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Abstract 

We model a safe asset market with investors valuing safety, investors valuing liquidity, and constrained 

dealers. While safety investors and liquidity investors can interact symbiotically with offsetting trades in 

times of stress, we show that liquidity investors’ strategic interaction harbors the potential for self-

fulfilling fragility. Surprisingly, standard flight to safety in times of stress can have a destabilizing effect 

and trigger a dash for cash by liquidity investors. This explains how safe asset markets can experience 

price crashes, as in March 2020. The announcement and execution of policy interventions play important 

roles for the functioning of safe asset markets. 
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1 Introduction

Safe assets play several special roles in the economy. In this paper, we argue that safe asset
markets suffer from fragility because of two key characteristics of the assets — safety and
liquidity — that interact with each other and with frictions in how the markets operate.
Drawing on this interaction, our model helps to understand the unprecedented events in
U.S. Treasurymarkets at the onset of the Covid-19 pandemic inMarch 2020 and highlights
the risks of such events repeating in the future in safe asset markets more broadly.

First, safe assets are safe in the sense that they will pay par at maturity with very high
probability so investors hold them as a store of value, useful for diversification and in-
tertemporal smoothing (e.g., Caballero and Farhi, 2017). As a result, safe asset markets
tend to feature “flight to safety” during times of stress, in which demand for safe assets
and therefore their price increases. Panel A of Figure 1 documents this behavior frommid-
February to early March of 2020 where the gradual realization of the severity of the Covid
outbreak led to a decline in the price of risk assets as reflected by the S&P 500 index and
a concurrent increase in the price of safe assets as reflected by the 10-year Treasury.

Second, safe assets are liquid, meaning that they are “money-like” and trade at a conve-
nience yield (e.g. Krishnamurthy and Vissing-Jørgensen, 2012). Some investors hold safe
assets to sell them when in need of liquidity for consumption or to meet obligations. Dur-
ing times of stress, investors’ liquidity needs can increase, leading to a “dash for cash” that
competes with the usual “flight to safety” and exerts downward pressure on the price of
safe assets. As illustrated in Panel A of Figure 1, Treasury prices suddenly reversed their
increase in mid-March 2020 and declined together with stock prices in a break-down of
the usual negative correlation of safe and risky assets during times of stress.

Third, markets for safe assets such as U.S. Treasuries tend to rely heavily on dealers
to intermediate trades. When dealers face costs for intermediating on their balance sheets
due to, e.g. the Supplemental Leverage Ratio rule (SLR), they can become a bottleneck
during times of stress, increasing price volatility in safe asset markets and contributing to
market dysfunction. Panel B of Figure 1 shows that dealer balance sheet space allocated to
Treasuries (via direct holdings and reverse repos) increased through both the run-up in
Treasury prices and their crash. Treasury markets also became unusually illiquid during
this period, with bid-ask spreads increasing by a factor of 10 (Duffie, 2020). The recovery
in Treasury prices after March 18 coincided with dealer balance sheet pressure receding
as the Federal Reserve’s Treasury purchases ramped up (Figure 1, Panel B).

Why did the market for Treasuries turn so suddenly in March 2020? Panel C of Fig-
ure 1 shows the main sellers of Treasuries in 2020q1: Foreign investors, mutual funds,
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and households (which includes hedge funds) each sold roughly $250 billion. The figure
shows that foreign investors andmutual funds sold Treasuries on an unprecedented scale,
an order of magnitude larger than in any previous quarter. In addition, there is suggestive
evidence that a considerable fraction of these saleswere not due to genuine liquidity needs:
Among foreign investors, foreign official agencies sold $196 billion of Treasury bonds but
“consumed” only 24% of the proceeds in the form of a $48 billion reduction in their total
U.S. Dollar assets.1 Among mutual funds, those in the CRSP dataset sold $157 billion of
Treasuries but “consumed” only 66% of the proceeds to satisfy outflows as $54 billion of
their sales were “in excess of outflows” (Table 6 in Vissing-Jørgensen, 2021). Consistent
with this evidence, the Inter-Agency Working Group for Treasury Market Surveillance
(2021) reports that “some Treasury holders appeared to react to the decline in market liq-
uidity by selling securities for precautionary reasons lest conditions worsen further, and
these sales only added to the stress on the market.”

In this paper, we show that a safe asset market is stable and well-functioning as long
as the market is sufficiently deep. In this case, flight to safety and dash for cash are com-
plementary phenomena, with investors who buy the assets for safety absorbing sales from
investors who sell the assets for liquidity. However, we show how the market can break
down with prices falling precipitously if trade involves dealers that are subject to balance
sheet constraints. The risk of market break-down can be self-fulfilling, as it leads investors
without genuine liquidity needs to sell preemptively in order to avoid potentially having to
sell at lower prices in the future. Surprisingly, we show that flight-to-safety purchases of
safe assets can exacerbate the dash for cash when markets are fragile.

To show these results, we model market fragility in the spirit of the seminal papers by
Bernardo andWelch (2004) andMorris and Shin (2004). As in Bernardo andWelch (2004),
“market runs” can arise in equilibrium because investors face an intertemporal decision
regarding when (or if) to sell assets, and some investors may strategically choose to sell
early to avoid the possibility of being forced to liquidate at depressed prices in the future.
As inMorris and Shin (2004), ourmodel can feature strategic complementarities thatmake
safe asset markets endogenously fragile: In some states, the market is well-functioning,
with flight-to-safety dynamics supporting prices, but in other states, the market breaks
down with dash-for-cash dynamics leading to a collapse in prices.

Our model reflects the key characteristics of safe assets — safety and liquidity — as
well as the relevant market structure through the investor types active in the market: First,

1From the international transactions data of the Bureau of Economic Analysis, Table 9.1, International
Financial Transactions for Liabilities to Foreign Official Agencies. Reported similarly in Panel B of Table 9 in
Vissing-Jørgensen (2021).
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there are investors who are risk averse and value the asset for its safety, holding it in a
portfolio together with a risky asset. In times of stress, when fundamentals worsen for
the risky asset (e.g., lower expected dividends), these “safety investors” rebalance their
portfolio to buy more of the safe asset. This behavior captures the classic flight to safety
and has been the focus of most existing analysis of safe assets in times of stress. Second,
there are investors who are subject to liquidity shocks and therefore hold the safe asset for
its liquidity. When faced with an immediate consumption need, these “liquidity investors”
sell the safe asset to raise cash in order to consume. Third, there are dealers who buy and
sell the safe asset and whose main role is to intermediate over time. Dealers are subject
to balance sheet constraints and therefore provide an elastic residual demand for the safe
asset. Because dealers’ demand in the present is affected by inventory they took on in the
past, they provide an important intertemporal link between prices in different periods.

Importantly, even in times of stress, not all liquidity investors suffer liquidity shocks.
This leaves a group of liquidity investors who have to decide whether to sell their assets
in the current environment, or whether to hold on and face the risk of a liquidity shock
in the near future. An individual investor may prefer selling preemptively today if they
expect conditions to deteriorate sufficiently tomorrow. As a group, liquidity investors in-
teract strategically and introduce the potential for fragility. Sales today have a direct effect
on the price today and, through dealer balance sheets, an indirect effect on the price to-
morrow. An individual liquidity investor’s payoff from selling preemptively or holding on
to the safe asset therefore is a function of other liquidity investors’ decision. Depending
on the relative strength of the effect of sales today on the prices today and tomorrow, the
interaction between liquidity investors can feature strategic complementarities: The indi-
vidual investor’s incentive to sell preemptively can be higher if more of the other investors
also sell preemptively.

Our model yields two main results. The first result is that the liquidity role of safe as-
sets together with dealer balance sheet constraints implies that a safe asset market can be
fragile. Whether the market is fragile or stable depends on the degree of liquidity risk,
which governs both the baseline level of non-strategic sales today as well as the likelihood
that a strategic investor is forced to sell tomorrow. An individual investor’s incentive to sell
preemptively is increasing in the degree of liquidity risk, as is the slope of the incentive
with respect to other investors’ sales. For very low liquidity risk, an investor never finds
it optimal to sell preemptively, irrespective of what other investors are doing; the only
equilibrium in this case is for all strategic investors to hold on to the safe asset such that
the only investors selling are those with a genuine liquidity need. For very high liquidity
risk, the opposite is true, and an individual investor finds it dominant to sell preemptively
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such that the only equilibrium is for all liquidity investors to sell. In this case, the safe as-
set market is flooded with sales, including by investors who do not actually have liquidity
needs — a “market run.” For intermediate levels of liquidity risk and under perfect in-
formation, there can be multiplicity with both the hold and the run equilibrium existing.
Using standard global game techniques, we resolve the multiplicity and derive a thresh-
old for liquidity risk such that the unique equilibrium is the hold equilibrium for levels of
liquidity risk below the threshold and the run equilibrium for levels above the threshold.

Our second result is that the safety and liquidity roles of safe assets can interact in such
a way that flight to safety can worsen fragility, making dash for cash more likely. Recall
that in most stress episodes, safety investors form a natural partnership with liquidity in-
vestors as their trades offset. Demand from safety investors absorbs sales from liquidity
investors so that safe asset prices remain stable or even increase. However, the timing of
safety investor demand is key, as it affects the intertemporal tradeoff of strategic liquidity
investors. Safety investor demand early on in a stress episode increases prices contempo-
raneously and in the future by relaxing dealer balance sheets. If the strategic concerns of
liquidity investors are sufficiently strong, then additional demand from safety investors
today can induce liquidity investors to sell today, precisely because the market today has
relatively higher capacity to absorb sales. With sufficient fragility, a flight to safety can
therefore trigger a dash for cash. The relative effects are such that safety investors increase
the incentive to sell if liquidity risk is low and vice versa. Given how the strategic interac-
tion depends on liquidity risk (hold if low, sell if high), this means that safety investors
have an amplification effect on market fragility: When the market is already stable, they sta-
bilize it further (flight to safety prevents a dash for cash); while if the market is already
fragile, they destabilize it even more (flight to safety precipitates a dash for cash).

The behavior of the markets for Treasuries in March 2020 is particularly striking in
contrast to the great financial crisis in 2007–2009 (GFC), during which Treasury markets
rallied and did not feature dysfunction and illiquidity. Our model provides a helpful lens
to understand the differences between these two episodes that lead to such dramatically
different outcomes. First, our model highlights the central role of dealer balance sheet
constraints which are a result of post-GFC regulation such as the SLR. During the GFC,
dealers’ activities in Treasury markets were relatively unconstrained and thus investors
did not need to worry about dealers running out of balance sheet space and Treasury
prices collapsing. Second, the size of the liquidity shock during the Covid crisis appears
to have been much larger. As our analysis shows, very large increases in liquidity risk and
flight to safety can tilt the system into a fragile region in which investors sell strategically.
Because the GFC did not feature dealers constrained by balance sheet costs, and because

5



the shock to liquidity needs was arguably smaller, the Treasury market remained in the
stable region in which flight to safety prevents a dash for cash, which is why the market
behaved as usual despite the tremendous stress in the financial sector. In contrast, inMarch
2020, the liquidity shock was larger and dealers were more constrained, so much so that
the Treasury market became fragile, and flight to safety precipitated a dash for cash. In
sum, our analysis suggests that these episodes did not feature fundamentally different
shocks or shocks of different direction, but rather shocks that differed in degree within
different regulatory environments.

Our analysis has policy implications, in particular, for asset purchase facilities, dealer
balance sheet regulation, and market structure. Fragility in our model hinges on the in-
tertemporal considerations of strategic liquidity investors who compare prices today to
prices tomorrow. In general, there is scope for policy interventions that increase prices
both in the present and in the future. However, due to the intertemporal considerations
and the coordination effects, the timing of policy interventions is important and announce-
ments can have large effects well before the interventions are executed. We show that an
asset purchase facility can have a large effect upon announcement even if it does not be-
come active until a future date by shifting strategic investors from the run equilibrium to
the hold equilibrium, consistent with the evidence of Haddad, Moreira, and Muir (2021).
Similarly, policy interventions that relax dealer balance sheet constraints can be stabiliz-
ing. However, because the strategic incentive to sell is caused by fear of low prices in the
future, effective policy has to relax balance sheet constraints in the future as well.

Finally, ourmodel shows thatmarketswhere trading occurs in a decentralized, sequen-
tial way and where dealers play a large role intermediating flow imbalances over time are
inherently fragile. These elements generate a strategic tradeoffwhere an investor can hope
to receive the average in-run price when selling preemptively but has to worry about bear-
ing the full impact of dealer inventory when being forced to sell in the future. Changes to
market structure that lead tomore pooling of trades and that reduce the role of dealers as a
bottleneck for trade flow can therefore reduce the fragility of safe asset markets. As Duffie
(2020) shows, the growth of the Treasury market since the GFC has greatly outpaced the
capacity of dealers balance sheets and that trend is expected to continue. The strategic
mechanism in our model will therefore become increasingly relevant unless balance sheet
constraints are relaxed. Episodes like March 2020 are likely to become more frequent as
dash for cash motivations become more pronounced.

The rest of the paper proceeds as follows. After discussing related literature, we pro-
vide themodel setup in Section 2.We discuss the strategic interaction of liquidity investors
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in Section 3 and then analyze the equilibriumwithout safety investors in Section 4. In Sec-
tion 5, we add safety investors and derive their ambiguous effect on market fragility. We
discuss policy implications in Section 6 and conclude in Section 7.

Related Literature. In contrast to market runs, bank runs have received much greater
attention (e.g., Diamond and Dybvig, 1983 and Goldstein and Pauzner, 2005) because of
the common pool problem inherent with liquidity transformation. In the case of a mar-
ket run, there is no common pool threatened by illiquidity. The seminal papers on market
runs by Bernardo and Welch (2004) and Morris and Shin (2004) highlight how dealer
constraints can create incentives to front-run the market by selling assets preemptively.
Bernardo and Welch (2004) introduce the intertemporal tradeoff our model relies on, but
their model does not feature strategic complementarities and therefore suffers from inher-
ent multiplicity of equilibria. Our model with strategic complementarities can resolve the
multiplicity with standard global game techniques which allows for continuous compar-
ative statics in the analysis of flight-to-safety demand and policy implications. Morris and
Shin (2004) consider a static model in which strategic complementarities arise because in-
vestors have “stop-loss rules” and will be forced to liquidate if prices fall sufficiently low.
The preponderance of sales in March 2020 were from investors subject to liquidity shocks,
suggesting that a stop-loss mechanism did not drive preemptive sales during this episode.
Allen, Morris, and Shin (2006) show how higher order beliefs can generate “beauty con-
tests” à la Keynes (1936) in asset markets with short-lived investors and imperfect infor-
mation.

The literature on safe assets is large, see e.g. Gorton (2017) for an overview. Krishna-
murthy andVissing-Jørgensen (2012) show that Treasuries are valued both for their safety
and their liquidity by documenting yield spreads both with respect to assets similarly liq-
uid but not safe and assets similarly safe but not liquid (see also Duffee, 1998, Longstaff,
2004, and Greenwood and Vayanos, 2010, 2014). Caballero and Farhi (2017) consider a
model where the “specialness” of public debt is its safety during bad aggregate states and
where safe assets have “negative beta,” as they tend to appreciate in times of aggregate
market downturns, providing investors diversification against aggregate macroeconomic
risks (see alsoMaggiori, 2017, Adrian, Crump, and Vogt, 2019, and Brunnermeier, Merkel,
and Sannikov, 2022). Safe assets valued for their safety appear in amodel of limited partic-
ipation and risk sharing in Gomes and Michaelides (2007) and through special investors
who need safe assets to match liability cash flows in Greenwood and Vayanos (2010).

Safe assets’ liquidity is intimately linked to their safety: when payoffs are (nearly) risk-
less, assets are information-insensitive and thus easily traded “no questions asked” (Gor-
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ton and Pennacchi, 1990, Holmström, 2015, Dang, Gorton, and Holmström, 2015). Holm-
ström and Tirole (1998) model the use of safe assets as a store of value and as insurance
against liquidity shocks. Safe assets valued for their liquidity appear in Vayanos and Vila
(1999) and Rocheteau (2011) as well as the monetarist literature surveyed by Lagos, Ro-
cheteau, and Wright (2017). The premium for moneyness has been studied empirically,
e.g. by Greenwood, Hanson, and Stein (2015), Carlson et al. (2016), and Cipriani and La
Spada (2021) (see also Nagel, 2016, and d’Avernas and Vandeweyer, 2021).

Gorton and Ordoñez (2022) study the interaction of public and private provision of
safe assets used as store of value and as collateral (see also Holmström and Tirole, 2011,
Stein, 2012, Gorton, Lewellen, and Metrick, 2012, Sunderam, 2014 and Krishnamurthy
and Vissing-Jørgensen, 2015). Caballero and Krishnamurthy (2008) study flight to quality
episodes triggered by uncertainty shocks. He, Krishnamurthy, and Milbradt (2019) study
the roles of strategic complementarities and substitutes among investors in determining
which asset becomes the safe asset via coordination (see also Farhi and Maggiori, 2017).
For recent empirical analysis of safe assets, both current and historical, see Chen et al.
(2022) and Choi, Kirpalani, and Perez (2022).

The role of dealers and slow-moving capital more generally in short-term price dislo-
cations is introduced, e.g. in Duffie (2010). Fontaine and Garcia (2012) and Hu, Pan, and
Wang (2013) show the effects on liquidity in Treasurymarkets (see also Vayanos and Vila,
2021). Adrian, Boyarchenko, and Shachar (2017) specifically consider the effects of dealer
balance sheet constraints on bond market liquidity. Goldberg and Nozawa (2021) show
that dealer inventory capacity is a key driver of liquidity in corporate bond markets (see
also Bruche and Kuong, 2021).

The market turmoil in the spring of 2020 and the effects of emergency facilities have
been documented in detail, e.g. by Vissing-Jørgensen (2021) and He, Nagel, and Song
(2022) for Treasuries and Haddad, Moreira, and Muir (2021) and Boyarchenko, Kovner,
and Shachar (2022) for corporate bonds (see alsoD’Amico, Kurakula, and Lee, 2020, Flem-
ing et al., 2021, Nozawa and Qiu, 2021, Aramonte, Schrimpf, and Shin, 2022, and Haugh-
wout, Hyman, and Shachar, 2022). For detailed analysis of market liquidity conditions,
see Fleming and Ruela (2020), Kargar et al. (2021), O’Hara and Zhou (2021). The role of
mutual funds in particular as large sellers of safe assets has been studied by Falato, Gold-
stein, and Hortaçsu (2021) and Ma, Xiao, and Zeng (2022). On the role of hedge funds,
see e.g. Barth and Kahn (2021).
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2 Model Setup

The model is set in two periods t = 0, 1 and has three types of agents and two types of
assets, a safe asset and a risky asset. The safe asset, which is the focus of the analysis,
has a fundamental value of 1 and is traded among the agents in both periods. Among
the agents, there are risk averse investors who hold portfolios of the safe asset and the
risky asset (“safety investors”), risk neutral investors who hold the safe asset as protection
against liquidity shocks (“liquidity investors”), and risk neutral dealers who participate
in the safe asset market and are subject to balance sheet costs. All agents have a discount
rate of zero and act competitively, and there is a measure one of each type. All asset prices
are determined in equilibrium. We defer discussion of the safety investors until Section 5.

Liquidity Investors. Liquidity investors start out holding one unit of the safe asset and
are subject to i.i.d. liquidity shocks in both periods. If a liquidity investor is hit by the
shock, they need to consume immediately and sell their entire holding of the safe asset.
The probability of a liquidity shock at date 0 is s ∈ (0, 1) so, by the law of large numbers, a
fraction s of liquidity investors are forced to sell at date 0 at price p0. Among the remaining
fraction 1− s, each investor has to decide whether to also sell at date 0, receiving p0 for
sure, or to hold on to the safe asset and face liquidity risk at date 1, again with probability
s.2 Investors who hold and then suffer a liquidity shock at date 1 are forced to sell at price
p1. Investors who don’t suffer a shock at either date receive a continuation value v > 1
that represents, e.g. future investment opportunities (Holmström and Tirole, 1998, 2001).

The liquidity shock probability s is drawn at the beginning of date 0 from a distribution
F on (0, 1). In order to apply global game techniques, we assume that there is imperfect
information about s and each individual investor i observes an idiosyncratic signal ŝi =

s + σεεi, where the mean-zero signal noise εi is i.i.d. across all i with distribution Gε and
σε > 0. We ultimately focus on the limit of vanishing signal noise, σε → 0 and therefore
treat s as non-random in the exposition exceptwhen deriving the global game equilibrium.

Examples of real-world liquidity investors we have in mind include foreign official
agencies that may face sudden liquidity needs due to foreign exchange interventions or
mutual funds that may face sudden liquidity needs due to investor withdrawals. Both
were among the largest sellers of Treasuries inMarch 2020 and their sales were historically
unprecedented (Figure 1, Panel A). While we focus on the strategic interaction among liq-
uidity investors, there are potential additional layers of strategic interaction underlying

2We can also allow for different liquidity risk s0 and s1 at dates 0 and 1, respectively, but focus on the case
of one common liquidity risk s for expositional clarity.
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the liquidity shocks, both in the foreign exchange context (Morris and Shin, 1998) and in
the mutual fund context (Chen, Goldstein, and Jiang, 2010).

Dealers. Dealers value the safe asset at its fundamental value of 1 but face convex balance
sheet costs for any inventory q given by cq2 with c > 0 . Dealers start out with no inventory
and compete for sales such that they make zero profits. At date 0, the price p0 at which
dealers take on inventory qD

0 is therefore given by the indifference condition

(1− p0) qD
0 − c

(
qD

0

)2
= 0,

which implies a demand from dealers given by

qD
0 =

1
c
(1− p0) . (1)

At date 1, dealers start with inventory qD
0 so the price p1 at which they take on additional

inventory qD
1 is given by the indifference condition

(1− p0) qD
0 + (1− p1) qD

1 − c
(

qD
0 + qD

1

)2
= (1− p0) qD

0 − c
(

qD
0

)2
.

which results in demand
qD

1 =
1
c
(1− p1)− 2qD

0 . (2)

Note that our framework does not restrict dealer demand at date 1 to be positive. If there
is additional demand such as from an asset purchase facility discussed in Section 6, we
can have dealers sell part of their date-0 inventory such that qD

1 < 0. Since the quadratic
balance sheet costs are symmetric around zero, we can also consider negative dealer de-
mand at date 0, e.g. if they start with an initial endowment of inventory or if they are able
to go short the safe asset.

We introduce balance sheet constraints in the spirit of the Supplementary Leverage
Ratio (SLR), an unweighted capital requirement for banks that was introduced as part of
the Basel III reforms after the GFC and became effective in 2014. Sine the largest dealers in
the U.S. are part of bank holding companies, the SLR constrains their activity, including in
the Treasury market. Importantly, both the direct holdings of Treasuries and reverse repo
positions take up dealers’ balance sheet space and are subject to the SLR (for more details,
see, e.g. Duffie, 2018). Boyarchenko et al. (2020) show that the constraints pass through to
unregulated arbitrageurs who rely on the balance sheet of regulated dealers.

These constraintsmatter inmarkets for safe assets such as Treasuries, as they rely heav-
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ily on dealers for intermediating trades. Brain et al. (2019) document that Treasury mar-
ket trading volume is split roughly evenly between dealer-to-client trades and inter-dealer
trades; this suggests that, on average, a trade originatingwith one investor and endingwith
another investor passes through two dealers. The effects of balance sheet constraints are
also quantitatively meaningful. For example, He, Nagel, and Song (2022) show that Trea-
sury and repo spreads are significantly wider in the post-SLR period. In March 2020, the
ability of dealers to provide liquidity in Treasuries was severely impaired as market depth
dropped by a factor ofmore than 10 in the inter-dealermarket (Duffie, 2020)while trading
volume roughly doubled, reaching historically unprecedented levels (Fleming and Ruela,
2020). Furthermore, the SLR constraint was initially not alleviated by the Fed’s purchases
of Treasuries because they were exchanged for reserves which, though perfectly liquid
and safe, are treated the same under the SLR. Only on April 1 did the Fed temporarily
exempt both Treasuries and reserves from the SLR rule. We return to these issues in our
discussion of policy implications in Section 6.

For tractability, we model balance sheet constraints as a convex function of net dealer
demand and abstract from bid-ask spreads. In reality, dealers can rarely net out offsetting
trades instantaneously, and so sales or purchases that are not perfectly synchronized at
the same dealer will increase balance sheet costs across the financial system, making the
role of balance sheet constraints more pronounced. While we have modeled balance sheet
costs as convex, in reality the SLR may at times impose hard quantity constraints with
effectively infinite costs of expanding balance sheet further (Duffie, 2020). To the extent
that regulatory constraints at times become totally binding, our results would be further
strengthened. In sum, our modeling decisions bias the analysis toward less significant
balance sheet costs.

3 Strategic Interaction of Liquidity Investors

Denote by α ∈ [0, 1] the fraction of strategic liquidity investors who decide to sell at date 0.
Together with the non-strategic sales s from investors who receive a liquidity shock, total
sales of safe assets at date 0 are

x0 = s + (1− s) α.
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At date 1, only the remaining strategic investors who receive a liquidity shock sell their
safe assets, resulting in total sales

x1 = s (1− s) (1− α) .

Given a fraction α of strategic investors preemptively sell at date 0, we denote by pe
0(α)

the price an investor expects to receive at date 0 from also selling preemptively and by
pe

1(α) the price the investor expects to receive at date 1 if forced to sell by a liquidity shock
(we will derive the relevant expressions for pe

0(α) and pe
1(α) in Sections 4 and 5). A strate-

gic liquidity investor compares the payoff from selling early, pe
0(α), to the expected payoff

from holding, spe
1(α) + (1− s) v.

The equilibria of the game among strategic investors are governed by the payoff gain
from preemptively selling at date 0:

π(α) = pe
0(α)−

(
spe

1(α) + (1− s) v
)

.

Under complete information, there are three candidates for Bayesian Nash equilibria:

Hold equilibrium: If the incentive to sell is negativewhen no other strategic investors sell,
that is if π(0) < 0, then it is a pure-strategy equilibrium for no strategic investors to
sell (α∗ = 0).

Run equilibrium: If the incentive to sell is positive when all other strategic investors sell,
that is if π(1) > 0, then it is a pure-strategy equilibrium for all strategic investors to
sell (α∗ = 1).

Mixed equilibrium: If the incentive to sell is zero when a fraction of strategic investors
sell, that is if π(α∗) = 0 for α∗ ∈ (0, 1), then it is a mixed-strategy equilibrium for all
strategic investors to sell with probability α∗.

In the hold equilibrium, the safe assetmarket is stablewith only those investors sellingwho
have a genuine need for liquidity. Their trades will naturally offset with safety investors
reallocating into the safe asset and dealers will take residual supply into inventory. The
hold equilibrium exists if

pe
0(0) < spe

1(0) + (1− s) v.

Since liquidity investors’ continuation value v is greater than 1 and prices are bounded
above by the safe asset’s fundamental value of 1, the hold equilibrium exists as long as,
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without any strategic sales, the price at date 1 is not considerably lower than the price at
date 0 and liquidity risk at date 1 is sufficiently low.

In the run equilibrium, the safe asset market suffers a flood of sales, including sales
by strategic investors who do not have a genuine need for liquidity at date 0. The run
equilibrium exists and the safe asset market is fragile if

pe
0(1) > spe

1(1) + (1− s) v,

that is if, with strategic sales, the price at date 1 is expected to be considerably lower than
the price at date 0 and liquidity risk at date 1 is sufficiently high. In this case, strategic
investors prefer to sell early rather than risk having to sell at a worse price in case they
suffer a liquidity shock at date 1. The identifying feature of a run equilibrium are these
preemptive sales by investors who do not face a genuine liquidity need and who therefore
do not “consume” the proceeds of their sales. As noted in the introduction, the detailed
analysis of Treasury markets in March 2020 by Vissing-Jørgensen (2021) provides sugges-
tive evidence of such preemptive sales indicative of a run equilibrium: Among the largest
sellers, foreign official agencies sold $196 billion of Treasury bonds but “consumed” only
24% of the proceeds in the form of a $48 billion reduction in their total U.S. Dollar assets.

There is the potential for both pure-strategy equilibria to exist if the incentive to sell
π(α) is increasing in the fraction of strategic investors who sell. In such a situation of
strategic complementarities, the safe asset market can break down due to self-fulfilling
beliefs. Each individual strategic investor sells early only because the expect other strate-
gic investors to sell early and the run on the safe asset market could be avoided if beliefs
were coordinated instead on the hold equilibrium.

4 Equilibrium without Safety Investors

Wefirst analyze themodel without safety investors. This allows us to focus on the strategic
interaction among liquidity investors and how it is affected by dealer balance sheet costs.

4.1 Market Clearing and Expected Prices

With only dealers available to buy assets, the demand at date 0 can be rewritten from (1)
as

p0(q0) = 1− cq0. (3)
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Similar to Morris and Shin (2004), we assume that trades are executed sequentially and,
for aggregate sales x0, each seller’s position in the queue is uniformly distributed on [0, x0].
Each investor therefore expects to sell at the average in-run price pe

1 = 1− cx0/2.3 Substi-
tuting in total supply x0 = s + (1− s) α, we have an expected payoff from selling at date 0
given by

pe
0(α) = 1− c

2
(
s + (1− s) α

)
. (4)

The expected price at date 0 is decreasing in the strategic investors’ sales α but also in the
non-strategic sales s which directly reflect the severity of the liquidity risk at date 0.

At date 1, dealer demand from (2) can be rewritten as

p1(qD
0 , q1) = 1− 2cqD

0 − cq1, (5)

and, for aggregate sales x1, each seller expects to receive the average price pe
1 = 1− 2cqD

0 −
cx1/2. Substituting in total supply x1 = s (1− s) (1− α) as well as dealer inventory which
equals total date 0 supply x0, we have an expected payoff from selling at date 1 given by

pe
1(α) = 1− 2c

(
s + (1− s) α

)︸ ︷︷ ︸
date-0 inventory

− c
2

s (1− s) (1− α)︸ ︷︷ ︸
date-1 sales

. (6)

What is the effect of strategic sales α at date 0 on the price at date 1? First, α has a positive
effect on pe

1 through sales at date 1 which come from the investors who didn’t sell at date
0 and then receive a liquidity shock at date 1. If more strategic investors sell at date 0, then
there are fewer left at date 1 who can suffer a liquidity shock and sell so the price will
be higher. Second, strategic sales α at date 0 have a negative effect on the price at date 1
through dealer inventory. If dealers have to absorb more sales at date 0 then their residual
demand at date 1 and therefore the equilibrium price will be lower.

Figure 2 illustrates demand at date 0 and date 1 and the resulting expected prices.
PanelA showsdemand at date 0, p0(q0) fromequation (3), anddemand at date 1, p1(qD

0 , q1)

from equation (5), for two different levels of inventory qD
0L < qD

0H. Given the simple struc-
ture of ourmodel, demand at both dates is linear with the same slope of 1/c and inventory
qD

0 results in a parallel shift of demand at date 1. Panel B shows the expected prices a strate-
gic investor expects to receive at date 0 and at date 1, as a function of the fraction α of other
strategic investors who sell at date 1, pe

0(α) from equation (4) and pe
1(α) from equation (6),

respectively. In contrast to the demands Panel A, the expected prices in Panel B have dif-
3We show in Appendix C that our results maintain if all trades are pooled and executed jointly as long

as balance sheet constraints are sufficiently tight.
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A: Demand at dates 0 and 1.
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B: Expected prices at dates 0 and 1.
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Figure 2: Demand and expected prices at date 0 and date 1. Panel A shows demand at date
0 and demand at date 1 for two levels of inventory qD

0L < qD
0H. Panel B shows expected prices

at date 0 and date 1. Parameters: c = 0.25, qD
0L = 0.3, qD

0H = 0.8, s = 0.5.

ferent slopes as strategic sales α at date 0 have greater impact on the expected price at date
1 than at date 0.

Because strategic sales α move sales from date 1 to date 0, they have a direct negative
effect on pe

0 with a coefficient −1
2 c (1− s) and direct positive effect on pe

1 with a coeffi-
cient 1

2 c (1− s) s. These direct effects are stabilizing since they make selling at date 0 less
attractive and selling at date 1 more attractive. However, strategic sales α also affect pe

1

indirectly with a coefficient −2c (1− s) through inventory on dealer balance sheets. This
indirect effect is destabilizing since it makes selling at date 1 less attractive.

Why is the destabilizing indirect effect of strategic sales so much stronger than the
stabilizing direct effect, at a ratio of 2 to 1/2? For two reasons: First, existing inventory qD

0

has twice the price impact on dealer demand at date 1 than new inventory q1. Second,
while investors anticipate the full effect of existing inventory in case they have to sell at
date 1, they internalize only half the effect of sales on price at date 0 since they expect to
sell at the average in-run price. We show in Appendix C that our results maintain if all
trades are pooled and executed jointly as long as balance sheet constraints are sufficiently
tight.
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4.2 Incentive to Sell Preemptively

Using the expressions for pe
0 and pe

1, we can derive the payoff gain π(α) which captures
the incentive of an individual strategic liquidity investors to sell at date 0 if a fraction α of
other strategic investors sells:

π(α) =

pe
0(α)︷ ︸︸ ︷

1− c
2
(
s + (1− s) α

)
− s
(

1− 2c
(
s + (1− s) α

)
− c

2
s (1− s) (1− α)

)
︸ ︷︷ ︸

pe
1(α)

− (1− s) v. (7)

As discussed in Section 3, the level and slope of the payoff gain determine the equilibrium
(or equilibria) of the strategic interaction among liquidity investors.

Proposition 1 (Strategic liquidity investors’ incentive to preemptively sell at date 0).

• There are strategic complementarities if and only if liquidity risk is sufficiently high:

π′(α) > 0 ⇔ (4− s) s > 1

⇔ s > s̃ ≡ 2−
√

3 ≈ 0.27.

• Higher liquidity risk uniformly increases the incentive to sell, ∂π/∂s > 0.

• Greater dealer balance sheet costs increase the incentive to sell if there are strategic comple-
mentarities, π′(α) > 0⇒ ∂π/∂c > 0.

• A greater continuation value uniformly decreases the incentive to sell, ∂π/∂v < 0.

Proof. See Appendix B.

The key determinant of the strategic interaction among liquidity investors is the effect
of other strategic investors’ sales α on an individual investor’s selling incentive π. The
safe asset market is fragile if there are strategic complementarities π′(α) > 0, that is if an
individual investor has a greater incentive to sell if more of the other investors are selling.

As discussed in Section 4.1, strategic sales α have a stabilizing direct effect that de-
creases pe

0 and increases pe
1, and a destabilizing indirect effect through dealer balance

sheets that decreases pe
1 — the latter effect considerably stronger with a ratio of 2 to 1/2.

When evaluating the effects on the incentive to sell π, we have to account for the fact that
effects on pe

1 are discounted by the liquidity shock probability s since they are only relevant
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if the investor actually suffers a liquidity shock at date 1. We therefore have a destabilizing
indirect effect of α on the incentive to sell π with a coefficient

2c (1− s) s,

and a stabilizing total direct effect with a coefficient (in absolute value)

1
2

c (1− s)
(
1 + s2),

resulting in a ratio of
2s

1
2

(
1 + s2

) .

Consider the relative strength of the two effects and how they depend on the mag-
nitude of liquidity risk s. The stabilizing effect in the denominator is present whether or
not there is liquidity risk, i.e. the coefficient is non-zero even for s = 0 and then increases
slowly with liquidity risk, as it is quadratic in s — combining the individual investor’s
date-1 liquidity risk and the aggregate date-1 liquidity risk. In contrast, the destabilizing
effect through dealer balance sheets is linear in s —reflecting only the individual investor’s
risk of facing the constrained dealers — and it increases faster due to the stronger effect of
strategic sales on pe

1 than on pe
0. For sufficiently high s, the destabilizing effect dominates,

resulting in strategic complementarities.
Besides the slope π′(α), higher liquidity risk also increases the level of the incentive to

sell. This is intuitive, as higher s for given αmeans additional non-strategic sales as well
as strategic sales at which load up dealer balance sheets at date 0 and destabilize the mar-
ket. Consistent with the important role dealer balance sheets play for market fragility, they
tend to increase the incentive to sell preemptively and do so for sure if strategic comple-
mentarities are present. In sum, the inventive to sell at date 0 and therefore the potential
for market fragility is increasing in how much liquidity safety investors face and in the
balance sheet constraints faced by dealers who absorb sales at both dates.

Figure 3 illustrates the incentive to sell and the resulting equilibria of the complete in-
formation game for different levels of liquidity risk. For low s, π(α) is uniformly negative
and decreasing, and the unique equilibrium is the hold equilibrium (α∗ = 0). As s in-
creases, the level and slope of π(α) increase, until it first becomes flat at s = s̃ ≡ 2−

√
3

and then intersects the horizontal axis, at which point the game has multiple equilibria
(hold, sell and mixed). For sufficiently high s, π(α) is uniformly positive and the unique
equilibrium is for everyone to sell (α∗ = 1). Note that Figure 3 shows strategic comple-

17



0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0

0.1

0.2

Strategic sales α

In
ce
nt
iv
e
to
se
ll
π
(α

)
s  0.2

s  2- 3

s  0.5

s  0.7

Figure 3: Incentive to sell and equilibria. The figure shows the payoff gain π(α) for different
values of liquidity risk s. Circles indicate equilibria of the game under complete information.
Parameters: c = 0.25, v = 1.2.

mentarities arising at a point where the payoff gain is negative, that is

π(α | s = s̃) =
c
2

s̃2 − (1− s̃) (v− 1) < 0,

so the dashed horizontal line is below the horizontal axis. In the following, we will focus
on this case by imposing the following assumption on c and v.

Assumption 1. We assume that c
2 s̃2 − (1− s̃) (v− 1) < 0.

Consistent with the comparative statics in Proposition 1, the point at which the payoff
gain π changes from decreasing to increasing is more likely to be below the horizontal axis
if v is larger or c is smaller. What happens if Assumption 1 is not satisfied? In that case, the
unique equilibrium is still to hold for sufficiently small s and to sell for sufficiently large s.
However, since the payoff gain crosses the horizontal axis with negative slope, the unique
equilibrium is the mixed strategy equilibrium for an intermediate range of s, similar to
the case of endogenous liquidity shocks from margin constraints in Bernardo and Welch
(2004). Since our focus is on the potential for fragility, we focus the analysis on the case
where multiple pure-strategy equilibria arise (Assumption 1).

4.3 Global Game and Unique Equilibrium

Under complete information, there can be multiple equilibria in the strategic interaction
among liquidity investors— a hold equilibrium and a run equilibrium (and amixed equi-
librium). We now introduce noise into investors’ payoffs to break the common knowledge
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underpinning the multiplicity and use global game techniques to derive a unique equilib-
rium. In particular, we assume that investor i does not observe the degree of liquidity risk
s perfectly, instead receiving a signal ŝi = s + σεεi with εi i.i.d. across all i and σε positive
but arbitrarily small. As a result, a strategic investor faces fundamental uncertainty about
the likelihood of a liquidity shock, s, as well as strategic uncertainty about the fraction of
other strategic investors who sell preemptively, α.

We can write the payoff gain explicitly as a function of the fundamental s as well as
the fraction of strategic investors who sell, π(α, s). Making use of standard global game
results (e.g. Morris and Shin, 2003), we can derive a unique Bayesian Nash equilibrium
for the game among strategic investors.

Proposition 2 (Unique global game equilibrium). For signal noise σε → 0, the unique Bayesian
Nash equilibrium among strategic investors is in switching strategies around a threshold s∗ defined
by ∫ 1

0
π(α, s∗) dα = 0.

For liquidity risk below the threshold, s < s∗, all strategic investors hold on to their safe assets and
the market is stable. For liquidity risk above the threshold, s > s∗, all strategic investors sell their
safe assets and the market suffers a run.

Proof. See Appendix B.

While Appendix B contains the full proof, we provide the following outline for in-
tuition. An investor who receives a signal exactly equal to the switching point has to be
indifferent between holding and selling,

E
[
π(α, s)

∣∣ ŝi = s∗
]
= 0, (8)

where the expectation is with respect to both α and s. Note from equation (7) that π(α, s)
is linear in α and cubic in s. We have E[s | ŝi = s∗] = s∗, and, in the limit σε → 0, we have
E
[
s2 | ŝi = s∗

]
→ (s∗)2 and E

[
s3 | ŝi = s∗

]
→ (s∗)3, so fundamental uncertainty vanishes,

and strategic uncertainty in the form of the distribution of α becomes uniform on [0, 1].
We therefore have

lim
σε→0

E
[
π(α, s)

∣∣ ŝi = s∗
]
=
∫ 1

0
π(α, s∗) dα,

where
∫ 1

0 π(α, s) dα is a cubic polynomial in s. We show in the proof of Proposition 2 that
∂
∂s

∫ 1
0 π(α, s) dα > 0 with

∫ 1
0 π(α, 0) dα < 0 and

∫ 1
0 π(α, 1) dα > 0 so there is a unique

threshold s∗ that satisfies the indifference condition
∫ 1

0 π(α, s∗) dα = 0.
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Figure 4: Effect of balance sheet costs onmarket stability. The figure showsmarket stability
measured by the equilibrium threshold s∗ as a function of the dealer balance sheet cost c with
v = 1.2.

The equilibrium switches from hold to sell when liquidity risk s crosses the threshold
s∗ and a higher threshold implies a larger range of liquidity risk [0, s∗] where the market
remains in the hold equilibrium.The threshold s∗ is therefore ameasure ofmarket stability
and we can refer to a market with higher s∗ as more stable.
Corollary 1. Market stability as measured by the global game threshold s∗ is decreasing in dealer
balance sheet costs, ∂s∗/∂c < 0 and increasing in liquidity investors’ continuation value, ∂s∗/∂v >

0.

Proof. See Appendix B.

Market stability naturally inherits the properties of the incentive to sell listed π in
Proposition 1. Consider the effect of dealer balance sheet costs c on market stability s∗

illustrated in Figure 4. If dealers faced no balance sheet costs (c = 0), the market would
be perfectly stable (s∗ = 1) and strategic investors would never sell preemptively, even
for very high liquidity risk s. However, as balance sheet costs c increase from zero, market
stability s∗ decreases rapidly and then levels off at higher values of c.

The threshold equilibrium implies that the behavior of strategic liquidity investors and
therefore the equilibrium price changes discontinuously around the threshold s∗. In par-
ticular, total supply at date 0 is s for s < s∗ and one for s > s∗ so the equilibrium price
from equation (3) becomes

p∗0(s) =

1− cs for s < s∗,

1− c for s > s∗.
(9)
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Figure 5: Effect of dealer balance sheet costs on equilibrium price. The figure shows the
equilibrium price at date 0 p∗0 as a function of liquidity risk s for different values of dealer
balance sheet cost c with v = 1.2.

Figure 5 illustrates the equilibrium price p∗0 . When liquidity risk is very low, all strate-
gic investors hold on to their safe assets and only investors who receive a liquidity shock
sell — the equilibrium price is therefore steadily decreasing in s, representing the sales of
non-strategic investors. However, once liquidity risk crosses the threshold s∗, all strategic
investors preemptively sell their safe assets — the market is flooded and the equilibrium
price drops discontinuously. Figure 5 further illustrates the equilibrium price for two dif-
ferent levels of dealer balance sheet costs c. As balance sheet costs increase, the threshold
s∗ and therefore market stability decreases (Corollary 1). In addition, the drop in market
prices at the discontinuity is much larger for higher balance sheet costs. This is due to the
fact that the drop in equation (9) is given by c (1− s∗), where c and s∗ interact multiplica-
tively.

4.4 Investor Welfare and Inefficient Runs

Because liquidity investors value the safe asset at v > 1 when held to maturity, selling the
asset without a genuine liquidity need is generally inefficient. As a result, our model fea-
tures panic-based run equilibria in which liquidity investors would be better off if they
could coordinate to hold instead. However, the welfare-consequences of the hold and
run equilibria are somewhat subtle because investors who would have suffered liquid-
ity shocks at date 1 can be better off if they sell in a panic-based run equilibrium at date
0. Nonetheless, our model predicts that the market will always feature run equilibria at
times when investors would be better off if all investors could coordinate to hold.
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If all strategic investors sell at date 0, they (and the non-strategic investors) receive
an expected payoff pe

0(α = 1) = 1− c/2. Expected payoffs if all strategic investors hold
are more complicated: investors with a liquidity shock at date 0 receive pe

0(α = 0) =

1 − (c/2) s; investors with a liquidity shock at date 1 receive pe
1(α = 0) = 1 − 2cs −

(c/2) s (1− s); and investors that do not receive a liquidity shock at either date receive
v. Altogether, the difference in investor welfare between the hold allocation and the run
allocation is a function of liquidity risk s and given by

∆(s) ≡ s
(

1− c
2

s
)
+ (1− s) s

(
1− 2cs− c

2
s (1− s)

)
+ (1− s)2 v−

(
1− c

2

)
. (10)

The first three terms are the payoffs in the hold allocation (α = 0) and the last term is the
payoff in the run allocation (α = 1).

With no liquidity shocks, we have ∆(0) = v− 1+ c/2 > 0, which includes the elevated
value of the asset plus the saved balance sheet cost. With guaranteed liquidity shocks, we
have ∆(1) = 0 since all investors are forced to sell early — there is no one who could hold.
However, ∆(s) is a polynomial of degree 4 and not necessarily strictly positive for s ∈ [0, 1].
Figure 6A plots ∆(s) for different values of the balance sheet cost c and illustrates that ∆(s)
has a root ŝ ∈ (0, 1) for c > 0, so there is a range of s near 1 where ∆(s) < 0, i.e. where
welfare is higher in the run allocation.

How can the run allocation welfare-dominate if liquidity investors value the safe asset
at v > 1 and the price they sell at is strictly less than 1? The issue is precisely the main
feature of our model: investors’ fear of being forced to liquidate at date 1 at depressed
prices. In a hold allocation, a fraction (1− s) s of investors will be forced to sell at date 1,
after a fraction s have already sold at date 0. We have already noted in Proposition 1 that,
for high s, investors would prefer to sell early, guaranteeing pe

0, even if the current price is
depressed by strategic sales from other investors — and this is all the more so in a hold
allocation with no strategic sales. Thus, with sufficient liquidity risk, agents are better off
selling early, when prices are high, rather than in the future, when dealers’ balance sheets
are bloated.

While the welfare difference ∆(s) compares the hold and run allocations, only one of
the two is an equilibrium for any level of s: hold for s below the global game threshold s∗

and sell for s above s∗. An important question therefore is whether our model features in-
efficient run equilibria, with investors selling strategically when the hold allocation would
have yielded higher welfare. This amounts to determining whether the welfare difference
∆(s) is positive for s at or above the threshold s∗ or equivalently, whether s∗ < ŝ.

Proposition 3 (Inefficient Runs). The model features inefficient run equilibria in which investors
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A: Welfare gain from hold allocation.
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B: Region of inefficient runs.
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Figure 6: Investor welfare and inefficient runs. Panel A shows the difference in welfare be-
tween the hold and run allocations as a function of liquidity risk s for different values of
dealer balance sheet cost c. Panel B shows thewelfare threshold ŝ and the equilibrium thresh-
old s∗ as a function of dealer balance sheet cost c. The shaded region indicates the “panic
region”: the values of liquidity risk s such that the global game features a run equilibrium
but the hold equilibrium leads to higher welfare. Parameters: v = 1.2.

would be better off coordinating on the hold allocation. In particular, we have s∗ < ŝ and therefore
∆(s) > 0 for s ∈ (s∗, ŝ).

Proof. See Appendix B.

Figure 6B illustrates the result. The figure plots the equilibrium threshold s∗ and the
welfare cutoff ŝ as functions of the dealer balance sheet cost c. The shaded region plots the
“panic region”: the values of liquidity risk s in which the global game features a run equi-
librium but the hold allocation would lead to higher welfare. Outside the shaded region,
agents coordinate on the equilibrium that leads to highest welfare. Our results imply that
there is scope for policy in order to shrink the inefficient (shaded) region by increasing s∗.
By decreasing the frequency of the run equilibrium, policy could tilt outcomes in favor of
higher welfare (the hold equilibrium) whenever liquidity risk is not too high.

5 Equilibrium with Safety Investors

Wenow introduce a second type of investorswho are risk averse and hold a portfolio of the
safe asset and the risky asset. These “safety investors” are subject to aggregate shocks to
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the expected payoff of the risky asset which lead them to shift their portfolio composition.
We are interested in the situation where, in a bad state of the world, safety investors in-
crease their holdings of the safe asset, potentially offsetting the flow of sales from liquidity
investors.

Our modeling of safety investors is deliberately simple in order to integrate them into
the model of strategic interaction among liquidity investors. In principle, safety investors
could be active both at date 0 and at date 1. Additional safe asset demand at date 1 un-
ambiguously increases the price at date 1 which reduces the incentive to sell preemptively
and has a stabilizing effect on the strategic interaction at date 0. In contrast, additional
demand at date 0 increases both the price at date 0 as well as the price at date 1 — by
reducing dealer inventory — with an ambiguous overall effect on market stability at date
0. We therefore restrict attention to the case where safety investors are active only at date
0. Appendix D discusses the general case.

5.1 Safety Investors’ Safe Asset Demand

Safety investors’ utility is linear in consumption at date 0 and quadratic in future wealth,

u(c0, w) = c0 + w− 1
2

κw2,

where the curvature parameter κ > 0 commingles risk aversion and intertemporal substi-
tution andwe assume w < 1/κ. In addition to the safe asset with future payoff 1, there is a
risky asset with future payoff z distributed according to Hz where we denote the expected
payoff as µz =

∫
z dHz(z) and the variance as σ2

z =
∫

z2 dHz(z)− µ2
z.

Given initial wealth w0, safety investors choose consumption c0 and a portfolio with
holdings qS

0 of the safe asset and qz of the risky asset subject to the budget constraint c0 +

p0qS
0 + pzqz ≤ w0 to maximize E[u(c0, w)] where future wealth is given by w = q0 + zqz.

After substituting in for c0 using the budget constraint, we have first-order conditions for
q0 and qz given by

0 = E
[
1− κ (q0 + zqz)

]
− p0

= 1− κ (q0 + zqz)− p0,
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and

0 = E
[
z− κ (q0 + zqz) z

]
− pz

= µz − κ
(

µzq0 +
(

µ2
z + σ2

z

)
qz

)
− pz,

which are both linear in q0 and qz. Solving, we arrive at safety investors’ demand for the
safe asset and the risky asset given by

q0 =
1

κσ2
z

(
σ2

z + µz pz −
(

µ2
z + σ2

z

)
p0

)
qz =

1
κσ2

z
(µz p0 − pz) ,

while their consumption at date 0 is given as the residual c0 = w0 − (pzqz + p0q0).
To close the model, we assume that safety investors have to hold the entire supply

Z > 0 of the risky asset, i.e. qz = Z. In this case, the risky asset price is pz = µz p0 − κσ2
z Z

and, substituting in, safety investors’ demand for the safe asset simplifies to

qS
0 =

1
κ
(1− κµzZ− p0) , (11)

which is linear in p0 and has a similar structure to dealers’ demand in equation (1). For
ease of exposition, we write safety investors’ demand as

qS
0 = a− bp0,

with a = 1/κ− µzZ and b = 1/κ. We are interested in shocks to the risky asset’s expected
payoff µz, which enter safety investors’ safe asset demand only through the intercept a. A
decrease in µz then is equivalent to an increase in a.

5.2 Effect of Safety Investors on Market Stability

Combining the demand from dealers, qD
0 = 1

c (1− p0), with the demand from safety in-
vestors, qS

0 = a− bp0, total demand for safe assets at date 0 can be written as

p0(q0) =
1 + ac
1 + bc

− c
1 + bc

q0. (12)
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With total supply of x0 = s + (1− s) α, a liquidity investor who sells at date 0 expects to
receive

pe
0(α) =

1 + ac
1 + bc

− 1
2

c
1 + bc

(
s + (1− s) α

)
.

An increase in the additional demand from safety investors (higher a) uniformly increases
the expected price.

At date 1, only dealers demand the safe asset so demand is unchanged from equa-
tion (5) in Section 4. However, dealer inventory is no longer the entire date-0 supply x0

as some of these sales have been absorbed by safety investors rebalancing their portfolios.
Specifically, dealer inventory is given by

qD
0 =

1
c
(
1− p0(x0)

)
=

1
c x0 − b

c
(
1− a

b
)

1
c + b

,

while safety investors absorb

qS
0 = b

( a
b
− p0(x0)

)
=

bx0 +
b
c
(
1− a

b
)

1
c + b

.

Comparing the expressions for qD
0 and qS

0 , we see that total supply x0 is split among dealers
and safety investors, first, proportional to their respective price sensitivities 1/c and b and,
second, based on the difference in their respective baseline valuations of 1 and a/b.

Combining dealer demand at date 1 from equation (5) with inventory qD
0 and date-1

supply x1 = s (1− s) (1− α), a liquidity investor who sells at date 1 expects to receive

pe
1(α) = 1− 2c

s + (1− s) α + b− a
1 + bc︸ ︷︷ ︸

date-0 inventory

− c
2

s (1− s) (1− α)︸ ︷︷ ︸
date-1 sales

.

As in the case without safety investors in Section 4, strategic sales α at date 0 have both a
direct positive effect on the expected price at date 1 — by reducing the mass of liquidity
investors left at date 1 who can suffer a liquidity shock and sell — as well as an indirect
negative effect through dealer inventory.

Our focus now is how changes in additional sales a affect the two expected prices and
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the strategic interaction of liquidity investors captured by the payoff gain:

π(α, s) =

pe
0(α)︷ ︸︸ ︷

1 + ac
1 + bc

− 1
2

c
1 + bc

(
s + (1− s) α

)
− s
(

1− 2c
s + (1− s) α + b− a

1 + bc
− c

2
s (1− s) (1− α)

)
︸ ︷︷ ︸

pe
1(α)

− (1− s) v.

The question is if (or when) additional demand from safety investors is stabilizing, i.e.
decreases π.
Proposition 4. Additional demand at date 0 decreases the incentive to sell preemptively if and
only if liquidity risk is sufficiently high, dπ/da < 0⇔ s > 1/2. The effect of additional demand
is monotonic in liquidity risk, d2π

/
(dsda) < 0.

Proof. See Appendix B.

Where does the ambiguous effect of a on π originate? Similar to strategic sales by liq-
uidity investors, demand from safety investors has a direct effect and an indirect effect on
the payoff gain π. The direct effect of an increase in demand a is an increase in the date-0
price pe

0 and therefore an increase in the payoff gain π with a coefficient

c
1 + bc

.

This effect is destabilizing since a higher price at date 0 incentivizes strategic investors to
sell preemptively.

The indirect effect works through relaxing dealer balance sheet constraints, which in-
creases the date-1 price pe

1 and therefore reduces the payoff gain π with a coefficient (in
absolute value)

s
2c

1 + bc
.

This stabilizing effect on pe
1 is twice as high as the destabilizing effect on pe

0 because of the
larger effect of existing date-0 inventory on dealer demand than of new date-1 inventory.
However, the effect on pe

1 is discounted by the liquidity shock probability s since it is only
relevant if the investor actually suffers a liquidity shock at date 1. For the stabilizing effect
to dominate, such that additional demand from safety investors increases market stability,
liquidity risk has to be sufficiently high, i.e. greater than 1/2.

The payoff gain with safety investor demand retains the standard global game con-
ditions of Morris and Shin (2003) so, for vanishing signal noise, the unique equilibrium
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Figure 7: Effect of safety investor demand on equilibrium market stability. The figure
shows market stability measured by the equilibrium threshold s∗ as a function of safety in-
vestor demand a for different levels of dealer balance sheet cost c. Parameters: v = 1.2, b = 1.

remains in switching strategies around a threshold s∗ defined by the indifference condition∫ 1
0 π(α, s∗) dα = 0. In particular, recall that π is increasing in s so an exogenous decrease in

π leads to a higher threshold s∗, capturing higher market stability. The ambiguous effect
of safety investor demand on the payoff gain π (Proposition 4) therefore translates into an
analogous effect on market stability.

Corollary 2. Additional demand at date 0 is stabilizing if the market is relatively stable and desta-
bilizing if the market is relatively unstable, ds∗/da > 0⇔ s∗ > 1/2.

Proof. See Appendix B.

Figure 7 illustrates the ambiguous effect of safety investor demand on market stability
by plotting the equilibrium run threshold s∗ as a function of a for different levels of the
dealer balance sheet cost c. When balance sheet costs are low, the market is relatively sta-
ble: the threshold s∗ where the price drops discontinuously is above 1/2. In this case, the
run threshold is increasing in safety demand a, so that runs become less likely as safety
demand increases. When balance sheet costs are high, the market is relatively unstable
with the threshold s∗ below 1/2. In this case the run threshold is decreasing in a so higher
safety demand is destabilizing — the market is “fragile”: For a given level of liquidity risk
that is close to but below the run threshold, an increase in demand for the safe asset can
reduce the threshold sufficiently to tilt the market into a run equilibrium.

The interaction of liquidity investors and safety investors therefore results in a feedback
effect in market stability. If the market is resilient to begin with, then liquidity investors
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and safety investors interact symbiotically: In times of stress, the additional demand for
safe assets from safety investors has a stabilizing effect on the strategic interaction of liq-
uidity investors and attenuates the risk of market breakdown. However, if the market is
fundamentally fragile, e.g. due to an increase in dealer balance sheet costs, the relationship
reverses: Additional demand from safety investors in times of stress further destabilizes
the strategic interaction of liquidity investors, increasing their incentive to sell preemp-
tively and thereby increasing the risk of market breakdown.

5.3 Correlated Liquidity and Safety Shocks

We consider the risks faced by liquidity investors and safety investors to be correlated. In
times of stress, liquidity investors face a higher risk of suffering a liquidity shock, i.e. s is
high, and safety investors face a low payoff of the risky asset, i.e. µz is low and therefore
a is high. To understand the net effect of increases in s and a on the safe asset market, we
can derive the equilibrium price at date 0 as a function of s and a. As before, total supply
in the global game equilibrium is s for s < s∗ (all strategic investors hold) and 1 for s > s∗

(all strategic investors sell). Substituting into the price with demand from safety investors
in equation (12), the equilibrium price becomes

p∗0(s, a) =

 1
1+bc

(
1− c (s− a)

) for s < s∗(a),
1

1+bc
(
1− c (1− a)

) for s > s∗(a).
(13)

Figure 8 illustrates the equilibrium price for combinations of s and a with a contour plot.
The figure plots a case where the market is relatively fragile: The threshold s∗ is always
below 1/2 so the cliff where the price drops as the equilibrium switches from hold to run
is decreasing in (s, a)-space: for liquidity risk s close to s∗, an increase in safety investor de-
mand a can push themarket over the cliff and trigger a price crash. In the hold equilibrium,
i.e. for s < s∗, the expression in equation (13) shows that equal-sized increases in s and
a exactly offset each other and leave the price unchanged so the contour lines in Figure 8
have a slope of one. This implies that whenever safety demand a increases more than 1:1
with liquidity risk s and liquidity risk remains below the threshold s∗, we observe a clas-
sic flight to safety with p∗0 increasing, i.e. safe assets appreciating. This corresponds to the
period from mid-February to early March 2020, where stock prices decreased and Trea-
sury prices increased (Figure 1, Panel A). However, if the balance shifts and the increase
in liquidity risk s outweighs the increase in safety demand a, the price p∗0 can decrease
and suddenly drop as s crosses the threshold s∗ and the equilibrium shifts to a dash for
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A: Facility size and market stability.
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B: Announcement and equilibrium price.
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Figure 9: Effects of date-1 purchase facility announced at date 0. Panel A shows the effect
of the facility size qF

1 on date-0 market stability as measured by the equilibrium threshold s∗.
Panel B shows the effect of the announcement of a facility with qF

1 = 0.5 on the equilibrium
price at date 0. Parameters: v = 1.2, c = 0.5.

date 0 as measured by the equilibrium threshold s∗. Consistent with the stabilizing effect
of qF

1 being increasing in liquidity risk s, we see that market stability is increasing and
convex in qF

1 until s∗ reaches one and the market is perfectly stable. Panel B of Figure 9
shows the announcement effect of a facility on the date-0 price p∗0 . Upon announcement,
the equilibrium threshold s∗ increases from the value without a facility, s∗pre, to the value
with a facility, s∗post > s∗pre. For intermediate levels of liquidity risk, s ∈

[
s∗pre, s∗post

], the
announcement leads to a switch from the run equilibrium to the hold equilibrium and
therefore a discrete jump in the date-0 price as indicated by the arrow in the figure.

Our theoretical results in this simple two-period model suggest that what matters for
stabilizing a fragile market is the announcement more than the purchases directly. How-
ever, this result should be interpreted with some care especially when there is little time
between the announcement and execution of purchases as was the case for the Treasury
market in March 2020 (Vissing-Jørgensen, 2021). In this case, the purchases can be inter-
preted as falling into period 0 or into period 1 with potentially opposite effects as official
sector purchases in period 0 can be destabilizing and trigger strategic sales in the same
way that purchases from safety investors can (Section 5).

Figure 10 shows purchases of Treasuries by the Federal Reserve (Fed) as well as net
purchases of foreign official agencies, among the largest sellers of Treasuries in 2020q1
(Figure 1, Panel C). In earlyMarch, foreign net purchases started turningmoderately nega-
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Figure 11 illustrates these subtleties with the sequence of Fed interventions aimed at
the Treasury market in the spring of 2020. Going into March, the Fed was conducting lim-
ited Treasury repo operations (lending against Treasuries) as part of its regular monetary
policy implementation and was actually shrinking the offering size of these operations.5
As conditions deteriorated starting March 9, repo offering sizes were increased to over
$1 trillion by March 12 but, as shown in Figure 11, take-up by dealers was only moderate
at around $100 billion and the liquidity provision through repos was not effective against
the drop in Treasury prices. This is consistent with the SLR being the binding constraint
on dealers, as the SLR is not relaxed by funding a Treasury position with a loan from the
Fed (Duffie, 2020). Figure 11 shows that the recovery in Treasury prices in mid-March
coincided with a switch by the Fed from lending against Treasuries to purchasing them
outright and that the Fed was able to scale back purchases once Treasuries were exempted
from the SLR on April 1.

This sequence of events is consistent with our model’s predictions on the effects of
policy relieving current and future balance sheet constraints. Assets had to be purchased to
effectively relax the binding constraint and, to ensure that dealer balance sheets remained
unconstrained going forward, purchases had to be sufficiently sustained and Treasuries
had to be exempted from the SLR.

Market Structure. Our framework generates market fragility through a combination of
two factors since a strategic investor (i) expects to receive the average in-run price when
selling preemptively at date 0 but (ii) bears the full impact of dealer inventory from date
0 when being forced to sell at date 1. Both of these factors are inherently tied to the struc-
ture of the safe asset markets, where trading occurs in a decentralized, sequential way
and dealers play a large role intermediating flow imbalances over time. Changes to mar-
ket structure that lead to more pooling of trades and that reduce the role of dealers as a
bottleneck for flow can therefore reduce the fragility of safe asset markets (Duffie, 2020).

These issues of dealer balance sheet costs and decentralized market structure are al-
most surely only going to get worse over time as the federal deficit grows and Treasury
supply increases. So long as dealers’ balance sheet capacity grows more slowly than the
stock of Treasuries, the market relying on dealer balance sheet capacity will have insuffi-

5On February 4 the New York Fed’s Open Market Trading Desk decreased term repo operation offering
size from $35 billion to $30 billion and again on February 13 from $30 billion to $25 billion, concurrent with
a reduction in overnight repo from $120 billion to $100 billion, as reported in the New York Fed’s report
“OpenMarket Operations during 2020” available at https://www.newyorkfed.org/medialibrary/media/
markets/omo/omo2020-pdf.pdf.
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cient ability to intermediate trades (Duffie, 2020). Our model implies that this will exac-
erbate preemptive selling and increase the frequency of dash for cash episodes.

7 Conclusion

We focus on three key features of safe asset markets: investors who value the assets’ safety,
investors who value the assets’ liquidity, and dealers who face balance sheet constraints.
Combining these features, we show that safe asset markets are fragile, susceptible to sud-
den price crashes due to coordination effects among the investors valuing liquidity that
are amplified by the investors valuing safety.

Our model helps understand the unprecedented events in the U.S. Treasury market
at the onset of the Covid-19 pandemic in March 2020 as a “perfect storm” of the three
features: First, financial regulation in the wake of the financial crisis of 2007–2009 had
significantly tightened dealer balance sheet constraints, increasing the inherent fragility
of the market. Second, the pandemic threatened a global economic slowdown leading to
a powerful flight-to-safety demand, further destabilizing the market. Third, lockdowns
created unprecedented liquidity needs among consumers and official agencies. The result
according to our model was a market run that featured indiscriminate sales by liquidity
investors, including those without genuine liquidity needs who feared having to sell at
even worse conditions in the future.
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Appendix

A Data

Treasury yield: Themarket yield on U.S. Treasury securities at 10-year constant maturity,
daily frequency, from the Federal Reserve’s H.15 via FRED series DGS10.

S&P 500: The S&P 500 index, daily frequency, from Standard & Poors via FRED series
SP500.

Fed holdings of Treasuries: Federal Reserve outright holdings of Treasury notes andbonds
(both nominal and TIPS), weekly frequency as of Wednesday, from the Federal Re-
serve’s H.4.1 via FRED series WSHONBNL and WSHONBIIL.

Dealer net positions of Treasuries: PrimaryDealers’ net position in Treasuries (both nom-
inal and TIPS) from the New York Fed’s Primary Dealer statistics available at https:
//www.newyorkfed.org/markets/counterparties/primary-dealers-statistics.

Dealer reverse repo against Treasuries: PrimaryDealers’ gross reverse repurchase agree-
ments against Treasuries (both nominal and TIPS) from theNewYork Fed’s Primary
Dealer statistics available at https://www.newyorkfed.org/markets/counterparties/
primary-dealers-statistics.

Net purchases of Treasuries: Net purchases of Treasuries (all types), quarterly frequency
(not seasonally adjusted), from the Federal Reserve’s FinancialAccounts Table FU.210
available in the CSV files at https://www.federalreserve.gov/releases/z1. The
label “foreign investors” refers to the sector “rest of the world” in the original table.

Fed Treasury Purchases: Federal Reserve Treasury purchases (all types), daily frequency,
from the New York Fed’s Treasury securities operations, available at https://www.
newyorkfed.org/markets/desk-operations/treasury-securities.

Foreign Official Treasury Purchases: Net Treasury purchases inferred from changes in
Treasury securities held in custody for foreign officials and international accounts,
weekly frequency as ofWednesday, from the Federal Reserve’s H.4.1 via FRED series
WMTSECL1.

Fed Treasury Repos: Federal Reserve Treasury repurchase agreements (overnight and
term) in temporary open market operations, daily frequency, from the New York
Fed via FRED series RPTSYD.
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B Proofs

Proof of Proposition 1. We can rewrite the payoff gain π(α) as

π(α) =
c
2

s2 +
c
2

s (s (4− s)− 1)− (1− s) (v− 1) +
c
2
(1− s) (s (4− s)− 1) α,

and differentiate with respect to α to get

π′(α) =
c
2
(1− s) (s (4− s)− 1) ,

with c > 0, s ∈ (0, 1), v > 1, and α ∈ [0, 1], which imply the following comparative statics:

• We have π′(α) > 0 if and only if s (4− s) − 1 > 0 which has one root in the unit
interval given by s̃ ≡ 2−

√
3.

• Differentiating π with respect to s, we have

∂π

∂s
=

3c
2

(
10
3
− s
)
(1− α) s +

c
2
(5α− 1) + v− 1,

which is positive.

• Differentiating π with respect to c, we have

∂π

∂c
=

1
2

s2 +
1
2
(s (4− s)− 1) (s + (1− s) α) ,

which is positive if s (4− s)− 1 > 0.

• Differentiating π with respect to v, we have

∂π

∂v
= − (1− s) < 0

which is negative. �

Proof of Proposition 2. In order to apply the standard global game result that there is
a unique equilibrium and that it is in switching strategies, we have to show that the pay-
off gain π(α, s) satisfies certain properties (Morris and Shin, 2003). Proposition 1 estab-
lishes State Monotonicity and Action Monotonicity, that is π(α, s) is increasing in s and
increasing in α for s > s̃, which is satisfied if there are multiple equilibria of the complete-
information game. The payoff gain satisfies Strict Laplacian State Monotonicity since we

43



have∫ 1

0
π(α, s) dα =

c
2

s2 +
c
2

s (s (4− s)− 1)− (1− s) (v− 1) +
c
4
(1− s) (s (4− s)− 1) ,

(14)
which satisfies ∫ 1

0
π(α, 0) dα = − (v− 1)− c

4
< 0,

and ∫ 1

0
π(α, 1) dα =

3c
2

> 0,

as well as

∂

∂s

∫ 1

0
π(α, s) dα = cs +

c
4
((s (4− s)− 1) + (1 + s) (4− 2s)) + (v− 1) > 0,

for s > s̃ and therefore a unique s∗ ∈ (s̃, 1) solves
∫ 1

0 π(α, s∗) dα = 0. Finally, π(α, s)
satisfies Uniform Limit Dominance since we have

π(α, 0) = − (v− 1)− c
2

α < 0,

and
π(α, 1) =

3c
2

> 0.

Under these properties, Morris and Shin (2003) show that, in the limit σε → 0, the global
game has a unique equilibrium and that the equilibrium is in switching strategies around
a threshold s∗ defined by the indifference condition

∫ 1
0 π(α, s∗) dα = 0 where distribution

of α conditional on signal ŝi = s∗ is uniform on [0, 1]. �

Proof ofCorollary 1. Implicit differentiation of the equilibriumcondition
∫ 1

0 π(α, s∗) dα =

0 using (14) yields

ds∗

dc
= −

1
2 (s
∗)2 + 1

2 s∗ (s∗ (4− s∗)− 1) + 1
4 (1− s∗) (s∗ (4− s∗)− 1)

cs∗ + c
4 ((s

∗ (4− s∗)− 1) + (1 + s∗) (4− 2s∗)) + (v− 1)
< 0

and
ds∗

dv
=

1− s∗

cs∗ + c
4 ((s

∗ (4− s∗)− 1) + (1 + s∗) (4− 2s∗)) + (v− 1)
> 0

as stated in the corollary. �
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Proof of Proposition 3 First, the equilibrium threshold s∗ satisfies
∫ 1

0 π(α, s∗) dα = 0.
We can rewrite equation (14) as

∫ 1

0
π(α, s) dα =

c
4

(
−s3 + 5s2 + 3s− 1

)
− (1− s) (v− 1) . (15)

Second, we can rewrite the difference between welfare in the hold and run allocation in
equation (10) as

∆(s) = (1− s)
( c

2

(
s3 − 5s2 + s + 1

)
+ (1− s) (v− 1)

)
, (16)

which satisfies ∆(0) > 0 and ∆(1) = 0, and has one root in (0, 1) for c > 0 which we
denote ŝ.

We want to show that ∆(s∗) > 0, which means that s∗ < ŝ and therefore the hold
allocation is better than the run allocation and yet investors play the run equilibrium in
the global game for s ∈ (s∗, ŝ). From equation (15), the equilibrium threshold s∗ satisfies
(writing s without the star for simplicity)

c
4

(
−s3 + 5s2 + 3s− 1

)
= (1− s) (v− 1) .

Substituting this into (16), we can calculate ∆(s∗) and we have (writing s without the star
for simplicity)

∆(s∗) ∝ (1− s)
( c

2

(
s3 − 5s2 + s + 1

)
+

c
4

(
−s3 + 5s2 + 3s− 1

))
,

∝ s3 − 5s2 + 5s + 1,

= (1− s)
(
−s2 + 4s− 1

)
+ 2.

The first term has one root in (0, 1) given by 2−
√

3 ≡ s̃ and is strictly positive for s ∈ (s̃, 1).
We have s∗ > s̃ from the proof of Proposition 2 and thus ∆(s∗) > 0 and therefore ∆(s) > 0
for all s ∈ (s∗, ŝ). Thus, we have an inefficient region. �

Proof of Proposition 4. We can rewrite the payoff gain with additional demand as

π(α) =
c
2

s2 +
c (a− b)
1 + bc

(1− 2s)− (1− s) (v− 1) +
c
2

(
1

1 + bc
(4s− 1)− s2

)
(s + (1− s) α) ,
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and differentiate with respect to a to obtain

dπ

da
=

c
1 + bc

(1− 2s) ,

and
d2π

dsda
= − 2c

1 + bc
.

We therefore have dπ/da > 0 if and only if s < 1/2 as well as d2π
/
(dsda) < 0. �

Proof of Corollary 2. The global game threshold is defined by
∫ 1

0 π(α, s∗) dα = 0 and
implicit differentiation yields

ds∗

da
= −

∫ 1
0

d
da π(α, s∗) dα∫ 1

0
d

ds∗π(α, s∗) dα
,

and therefore ds∗/da > 0 if and only if s∗ > 1/2. �

C Pooled Trade Execution and Cubic Balance Sheet Costs

Suppose that instead of the quadratic balance sheet costs of the main text, we consider
cubic balance sheet costs cq3. At date 0, the price p0 at which dealers take on inventory qD

0

is given by the indifference condition

(1− p0) qD
0 − c

(
qD

0

)3
= 0,

which implies a demand given by

p0(q0) = 1− c (q0)
2 .

With inventory qD
0 the indifference condition at date 1 is given by

(1− p0) qD
0 + (1− p1) qD

1 − c
(

qD
0 + qD

1

)3
= (1− p0) qD

0 − c
(

qD
0

)3
.

which results in demand

p1(qD
0 , q1) = 1− c

(
3(qD

0 )
2
+ 3qD

0 q1 + (q1)
2
)

.
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Figure 12: Pooled trade execution and cubic balance sheet costs.The figure shows the payoff
gain π(α) for different values of liquidity risk s. Circles indicate equilibria of the game under
complete information. Parameters: v = 1.2, c = 0.25.

With pooled trade execution, the expected price does not have the factor 1/2 of the
average in-run price of the main text. Substituting in date-0 supply x0 = s + (1− s) α and
date-1 supply x1 = s (1− s) (1− α), we have expected prices

pe
0(α) = 1− c (s + (1− s) α)

2

pe
1(α) = 1− c

(
3 (s + (1− s) α)

2
+ 3 (s + (1− s) α) (s (1− s) (1− α)) + (s (1− s) (1− α))

2
)

.

The payoff gain then is, as before

π(α) = pe
0(α)− spe

1(α)− (1− s) v

with derivatives given by

π′(α) = c (1− s)
(

2s4 − 8s3 + 9s2 − 2s− 2 (1− s)4 α
)

π′′(α) = −2c (1− s)5

Since π′′(α) < 0 we have π′(α) > 0 for all α if π′(1) > 0. With

π′(1) = c (1− s)
(
−3s2 + 6s− 2

)
,

we have π′(1) > 0 iff s > 1− 1
/√

3 ≈ 0.42.
In sum, with pooled trade execution and cubic balance sheet costs, we have strategic

complementarities for s > 1− 1
/√

3, i.e. a threshold slightly higher than the threshold s̃ =
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2−
√

3 in the main text. Figure 12 illustrates the payoff gain and the resulting equilibria of
the complete information game for different levels of liquidity risk (analogous to Figure 3
in the main text).

D Case with Safety Investors Active at Both Dates

Suppose we have additional demand qS
0 = a0 − b0p0 at date 0 and qS

1 = a1 − b1p1 at date
1. Things are unchanged at date 0 with expected price

pe
0(α) =

1 + a0c
1 + b0c

− 1
2

c
1 + b0c

(s + (1− s) α) .

At date 1, dealers demand qD
1 = 1

c (1− p1)− 2qD
0 with inventory qD

0 as in themain text.
With additional demand, total demand at date 1 can be written as

p1(q1) =
1 + a1c− 2cqD

0
1 + b1c

− c
1 + b1c

q1.

With total supply x1 = s (1− s) (1− α) substituting in dealer inventory

qD
0 =

s + (1− s) α + b0 − a0

1 + b0c

we have an expected price

pe
1(α) =

1 + a1c− 2c
(

s+(1−s)α
1+b0c −

a0−b0
1+b0c

)
1 + b1c

− 1
2

c
1 + b1c

s (1− s) (1− α)

Collecting terms, we have expected prices given by

pe
0(α) =

1 +
(

a0 − 1
2 s
)

c

1 + b0c
− 1

2
c

1 + b0c
(1− s) α

pe
1(α) =

1 +
(

a1 − 1
2 s (1− s)

)
c

1 + b1c
+

2c (a0 − b0 − s)
(1 + b1c) (1 + b0c)

− 1
1 + b1c

(
2c

1 + b0c
− c

2
s
)
(1− s) α

As before, a0 has twice the effect on pe
1 than on pe

0 but pe
1 is discounted by s so for a0 to be

stabilizing, we need s > 1/2. In contrast, a1 only affects pe
1 so it is always stabilizing.
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