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Abstract 

We use a long history of global temperature and atmospheric carbon dioxide (CO2) concentration to 

estimate the conditional joint evolution of temperature and CO2 at a millennial frequency. We document 

three basic facts. First, the temperature–CO2 dynamics are non-linear, so that large deviations in either 

temperature or CO2 concentrations take a long time to correct–on the scale of multiple millennia. Second, 

the joint dynamics of temperature and CO2 concentrations exhibit multimodality around historical turning 

points in temperature and concentration cycles, so that prior to the start of cooling periods, there is a 

noticeable probability that temperature and CO2 concentrations may continue to increase. Finally, 

evaluating the future evolution of temperature and CO2 concentration conditional on alternative scenarios 

realizing, we document that, even conditional on the net-zero 2050 scenario, there remains a significant 

risk of elevated temperatures for at least a further five millennia. 
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1 Introduction

How does climate evolve over long periods of time? Although so-called “tipping points” –

where a small change in a climate fundamental can result in a disproportionate response to

the overall system – have long been part of the scientific discussion of the potential future

evolution of climate, research has struggled to assign probabilities to the precise nature of

such tipping points, including the level at which tipping points in, for example, temperature

may occur, how long it may take the overall climate to reach that tipping point, as well

as the magnitude of the consequences should such a tipping point occur. In this paper, we

take a non-parametric approach to modeling the joint conditional evolution of temperature

and CO2 (carbon dioxide) atmospheric concentrations over prolonged periods of time. This

allows us to construct term structures of joint distributions for temperature and CO2 at

any point of the 800,000 year history of the available data on global mean temperature and

atmospheric carbon concentrations, including providing forecasts of the future evolution of

these two key climate variables.

More specifically, we apply the non-parametric approach developed in Adrian et al. (2021)

to joint dynamics of the long time series of global temperature collected by Snyder (2016,

2019) and of global CO2 concentration. The non-parametric approach allows us to remain

agnostic about the dynamic relationship between CO2 concentrations and temperature, al-

lowing the data to inform us on the dynamic properties of global climate. Acknowledging

the inherent uncertainties in using climate data spanning 800,000 years, our estimation uses

rolling windows of 140,000 years at a time. This approach allows us to form conditional

forecasts as of present using the “best” quality climate data (as there is less measurement

error in temperature and carbon dioxide readings over this period), as well as implicitly al-

lowing for time-variation in the interactions between CO2 and temperature. For each point

in time, we use the prior 140,000 years to construct out-of-sample estimates of the predicted

evolution of the conditional joint distribution of CO2 and temperature, and show that these
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out-of-sample predicted distributions are well calibrated.

The estimated dynamics are startling. First, we document that the joint dynamics of

temperature and CO2 concentrations are highly non-linear, so that large deviations in ei-

ther temperature or CO2 concentrations can take millennia to correct, even if no further

impulses are provided to the temperature-CO2 system. We emphasize that these dynamics

are present in the longer history of climate readings, even before the noticeable changes to

the dynamics of CO2 atmospheric concentrations follow the Industrial Revolution that have

been documented in prior literature (see e.g. Kaufmann and Stock, 2006).

Second, these non-linear joint dynamics of temperature and CO2 concentrations are ex-

acerbated by periods of multimodality in the joint conditional distribution. We show that

around historical turning points – such as the end of the Eemian period and the current

period – the global climate can resolve to either a cooling of the planet and a reduction

in atmospheric CO2 concentration or to a continual warming and build-up of CO2 concen-

trations. That is, while the observed glacial period that defines the end of Eemian period

was not a tail outcome for the climate dynamics, neither would have continuing increases in

average global temperatures been. Examining the initial conditions that correspond to the

emergence of multimodalities in the joint dynamics systematic, we find that multimodality

emerges systematically when CO2 concentrations exceed their historical seventieth percentile,

regardless of whether global temperatures are extreme, so that high carbon dioxide concen-

trations in the atmosphere today correspond to the possibility of either continuing build-up

of CO2 in the atmosphere and an associated increase in global temperatures or a decline

in CO2 concentrations and a cooling of the planet. Furthermore, multimodality is more

pronounced in longer-horizon projections, suggesting that the temperature – CO2 dynamics

are inherently unstable in the long run.

Finally, we use the joint dynamics of temperature and CO2 concentrations estimated

from the most recent 140,000 years of data to construct distributional forecasts of CO2 and

temperature for the next five millennia, conditional on alternative Network for Greening the
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Figure 1. Five thousand years ahead forecast under the net-zero scenario. The figure shows the
five thousand years ahead marginal and joint distributions of CO2 concentrations and temperature anomalies
conditional on the net-zero 2050 scenario.

Financial System (NGFS)1 scenarios. Our estimates suggest that even under the so-called

“net-zero 2050” scenario, in which global warming relative to pre-industrial averages is limited

to 1.5 degrees Celsius, there is a substantial probability of global temperatures continuing

to rise for the next two millennia, with positive probabilities assigned to even 4-5 degrees

Celsius warming. Although our estimates predict some mean reversion in climate conditions

in the medium run, Figure 1 shows a significant right tail in temperature outcomes as long

as 5,000 years out, as well as emerging signs of multimodality. That is, even if the more

stringent climate policies that are required for the net-zero 2050 scenario are implemented,

it may take millennia for global warming to abate and the abatement may resolve into a new

glacial period.

The remainder of the paper is organized as follows. Section 2 describes the data and

empirical methodology. We focus on the historical non-linear relationship between CO2

1The NGFS consists 114 central banks and financial regulatory agencies that aim to accelerate the scaling
up of green finance and develop recommendations for central banks’ role for climate change. The NGFS was
created in 2017 and its secretariat is hosted by the Banque de France. See https://www.ngfs.net/en.

3



concentrations and temperature in Section 3. Section 4 then evaluates the NGFS scenarios

within our framework. Section 5 reviews the literature and Section 6 concludes. We relegate

the robustness exercises we conduct to the Online Appendix.

2 Data and Methodology

We are interested in constructing multi-period-ahead conditional joint distributions of global

average surface temperature anomalies (GAST) and atmospheric CO2 concentrations. In this

section, we describe the source of our data and how the data is constructed. We also describe

how we construct the one-period-ahead conditional joint distribution. We then use efficient

Markov Chain Monte Carlo (MCMC) to construct multi-period-ahead distributions from the

one-period-ahead distribution.

2.1 Data

To assess the non-linear relationship between emissions and temperature, we use global av-

erage surface temperature anomalies (GAST) and atmospheric CO2 concentrations based

on the variables constructed in Snyder (2016, 2019)2 at the 1000-year frequency.3 The

methodology for the global average surface temperature is described in Snyder (2016) and is

constructed based on a spatially weighted proxy reconstruction process utilizing over 20,000

sea surface temperature point reconstructions. Specifically, the global average surface tem-

perature is estimated in Snyder (2016) from proxy-based reconstructions of local Sea Surface

Temperature (SST) available in a multi-proxy database. The SST database includes 61 SST

proxy reconstructions from 59 ocean sediment cores: 29 using alkenone unsaturation indices,

17 using ratios of Mg/Ca in planktonic foraminifera, and 16 based on microfossil abun-

dance. This multi-proxy approach reduces the potential biases that are unique to individual

proxies. The reconstruction process uses probabilistic simulations across multiple sources
2Variables computed in Snyder (2016, 2019) are available here.
3The latest observation of the sample is as of one thousand years BP.
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of uncertainty to estimate credible intervals at 1000-year intervals. Global average surface

temperature anomalies are constructed as the deviation from the average of 1000-5000 years

ago. To put this into perspective, in radiocarbon dating, “present” typically refers to 1950

CE. Therefore, the 1st observation in the sample refers to the deviation in temperature in

950 CE from the average temperature between 1950 CE to 3050 BC. Similarly, the second

observation in the sample refers to the deviation in temperature in 50 BC from the average

temperature between 1950 CE to 3050 BC. Following this rationale, we can see the 6th ob-

servation for instance refers to the deviation in temperature in 4050 BC from the average

temperature between 1950 CE to 3050 BC.

The methodology for the reconstruction of atmospheric CO2 concentrations is described

in Bereiter et al. (2015) based on the European Project for Ice Coring in Antarctica Dome

ice core from Dome C (EDC) which reconstructed atmospheric CO2 concentrations for the

last 800,000 years. Bereiter et al. (2015) use different air extraction methods and find an

analytical artifact, which increases over the deepest 200m and reaches 10.1 ± 2.4 ppm in the

oldest/deepest part, based on the cracker method. Bereiter et al. (2015) present a corrected

record that partly resolves the issue with a different correlation between CO2 and Antarctic

temperatures found in this oldest part of the records and provide an update of 800,000 years

atmospheric CO2 history. This is the 800,000 year history of CO2 concentrations that we

use in our study.

Figure 2 shows the time series of the global average surface temperature anomalies and

atmospheric CO2 concentrations we obtained from the Snyder dataset, together with glacier

periods. Peaks in global average surface temperature anomalies tend to coincide with peak

atmospheric CO2 concentrations as reported in the Snyder dataset. It is important to note,

however, that there is substantial measurement error around individual point estimates of

temperature, as shown in Appendix Figure A.1. That potential measurement error is, how-

ever, larger for declines in global average surface temperatures, so that extreme high temper-

ature realizations are measured more precisely than extreme low temperatures. Even taking
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into account the 95% confidence interval around the point estimate of temperature, Ap-

pendix Figure A.1 shows that the most recent history of temperature increases is anomalous

relative to the previous 800,000 years.

Figure 2. CO2 concentration and change in global average surface temperature from
present. The figure shows the time series of CO2 concentration and the change in global average sur-
face temperature from present, GAST, together with glacier periods shadings (Snyder, 2019). The vertical
lines represent the 660 kyrs BP, 400 kyrs BP and 140 kyrs BP. The vertical line at 660 kyrs BP represents
the beginning of the out of sample estimate using a 140 kyr-observarion rolling window.

Table 1 reports summary statistics for these series. The table illustrates that the last

5,000 years of observations are unusual, with most of the prior observations of global average

surface temperatures below those observed most recently.

Table 1: Summary Statistics

Variables
No. of

Obervation
Mean S.D. Min

25th

Percentile
Median

75th

Percentile
Max

Global average surface temperature

anomalies (degrees celsius)
800 -3.35 1.80 -6.95 -4.88 -3.53 -1.99 1.99

Atmospheric CO2 concentrations (ppm) 800 225 26 174 203 225 243 288

Source: http://www.carolynsnyder.com/publications.php

We perform two types of exercises to minimize the concern that our results are driven

by measurement error rather than true dynamics of temperature and CO2 concentrations.

First, in the main body of the paper, we use a pseudo-out-of-sample, rolling window ap-

proach in estimating the evolution of the joint temperature-carbon emissions dynamics. The
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out-of-sample predictions allow us to construct predictive distributions from the perspective

of a hypothetical scientist that existed at a given point in time and was able to access data

up to their lifetime, and therefore, puts our current predictions for the future evolution of

climate and temperature on an equal footing with this historical perspective. By focusing

on rolling-window, rather than expanding window, estimates, the sample size remains ex-

actly the same and the other estimation parameters including the bandwidth also remain

unchanged. We emphasize that this is a pseudo-out-of-sample estimation: while we replicate

the environment that was available to a researcher from 400 thousand years ago, we also

have to acknowledge that estimations performed in today’s world have the privilege of using

technological and methodological advances. We report the results based on the time series

starting 660 thousand years ago with a rolling window of 140 thousand years, with the aim

of minimizing measurement errors due to data breaks.

Second, in the Online Appendix, we perform several subsample analyses to confirm ro-

bustness of our results to account for any structural or data breaks that may exist in the

reconstructed datasets of temperature and CO2. For instance, one of our subsamples uses

data through 140 thousand years ago as many individual temperature records used for tem-

perature reconstruction process, to our understanding, end around 140 thousand years ago.

2.2 Methodology

We follow the methodology from Adrian et al. (2021), which relies on a non-parametric kernel

approach to estimating the one-period-ahead conditional joint distribution and on efficient

Markov Chain Monte Carlo (MCMC) techniques to then propagate that one-period-ahead

distribution into multi-period-ahead distributions. The non-parametric kernel approach is

particularly important in the climate setting as it allows the data to speak on the complexities

of temperature and emissions interactions, allowing the possibilities of non-linear dynamics

and multi-modal joint distributions. We describe here the construction of the one-period-

ahead conditional joint distribution, and refer the interested reader to Adrian et al. (2021)
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and the excerpt in Appendix A.2 for details on our implementation of the efficient MCMC

for constructing multi-period-ahead distributions.

Consider a time series dataset of ny endogenous variables yi,t, i = 1, . . . , ny and denote

by yt =
(
y1,t, . . . , yny ,t

)′ the vector of date t realizations of the n variables. In addition to the

endogenous variables yt, suppose that we have nx exogenous predictors xt. In this paper, we

are interested in the case when the exogenous predictors are p lags of y, so that nx = p× ny

and

xt =
(
y′t−1, . . . , y

′
t−p
)′
.

That is, we are interested in estimating a distributional equivalent to vector autoregressions.

We are now ready to write down our kernel estimator (see Li and Racine, 2007, chapter

6.2). Let T be the number of observations of yt that we have available. Then the joint

distribution of y conditional on x can be estimated as

p̂ (y|x) =

1
T−p

∑T
t=p+1Ky

ωy
(y − yt)Kx

ωx
(x− xt)

1
T−p

∑T
t=p+1Kx

ωx
(x− xt)

, (1)

where Ky
ωy

and Kx
ωx

are independent kernels for y and x, given by

Ky
ωy

(y − yt) =

ny∏
i=1

1

ωyi

ϕ

(
yi − yi,t
ωyi

)
≡

ny∏
i=1

Kyi
ωyi

(yi − yi,t) (2)

Kx
ωx

(x− xt) =
nx∏
i=1

1

ωxi

ϕ

(
xi − xi,t
ωxi

)
≡

nx∏
i=1

Kxi
ωxi

(xi − xi,t) . (3)

For our baseline results, we use multivariate normal kernels, so that ϕ (·) is the normal prob-

ability distribution function, but the kernel estimation can easily be used with alternative

kernels (such as multivariate Student kernels) or be modified to accommodate dependent

kernels for the endogenous and exogenous variables.

We parameterize the bandwidths based on Li and Racine (2007), who apply a version
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of the Silverman (1986) “rule-of-thumb” for joint unconditional density estimation where

wj = 1.06σjT
−1/(4+M+N) for variable j, bandwidth wj, standard deviation σj, sample size

T , number of independent variables M , and number of dependent variables N . The rule is

derived from minimizing asymptotic mean integrated square error for a Gaussian reference

distribution. In the baseline specification, we set T = 140, N = 2 (CO2 and temperature

anomaly), M = 2 (lagged CO2 and temperature anomaly).4

3 Baseline results

We now turn to describing the historical estimated conditional joint evolution of CO2 con-

centrations and average global temperature. As described in Section 2, we take a pseudo-real

time approach, using rolling windows of 140 observations (140,000 years), and construct out-

of-sample estimates at each point in time. We focus on forecast horizons of up to 5 periods

ahead (5,000 years ahead), though we investigate the longer-run properties of the forecast

distribution towards the end of this Section. In the Online Appendix, we conduct a num-

ber of robustness checks, including alternative forecast horizons, alternative choices for the

number of observations included in the rolling window, the number of lags included in the

distributional VAR, and the bandwidth selected for the non-parametric kernel.

3.1 Predicted joint distribution of CO2 and temperature

We begin with the full time series of the predicted conditional joint distributions of CO2 and

temperature, for one period and five periods ahead, plotted in Figure 3. More specifically,

for each point in time, the Figure plots the contour plot associated with either the one period

ahead (Figure 3a) or five periods ahead (Figure 3b) conditional joint density, with darker

colors corresponding to greater probability mass. Two features are striking about these

estimates. First, the joint conditional distribution is almost never Gaussian – the contour
4In the robustness analysis, we also consider expanded T when we include different windows, and M = 4

when we include two lags CO2 and temperature anomaly.
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plots are almost never disks – suggesting that the evolution of both global temperature and

atmospheric CO2 concentrations generically has fat-tailed dynamics.

(a) One thousand years ahead (b) Five thousand years ahead

Figure 3. Joint out-of-sample distributions across horizons. The figure shows the joint distribution
for one and five thousand years ahead forecasts, as contour plots of the out-of-sample joint distribution in
every thousand years, with darker shades of red correspond to higher probability densities. The red arrows
correspond to the selected turning periods. Estimation parameters: k=1.06, p=1, window=140, 800 sample.

Focusing on the marginal distributions one and five periods ahead, in Figure 4 we see

that, although, unsurprisingly, the 95% interquantile range is narrower for the one-year-

ahead distributions than for the five-year-ahead distributions, the marginal distributions are

well calibrated. The realized data is most of the time close to the out-of-sample median,

so that the realized data usually falls close to the most likely outcome predicted using

140 observations prior to the date of the forecast. Moreover, as should be expected from

a well-calibrated predictive distribution, the realized data is almost never outside of the

interquartile range (the dark red shading in Figure 4). The realized data is most likely to

be outside of the interquartile range around turning points in climate, highlighted with the

green conditional distribution curves, with the deviations away from the median larger for

the five-thousand-year ahead distribution than for the one-thousand-year ahead distribution.
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While the marginal distributions plotted in Figure 4 already hint at the particular salience

of climate turning points for the future joint evolution of global temperature and CO2 concen-

trations, the joint distributions plotted in Figure 3 have a second, striking feature. Around

turning points in either temperature or CO2 concentration, the conditional joint distribution

becomes multimodal and, as we will see in greater detail in Section 3.3, the multimodality

becomes more pronounced the longer the forecast horizon. That is, turning points in global

climate conditions have been historically associated with substantial probability mass in two

potential outcomes: continued increases in both global average temperature and CO2 con-

centrations or a cooling of the planet and a decline in carbon concentrations. We now turn to

the out-of-sample predicted distributions around the two most recent turning points: during

the Eemian (or last interglacial) period and the current turning point.

3.2 Climate turning points and multimodality

The estimated joint distributions for each observation in the time series illustrated in figure 3

suggest that the probability of multimodality is at its highest during the turning points in

CO2 concentrations and temperature anomalies. To understand the out-of-sample forecasts

during these turning points in CO2 concentrations and temperature anomalies, we plot the

1-5 thousand years ahead out-of-sample joint distributions along with their marginal distri-

butions and the realized data (red square) in Figures 5-6 around the two most recent turning

points: during the Eemian (or last interglacial) period and the current turning point.

Consider first the conditional out-of-sample joint distributions during the Eemian period,

plotted in Figure 5. To put this period in context, the Eemian climate was on average around

1 to 2 degrees Celsius warmer than the current interglacial period, and the proportion of CO2

in the atmosphere was around 280 parts per million (ppm), well below the current estimates

of 421 ppm as of May 2022. The Eemian period ended with the last glacial period in around

115,000 BP, with extensive glaciation in the Northern Hemisphere and temperature declines

of more than 5 degrees Celsius in some parts of the Southern Hemisphere. The bottom right
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panel of Figure 5, however, shows that the period of global cooling was one of two possible

outcomes for climate, with the predicted 5,000 year-ahead joint distribution as of 120,000

BP showing a substantial probability mass for continued increases in both temperature and

CO2 concentrations. This bimodality of the predicted joint distribution begins to emerge

already at 123,000 BP, and persists at horizons of 3-5 thousand years ahead up until the

beginning of the last glacial period.

The conditional joint distributions plotted in Figure 5 also suggest that early humans

were relatively fortunate with the realized glacial period. The realized temperature appears

to be at the lower bound of the warmer node, so that, as of 120,000 BP there was both a

substantial probability of the Earth continuing to heat (corresponding to the warmer, higher

CO2 concentration node) and a noticeable probability of the Earth cooling even more than

what was observed (corresponding to the cooler, lower CO2 concentration node).
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Figure 5. Out-of-sample joint distribution conditioning on 123 to 120 thousand years
BP. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and
GAST during the selected turning periods equal to 123-120 kyrs BP, with marginal distributions display on
the side. Brighter colors indicate greater probability. The red square indicates the ex post realization. The
line chart shows the time series of CO2 concentration and the change in global average surface temperature
from present, GAST, together with glacier periods shadings (Snyder, 2019). The gray bar in the line chart
shows the turning periods from 123-120 kyrs BP. The vertical line at 660 kyrs BP represents the beginning
of the out of sample estimate using a 140 kyr-observarion rolling window. Estimation parameters: k=1.06,
p=1, window=140, 800 sample.
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Figure 6. Out-of-sample joint distribution conditioning on 4 to 1 thousand years BP. Contour
plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and GAST during
the selected turning periods equal to 4-1 kyrs BP, with marginal distributions display on the side. Brighter
colors indicate greater probability. The red square indicates the ex post realization. The line chart shows the
time series of CO2 concentration and the change in global average surface temperature from present, GAST,
together with glacier periods shadings (Snyder, 2019). The gray bar in the line chart shows the turning
periods from 4-1 kyrs BP. The vertical line at 660 kyrs BP represents the beginning of the out of sample
estimate using a 140 kyr-observarion rolling window. Estimation parameters: k=1.06, p=1, window=140,
800 sample.

Turning to the most recent forecasts, Figure 6 plots the conditional joint distribution

up to 5 periods ahead, based on data through the most recent period. Corresponding per-

haps to Milankovitch cycles, we see the emergence of heavily elliptical 5,000 year-ahead joint
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distributions as early as 4,000 BP. As the conditioning information gets closer to what we

observe today (moving across rows in the Figure), we see that the possibility of extreme

temperature and CO2 concentration realizations remains and, indeed, the likelihood of those

extremes realizing in the (geological) near term is increasing. It is worth emphasizing that

even the bottom row of Figure 6 conditions on data through the previous millenium only, so

that the increases in CO2 concentrations associated with the Industrial Revolution are not

reflected in the conditioning information. That is, even without human activity increasing

atmospheric CO2 concentrations, there was a substantial probability mass associated with

substantial warming of the Earth’s atmosphere. We will return to the question of the im-

pact of the most recent temperature and CO2 concentration readings for these conditional

distributions in Section 4.

3.3 Inspecting the mechanism

Focusing on turning points in climate allowed us to identify some points in history at which

the conditional joint distribution of climate and CO2 concentration exhibits multimodality –

that is, situations in which there is substantial probability mass associated both with poten-

tial future increases in global average temperatures and atmospheric CO2 concentrations and

with potential future temperature and CO2 concentration declines. We now examine system-

atically under which conditions multimodality emerges and how persistent is the predicted

bifurcation.

Figure 7 plots the marginal and joint distributions five and fifty thousand years ahead for

global average surface temperature anomalies and atmospheric CO2 concentrations for the

latest 140 observations in the sample, conditioning on CO2 and global temperature realizing

in various percentiles of the distribution.5 More specifically, each panel in Figure 7 assumes
5In Figure 7, we use 140 observations (T = 140), containing information starting from 140 kyrs BP till

the most recent observation (one thousand years BP). We use one lag of CO2 concentrations and global
temperature anomalies, indicating that the number of independent variables is equal to 4 (denoted as M in
this section). The bandwidth is selected by using the estimation approach mentioned above, derived from
minimizing asymptotic mean integrated square error for a Gaussian reference distribution.
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a particular hypothetical realization of temperature and CO2 concentrations – for example,

that temperature is in the top 30th percentile of its history and CO2 concentrations are in the

bottom 30th percentile of their history – and constructs either the 50 thousand year ahead

(Figure 7a) or the five thousand year ahead (Figure 7b) joint distribution of temperature

and CO2 concentrations conditional on that hypothetical climate realization.

Figure 7a shows that in the long run – illustrated through joint 50-thousand-years ahead

distributions – the joint distributions converge to its unconditional joint distributions (over-

layed in red dotted lines). The 50-thousand-years ahead distributions also show that, when

CO2 concentrations are closer to the right tail of its distribution (e.g., 70th percentile) even

as the temperature anomaly is closer to the left tail of its distribution (e.g., 30th percentile),

there are signs of multimodalities developing (brighter colors denote greater probability): a

possibility of converging into a hotter world or otherwise. More importantly, we see that

when both CO2 concentrations and temperature anomalies are high around the 70th per-

centile (i.e., towards the right tail of the distribution), the ex-post realized conditions at the

70th percentile tend to fall under the bad mode (i.e., a hotter world).

The probability of multimodalities developing is less pronounced in shorter forecasting

horizons, such as the five thousand year ahead horizon (Figure 7b). Among these hori-

zons, probability of multimodality appeared in several of the initial conditions. In the five

thousand years ahead estimations (Figure 7b), the joint distribution exhibited signs of mul-

timodality when both CO2 concentrations and temperature anomalies are around the 50th

percentile. The ex-post realized value corresponding to the percentile suggests that the

realized temperature anomaly fell into the warmer mode.
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(a) Fifty thousand years ahead

(b) Five thousand years ahead

Figure 7. Inspecting the mechanism. The figure plots the evolution of CO2 concentration and GAST
forecasts 50 thousand years and 5 thousand years ahead by varying the initial conditions (30th percentile,
50th percentile, 70th percentile). Red dashed lines correspond to the unconditional distribution. Brighter
colors indicate greater probability. The red square indicates the ex-post realization corresponding to the
respective percentile based on latest 140 observations. Estimation parameters: k=1.06, p=1, 140,000 year
sample.
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4 What do 800,000 years of data tell us about the future?

The results in Section 3 suggest that, even before the Industrial Revolution and the asso-

ciated increases in carbon emissions and atmospheric CO2 concentrations, the likelihood of

extreme temperature and CO2 realizations in our future was increasing. We now turn to the

question of how the observed recent history of climate readings, and the near term projected

path of temperature and CO2 concentrations impacts the evolution of the predicted joint

distribution.

More specifically, we take advantage of the recently published Network for Greening the

Financial System (NGFS) scenarios, and expand our sample to include date 0 – that is, to

include an observation for the years 2000 – 2999. We consider two of the NGFS scenarios6:

an orderly scenario and an extreme scenario (latter is classified under NGFS hot house world

scenarios) to explore the impact of climate change and climate policy on global temperature

in the future. As the orderly scenario, we use Net Zero 2050 scenario, where global warming

is limited to 1.5 degrees Celsius by accommodating effective climate policies and improving

innovation and thereby reaching global net zero CO2 emissions around 2050.7 The extreme

(hot house world) scenario assumes only the currently implemented policies are preserved

(hence named as current policy scenario), and thereby leading to high climate risks. Under

this scenario, global temperature is expected to rise to above 3 degrees Celsius compared

to pre-industrial levels, while CO2 emissions do not subside compared to current levels. In

either case, we assume that the temperature and CO2 concentrations projected by the NGFS

for 2050 are the average temperature and CO2 concentrations for the millennium. Without

aggressive action to combat climate change, this assumption is most likely the lower bound

on climate outcomes over the next thousand years. The conditional distributions plotted in

Figure 9 are then most likely an underestimate of the tail of climate outcomes.
6The NGFS scenarios are available at here.
7We convert CO2 emissions reported in Mt CO2/yr and Gt CO2/yr into ppm using conversion tables and

information published by the Carbon Dioxide Information Analysis Center at here.
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Figure 8 shows the time series of the global average surface temperature anomalies and

atmospheric CO2 concentrations expanded to include current policy (Figure 8a) and net-

zero (Figure 8b) scenarios.8 Under the current policy scenario, the latest observation of the

global average surface temperature is higher than any of the previous peaks in the sample.

While temperature outcomes are somewhat more moderate under the net-zero scenario, they

are still well above all except one previous peak in the sample. Under both scenarios, the

projected CO2 concentrations are well above any that have been documented in the previous

800,000 years.
8We use last 2,000 years of annual data to construct the temperature deviations that are needed to

expand the dataset. For instance, we use annual data to obtain the average pre-industrial temperature
in order to calculate the point estimate corresponding to “1.5 °C above pre-industrial levels”. We then
calculate the average temperature that corresponds to the period denoted as “present” in our dataset. The
deviation between the two datapoints corresponds to the temperature anomaly needed for this analysis.
CO2 concentrations are constructed based on NGFS estimations under each scenario and converted into
ppm using Carbon Dioxide Information Analysis Center’s conversion tables.
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(a) Current policy scenario

(b) Net-zero scenario

Figure 8. CO2 concentrations and change in global average surface temperature from present
under alternative NGFS scenarios. The figure plots the evolution of CO2 concentration and the
change in global average surface temperature from present, GAST, together with NGFS current policy
scenario (Figure 8a) and NGFS net zero scenario (Figure 8b). Light blue shading indicates glacier periods
(Snyder, 2019). The vertical line at 660 kyrs BP represents the beginning of the out of sample estimate
using a 140 kyr-observarion rolling window.

Turning now to the predicted joint distributions of future evolution of temperature and

CO2 concentrations conditional on the two NGFS scenarios, Figure 9 plots the conditional

joint distributions and the corresponding marginal distribution up to 5,000 years ahead (5

periods ahead). Comparing the joint distributions under the net-zero scenario (Figure 9b) to

the ones under the current policy scenario (Figure 9a), we see that the risks of extreme further

warming are somewhat more moderate under the net-zero scenario. However, even under

the net-zero scenario, there is substantial probability mass associated with GAST outcomes

as high as 4 degrees Celsius 1,000 – 2,000 years ahead (compared to the 3.5 degrees Celsius

projected for date 0 even under the current policy scenario). While these risks abate at the
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three to five thousand years ahead horizons, it is unclear how much irreversible ecological

damage would occur if temperatures were to be 3-4 degrees Celsius above pre-industrial

levels for the next three millennia. Notice also that, under the net-zero scenario, we see

emerging signs of multimodality in the 5,000-years-ahead distribution, suggesting that, even

if temperatures were to revert away from extreme highs in the medium-run, the result may

be a new glacial period.

(a) Current policy scenario

(b) Net-zero scenario

Figure 9. Forecasted joint distributions of CO2 concentrations and change in global average
surface temperature from present under alternative NGFC scenarios. The figure plots the
conditional joint distributions 1 – 5 periods (1 – 5 thousand years) ahead of CO2 concentrations and the
change in global average surface temperature from present, GAST, under the NGFS current policy scenario
(Figure 9a) and NGFS net zero scenario (Figure 9b). Corresponding marginal distributions plotted on the
side. Brighter colors in the density plots indicate greater probability. Estimation parameters: k = 1.06,
p = 1, window=140, 800,000 year sample.

5 Related Literature

We use an 800,000 year history of CO2 emission and surface temperature. As discussed above,

we rely on Snyder (2016, 2019) for our temperature time series. Snyder presents spatially

weighted proxy reconstructions of global temperature over the past 2 million years estimated

from a multi-proxy database of over 20,000 sea surface temperature point reconstructions.

Over the past 800,000 years, polar amplification (the amplification of temperature change

at the poles relative to global temperature change) has been stable over time, and global

22



temperature and atmospheric greenhouse gas concentrations have been closely coupled across

glacial cycles. Snyder (2019) argues that stabilization at today’s greenhouse gas levels may

already commit Earth to an eventual total warming of 5 degrees Celsius (range 3 to 7 degrees

Celsius, 95 per cent credible interval) over the next few millennia as ice sheets, vegetation and

atmospheric dust continue to respond to global warming. Our conditional joint distribution

estimates in Section 4 are consistent with this prediction, though our estimated conditional

distributions suggest that the modal temperature outcomes may be somewhat milder.

The studies most closely related to our paper investigate the relationship between sur-

face temperature and CO2, often relying on cointegration analysis. The joint conditional

distributions we uncover are consistent with the cointegration hypothesis, as the prototyp-

ical distribution we estimate is elliptical, so that little probability mass is placed on (low

temperature, high CO2) and (high temperature, low CO2) outcomes. Kaufmann (2002) use

cointegration analysis to elaborate that there is a statistically meaningful relation between

surface temperature and changes in the radiative forcing associated with natural variability

and human activity. Kaufmann (2002) argue that the increase in global temperatures during

the past 130 years can be attributed to changes in radiative forcing associated with natural

variability and human activity. Kaufmann and Stock (2006) propose a simplified model of

the climate system in which the effect of human activity on surface temperature is reinforced

by the simultaneous relationship between surface temperature and the atmospheric concen-

tration of CO2. Kaufmann and Stock (2006) provide direct evidence that, since 1870, human

activity is largely responsible for the increase in global surface temperature and that higher

surface temperature has increased the atmospheric concentration of CO2 and perhaps CH4

(methane gas).

Kaufmann and Stock (2006) is part of a large literature shows that warming in recent

decades is attributable to human activity. Stock (2020) studies a simple and transparent

time series regression model to provide independent verification of some key conclusions

from climate science models and to demonstrate that warming over the past 140 years is
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primarily because of human activity. Phillips et al. (2020) employ an econometric model

to address the sensitivity of climate to CO2 from observational data taking the cooling

effect of aerosol particles into consideration. The authors use time series cointegration-based

methods that allows treatment of nonstartionarity with cointegrated regressors at both the

individual station-level and the global aggregate level. The analysis supports the notion of an

underestimation of aerosol cooling in the GCMs, which would allow the GCMs to reproduce

the observed temperature record with an incorrect TCSG.

Montamat and Stock (2020) propose a model to estimate transient climate response by

employing instrumental variables to address the simultaneous causation bias of regressions

based on CO2 and temperature anomalies. A problem with estimating the temperature us-

ing observational data is that observed CO2 concentrations depend in turn on temperature.

Therefore, the observed concentration data are endogenous, potentially leading to simulta-

neous causation bias of regression estimates of the temperature. Montamat and Stock (2020)

address this problem by employing instrumental variables regression, which uses changes in

radiative forcing external to earth systems to provide quasi-experiments that can be used to

estimate the temperature.

An important strand of the literature quantifies the impact of climate change on economic

outcomes. Kiley (2021) uses a quantile regression model to account for the relationship be-

tween the temperature associated climate change and the distribution of economic growth.

This allows him to sketch out the effects of temperature on downside risks to economic

growth. Dietz et al. (2018) ask how climate-change mitigation impacts the aggregate con-

sumption risk borne by future generations. To do so, the authors calculate a “climate beta”

close to unity for maturities of up to one hundred years using a combination of theory and

integrated assessment modeling. Dietz et al. (2018) argue that the overall the net present

value of carbon emissions abatement is increasing in the climate beta. Intuitively, a large

climate beta not only implies a large climate discount rate, but, also, implies large expected

benefits of mitigating climate change in a growing economy. Hence this paper can be used
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to illustrate the importance and the benefit of proper climate policy to the CO2 emission

abatement. Dietz et al. (2016) ask what might be the impact of climate change on asset

values. The expected “climate value-at-risk” (climate VaR) of global financial assets is 1.8%

along a business-as-usual emissions path, amounting to US$2.5 trillion. Pretis (2020) esti-

mates both the human impact on climate as well as the economic impacts of climate change.

The author shows that energy-balance models of climate are equivalent to an econometric

cointegrated system and shows estimates of a system of temperatures, ocean heat content,

and radiative forcing including greenhouse gases. Pretis (2020) finds statistical support for

the cointegrated energy balance model.

International Monetary Fund (2017) finds that increases in temperature have uneven

macroeconomic effects, with adverse consequences concentrated in countries with relatively

hot climates, such as most low-income countries. In these countries, a rise in temperature

lowers per capita output, in both the short and medium term, by reducing agricultural

output, suppressing the productivity of workers exposed to heat, slowing investment, and

damaging health. Most countries will increasingly feel direct negative effects from unmit-

igated climate change through warming above optimal levels in currently cooler countries,

more frequent natural disasters, rising sea levels, loss of biodiversity, and adverse spillovers

from vulnerable countries. Looking ahead, only continued international cooperation and a

concerted effort to stem the man-made causes of global warming can limit the long-term

risks of climate change.

Our finding of multimodality in turning points closely relates to the literature on tipping

points in climate (see e.g. Held and Kleinen, 2004; Lenton et al., 2008; Kriegler et al., 2009;

Lenton, 2011, and the literature cited within). We contribute to this literature by providing

a non-parametric method for estimating the full future conditional distribution based on

aggregate readings only. Consistent with the findings in Lenton (2011), our estimated con-

ditional joint distributions of temperature and CO2 concentrations in the next few millennia

suggest that the global climate may be close to an irreversible tipping point. Dietz et al.
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(2021) provide unified estimates of the economic impacts of all eight climate tipping points

covered in the economic literature so far using a meta-analytic integrated assessment model

(IAM) with a modular structure. The model includes national-level climate damages from

rising temperatures and sea levels for 180 countries, calibrated on detailed econometric evi-

dence and simulation modeling. The tipping points with the largest effects are dissociation

of ocean methane hydrates and thawing permafrost.

6 Conclusion

In this paper we study how climate evolves over the past 800,000 years applying the non-

parametric approach developed in Adrian et al. (2021) to joint dynamics of the long time

series of global temperature collected by Snyder (2016) and of global CO2 concentration.

This approach allows us to assign probabilities to the precise nature of climate tipping

points, including the level at which tipping points in, for example, temperature may occur,

how long it may take the overall climate to reach that tipping point, as well as the magnitude

of the consequences should such a tipping point occur. We take a non-parametric approach,

allowing us to construct term structures of joint distributions for temperature and CO2 at

any point given the available data on global mean temperature and atmospheric carbon

concentrations. We also provide forecasts of the future evolution of these two key climate

variables.

We find that the temperature-CO2 dynamics are non-linear, so that large deviations in ei-

ther temperature or CO2 concentrations take a long time to correct – on the scale of multiple

millennia. Furthermore, we uncover joint dynamics of temperature and CO2 concentrations

that exhibit multimodality around historical turning points in temperature and concentra-

tion cycles, so that prior to the start of cooling periods, there is a noticeable probability

that temperature and CO2 concentrations may continue to increase. Finally, evaluating the

future evolution of temperature and CO2 concentration conditional on alternative scenarios
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realizing, we document that, even conditional on the net-zero 2050 scenario, there remains

a significant risk of elevated temperatures for at least a further five millennia.

The key question for future research is how economic activity would interplay with these

CO2 – temperature dynamics. On the one hand, economic activity greatly impacts the level

of atmospheric CO2 and hence temperature tipping points. On the other hand, temperature

directly affects economic activity. Unfortunately, the time series for economic activity is

much shorter than what is available for CO2 and temperature, and hence any study of the

interplay of climate with economic activity will have to to with that shorter time series.

But, we conjecture here that such approaches might worsen the tipping point dynamics, and

potentially exacerbate the already high estimates of global warming.
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Online Appendix

A Data and Methodology

A.1 Data - Confidence Interval Data

Figure A.1 shows the global average surface temperature anomalies along with a +/- 2.5
confidence interval, accounting for estimation uncertainties.

Figure A.1. Change in global average surface temperature from present with confidence
interval. The figure shows the change in global average surface temperature from present, GAST, with
red shaded area corresponding to 2.5th and 97.5th percentiles range (Snyder, 2019).

A.2 Methodology - Efficient Monte Carlo

Given an estimated one-period-ahead distribution p̂ (y|x), we can use Monte Carlo simula-
tions to estimate h-period-ahead distributions by sequentially drawing paths of y. In princi-
ple, these draws can be made directly from the inverse CDF implied by p̂ (y|x) by drawing
u from a (multinomial) uniform distribution and finding y that solves y = P̂−1 (u|x). We
increase the efficiency of this procedure by discretizing the state space as follows.

Algorithm 1. Simulating paths of y.
To estimate the H-period-ahead distribution of y, generate nsim paths of y as follows.

1. Discretize the state-space. Set κ = κ0. For each variable j, loop through:

(a) Initialize grid with bound [min (yj)− κσy,j, max (yj) + κσy,j] and grid point in-
crements of ∆× σy,j.

(b) For each grid point yj,i, compute the kernel CDF Φ
(

yj−yj,i
ωyj

)
.

(c) Verify that the kernel PDF integrates to one. Verify that the kernel CDF has a
maximum of 1 within a tolerance of ε. If not, reset κ = (1 + δ)× κ and repeat.
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2. For each simulated path k = 1, . . . , nsim, loop through each horizon h = 1, . . . , H by
drawing ykt+h|ykt+h−1 from the grid established in Step 1 and verify the normalization
condition.

The choices κ0, ε, ∆, and δ control the speed and accuracy of the estimator, with κ0 control-
ling the size of the initial state-space, ∆ controlling the fineness of the discretization grid,
ε the tolerance for integration error, and δ the speed with which the size of the state space
grows while the estimated density is “missing” probability mass. We set κ0 = 0.1, ε = 10−5,
∆ = 1/20, and δ = 0.05. Similar results shown when we include restrictive parameters.

B Subsample Analyses and Robustness Checks

This Subsample Analyses and Robustness Checks performs several analyses, validating the
robustness of the results presented in the paper. These robustness checks account for any
structural or data breaks that may exist in the reconstructed datasets of temperature and
CO2 concentrations. The Subsample Analyses and Robustness Checks is structured as fol-
lows: Section B.1 presents results based on a time series that starts 140 thousand years ago as
opposed to 800 thousand years ago; Section B.2 presents results under a different lag length
selection; Section B.3 presents results when the observation rolling window is altered from
140-observations to 400-observations; Section B.4 concludes the Subsample Analyses and
Robustness Checks by presenting results under a different optimal bandwidth parameter.

B.1 140 sample, p=1, k=1.06

Section B.1 presents out of sample distributions across various horizons using subsample
data from 140 thousand years ago through one thousand years ago. As mentioned in the
Section 2.1, many individual temperature records used for temperature reconstruction pro-
cess, to our understanding, end around 140 thousand years ago and therefore we chose a
140-observation rolling window in our paper. We use a 140-observation subsample as a
robustness check to see whether the findings presented in the paper alters. Precisely, in-
stead of using the latest 140 observations as a 140-observation rolling window for each out
of sample estimation, we use a cumulative window in this robustness test. Therefore, this
robustness test includes a time series starting from 140 thousand year ago till the estimation
point. The other estimation parameters such as the bandwidth also change as the number
of observations included in the estimation varies.

In Figures B.1a to B.1c, we compare the realized and out-of-sample predicted marginal
distributions using 140 thousand years of data and a cumulative window. Figure B.1a shows
the realized and out-of-sample estimates of CO2 concentrations and temperature anomalies
in one thousand years ahead. In line with the results presented in the paper, the median
out-of-sample distributions are very similar to the realized conditions. When the out-of-
sample medians slightly deviate from the realizations, our out-of-sample estimate is generally
more conservative. Figures B.1b and B.1c show the realized and out-of-sample estimates
of CO2 concentrations and temperature anomalies in three and five thousand years ahead
respectively. These results are also in line with the results presented in the paper. The
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policies are implemented.

Figure B.3a. Joint distribution forecasts of CO2 concentration and GAST given current policy
scenario data. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concen-
tration and GAST given current policy scenario data, using 806 observation sample, based on two lags CO2

concentration and GAST, with marginal distributions display on the side. Brighter colors indicate greater
probability. Estimation parameters: k=1.06, p=2, window=140, 800 sample.

Figure B.3b. Joint distribution forecasts of CO2 concentration and GAST given net-zero sce-
nario data. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration
and GAST given net-zero scenario data, using 806 observation sample, based on two lags CO2 concentration
and GAST, with marginal distributions display on the side. Brighter colors indicate greater probability.
Estimation parameters: k=1.06, p=2, window=140, 800 sample.

B.3 806 sample, p=1, k=1.06, window=400

In Section B.3, we present the out-of-sample results across horizons using a 400-observation
rolling window as opposed to a 140-observation rolling window used in the paper. As men-
tioned in the paper, to our understanding, many individual temperature records used for
temperature reconstruction process of our primary data source end around 140 thousand
years ago. We perform this robustness test to make sure that, similar to a larger rolling
window such as a 400-observation rolling window, the 140-observation rolling window also
contain the enough large right tail events where both CO2 concentrations and temperature
anomalies are reaching their peak values for the model to estimate.

Figures B.4a to B.4c show the time series of CO2 concentrations and temperature anoma-
lies, together with out-of-sample marginal distributions using 806 thousand years of data and
a 400-thousand-year rolling window. Figure B.4a shows the realized and out-of-sample es-
timates of CO2 concentrations and temperature anomalies in one thousand years ahead. In
line with figure 4a in the paper, the median out-of-sample distributions are similar to the
realized conditions. In very few exceptions, we notice that the median out-of-sample temper-
ature anomalies in 400-observation rolling window are lower than those of in 140-observation
rolling window (for instance, the period between 128 thousand years BP to 125 thousand

38









out-of-sample predictions revealing greater probability of multimodality emerging.
Figure B.5d shows the out-of-sample joint distributions associated with the latest turning

point (conditioning period of four to one thousand years BP). As with the results presented
in the paper, we observe the out-of-sample joint distributions widening and greater proba-
bility of multimodality appearing as the forecasting horizon increases, indicating a greater
probability of much warmer temperature could realize in one thousand to four thousand
years from now.
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Figure B.5a. Out-of-sample joint distribution conditioning on 336 to 333 thousand years
BP. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and
GAST during the selected turning periods equal to 336-333 kyrs BP, with marginal distributions display
on the side, using 806 observation sample , and 400 observation rolling window. Brighter colors indicate
greater probability. The red square indicates the ex post realization. The line chart shows the time series
of CO2 concentration and the change in global average surface temperature from present, GAST, together
with glacier periods shadings (Snyder, 2019). The gray bar in the line chart shows the turning periods from
336-333 kyrs BP. The vertical line at 400 kyrs BP represents the beginning of the out of sample estimate
using a 400 kyr-observarion rolling window. Estimation parameters: k=1.06, p=1, window=400, 800 sample.
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Figure B.5b. Out-of-sample joint distribution conditioning on 244 to 241 thousand years
BP. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and
GAST during the selected turning periods equal to 244-241 kyrs BP, with marginal distributions display
on the side, using 806 observation sample , and 400 observation rolling window. Brighter colors indicate
greater probability. The red square indicates the ex post realization. The line chart shows the time series
of CO2 concentration and the change in global average surface temperature from present, GAST, together
with glacier periods shadings (Snyder, 2019). The gray bar in the line chart shows the turning periods from
244-241 kyrs BP. The vertical line at 400 kyrs BP represents the beginning of the out of sample estimate
using a 400 kyr-observarion rolling window. Estimation parameters: k=1.06, p=1, window=400, 800 sample.
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Figure B.5c. Out-of-sample joint distribution conditioning on 123 to 120 thousand years
BP. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and
GAST during the selected turning periods equal to 123-120 kyrs BP, with marginal distributions display
on the side, using 806 observation sample , and 400 observation rolling window. Brighter colors indicate
greater probability. The red square indicates the ex post realization. The line chart shows the time series
of CO2 concentration and the change in global average surface temperature from present, GAST, together
with glacier periods shadings (Snyder, 2019). The gray bar in the line chart shows the turning periods from
123-120 kyrs BP.The vertical line at 400 kyrs BP represents the beginning of the out of sample estimate
using a 400 kyr-observarion rolling window. Estimation parameters: k=1.06, p=1, window=400, 800 sample.
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Figure B.5d. Out-of-sample joint distribution conditioning on 4 to 1 thousand years
BP. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and
GAST during the selected turning periods equal to 4-1 kyrs BP, with marginal distributions display on the
side, using 806 observation sample, and 400 observation rolling window. Brighter colors indicate greater
probability. The red square indicates the ex post realization. The line chart shows the time series of CO2

concentration and the change in global average surface temperature from present, GAST, together with
glacier periods shadings (Snyder, 2019). The gray bar in the line chart shows the turning periods from 4-1
kyrs BP. The vertical line at 400 kyrs BP represents the beginning of the out of sample estimate using a 400
kyr-observarion rolling window. Estimation parameters: k=1.06, p=1, window=400, 800 sample.

We also explored whether the predicted joint distributions presented in the paper, based
on near-term projected path of temperature and CO2 concentrations in line with the NGFS
scenarios, are robust to a 400-observation rolling window. Figures B.6a and B.6b show how
the global temperatures one to five thousand years from now will change under the NFGS
current policy and net-zero scenarios. Figure B.6a shows if adequate climate policies are not
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introduced within this century, the probability of much warmer temperature could increase in
the next millennium. Similar to our paper’s results, the temperature anomalies are estimated
to revert back over the three to five thousand years under this scenario. In Figure B.6b, we
see that under the net-zero scenario, the shape of the marginal distribution in temperature
anomalies changes and a greater probability of less warmer temperatures could realize in the
next thousand years if more stringent climate policies are introduced. These robustness test
results are very much in line with the findings of our paper.

Figure B.6a. Joint distribution forecasts of CO2 concentration and GAST given current policy
scenario data. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concen-
tration and GAST given current policy scenario data, with marginal distributions display on the side, using
806 observation sample, and 400 observation rolling window. Brighter colors indicate greater probability.
Estimation parameters: k=1.06, p=1, window=400, 800 sample.

Figure B.6b. Joint distribution forecasts of CO2 concentration and GAST given net-zero sce-
nario data. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration
and GAST given net-zero scenario data, with marginal distributions display on the side, using 806 observa-
tion sample, and 400 observation rolling window. Brighter colors indicate greater probability. Estimation
parameters: k=1.06, p=1, window=400, 800 sample.

B.4 806 sample p=1, k=0.3, window=140

In Section B.4, we introduce a new method of optimal bandwidth parameter selection and
present out of sample distribution across various horizons using newly selected optimal band-
width (k=0.3), 806 samples, and a 140-observation rolling window.

As mentioned in section two, we parameterize the bandwidths based on Li and Racine
(2007) method, which applies a version of the Silverman (1986) “rule-of-thumb" for joint
unconditional density estimation where wj = 1.06σjT

−1/(4+M+N) for variable j, bandwidth
wj, standard deviation σj, sample size T , number of independent variables M , and number
of dependent variables N . In the main body of the paper, we use k = 1.06. In this sec-
tion, we parameterize the bandwidths as being proportional to the in-sample unconditional
standard deviation of the corresponding variable: wj = kσjT

−1/(4+M+N) and choose a single
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proportionally constant k = kyi = kxj
for all i = 1, . . . , ny, j = 1, . . . , nx to maximize the

predictive accuracy of the resultant one-period-ahead conditional joint distribution.
In Figure B.7, we plot the relationship between the bandwidth proportionality constant

k and the out-of-sample (log) predictive score for the one-quarter-ahead and one-year-ahead
distribution. The figure shows that there is an interior solution for the optimal parameter
of proportionality, and that the performance is maximized for k ≈ 0.3. Figure B.8 shows
the optimal bandwidth parameter for the one-period ahead conditional joint distribution
of CO2 concentrations and temperature anomalies starting from 400 thousand years BP.
The optimal bandwidth parameter is volatile as the estimation point varies. In the latest
estimation point, the out-of-sample predicted performance is maximized for k ≈ 0.3. We
also plot the optimal bandwidth parameter for the one-period-ahead joint distribution of
CO2 concentrations and temperature anomalies in the latest period (Figure B.9). We can
observe that the out-of-sample log predictive scores are highest when k ≈ 0.3.

Figure B.7. Optimal bandwidth selection. This figure plots the out-of-sample log predictive scores
for the one-period-ahead conditional joint distribution of CO2 cocentration and GAST, as a function of
the bandwidth proportionality constant k. Predictor variables: one lag of CO2 concentration and GAST.
Estimation parameters: p=1, window=140, sample=800.

48



Figure B.8. Optimal bandwidth selection around each period. This figure plots the optimal band-
width for the one-period-ahead conditional joint distribution of CO2 cocentration and GAST across estimated
period, based on the out-of-sample log predictive scores. Predictor variables: one lag of CO2 concentration
and GAST. Estimation parameters: p=1, window=140, sample=800.
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Figure B.9. Optimal bandwidth selection in latest period. This figure plots the out-of-sample log
predictive scores for the one-period-ahead conditional joint distribution of CO2 cocentration and GAST in
the latest period. Predictor variables: one lag of CO2 concentration and GAST. Estimation parameters:
p=1, window=140, sample=800.

Figures B.10a to B.10d plot the marginal and joint distributions ahead of one thousand
years (which corresponds to one period ahead), three, five, and fifty thousand years for
global average surface temperature anomalies and atmospheric CO2 concentrations for the
latest 140 observations in the sample, using k = 0.3. Figure B.10a shows that while joint
distributions of CO2 concentrations and temperature anomalies do not as tightly converge
to its unconditional joint distributions (overlayed in red dotted lines) as in what is presented
in our paper, there are signs of multimodality developing conditioning on all the selected
percentiles.

In line with the results presented in the paper, the probability of multimodalities is less
pronounced in shorter forecasting horizons such as joint distributions ahead of one thousand
to five thousand years (illustrated through Figures B.10b to B.10d). In the five thousand
years ahead estimations (Figure B.10b), the joint distribution exhibited signs of multimodal-
ity when CO2 concentrations are around the 70th percentile and temperature anomalies are
around the 30th percentile. The ex-post realized value corresponding to the percentile sug-
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gests that the realized temperature anomaly falls into the colder mode. However, as CO2

concentrations move from 30th percentile to 70th percentile, the probability of a warmer
mode increases. In the three thousand years ahead distribution (Figure B.10c), while less
pronounced, we also see signs of multimodality when CO2 concentrations are around the
70th percentile and temperature anomalies are around the 30th percentile.

Figure B.10a. Inspecting the mechanism in 50 thousand years ahead. The figure displays the
evolution of CO2 concentration and GAST forecasts in 50 thousand years ahead by varying the initial con-
ditions (30th percentile, 50th percentile, 70th percentile). Red dashed lines correspond to the unconditional
distribution. Brighter colors indicate greater probability. The red square indicates the ex-post realization
corresponding to the respective percentile based on latest 140 observations. Estimation parameters: k=0.3,
p=1, sample=140.
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Figure B.10b. Inspecting the mechanism in five thousand years ahead. The figure displays the
evolution of CO2 concentration and GAST forecasts in five thousand years ahead by varying the initial
conditions (30th percentile, 50th percentile, 70th percentile). Brighter colors indicate greater probability.
The red square indicates the ex-post realization corresponding to the respective percentile based on latest
140 observations. Estimation parameters: k=0.3, p=1, sample=140.
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Figure B.10c. Inspecting the mechanism in three thousand years ahead. The figure displays the
evolution of CO2 concentration and GAST forecasts in three thousand years ahead by varying the initial
conditions (30th percentile, 50th percentile, 70th percentile). Brighter colors indicate greater probability.
The red square indicates the ex-post realization corresponding to the respective percentile based on latest
140 observations. Estimation parameters: k=0.3, p=1, sample=140.

53



Figure B.10d. Inspecting the mechanism in one thousand years ahead. The figure displays the
evolution of CO2 concentration and GAST forecasts in one thousand years ahead by varying the initial
conditions (30th percentile, 50th percentile, 70th percentile). Brighter colors indicate greater probability.
The red square indicates the ex-post realization corresponding to the respective percentile based on latest
140 observations. Estimation parameters: k=0.3, p=1, sample=140.

In Figures B.11a to B.11c, we compare the realized and out-of-sample predicted marginal
distributions using 806 thousand years of data, a 140-thousand-year rolling window, and a 0.3
bandwidth parameter. Figure B.11a shows the realized and out-of-sample estimates of CO2

concentrations and temperature anomalies in one thousand years ahead. As with the results
in the paper, the median out-of-sample distributions are tightly aligned with the realized
conditions. The range of one thousand years ahead distributions in CO2 concentrations
and temperature anomalies narrower. The out-of-sample prediction remains very similar
to the realized condition when CO2 concentrations and temperature anomalies are reaching
their peak values. Figures B.11b and B.11c show the realized and out-of-sample estimates
of CO2 concentrations and temperature anomalies three and five thousand years ahead,
respectively. In most periods, the median out-of-sample predictions remain similar to the
realized conditions. However, as the range of distributions narrows, there are more exceptions
where the realized temperature anomaly distributions deviate beyond the 2.5/97.5 percentile
out-of-sample estimates (for instance, temperature anomalies in period between 130 to 125
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temperature anomalies in this period suggest that the CO2 concentrations are decreasing
from its peak value and temperature anomalies are increasing. This two-directional move-
ment drives the probability of two modes, where temperature could have either realized in
the warmer mode or in the colder mode. We observe that the realized temperature appears
to be at the upper bound of the colder mode.

Figure B.12d shows the out-of-sample joint distributions associated with the latest turn-
ing point (conditioning period of 4-1 thousand years BP). As with the results presented in
the paper, we observe that out-of-sample joint distributions widening and greater probability
of multimodality appearing as the forecasting horizon widens.
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Figure B.12a. Out-of-sample joint distribution conditioning on 336 to 333 thousand years
BP. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and
GAST during the selected turning periods equal to 336-333 kyrs BP, with marginal distributions display on
the side. Brighter colors indicate greater probability. The red square indicates the ex post realization. The
line chart shows the time series of CO2 concentration and the change in global average surface temperature
from present, GAST, together with glacier periods shadings (Snyder, 2019). The gray bar in the line chart
shows the turning periods from 336-333 kyrs BP. The vertical line at 660 kyrs BP represents the beginning
of the out of sample estimate using a 140 kyr-observarion rolling window. Estimation parameters: k=0.3,
p=1, window=140, 800 sample.
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Figure B.12b. Out-of-sample joint distribution conditioning on 244 to 241 thousand years
BP. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and
GAST during the selected turning periods equal to 244-241 kyrs BP, with marginal distributions display on
the side. Brighter colors indicate greater probability. The red square indicates the ex post realization. The
line chart shows the time series of CO2 concentration and the change in global average surface temperature
from present, GAST, together with glacier periods shadings (Snyder, 2019). The gray bar in the line chart
shows the turning periods from 244-241 kyrs BP. The vertical line at 660 kyrs BP represents the beginning
of the out of sample estimate using a 140 kyr-observarion rolling window. Estimation parameters: k=0.3,
p=1, window=140, 800 sample.
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Figure B.12c. Out-of-sample joint distribution conditioning on 123 to 120 thousand years
BP. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and
GAST during the selected turning periods equal to 123-120 kyrs BP, with marginal distributions display on
the side. Brighter colors indicate greater probability. The red square indicates the ex post realization. The
line chart shows the time series of CO2 concentration and the change in global average surface temperature
from present, GAST, together with glacier periods shadings (Snyder, 2019). The gray bar in the line chart
shows the turning periods from 123-120 kyrs BP. The vertical line at 660 kyrs BP represents the beginning
of the out of sample estimate using a 140 kyr-observarion rolling window. Estimation parameters: k=0.3,
p=1, window=140, 800 sample.
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Figure B.12d. Out-of-sample joint distribution conditioning on 4 to 1 thousand years
BP. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration and
GAST during the selected turning periods equal to 4-1 kyrs BP, with marginal distributions display on the
side. Brighter colors indicate greater probability. The red square indicates the ex post realization. The
line chart shows the time series of CO2 concentration and the change in global average surface temperature
from present, GAST, together with glacier periods shadings (Snyder, 2019). The gray bar in the line chart
shows the turning periods from 4-1 kyrs BP. The vertical line at 660 kyrs BP represents the beginning of
the out of sample estimate using a 140 kyr-observarion rolling window. Estimation parameters: k=0.3, p=1,
window=140, 800 sample.

We also explored whether the predicted joint distributions presented in the paper, based
on near-term projected path of temperature and CO2 concentrations in line with the NGFS
scenarios, are robust to changing the bandwidth parameter to 0.3. Figures B.13a and B.13b
show how the global temperatures one to five thousand years from now will change if cli-
mate policies are introduced early and become gradually more stringent (Figure B.13b) or
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on the contrary global efforts are insufficient to halt significant global warming by 2100
(Figure B.13a). Similar to the results presented in the paper, the marginal distributions in
temperature anomalies are tilted towards the right under both scenarios. But in Figure B.13a
under the current policy scenario, there is a greater probability of higher temperature anoma-
lies developing. On the contrary, Figure B.13b under the net-zero scenario shows a slightly
higher probability of relatively lower temperature anomalies developing when more stringent
climate policies are introduced.

Figure B.13a. Joint distribution forecasts of CO2 concentration and GAST given current
policy scenario data. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2

concentration and GAST given current policy scenario data, with marginal distributions display on the side.
Brighter colors indicate greater probability. Estimation parameters: k=0.3, p=1, window=140, 800 sample.

Figure B.13b. Joint distribution forecasts of CO2 concentration and GAST given net-zero sce-
nario data. Contour plots of 1-5 thousand-year-ahead out-of-sample density forecasts of CO2 concentration
and GAST given net-zero scenario data, with marginal distributions display on the side. Brighter colors
indicate greater probability. Estimation parameters: k=0.3, p=1, window=140, 800 sample.
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