

t + x)))

· (exp ((nl − 1) λ∗
l (si − s∗

l + x))) λi exp (λix) dx

+
∫ 0

pt−pl+s∗
t −si

exp ((nl − 1) λ∗
l (si − s∗

l + x)) λi exp (λix) dx

= λi exp (ntλ
∗
t (pl − pt + si − s∗

t ) + (nl − 1) λ∗
l (si − s∗

l ))

·
∫ pt−pl+s∗

t −si

−∞
exp ((ntλ

∗
t + (nl − 1)λ∗

l + λi) x) dx

+ λi exp ((nl − 1) λ∗
l (si − s∗

l ))
∫ 0

pt−pl+s∗
t −si

exp (((nl − 1) λ∗
l + λi) x) dx

= λi exp (ntλ
∗
t (pl − pt + si − s∗

t ) + (nl − 1)λ∗
l (si − s∗

l ))

· lim
u→∞

(
exp ((ntλ

∗
t + (nl − 1)λ∗

l + λi) x)
ntλ∗

t + (nl − 1)λ∗
l + λi

)pt−pl+s∗
t −si

−u

+ λi exp ((nl − 1) λ∗
l (si − s∗

l ))
(

exp (((nl − 1) λ∗
l + λi) x)

(nl − 1)λ∗
l + λi

)0

pt−pl+s∗
t −si

,

40Analogously to the argument above for the trailing agents, by assumption we have nl − 1 ≥ 0.
41Note that, similar to the argumentation above, if the parameter k > 0 is sufficiently large, any deviations

si < s∗
l that are small enough such that pt +s∗

t > pl +si cannot be profitable. As the cost function is identical
for all agents with a minimum at s̄, the equilibrium choices s∗

t and s∗
l are arbitrarily close to s̄ if k is sufficiently

large. At the same time, deviations si far from s̄ become arbitrarily costly if k is sufficiently large. Hence,
since pt < pl, this ensures that, for equilibrium characterization, it is sufficient to consider the case in which
pt + s∗

t ≤ pl + si.
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which reduces to

= λi exp (ntλ
∗
t (pl − pt + si − s∗

t ) + (nl − 1) λ∗
l (si − s∗

l ))

·
(

exp ((ntλ
∗
t + (nl − 1) λ∗

l + λi) (pt − pl + s∗
t − si))

ntλ∗
t + (nl − 1) λ∗

l + λi

)

+ λi exp ((nl − 1) λ∗
l (si − s∗

l ))
(

1
(nl − 1) λ∗

l + λi

)

− λi exp ((nl − 1) λ∗
l (si − s∗

l ))
(

exp (((nl − 1) λ∗
l + λi) (pt − pl + s∗

t − si))
(nl − 1) λ∗

l + λi

)

= λi

ntλ∗
t + (nl − 1) λ∗

l + λi

exp ((nl − 1) λ∗
l (pt − pl + s∗

t − s∗
l ) + λi (pt − pl + s∗

t − si))

+ λi

(nl − 1) λ∗
l + λi

(exp ((nl − 1) λ∗
l (si − s∗

l ))

− exp ((nl − 1) λ∗
l (pt − pl + s∗

t − s∗
l ) + λi (pt − pl + s∗

t − si))) .

Hence, agent i’s payoff becomes

Ui(si) = v
λi

ntλ∗
t + (nl − 1) λ∗

l + λi

exp ((nl − 1) λ∗
l (pt − pl + s∗

t − s∗
l )

+λi(pt − pl + s∗
t − si)) + v

λi

(nl − 1)λ∗
l + λi

· (exp ((nl − 1)λ∗
l (si − s∗

l )) − exp ((nl − 1)λ∗
l (pt − pl + s∗

t − s∗
l )

+λi (pt − pl + s∗
t − si))) − kc (si − s̄) .
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The first-order condition is

∂Ui(si)
∂si

= v
λ′

i(ntλ
∗
t + (nl − 1)λ∗

l + λi) − λiλ
′
i

(ntλ∗
t + (nl − 1)λ∗

l + λi)2

· exp ((nl − 1)λ∗
l (pt − pl + s∗

t − s∗
l ) + λi(pt − pl + s∗

t − si))

+ v
λi

ntλ∗
t + (nl − 1)λ∗

l + λi

· exp ((nl − 1) λ∗
l (pt − pl + s∗

t − s∗
l ) + λi (pt − pl + s∗

t − si))

· (λ′
i (pt − pl + s∗

t − si) − λi)

+ v
λ′

i ((nl − 1) λ∗
l + λi) − λiλ

′
i

((nl − 1)λ∗
l + λi)2

· (exp((nl − 1)λ∗
l (si − s∗

l )) − exp((nl − 1)

· λ∗
l (pt − pl + s∗

t − s∗
l ) + λi(pt − pl + s∗

t − si)))

+ v
λi

(nl − 1)λ∗
l + λi

exp((nl − 1)λ∗
l (si − s∗

l ))(nl − 1)λ∗
l

− v
λi

(nl − 1)λ∗
l + λi

exp((nl − 1)λ∗
l (pt − pl + s∗

t − s∗
l )

+ λi(pt − pl + s∗
t − si))

· (λ′
i(pt − pl + s∗

t − si) − λi)

− kc′(si − s̄) = 0,
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which can be rewritten as

v
λ′

i (ntλ
∗
t + (nl − 1) λ∗

l )
(ntλ∗

t + (nl − 1) λ∗
l + λi)2 exp ((nl − 1) λ∗

l (pt − pl + s∗
t − s∗

l ) + λi (pt − pl + s∗
t − si))

+ v
λi

ntλ∗
t + (nl − 1) λ∗

l + λi

· exp ((nl − 1) λ∗
l (pt − pl + s∗

t − s∗
l ) + λi (pt − pl + s∗

t − si)) (λ′
i (pt − pl + s∗

t − si) − λi)

+ v
λ′

i ((nl − 1) λ∗
l )

((nl − 1) λ∗
l + λi)2

· (exp ((nl − 1) λ∗
l (si − s∗

l )) − exp ((nl − 1) λ∗
l (pt − pl + s∗

t − s∗
l ) + λi (pt − pl + s∗

t − si)))

+ v
λi

(nl − 1) λ∗
l + λi

exp ((nl − 1) λ∗
l (si − s∗

l )) (nl − 1) λ∗
l

− v
λi

(nl − 1) λ∗
l + λi

exp ((nl − 1) λ∗
l (pt − pl + s∗

t − s∗
l ) + λi (pt − pl + s∗

t − si))

· (λ′
i (pt − pl + s∗

t − si) − λi)

− kc′(si − s̄) = 0.

In equilibrium, si = s∗
l and λi = λ∗

l , and the condition simplifies to

v
λ∗′

l (ntλ
∗
t + (nl − 1) λ∗

l )
(ntλ∗

t + nlλ∗
l )

2 exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

+ v
λ∗

l

ntλ∗
t + nlλ∗

l

exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l )) (λ∗′

l (pt − pl + s∗
t − s∗

l ) − λ∗
l )

+ v
λ∗′

l ((nl − 1) λ∗
l )

(nlλ∗
l )

2 (1 − exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l )))

+ v
1
nl

((nl − 1)λ∗
l − exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l )) (λ∗′

l (pt − pl + s∗
t − s∗

l ) − λ∗
l ))

− kc′(s∗
l − s̄) = 0,
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which can be further rewritten as

v
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

ntλ∗
t + nlλ∗

l

·
(

λ∗′
l (ntλ

∗
t + (nl − 1) λ∗

l )
ntλ∗

t + nlλ∗
l

+ λ∗
l (λ∗′

l (pt − pl + s∗
t − s∗

l ) − λ∗
l )
)

− v
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

nl

(
λ∗′

l (nl − 1)
nlλ∗

l

+ λ∗′
l (pt − pl + s∗

t − s∗
l ) − λ∗

l

)

+ v
nl − 1

nl

(
λ∗′

l

nlλ∗
l

+ λ∗
l

)
− kc′(s∗

l − s̄) = 0.

Substituting −(λ∗
l )2 for λ∗′

l , we obtain

− v
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

ntλ∗
t + nlλ∗

l

(λ∗
l )

2
(

ntλ
∗
t + (nl − 1) λ∗

l

ntλ∗
t + nlλ∗

l

+ λ∗
l (pt − pl + s∗

t − s∗
l ) + 1

)

+ v
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

nl

λ∗
l

(2nl − 1
nl

+ λ∗
l (pt − pl + s∗

t − s∗
l )
)

+ v
(

nl − 1
nl

)2
λ∗

l − kc′(s∗
l − s̄) = 0.

(10)
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Now, suppose that si ≥ s∗
l and pt+s∗

t ≤ pl +s∗
l . Then, the agent’s winning probability

Pi(si) is given by

Pi(si)

=
∫

Πj ̸=iFεj (pi − pj + si − sj + x)fεi(x)dx

=
∫ pt−pl+s∗

t −si

−∞
(exp(λ∗

t (pl − pt + si − s∗
t + x)))nt (exp(λ∗

l (si − s∗
l + x)))nl−1 λi exp(λix)dx

+
∫ s∗

l −si

pt−pl+s∗
t −si

(exp (λ∗
l (si − s∗

l + x)))nl−1 λi exp (λix) dx

+
∫ 0

s∗
l
−si

λi exp(λix)dx

=
∫ pt−pl+s∗

t −si

−∞
exp(ntλ

∗
t (pl − pt + si − s∗

t + x)) exp ((nl − 1) λ∗
l (si − s∗

l + x)) λi exp (λix) dx

+
∫ s∗

l −si

pt−pl+s∗
t −si

exp ((nl − 1) λ∗
l (si − s∗

l + x)) λi exp (λix) dx

+
∫ 0

s∗
l
−si

λi exp(λix)dx

= λi exp (ntλ
∗
t (pl − pt + si − s∗

t ) + (nl − 1) λ∗
l (si − s∗

l ))

·
∫ pt−pl+s∗

t −si

−∞
exp ((ntλ

∗
t + (nl − 1)λ∗

l + λi)x) dx

+ λi exp ((nl − 1)λ∗
l (si − s∗

l ))
∫ s∗

l −si

pt−pl+s∗
t −si

exp (((nl − 1) λ∗
l + λi) x) dx

+ λi

∫ 0

s∗
l
−si

exp(λix)dx

= λi exp (ntλ
∗
t (pl − pt + si − s∗

t ) + (nl − 1)λ∗
l (si − s∗

l ))

· lim
u→∞

(
exp ((ntλ

∗
t + (nl − 1)λ∗

l + λi) x)
ntλ∗

t + (nl − 1)λ∗
l + λi

)pt−pl+s∗
t −si

−u

+ λi exp ((nl − 1) λ∗
l (si − s∗

l ))
(

exp (((nl − 1) λ∗
l + λi) x)

(nl − 1)λ∗
l + λi

)s∗
l −si

pt−pl+s∗
t −si

+ λi

(exp(λix)
λi

)0

s∗
l
−si

,
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which reduces to

λi exp (ntλ
∗
t (pl − pt + si − s∗

t ) + (nl − 1) λ∗
l (si − s∗

l ))

·
(

exp ((ntλ
∗
t + (nl − 1) λ∗

l + λi) (pt − pl + s∗
t − si))

ntλ∗
t + (nl − 1) λ∗

l + λi

)

+ λi exp ((nl − 1) λ∗
l (si − s∗

l ))

·
(

exp(((nl − 1)λ∗
l + λi)(s∗

l − si))
(nl − 1) λ∗

l + λi
− exp (((nl − 1) λ∗

l + λi) (pt − pl + s∗
t − si))

(nl − 1) λ∗
l + λi

)

+ λi

( 1
λi

− exp(λi(s∗
l − si))

λi

)
= λi

exp ((nl − 1)λ∗
l (pt − pl + s∗

t − s∗
l ) + λi(pt − pl + s∗

t − si))
ntλ∗

t + (nl − 1) λ∗
l + λi

+ λi
exp(λi(s∗

l − si))
(nl − 1)λ∗

l + λi

− λi
exp ((nl − 1)λ∗

l (pt − pl + s∗
t − s∗

l ) + λi(pt − pl + s∗
t − si))

(nl − 1)λ∗
l + λi

+ 1 − exp(λi(s∗
l − si)).

Hence, agent i’s payoff becomes

Ui(si) = vλi
exp ((nl − 1)λ∗

l (pt − pl + s∗
t − s∗

l ) + λi(pt − pl + s∗
t − si))

ntλ∗
t + (nl − 1) λ∗

l + λi

+ vλi
exp(λi(s∗

l − si))
(nl − 1)λ∗

l + λi

− vλi
exp ((nl − 1)λ∗

l (pt − pl + s∗
t − s∗

l ) + λi(pt − pl + s∗
t − si))

(nl − 1)λ∗
l + λi

+ v(1 − exp(λi(s∗
l − si)))

− kc(si − s̄).
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The first-order condition is

∂Ui(si)
∂si

= vλ′
i

exp ((nl − 1)λ∗
l (pt − pl + s∗

t − s∗
l ) + λi(pt − pl + s∗

t − si))
ntλ∗

t + (nl − 1)λ∗
l + λi

+ vλi[
(ntλ

∗
t + (nl − 1)λ∗

l + λi) (λ′
i(pt − pl + s∗

t − si) − λi)
(ntλ∗

t + (nl − 1)λ∗
l + λi)2

· exp((nl − 1)λ∗
l (pt − pl + s∗

t − s∗
l ) + λi(pt − pl + s∗

t − si))

− λ′
i exp((nl − 1)λ∗

l (pt − pl + s∗
t − s∗

l ) + λi(pt − pl + s∗
t − si))

(ntλ∗
t + (nl − 1)λ∗

l + λi)2 ]

+ vλ′
i

exp(λi(s∗
l − si))

(nl − 1)λ∗
l + λi

+ vλi

[
((nl − 1)λ∗

l + λi)(λ′
i(s∗

l − si) − λi) exp(λi(s∗
l − si)) − λ′

i exp(λi(s∗
l − si)))

((nl − 1)λ∗
l + λi)2

]

− vλ′
i

exp ((nl − 1)λ∗
l (pt − pl + s∗

t − s∗
l ) + λi(pt − pl + s∗

t − si))
(nl − 1)λ∗

l + λi

− vλi[
((nl − 1)λ∗

l + λi)(λ′
i(pt − pl + s∗

t − si) − λi)
((nl − 1)λ∗

l + λi)2

· exp ((nl − 1)λ∗
l (pt − pl + s∗

t − s∗
l ) + λi(pt − pl + s∗

t − si))

− λ′
i exp ((nl − 1)λ∗

l (pt − pl + s∗
t − s∗

l ) + λi(pt − pl + s∗
t − si))

((nl − 1)λ∗
l + λi)2 ]

− v(λ′
i(s∗

l − si) − λi) exp(λi(s∗
l − si))

− kc′(si − s̄)

= 0.
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In equilibrium, si = s∗
l and λi = λ∗

l , and the condition simplifies to

v(λ∗
l )′ exp(nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

ntλ∗
t + nlλ∗

l

+ vλ∗
l [

(ntλ
∗
t + nlλ

∗
l ) ((λ∗

l )′(pt − pl + s∗
t − s∗

l ) − λ∗
l )

(ntλ∗
t + nlλ∗

l )2

· exp(nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

− (λ∗
l )′ exp(nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

(ntλ∗
t + nlλ∗

l )2 ]

+ v(λ∗
l )′ 1

nlλ∗
l

+ vλ∗
l

[
(nlλ

∗
l )(−λ∗

l ) − (λ∗
l )′

(nlλ∗
l )2

]

− v(λ∗
l )′ exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

nlλ∗
l

− vλ∗
l [

nlλ
∗
l ((λ∗

l )′(pt − pl + s∗
t − s∗

l ) − λ∗
l )

(nlλ∗
l )2

· exp (nlλ
∗
l (pt − pl + s∗

t − s∗
l ))

− (λ∗
l )′ exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

(nlλ∗
l )2 ]

+ vλ∗
l

− kc′(s∗
l − s̄)

= 0.

Substituting −(λ∗
l )2 for λ∗′

l , we obtain

− v
exp(nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

ntλ∗
t + nlλ∗

l

(λ∗
l )2

[
(ntλ

∗
t + nlλ

∗
l ) (λ∗

l (pt − pl + s∗
t − s∗

l ) + 1) − λ∗
l

ntλ∗
t + nlλ∗

l

+ 1
]

+ v
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

nl

λ∗
l

[
1 + nlλ

∗
l ((λ∗

l )2(pt − pl + s∗
t − s∗

l ) + λ∗
l ) − (λ∗

l )2

nl(λ∗
l )2

]

− v(λ∗
l )2 1

nlλ∗
l

+ vλ∗
l

−nl(λ∗
l )2 + (λ∗

l )2

(nlλ∗
l )2 + vλ∗

l

− kc′(s∗
l − s̄)

= 0,
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which is equivalent to

− v
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

ntλ∗
t + nlλ∗

l

(λ∗
l )

2
(

ntλ
∗
t + (nl − 1) λ∗

l

ntλ∗
t + nlλ∗

l

+ λ∗
l (pt − pl + s∗

t − s∗
l ) + 1

)

+ v
exp (nlλ

∗
l (pt − pl + s∗

t − s∗
l ))

nl

λ∗
l

(2nl − 1
nl

+ λ∗
l (pt − pl + s∗

t − s∗
l )
)

+ v
(

nl − 1
nl

)2
λ∗

l − kc′(s∗
l − s̄) = 0.

(11)

This is identical to equation (10). The first three terms have different signs. Thus, in general,

it is unclear whether or not s∗
l > s̄.

Proof of Proposition 2. As shown in Proposition 1, the equilibrium is characterized by the

first-order conditions in equations (3) and (4). To simplify notation, in the following we

denote the left-hand side of these equations by H1 and H2, respectively. Hence, equations

(3) and (4) are fulfilled, if and only if the function H = (H1, H2) : R2 → R2, defined

by (s∗
t , s∗

l ) 7→ (H1(s∗
t , s∗

l ), H2(s∗
t , s∗

l )), vanishes, that is, if H(s∗
t , s∗

l ) = 0. The Jacobian

determinant of H is given by

|J | =

∣∣∣∣∣∣∣∣
∂H1
∂s∗

t

∂H1
∂s∗

l

∂H2
∂s∗

t

∂H2
∂s∗

l

∣∣∣∣∣∣∣∣ = ∂H1

∂s∗
t

∂H2

∂s∗
l

− ∂H2

∂s∗
t

∂H1

∂s∗
l

.

Notice that only the first product depends on the cost function, the second one does not.

We assume that k is sufficiently large such that ∂H1
∂s∗

t
< 0, ∂H2

∂s∗
l

< 0, and |J | > 0. By the

implicit function theorem,42 we have

∂s∗
t

∂∆p
= 1

|J |

∣∣∣∣∣∣∣∣
−∂H1

∂∆p
∂H1
∂s∗

l

−∂H2
∂∆p

∂H2
∂s∗

l

∣∣∣∣∣∣∣∣ ,
42See equation 8.29 and the discussion in Chiang and Wainwright (2005).
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where ∣∣∣∣∣∣∣∣
−∂H1

∂∆p
∂H1
∂s∗

l

−∂H2
∂∆p

∂H2
∂s∗

l

∣∣∣∣∣∣∣∣ = − ∂H1

∂∆p

∂H2

∂s∗
l

+ ∂H2

∂∆p

∂H1

∂s∗
l

.

Again, ∂H2
∂∆p

∂H1
∂s∗

l
does not depend on the cost function. Therefore, whenever k is sufficiently

large, we have sgn
(

∂s∗
t

∂∆p

)
= sgn

(
∂H1
∂∆p

)
. We observe

∂H1

∂∆p
= −nlλ

∗
l v exp (nlλ

∗
l (s∗

t − s∗
l − ∆p)) λ∗

t

(
(nt − 1) λ∗

t + nlλ
∗
l

ntλ∗
t + nlλ∗

l

)2

< 0.

Furthermore,

∂s∗
t

∂nl

= 1
|J |

∣∣∣∣∣∣∣∣
−∂H1

∂nl

∂H1
∂s∗

l

−∂H2
∂nl

∂H2
∂s∗

l

∣∣∣∣∣∣∣∣ ,
where ∣∣∣∣∣∣∣∣

−∂H1
∂nl

∂H1
∂s∗

l

−∂H2
∂nl

∂H2
∂s∗

l

∣∣∣∣∣∣∣∣ = −∂H1

∂nl

∂H2

∂s∗
l

+ ∂H2

∂nl

∂H1

∂s∗
l

.

If k is sufficiently large, we have sgn
(

∂s∗
t

∂nl

)
= sgn

(
∂H1
∂nl

)
, where

∂H1

∂nl

= −vλ∗
t exp (nlλ

∗
l (s∗

t − s∗
l − ∆p)) λ∗

l (∆p + s∗
l − s∗

t )
(

(nt − 1) λ∗
t + nlλ

∗
l

ntλ∗
t + nlλ∗

l

)2

+ vλ∗
t exp (nlλ

∗
l (s∗

t − s∗
l − ∆p)) 2

(
(nt − 1) λ∗

t + nlλ
∗
l

ntλ∗
t + nlλ∗

l

)
λ∗

t λ
∗
l

(ntλ∗
t + nlλ∗

l )
2 .

If ∆p is sufficiently small and k is sufficiently large, the term |∆p+s∗
l −s∗

t | is small as well

(as argued before, if k is large, s∗
t and s∗

l are close to s̄ and therefore |s∗
t − s∗

l | is sufficiently

small), in which case ∂H1
∂nl

> 0.

Furthermore,

∂s∗
t

∂nt

= 1
|J |

∣∣∣∣∣∣∣∣
−∂H1

∂nt

∂H1
∂s∗

l

−∂H2
∂nt

∂H2
∂s∗

l

∣∣∣∣∣∣∣∣ ,
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where ∣∣∣∣∣∣∣∣
−∂H1

∂nt

∂H1
∂s∗

l

−∂H2
∂nt

∂H2
∂s∗

l

∣∣∣∣∣∣∣∣ = −∂H1

∂nt

∂H2

∂s∗
l

+ ∂H2

∂nt

∂H1

∂s∗
l

.

If k is sufficiently large, we have sgn
(

∂s∗
t

∂nt

)
= sgn

(
∂H1
∂nt

)
, where

∂H1

∂nt

= v exp (nlλ
∗
l (s∗

t − s∗
l − ∆p)) λ∗

t

· 2
(

(nt − 1)λ∗
t + nlλ

∗
l

ntλ∗
t + nlλ∗

l

)
λ∗

t (ntλ
∗
t + nlλ

∗
l ) − λ∗

t ((nt − 1)λ∗
t + nlλ

∗
l )

(ntλ∗
t + nlλ∗

l )2

= 2v exp (nlλ
∗
l (s∗

t − s∗
l − ∆p)) (λ∗

t )3 (nt − 1)λ∗
t + nlλ

∗
l

(ntλ∗
t + nlλ∗

l )3

> 0.

With a similar argumentation as before, if k is sufficiently large, we have sgn
(

∂s∗
l

∂∆p

)
=

sgn
(

∂H2
∂∆p

)
. We observe

∂H2

∂∆p
= v

nl (λ∗
l )

3

ntλ∗
t + nlλ∗

l

exp (nlλ
∗
l (s∗

t − s∗
l − ∆p))

·
(

ntλ
∗
t + (nl − 1) λ∗

l

ntλ∗
t + nlλ∗

l

+ λ∗
l (s∗

t − s∗
l − ∆p) + 1

)

+ v
(λ∗

l )
3

ntλ∗
t + nlλ∗

l

exp (nlλ
∗
l (s∗

t − s∗
l − ∆p))

− v (λ∗
l )

2 exp (nlλ
∗
l (s∗

t − s∗
l − ∆p))

(2nl − 1
nl

+ λ∗
l (s∗

t − s∗
l − ∆p)

)

− v
(λ∗

l )
2

nl

exp (nlλ
∗
l (s∗

t − s∗
l − ∆p))

= v
(λ∗

l )
3

ntλ∗
t + nlλ∗

l

exp (nlλ
∗
l (s∗

t − s∗
l − ∆p))

·
(

ntnlλ
∗
t + (nl − 1) nlλ

∗
l

ntλ∗
t + nlλ∗

l

+ nlλ
∗
l (s∗

t − s∗
l − ∆p) + nl + 1

)

− v (λ∗
l )

2 exp (nlλ
∗
l (s∗

t − s∗
l − ∆p)) (2 + λ∗

l (s∗
t − s∗

l − ∆p)) .
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This is negative if and only if

ntnlλ
∗
t λ

∗
l + (nl − 1) nl (λ∗

l )
2

ntλ∗
t + nlλ∗

l

+ nl (λ∗
l )

2 (s∗
t − s∗

l − ∆p) + (nl + 1) λ∗
l

< 2 (ntλ
∗
t + nlλ

∗
l ) + λ∗

l (ntλ
∗
t + nlλ

∗
2) (s∗

t − s∗
l − ∆p)

⇔ ntnlλ
∗
t λ

∗
l + (nl − 1) nl (λ∗

l )
2

ntλ∗
t + nlλ∗

l

< 2ntλ
∗
t + (nl − 1) λ∗

l + ntλ
∗
t λ

∗
l (s∗

t − s∗
l − ∆p)

⇔ −2 (ntλ
∗
t )

2 − nt (2nl − 1) λ∗
t λ

∗
l

ntλ∗
t + nlλ∗

l

+ ntλ
∗
t λ

∗
l (∆p + s∗

l − s∗
t ) < 0.

If ∆p is sufficiently small, |∆p + s∗
l − s∗

t | is small as well, in which case ∂H2
∂∆p

< 0.

Again, with a similar argumentation as before, if k is sufficiently large, we have sgn
(

∂s∗
l

∂nt

)
=

sgn
(

∂H2
∂nt

)
. We observe

∂H2

∂nt

= v (λ∗
l )

2 exp (nlλ
∗
l (s∗

t − s∗
l − ∆p)) λ∗

t

(ntλ∗
t + nlλ∗

l )
2

(
ntλ

∗
t + (nl − 1) λ∗

l

ntλ∗
t + nlλ∗

l

+ λ∗
l (s∗

t − s∗
l − ∆p) + 1

)

− v (λ∗
l )

2 exp (nlλ
∗
l (s∗

t − s∗
l − ∆p))

ntλ∗
t + nlλ∗

l

(
λ∗

t λ
∗
l

(ntλ∗
t + nlλ∗

l )
2

)
.

This is positive if and only if

(ntλ
∗
t + nlλ

∗
l )
(

ntλ
∗
t + (nl − 1) λ∗

l

ntλ∗
t + nlλ∗

l

+ λ∗
l (s∗

t − s∗
l − ∆p) + 1

)
> λ∗

l

⇔ 2ntλ
∗
t + 2 (nl − 1) λ∗

l − (ntλ
∗
t + nlλ

∗
l ) λ∗

l (∆p + s∗
l − s∗

t ) > 0.

If ∆p is sufficiently small, |∆p + s∗
l − s∗

t | is small as well, in which case ∂H2
∂nt

> 0.

Again, with a similar argumentation as before, if k is sufficiently large, we have sgn
(

∂s∗
l

∂nl

)
=

sgn
(

∂H2
∂nl

)
.
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We observe

∂H2

∂nl

=

− v
(λ∗

l (s∗
t − s∗

l − ∆p)) exp(nlλ
∗
l (s∗

t − s∗
l − ∆p))(ntλ

∗
t + nlλ

∗
l ) − λ∗

l exp(nlλ
∗
l (s∗

t − s∗
l − ∆p))

(ntλ∗
t + nlλ∗

l )2

· (λ∗
l )2

(
ntλ

∗
t + (nl − 1)λ∗

l

ntλ∗
t + nlλ∗

l

+ λ∗
l (s∗

t − s∗
l − ∆p) + 1

)

− v
exp(nlλ

∗
l (s∗

t − s∗
l − ∆p))

ntλ∗
t + nlλ∗

l

· (λ∗
l )2 λ∗

l (ntλ
∗
t + nlλ

∗
l ) − λ∗

l (ntλ
∗
t + (nl − 1)λ∗

l )
(ntλ∗

t + nlλ∗
l )2

+ v
(λ∗

l (s∗
t − s∗

l − ∆p)) exp(nlλ
∗
l (s∗

t − s∗
l − ∆p))nl − exp(nlλ

∗
l (s∗

t − s∗
l − ∆p))

n2
l

· λ∗
l

(2nl − 1
nl

+ λ∗
l (s∗

t − s∗
l − ∆p)

)
+ v

exp(nlλ
∗
l (s∗

t − s∗
l − ∆p))

nl

· λ∗
l

2nl − (2nl − 1)
n2

l

+ 2v
nl − 1

nl

nl − (nl − 1)
n2

l

λ∗
l ,

which can be rewritten as

∂H2
∂nl

=

− v
(λ∗

l (s∗
t − s∗

l − ∆p)) exp(nlλ
∗
l (s∗

t − s∗
l − ∆p))(ntλ

∗
t + nlλ

∗
l ) − λ∗

l exp(nlλ
∗
l (s∗

t − s∗
l − ∆p))

(ntλ∗
t + nlλ

∗
l )2

· (λ∗
l )2
(

ntλ
∗
t + (nl − 1)λ∗

l

ntλ∗
t + nlλ

∗
l

+ λ∗
l (s∗

t − s∗
l − ∆p) + 1

)

− v
exp(nlλ

∗
l (s∗

t − s∗
l − ∆p))

ntλ∗
t + nlλ

∗
l

(λ∗
l )4

(ntλ∗
t + nlλ

∗
l )2

+ v
(λ∗

l (s∗
t − s∗

l − ∆p)) exp(nlλ
∗
l (s∗

t − s∗
l − ∆p))nl − exp(nlλ

∗
l (s∗

t − s∗
l − ∆p))

n2
l

· λ∗
l

(2nl − 1
nl

+ λ∗
l (s∗

t − s∗
l − ∆p)

)
+ vλ∗

l

exp(nlλ
∗
l (s∗

t − s∗
l − ∆p))

n3
l

+ 2vλ∗
l

nl − 1
n3

l

.
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If ∆p + s∗
l − s∗

t → 0, this is reduced to

∂H2
∂nl

= vλ∗
l

1
(ntλ∗

t + nlλ
∗
l )3 (λ∗

l )2 (2ntλ
∗
t + 2(nl − 1)λ∗

l + λ∗
l )

− vλ∗
l

1
(ntλ∗

t + nlλ
∗
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If ∆p is sufficiently small, |∆p + s∗
l − s∗

t | is small as well, in which case ∂H2
∂nl

> 0.

7.2. Robustness: Course section

7.2.1. Risk measure

This section contains results showing the robustness of the risk measure with regard to a

different course section. While in the main part of the paper we were looking at the last

quarter of each lap, here we consider the time in the last half, the time measured from Split

time 1, as illustrated in Figure 2, until the end of the lap, as the independent variable of

interest. The following Tables A.8 and A.9 show the results of the Pseudo Poisson Maximum

Likelihood estimation and the corresponding incidence ratios, respectively.
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Table A.8: Tradeoff between skiing performance (last half) and shooting accuracy (PPML
estimates)

Total number of missed shots

(1) (2) (3) (4)

Ski time last half -0.071∗∗∗ -0.062∗∗∗ -0.066∗∗∗ -0.067∗∗∗
(0.015) (0.018) (0.020) (0.020)

Time first shot bout 4 0.018∗∗∗
(0.004)

N 5501 5501 5501 5501
Race FE Yes Yes Yes Yes
Athlete Season FE Yes Yes Yes Yes
Difference at start Yes Yes Yes Yes
Intermediate Rank No Yes Yes Yes
Previous ski times lap 1-3 No Yes Yes Yes
Sum of previous missed shots No Yes Yes Yes
Previous ski time lap 4 No No Yes Yes

Notes: The table shows the tradeoff between skiing performance and shooting accuracy. The estimates
are obtained using a Poisson Pseudo Maximum Likelihood estimator. The dependent variable is the total
number of missed shots in the last shooting bout. The skiing times are normalized and thus need to be
interpreted in terms of standard deviations. The richest specification includes race and athlete season fixed
effects, as well as controls for past skiing performance, shooting performance, and for the intermediate rank.
Standard errors are clustered on race level in parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01
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Table A.9: Tradeoff between skiing performance (last half) and shooting accuracy (incidence
ratios)

Total number of missed shots

(1) (2) (3) (4)

Ski time last half 0.931∗∗∗ 0.940∗∗∗ 0.937∗∗∗ 0.936∗∗∗
(0.014) (0.017) (0.019) (0.019)

Time first shot bout 4 1.018∗∗∗
(0.004)

N 5501 5501 5501 5501
Race FE Yes Yes Yes Yes
Athlete Season FE Yes Yes Yes Yes
Difference at start Yes Yes Yes Yes
Intermediate Rank No Yes Yes Yes
Previous ski times lap 1-3 No Yes Yes Yes
Sum of previous missed shots No Yes Yes Yes
Previous ski time lap 4 No No Yes Yes

Notes: The table shows the tradeoff between skiing performance and shooting accuracy. The estimates
are obtained using a Poisson Pseudo Maximum Likelihood estimator. The dependent variable is the total
number of missed shots in the last shooting bout. The skiing times are normalized and thus need to be
interpreted in terms of standard deviations. The table shows the exponential of the estimated coefficents
and thus the factor by which the average of the dependent variable changes upon an increase of the regressor
by one standard deviation. The richest specification includes race and athlete season fixed effects, as well as
controls for past skiing performance, shooting performance and for the intermediate rank. Standard errors
are clustered on race level in parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

Clearly, we can see that the estimation results in the main part of the paper are robust

with regard to changing the considered course section.

7.2.2. Effect of number of close competitors on risk-taking

In this section, we check our main results regarding the effect of the number of competitors

who are close to an athlete on risk-taking behavior with regard to the choice of the considered

course section. As in section 7.2.1, we re-estimate the specifications from the main part of

the paper with the last half of the fourth round instead of the last quarter. The following

Table A.10 shows the estimation results if the dependent variable is the skiing time from

Split time 1 until the shooting bout, i.e., the last half.
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Table A.10: Effect of competition on skiing speed (last half)

Ski time last half

(1) (2) (3) (4)

Nb front -0.243∗∗∗ -0.256∗∗∗ -0.238∗∗∗ -0.193∗∗∗
(0.022) (0.021) (0.018) (0.017)

Nb front2 0.025∗∗∗ 0.026∗∗∗ 0.025∗∗∗ 0.023∗∗∗
(0.005) (0.005) (0.004) (0.004)

Nb behind -0.131∗∗∗ -0.130∗∗∗ -0.103∗∗∗ -0.086∗∗∗
(0.020) (0.017) (0.015) (0.014)

Nb behind2 0.015∗∗∗ 0.016∗∗∗ 0.012∗∗∗ 0.008∗∗
(0.004) (0.003) (0.003) (0.003)

N 4326 4326 4326 4326
Race FE Yes Yes Yes Yes
Athlete Season FE Yes Yes Yes Yes
Difference at start Yes Yes Yes Yes
Intermediate Rank No Yes Yes Yes
Previous ski times lap 1-3 No No Yes Yes
Sum of previous missed shots No No Yes Yes
Previous ski time lap 4 No No No Yes

Notes: The table shows the effect of increased competition measured by the number of competitors close in
front and behind on skiing time of the last quarter of the fourth lap. The dependent variable is normalized
on race level, thus marginal effects need to be interpreted in standard deviations. The richest specification
includes race and athlete season fixed effects, as well as controls for past skiing performance, shooting
performance and for the intermediate rank. Standard errors are clustered on race level in parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

Clearly, estimation results do not change qualitatively compared to the results in the

main part of the paper.

7.3. Robustness: Interval length

Next, we check for robustness with regard to a different dimension of choice in our analyses,

namely the length of the interval in which we consider other athletes to be direct competitors

who can be seen to be at the same intermediate standing. To show that our results are robust

to changes in the length of the interval, from here on called the bandwidth, we re-estimate

the model from Column (4) in Table 5 using only linear terms for the competition variables

for different bandwidths. Figure A.3 plots the estimated coefficients on the bandwidth.
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Figure A.3: Robustness - Effect of competition on skiing speed (last quarter)

(a) Competitors behind athlete (b) Competitors in front of athlete

Notes: The graph shows the coefficients and the corresponding confidence intervals for the effect of competi-
tion on skiing time of the last quarter of the fourth lap estimated by equation (6). Competition is measured
by the number of close competitors behind (in front of) the athlete. The coefficients differ with regard to
the time range chosen (from 1 to 10 seconds) to count the number of athletes close in front and behind.

7.4. Robustness: Effect of monetary incentives on risk-taking behavior

In this extension, we turn to the effect of monetary incentives on skiing speed, that is, we

consider the same specification as in equation (6) in the analysis of the effect of the number

of close competitors on risk-taking in Section 4.4, but set

compist = (potential prize in frontist, potential prize behindist),

where the variables potential prize in frontist and potential prize behindist are defined as the

difference between the amount of prize money the athlete would have received if he or she

had been five seconds faster or slower, respectively, and the race had been finished at the con-

sidered split time, and the corresponding prize money if the athlete had finished the race at

the current rank. More precisely, the value of potential prize in frontist is defined as follows:

We consider the intermediate rank which determines the prize money the athlete would have

received if the race had been over immediately. Then we calculate the hypothetical inter-

mediate rank of the athlete if he or she had been five seconds faster at the split time. This

again determines the corresponding prize money and the variable is the difference between
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the latter and the former. The variable potential prize behindist is defined analogously, by

calculating the intermediate rank of the athlete if he or she had been five seconds slower at

the split time.43

Table A.11: Effect of monetary incentives on skiing speed

Ski time last quarter

(1) (2) (3)

Potential prize in front -0.13421∗∗∗ -0.10296∗∗∗ -0.07568∗∗∗
(0.01566) (0.01557) (0.01524)

Potential prize behind 0.05634∗∗∗ 0.01453 0.01275
(0.01311) (0.01348) (0.01307)

N 4326 4326 4326
Race FE Yes Yes Yes
Athlete Season FE Yes Yes Yes
Difference at start Yes Yes Yes
Previous ski times lap 1-3 No Yes Yes
Sum of previous missed shots No Yes Yes
Previous ski time lap 4 No No Yes

Notes: The table shows the effect of increased competition measured by hypothetical gain/loss in prize
money the athlete would have won if the race had ended at this point in time, and the athlete had been five
seconds faster/slower. The dependent variable is normalized on race level; thus, marginal effects need to be
interpreted in standard deviations. The richest specification includes race and athlete season fixed effects, as
well as controls for past skiing performance, shooting performance, and for the intermediate rank. Standard
errors are clustered on race level in parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

Except for the variable of interest, comp, Column (1) in Table A.11 coincides with the

first specification shown in Table 5. In the following Columns (2) and (3), except for the

intermediate rank, the same control variables are included. Across all specifications, we can

see that there is a negative and statistically significant effect of Potential prize in front on

the skiing time in the last course section. More precisely, the point estimate for this variable

in specification (3) can be interpreted as follows: If the potential gain in the prize money the

athletes get if they were able to overtake all competitors who are within a five-second interval

in front increases by 1.000 EUR, they ski approximately 0.0757 standard deviations faster.44

43Notice that the value of potential prize in frontist is non-negative, while potential prize in behindist is
non-positive.

44To ease the interpretation, we re-scaled the prize money such that the variable value is in units of 1000
EUR.
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The effect of Potential prize behind, on the other hand, vanishes completely as soon as we

control for the athletes’ previous performance in the race. Overall, the estimation results

in Table A.11 suggest that there is a robust effect of monetary incentives on the athletes’

skiing speed in biathlon competitions.45

7.5. Robustness: Dynamic panel data analysis

In this section, we take a methodologically different approach by pooling data from the

first four laps and using dynamic panel data methods.46 In the following, we estimate the

following equation:

splitistl = β · compistl + γ1 · xistl + γ2 · x̃istl + µis + ϕt + ϵistl. (12)

The dependent variable splitistl denotes the skiing time of athlete i in the last course

section of lap l. The vector xistl accounts for confounding factors and includes the cumulative

skiing time, the cumulative missed shots, and the intermediate rank at the point the last

course section of lap l starts. The vector x̃istl contains lap dummies. The competition

vector is defined as in (7), but now additionally includes interactions with the lap dummy

of lap four. This allows us to detect heterogeneities in risk-taking across laps. Note that

this implies that we include functions of lagged dependent variables as regressors. This

approach suffers from endogeneity problems for standard fixed effects estimations.47 To

tackle this problem, we start by first differencing (12) with regard to the lap, which cancels

out the fixed effects. Furthermore, we make the following identifying assumptions. First, we

assume that the variables in xistl are predetermined, in the sense that they are not correlated

with past shocks, but may be correlated with contemporaneous or future shocks, i.e., ϵistl,

ϵist(l+1), ϵist(l+2), ϵist(l+3). The vectors x̃istl and compistl are assumed to be exogenous. To
45Moreover, we did a similar analysis using the potential gain (loss) in World Cup points in case the athlete

had been five seconds faster (slower). The results are qualitatively similar and available upon request.
46A similar approach is used by Genakos and Pagliero (2012).
47See Nickell (1981).
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put it differently, we assume:

E
[
ϵistl | µis, ϕt, x̃istl, compistl, xist(l−1), ..., xist1

]
= 0, l = 2, 3, 4. (13)

We would like to illustrate briefly the validity of our identifying assumption by taking a

closer look at the first difference of (12), where ∆ denotes the first difference of the respective

variables.

∆splitistl =γ11∆ cstistl + γ12∆ cmsistl + γ13∆ inter rankistl (14)

+ γ2∆x̃istl + β∆ compistl + ∆ ϵistl

Here, the variables cstistl and cmsistl denote the cumulative skiing time and the cumulative

missed shots, respectively, while inter rankistl is the intermediate rank of athlete i at the

point where the last course section of lap l starts. The variable pre splitistl denotes the

skiing time of athlete i in lap l until the point where the last course section of lap l starts.

Equation (14) can be rewritten as:

splitistl − splitist(l−1) = γ11(splitist(l−1) + pre splitistl) + γ12msistl

+ γ13(inter rankistl − inter rankist(l−1)) + γ2∆xistl

+ β∆ compistl + (ϵistl − ϵist(l−1)).

Now, consider the first lags of xistl, which are cstist(l−1) = pre splitist1 for l = 2 and

cstist(l−1) = pre splitist1+
∑l

k=2(splitist(k−1)+pre splitistk) for l = 3, 4. Moreover, cmsist(l−1) =

0 for l = 2 and cmsist(l−1) = ∑l−2
k=1 msistk for l = 3, 4. Recall that inter rankist(l−1) denotes

the intermediate rank when the last course section of lap l − 1 starts. All these components

are determined before ∆ϵistl realizes. This makes assumption (13) valid, which implies that

E
[
xist(l−1)∆ϵistl

]
= 0 and E [x̃istl∆ϵistl] = 0 for l = 2, 3, 4 hold.

Thus, we may use the first and further lags of the predetermined variables as instruments
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for estimating the first difference equation (14). Note that this implies that we need to drop

the data from the first two laps. Usually, using only predetermined variables would force

us to drop only data from l = 1. However, as we want to use cumulative missed shots as a

confounder and cmsist1 = 0 for all i, it is not a relevant instrument for l = 2.48 The first

differences of the exogenous variables serve as instruments for themselves. This approach

using only one lag as instrument leads to the level IV estimator of Anderson and Hsiao (1982)

while using all available moment conditions leads to the more efficient GMM estimator of

Arellano and Bond (1991). We present results for two specifications of both estimators in

Table A.12.49

The first two Columns show the results of the IV estimator of Anderson and Hsiao (1982)

and the GMM estimator of Arellano and Bond (1991) for a specification with only linear

competition measures. Columns (3) and (4) again show both estimators for a specification

also containing squared competition measures. Standard errors are clustered on race level

according to Windmeijer (2005).

The results of the four specifications suggest that there indeed exist heterogeneities in

risk-taking across laps. The linear interaction of the fourth-lap dummy with the number of

athletes close in front is negative and statistically significant across all four specifications.

The interaction term of the squared number of athletes close in front and the fourth lap

dummy is positive and statistically significant. This shows that the marginal effect on risk-

taking in the fourth lap of an additional athlete close in front is more convex as well. We

see that the interaction term of the variable counting the number of athletes close behind

is negative and statistically significant across all four specifications as well. The squared
48Omitting the cumulative missed shots as a confounder and running the regressions from l = 2 to l = 4

does not change the results. However, we consider it as an important confounder because it determines the
number of skied penalty laps and therefore contributes to the tiredness of athletes.

49All estimations were conducted in Stata using the xtabond2 command of Roodman (2009).
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interaction is insignificant and close to zero.50

In case our results of Section 4.4 could be attributed to grouping behavior, one would

expect the effects to be homogeneous across laps. Using this rich panel data set and making

use of within race variation, we were able to identify heterogeneous effects on skiing speed

upon increased competitions across laps. This let us conclude that observed effects in Section

4.4 rather show risk-taking behavior of the athletes.
50The last three lines of additional statistics show results related to the Hansen test going back to Hansen

(1982). HDF denotes the degrees of freedom, HT denotes the value of the test statistic, and HP denotes the
respective p-value for rejecting the null, i.e., that instruments are exogenous. The results suggest that our
approach is valid, because we cannot reject the null for all specifications. Although there exists no specific
threshold, p-values from 0.3 to 0.5, according to Kiviet (2020), suggest a valid estimation approach. Thus,
specification (1) should be interpreted with some caution.
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Table A.12: Heterogeneity analysis of risk-taking across laps

Ski time last quarter

(1) (2) (3) (4)

Nb front -0.088∗∗∗ -0.086∗∗∗ -0.167∗∗∗ -0.164∗∗∗
(0.008) (0.008) (0.012) (0.012)

Nb front2 0.011∗∗∗ 0.011∗∗∗
(0.002) (0.002)

Nb behind -0.012∗ -0.009 -0.042∗∗∗ -0.043∗∗∗
(0.007) (0.006) (0.013) (0.013)

Nb behind2 0.004∗∗ 0.004∗∗∗
(0.002) (0.002)

4th lap × Nb front -0.024∗∗ -0.025∗∗ -0.065∗∗∗ -0.059∗∗∗
(0.012) (0.012) (0.020) (0.021)

4th lap × Nb front2 0.013∗∗∗ 0.012∗∗∗
(0.004) (0.004)

4th lap × Nb behind -0.041∗∗∗ -0.045∗∗∗ -0.046∗∗ -0.049∗∗
(0.011) (0.010) (0.022) (0.025)

4th lap × Nb behind2 0.003 0.004
(0.005) (0.006)

N 8478 8478 8478 8478
FD IV Yes No Yes No
FD GMM No Yes No Yes
Hansen test DF 3 10 3 10
Hansen test statistic 7.280 12.630 1.730 8.320
Hansen test p-value 0.063 0.245 0.631 0.597

Notes: The table shows the effect of increased competition measured by the number of competitors close in
front and behind on skiing time of the last quarter of the lap. To detect heterogeneities, the specification
also includes interactions of the competition measures with a dummy for the fourth lap. Columns (1) and
(3) show FD IV level estimators, while Columns (2) and (4) show FD GMM estimations. HDF denotes the
degrees of freedom, HT denotes the value of the test statistic and HP denotes the respective p-value for
the test of Hansen (1982). Additional controls account for past skiing and shooting performance, as well
as intermediate rank. The dependent variable is normalized on race level; thus, marginal effects need to be
interpreted in standard deviations. Standard errors are clustered on race level in parantheses according to
Windmeijer (2005).
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

7.6. Robustness: Sprint races

In this section, we use data from a different discipline, namely sprint races. In the following

regressions, we use the same competition vector as in (7); however, as described in Section
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5, the number of athletes in front and behind only include the athletes who are in sight. The

results can be found in Table A.13.

Table A.13: Analysis of sprint races

Ski time last quarter

(1) (2) (3) (4)

Nb front -0.021 -0.020 -0.014 -0.012
(0.015) (0.015) (0.029) (0.029)

Nb behind -0.018 -0.017 0.020 0.020
(0.013) (0.013) (0.032) (0.031)

Nb front2 -0.005 -0.005
(0.018) (0.018)

Nb behind2 -0.023 -0.022
(0.018) (0.017)

N 7379 7379 7379 7379
Race FE Yes Yes Yes Yes
Athlete Season FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Bib FE No Yes No Yes

Notes: The table shows the marginal effect of an increased number of athletes in sight (in front and behind)
on the skiing time of the last quarter of the second lap in sprint races only. Columns (1) and (2) use a
dummy as regressor which is equal to one in case there is at least one athlete close in front/behind in sight.
Columns (3) and (4) show estimations using the absolute number of competitors close in front or behind. All
estimations include athlete season as well as race fixed effects. Additional controls account for past skiing
and shooting performance, as well as the intermediate rank. The dependent variable is normalized on race
level; thus, marginal effects need to be interpreted in standard deviations. Standard errors are clustered on
race level in parentheses.
∗< 0.1, ∗∗< 0.05, ∗∗∗< 0.01

In Columns (1) and (2), we show a specification only including linear terms for the

number of athletes in sight. Columns (3) and (4) show quadratic specifications. In contrast

to (1) and (3), specifications (2) and (4) also control for bib number fixed effects. The bib

number determines the starting order of the athletes.51

Across all four specifications, we see no statistically significant effect. If our main results

were due to grouping behavior, one would expect to see the same effects in sprint races.

However, as this is not the case, this analysis lets us again conclude that the estimated effect
51We include block bib number fixed effects by including a dummy for each interval of 10 bib numbers.
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of the main part is not due to grouping behavior.

7.7. Robustness: Survey results

This subsection comprises four parts. First, we provide some robustness checks of our

regression-based analysis using survey data presented in Section 5. Second, we present a

list of all questions contained in the survey. Third, we present distributions as well as fur-

ther summary statistics of the survey data we collected. Fourth, we conclude this subsection

with a discussion of potential selection biases.

7.7.1. List of survey questions

We based our questions on Dohmen et al. (2011) and elicited risk preferences qualitatively.

The following list includes all questions of the survey. All risk questions are answered on

a scale from zero (risk-averse) to ten (risk-loving). The Figures A.4, A.5, and A.6 show

histograms of the survey data.

1. First, we asked for background information, including full name, year of birth, height

[in cm], gender, marital status, parental education.

2. How do you rate yourself personally: In general, are you someone who is willing to

take risks, or do you try to avoid risks?

3. How do you evaluate your attitude towards risk in a biathlon race (e.g. ski fast and

energy-draining at the risk of more errors at the shooting bout or quick shooting during

bad weather conditions)?

4. One can evaluate different areas in a different way. How do you evaluate your attitude

towards risk regarding the following areas?

(a) How is it regarding career prospects?

(b) How is it with your health?
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(c) How is it regarding leisure activities?

(d) How is it regarding financial investments?

5. How do you rate yourself personally: In general, are you someone who is fully prepared

to take risks, or do you prefer safety?

6. How do you evaluate your attitude towards risk avoidance in a biathlon race (e.g. ski

slow and energy-saving to increase shooting precisions or taking long breaks between

shots during bad weather conditions)?

7.7.2. Distributions and cross correlations of survey items

Figure A.4: General risk questions

(a) General risk aversion (b) General risk aversion – instrument

Notes: Survey results in sub-figure (A.4a) correspond to the general risk question which asks respondents:
”How do you rate yourself personally: In general, are you someone who is willing to take risks, or do you try
to avoid risks?” The value 0 means risk-averse and the value 10 means risk-loving. To prevent measurement
error, we follow the approach by Gillen et al. (2019) and rephrase the general risk question in part (A.4b)
with a slightly different wording: ”How do you rate yourself personally: In general, are you someone who
is fully prepared to take risks, or do you prefer safety?” The value 0 means prefer safety and the value 10
means fully prepared to take risks.
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Figure A.5: Biathlon risk questions

(a) Taking risk in a biathlon race (b) Taking risk in a biathlon race – instrument

Notes: Survey results in sub-figure (A.5a) correspond to the biathlon risk question which asks respondents:
”How do you evaluate your attitude towards risk in a biathlon race (e.g. ski fast and energy-draining at the
risk of more errors at the shooting bout or quick shooting during bad weather conditions)?” The value 0 means
risk-averse and the value 10 means risk-loving. To prevent measurement error, we follow the approach by
Gillen et al. (2019) and rephrase the biathlon risk question in part (A.5a) with a slightly different wording:
”How do you evaluate your attitude towards risk-avoidance in a biathlon race (e.g. ski slow and energy-saving
to increase shooting precision or taking long breaks between shots during bad weather conditions)?” The value
0 means prefer safety and the value 10 means fully prepared to take risks.
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Figure A.6: Context-specific risk questions

(a) Taking risk in career (b) Taking risk in health

(c) Taking risk in leisure (d) Taking risk in finance

Notes: In the context-specific risk questions, respondents were asked: ”One can evaluate different areas in
a different way. How do you evaluate your attitude towards risk regarding the following areas? How is it
... regarding career prospects (A.6a)? ... with your health (A.6b)? ... regarding leisure activities (A.6c)?
regarding financial investments (A.6d)?” The value 0 means risk averse and the value 10 means risk loving.
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Table A.14 shows the cross correlations of all survey items.

Table A.14: Cross correlations survey items

Cross correlations risk measures

General
risk

General
risk -
2nd

Biathlon
risk

Biathlon
risk -
2nd

Career
risk

Health
risk

Finance
risk

General risk 1

General risk - 2nd 0.648 1

Biathlon risk 0.536 0.473 1

Biathlon risk - 2nd 0.248 0.402 0.588 1

Career risk 0.798 0.570 0.513 0.287 1

Health risk 0.332 0.220 0.229 0.141 0.338 1

Finance risk 0.588 0.300 0.519 0.177 0.503 0.415 1

Notes: The table shows cross correlations of all survey items.

7.7.3. Discussion selection bias

Next, we would like to check whether a selection bias regarding the survey participation

exists. First, Figure A.7 shows the comparison of the distributions of the relative final rank

(final rank divided by the maximum of final ranks in a race), normalized total course time,

total number of missed shots, and normalized skiing time of the last course section of the

fourth lap of athletes who participated in the survey and those who did not participate.

The plots suggest that athletes participating in the survey have on average a slightly weaker

performance than non-participants. This is underlined by the right shift of the distributions

of the final rank, as well as the total course time of survey participants, compared to non-
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participants. This is probably due to the fact that the compensation payment for survey

participation of 50 Euros is relatively more attractive for athletes whose performance is

below-average.

However, we have no reason to assume that this systematically distorts the representa-

tiveness of our results in Section 5.

Figure A.7: Performance data: Comparison survey participants to non-participants

(a) Relative Final Rank (b) Total Course Time

(c) Total Missed Shots (d) Split Time Last Quarter

Notes: Figures A.7a, A.7b, and A.7d show kernel density plots of the relative final rank, the total course
time, as well as the course time of the last course section of the fourth lap of survey participants and non-
participants. Figure A.7c shows a histogram of the total number of missed shots of survey participants and
non-participants.
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