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Abstract 

Does the federal funds rate respond to shocks when aggregate reserves are in the trillions of dollars? Has 

banks’ demand for reserves moved over time? We provide a structural time-varying estimate of the slope 

of the reserve demand curve over 2010-21. We estimate a time-varying vector autoregressive model at 

daily frequency with an instrumental variable approach to address endogeneity. Consistent with economic 

theory, our estimates show a nonlinear demand function that exhibits a negative slope in 2010-11 and 

2018-19 but is flat over 2012-17 and after mid-2020. We also find that the curve has moved outward, both 

vertically and horizontally.  
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1 Introduction

Over the past fifteen years, reserves in the banking system have grown from tens of billions of dollars

to several trillion dollars. This extraordinary rise in the supply of reserves poses a natural question:

are the rates paid in the market for reserves sensitive to shocks when aggregate reserve holdings are

so large? To address this question, this paper provides a structural time-varying estimate of the

slope of the reserve demand curve at daily frequency over 2010-2021, when reserves ranged from $1

trillion to $4 trillion.

The reserve demand curve describes the price at which banks are willing to borrow and lend

their reserve balances as a function of aggregate reserves in the system. The interest rate at which

reserves are borrowed and lent is the federal funds rate, which is also the policy rate targeted by the

Federal Open Market Committee (FOMC). The reserve demand function measures banks’ demand

for liquidity. Estimating the sensitivity of the federal funds rate to shocks to the level of reserves is

of paramount importance for the implementation of monetary policy.

Estimating the price sensitivity of the demand for reserve is challenging for three reasons. First,

theory predicts that the reserve demand curve is a highly nonlinear function. The demand curve can

be divided into three regions (Poole (1968); Ennis and Keister (2008); Afonso et al. (2019)). When

reserves are low and close to the aggregate requirements, the demand curve has a steep negative

slope reflecting their scarcity value. When aggregate reserves are abundant, the reserve demand

curve becomes flat around the interest on reserve balances (IORB) paid by the Federal Reserve.

Between these two regions, market frictions generate a smooth transition – an intermediate regime

of “ample” reserves where the demand curve exhibits a gentle downward slope.

Second, since the 2008 crisis, the demand for reserves has been affected by various structural

changes in the regulation and supervision of banks, in banks’ internal risk-management frameworks,

and in the structure of the market for reserves itself. As a result, not only is the reserve demand

curve highly nonlinear, but it may also have been subject to structural changes over the years.

Third, estimation of the demand for reserves is subject to potential endogeneity issues due

to high-frequency confounding factors in the demand equation. Although the Federal Reserve no

longer targets federal funds rates by adjusting aggregate reserves daily as it did before 2008, it

may still respond to sudden dislocations in money-market rates by quickly changing the supply of

reserves, as it did in September 2019 and March 2020. Moreover, aggregate reserves also change due

to factors that are outside the Federal Reserve’s control and that are correlated with daily money

market conditions, such as the balance of the U.S. Treasury’s account with the Federal Reserve and

usage of the Federal Reserve’s overnight reverse repurchase agreement facility.

Our estimation strategy addresses all three of these challenges. Instead of estimating a highly

nonlinear function with possible slow-moving structural shifts, we estimate the slope of a daily-

frequency linear function with time-varying coefficients and stochastic volatility. This approach

enables us to retrace the nonlinear shape of the curve over time by moving along the curve, while

allowing for low-frequency movements of the curve, thus providing a flexible approach to addressing
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Figure 1: Reserves, federal funds rates, and the reserve demand curve. Panel (a) plots

aggregate reserves relative to commercial banks’ assets from January 1, 2010 to March 29, 2021.

Panel (b) shows the spread between the volume-weighted average federal funds rates and the IORB

rate (in basis points). Panel (c) plots the relationship between spreads and normalized reserves.

Each time series excludes one-day windows around month-ends to control for the transient changes

in the level of reserves and federal funds rates caused by month-end window-dressing of European

banks (see Section 2). Daily data on reserves and federal funds rates are provided by the Markets

Group at the Federal Reserve Bank of New York. Weekly data on total assets for commercial

banks in the U.S. and for U.S. branches and agencies of foreign banks are publicly available from

the Federal Reserve Economic Data, FRED (“TLAACBW027SBOG”). Daily interest on reserve

balances is available from FRED (“IOER”).
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the first two challenges. Our specification is agnostic about the economic forces moving the curve

over time, which allows for very general types of structural changes; the only important assumption

is that the parameters of the time-varying linear model evolve more slowly than the daily liquidity

shocks affecting banks’ demand for reserves.

We address endogeneity by using daily data and an instrumental variable (IV) approach com-

bined with a time-varying vector autoregressive (TV-VAR) model of the joint dynamics of reserves

and federal funds rates. The use of daily data allows us to directly control for the window-dressing

of European banks around month ends, which is an important but periodic and transient demand

shock. To control for more general confounding factors, we instrument reserves in our linear time-

varying demand specification with their forecast errors from the TV-VAR model. By estimating

this model on daily data, we can control for the response of the Federal Reserve to past dislocations

in federal funds rates. Moreover, to ensure that our instruments are not contaminated by transient

confounding factors due to non-reserve Federal Reserve accounts, we use forecast errors from five

days before. The instrument’s relevance stems from the persistence of the reserve path over time.

Panel (a) of Figure 1 shows the time evolution of aggregate reserves normalized by banks’ total

assets to control for the growth of the banking industry in our sample. Reserves went through a full

expansion-contraction cycle from 2010 to late 2019 and expanded again in early 2020, ranging from

8% (2010 and 2019) to 19% (2014 and 2021) of banks’ assets. These movements reflect the Federal

Reserve balance-sheet expansions in response to the 2008 and 2020 crises, as well as the interim

normalization period (2015-2019). Panel (b) plots the daily average federal funds rate minus the

IORB rate to control for changes in the monetary policy stance, which mechanically shift the curve

up and down by moving its lower bound. By comparing panels (a) and (b), we can see a negative

correlation between quantities (reserves) and prices (federal funds rates), which suggests that after

removing month-end data from our daily sample, supply shocks tend to dominate demand shocks.

This is confirmed by panel (c), which plots realized rates against realized reserves and can be seen

as an approximate visualization of the reserve demand curve. It shows a clear nonlinear, downward-

sloping relationship between prices and quantities that moves outward over time: the curve moved

up and to the right after 2014 and further up after March 2020, at the onset of the Covid pandemic.

Of course, Figure 1 simply shows equilibrium realizations over time and cannot be interpreted

causally. To identify the slope of the reserve demand curve, we need our structural time-varying

methodology. Consistent with the predictions of the theory and the evidence in Figure 1, our

IV estimates show a nonlinear demand curve: the slope is significantly negative in 2010-2011 and

2018-2019 and zero in the interim and end periods. This time variation in the curve’s slope reflects

movements along the curve driven by small exogenous supply shocks captured by our instrument.

The curve itself, however, also moves horizontally at a low frequency. In the earlier part of

our sample, the rate sensitivity to reserve shocks fades as reserves exceed 12% of banks’ assets; in

the latter part, instead, it reemerges around 13%, suggesting a moderate shift to the right. Below

these thresholds, the curve’s slope gets steeper as reserves decrease, consistent with the theory. A

one-percentage-point drop in normalized reserves increases the federal funds-IORB spread by 1.3

basis points (bp) in 2010 and by 1.1 bp in 2019, while having no effect in 2012-2017 and after March
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2020. These estimates are robust to controlling for spillovers from the repo and Treasury markets.

Results are qualitatively similar if we normalize reserves by GDP instead of banks’ assets.

Our structural time-varying estimates of the slope tell us where the reserve demand curve

transitions from being flat (abundant reserves) to being gently sloped (ample reserves) and suggest

a modest horizontal shift to the right over the last ten years. They do not, however, tell us

much about possible vertical shifts, as vertical shifts do not affect the slope. To illustrate how

the curve may have moved upward over the years, we use a post-processing methodology based on

our forecasting model and the predictions of the theory. We fit a nonlinear demand function with

horizontal and vertical shifts on repeated cross-sections of the joint forecasts of rates and reserves

from the TV-VAR. Our results suggest that vertical upward shifts are present and more important

than horizontal shifts in the last part of the sample. This observation implies that the level of the

federal funds-IORB spread may not be a good summary statistic for the rate elasticity to reserve

shocks. Our results also indicate that as reserves approach 9-11% of banks’ assets, the rate elasticity

reaches its maximum growth rate, suggesting a transition between ample and scarce reserves.

A key additional advantage of our methodology is that it provides a flexible framework that

can be used to monitor the market for reserves in real time and to assess the relative scarcity or

ampleness of the supply of reserves. We conduct an extensive analysis of the external validity of our

forecasting multivariate model by estimating it recursively to mimic its use as a policy monitoring

tool. We find that the out-of-sample predictions are similar to the in-sample predictions and that

the model generates accurate forecasts based on several different metrics.

This paper adds to an extensive literature on the demand for reserves. Hamilton (1997) estimates

the slope of the reserve demand curve with a time-invariant model and daily data over the relatively

short period of 1989-1991. The econometric approach we develop in this paper enables us to estimate

the curve and its evolution over a long period characterized by prevalent institutional changes.

The most recent literature has focused on reserve demand after the 2008 financial crisis. Smith

(2019) estimates the slope of the demand curve over 2014-2018 using a time-invariant VAR model

on weekly data. Lopez-Salido and Vissing-Jorgensen (2022) argue that bank deposits are a central

driver of reserve demand. Using monthly data over 2009-2021, they estimate a time-invariant

relationship between the federal funds-IORB spread and reserves adjusted for deposits; they use

this estimated time-invariant demand function to discuss the runoff of the Federal Reserve balance

sheet. Smith and Valcarcel (2022) estimate a time-varying VAR using weekly data over the 2017-

2019 period to analyze the effect of the runoff of the Federal Reserve balance sheet on financial

markets. Finally, the consequences of a central bank’s balance-sheet expansions on market liquidity

are studied in Acharya and Rajan (2022), which presents a theoretical framework where balance-

sheet expansions need not necessarily enhance the net availability of liquidity in the banking system.

The rest of this paper is organized as follows. Section 2 discusses the theory and institutional

setting. Section 3 describes the data. Section 4 describes the model, endogeneity problems, and

identification strategy. Section 5 reports the results of our IV estimation. Section 6 reports the

results of our post-processing fit of the whole demand curve. The Appendix includes a detailed

description of the forecasting model, its out-of-sample validation, and several robustness checks.
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2 The Demand for Reserves

2.1 Theory

Reserves are balances that depository institutions (“banks”) maintain with the Federal Reserve to

satisfy regulatory requirements and liquidity needs, such as daily payments to other institutions.

Banks borrow and lend reserves in the federal funds market, typically overnight, at the federal funds

rate. The reserve demand curve describes the price at which banks are willing to trade reserves as

a function of the total amount of reserves in the banking system.

For each day t, we can write this curve as

pt = p∗t + f(qt − q∗t ; θ) + εt, (1)

where p is the federal funds rate (price), q is the aggregate reserves (quantity), and ε is a daily

demand shock. f(·; θ) is a continuous weakly decreasing nonlinear function parametrized by θ, with

both an upper and a lower bound. For normalization, we set lim
x→∞

f(x; θ) = 0, so that p∗ is the

lower bound of the demand curve as reserves go to infinity. The variable p∗ pins down the vertical

location of the curve, which we allow to slowly move over time (i.e., at lower frequencies than daily).

The variable q∗ represents the slow-moving horizontal location of the curve. We assume that θ (i.e.,

f ’s functional form) is fixed over time.

Where does equation (1) come from? The economic theory behind the reserve demand curve

can be summarized as follows. Assume that banks face some uncertainty about their end-of-day

balances and trade in the federal funds market during the day to insure themselves against this

uncertainty. For very high levels of reserves, banks are not concerned about breaking their liquidity

requirements, and the demand curve is flat around the interest rate paid by the Federal Reserve

on reserve balances (the IORB rate), which is the banks’ opportunity cost of lending in the federal

funds market. No bank, in fact, should be willing to lend at a lower rate and competition among

lenders should drive federal funds rates to the IORB rate. As a result, when reserves are abundant,

even sizable shocks to their aggregate level have no effect on rates.

As reserves drop below some threshold, banks start to be concerned about meeting their regu-

latory requirements and liquidity needs; as a result, rates move away from their lower bound, and

the demand curve begins to display a negative slope. As reserves keep decreasing, the slope of

the curve, i.e., the sensitivity of rates to reserve shocks, becomes increasingly steeper reflecting the

increasing scarcity value of reserves.

Below some threshold, however, the curve must flatten, and its slope decrease. The reason is

that, for extremely low reserve levels some banks must borrow from the Federal Reserve’s Discount

Window (DW), and the federal funds rate must converge to the DW rate. No bank, in fact, should

be willing to borrow at a higher rate, and competition among borrowers should drive rates to the

DW rate.

In this paper, we are interested in the right part of the curve, where reserves transition from

being abundant to scarce. The reason is that the federal funds rate was significantly below the DW
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rate throughout our sample, suggesting that the market operated away from the extreme scarcity

region around the curve’s upper asymptote.1 Figure 2 shows the part of the reserve demand curve

we focus on. The intermediate region between scarcity and abundance is referred to as the region of

ample reserves, and identifying its possibly time-varying range is one the main goals of this paper.

Figure 2: Reserve demand curve.

2.2 Monetary policy implementation

Whether reserves are abundant, ample, or scarce has important implications for monetary policy

implementation because the FOMC uses the federal funds rate to communicate the monetary policy

stance. Indeed, these regions map into the Federal Reserve’s monetary policy frameworks before

and after the 2008 crisis.

Before the global financial crisis, total reserves were in the tens of billions and did not earn

interest (i.e., the IORB rate was set at zero). In this scarce reserves environment, the demand

curve exhibited a steep downward slope, and the Federal Reserve kept rates close to the FOMC

target by adjusting the supply of reserves through relatively small daily open market operations.

The Federal Reserve can change the level of aggregate reserves by trading securities with banks.

When the Federal Reserve purchases securities from banks, adding assets to its balance sheet, it

issues reserves by crediting the Federal Reserve accounts of the selling banks. Vice versa, when the

Federal Reserve sells securities to banks, aggregate reserves decline.

To support the economy in the aftermath of the crisis, the Federal Reserve purchased large

quantities of long-term assets from banks between 2008 and 2014. As a result, reserves exceeded a

trillion in 2009 and peaked at $2.8 trillion in 2014. With abundant reserves, small adjustments to

1The only exception occurred on March 16, 2020, when the DW rate was decreased by 50 bp relative to the IORB

rate to encourage DW borrowing amidst the money-market turmoil triggered by the Covid crisis. As a result, the

federal funds rate equaled the DW rate for three days but returned to be significantly lower right afterwards.
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the reserve supply do not influence rates because the demand curve is flat around the IORB rate.

Fpr this reason, since 2008, the Federal Reserve has changed the IORB rate to affect rates and

implement monetary policy (Keister et al. (2008)).2

Changes in the IORB rate, by changing the banks’ opportunity cost of lending in the federal

funds market, can be thought of as vertical shifts in the reserve demand curve. To control for these

demand shifters, which are unrelated to structural changes in banks’ demand for reserves but simply

reflect changes in the monetary policy stance, we express the price p in the demand curve (1) as

the spread between federal funds rates and the IORB rate.

Although changes in the IORB rate have effectively influenced federal funds rates, the IORB

rate is not a hard minimum at which all institutions are willing to lend. Federal Home Loan Banks

(FHLBs), which represent more than 85% of total lending in the market, are ineligible to earn

interest on their Federal Reserve balances and are therefore willing to lend at lower rates. To set

a hard floor, in 2013, the Federal Reserve introduced the ONRRP facility; through this facility,

FHLBs and money market funds (MMFs), which lend to banks in other key money markets, can

invest at the Federal Reserve via overnight repos at a fixed-rate below the IORB rate. The FOMC

adjusts the ONRRP and IORB rates together in the implementation of monetary policy.

The segmentation of the federal funds market between banks and FHLBs suggests that, under

our price normalization, the lower bound of the demand function (1), p∗, should range between the

ONRRP-IORB spread and zero. Of course, other institutional frictions and structural changes can

move p∗ (and q∗) over time, and we provide some examples below.

2.3 Structural changes after 2008

Several structural changes have affected banks’ demand for reserves since the 2008 crisis. The

post-crisis regulatory framework is an important example. The Liquidity Coverage Ratio (LCR),

introduced in the U.S. in 2015, requires that banks hold enough high-quality liquid assets, such as

reserves or Treasuries, to survive a significant stress scenario lasting for one month. While the LCR

does not explicitly impose that banks hold reserves, Ihrig et al. (2020) reports that large banks tend

to use reserves to satisfy the LCR requirement.

Supervisory liquidity stress tests have also become prime drivers of banks’ demand for reserves

since 2008. Under Regulation YY’s enhanced prudential standards introduced in 2014, large finan-

cial firms are required to hold liquidity buffers to cover outflows on the first day of the stress-test

scenario, without reliance on the Federal Reserve. The demand for reserves has also increased due

to the introduction of Dodd-Frank regulation that requires large firms to prepare plans (“living

wills”) describing their potential orderly resolution.

An additional driver of reserve demand is the lack of depth in late-day funding markets. After

reserves became abundant, trading incentives declined, and average daily volume dropped from

a pre-crisis level of $220 billion to $70 billion. Since then, bank-to-bank intraday lending, which

2The Federal Reserve began to pay interest on depository institutions’ reserve balances in October 2008.
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was used to insure against late liquidity shocks, has dried up, likely pushing banks’ precautionary

demand for reserves outward. Indeed, survey data collected by the Federal Reserve show that, in

recent years, banks identify meeting large intraday payments as a major driver of their demand.3

These structural changes could be interpreted as the horizontal shifts q∗ in the demand curve

(1): for every level of the federal funds rate, they imply an increase in the quantity of aggregate

reserves demanded by the banking system. As a result of these shifts, the level of reserves at which

the curve stops being flat and start displaying a negative slope may have moved over time.

Structural changes, of course, may have also moved the reserve demand curve vertically by

altering the opportunity costs and bargaining powers of market participants. Post-crisis regulations

that impose a cost on the size of banks’ balance sheets reduce the price at which banks are willing to

borrow reserves for any level of aggregate reserves, pushing p∗ down; examples of such regulations

are the Basel III leverage ratio and the Federal Deposit Insurance Corporation’s (FDIC) assessment

fee (Kim et al. (2020)). The introduction of the ONRRP facility, instead, offers FHLBs and MMFs

the opportunity to invest with the Federal Reserve through overnight repos, likely increasing their

bargaining power over borrowing banks and leading to higher federal funds rates for any reserve

level (Schulhofer-Wohl and Clouse (2018)). For this reason, persistent increases in the ONRRP rate

relative to the IORB rate, such as those occurred over June 2018-May 2019, would improve FHLBs’

and MMFs’ bargaining power over time, pushing p∗ up.4

2.4 Endogeneity

To understand the sources of endogeneity in the demand for reserves, it is important to understand

how aggregate reserves can change. The level of reserves in the banking system changes for two

reasons: either because the Federal Reserve buys or sells assets from banks, which changes the size

of the Federal Reserve balance sheet, or because funds are transferred between reserves and non-

reserve accounts at the Federal Reserve, which changes the composition of the Federal Reserve’s

liabilities keeping the size of the balance sheet constant. Some institutions have non-reserve Federal

Reserve accounts and transact with private banks; when these transfers occur, reserves are either

created or destroyed outside the Federal Reserve’s control.5 Both types of reserve fluctuations are

associated with endogeneity problems.

The first type of endogeneity is due to the Federal Reserve’s actions. The Federal Reserve

responds to volatility in the federal funds market by adjusting the reserve supply to keep the federal

funds rate within its target range, as it happened in September 2019 and March 2020.6 These

3Summaries of the surveys’ findings can be found at: https://www.federalreserve.gov/data/sfos/

sfos-release-dates.htm. Since 2018, the Federal Reserve has conducted seven Senior Financial Officer Surveys

(SFOS) to gather information on banks’ reserve management strategies and practices.
4During this time period, the IORB-ONRRP spread was reduced three times, by 5 bp each time.
5In contrast, federal funds transactions between banks do not affect aggregate reserves; they just redistribute them.
6Before 2008, the endogeneity due to the Federal Reserve’s actions was more severe because the Federal Reserve

regularly adjusted the reserve supply through daily open market operations to control the federal funds rate. This

endogeneity has disappeared since the Federal Reserve started using administered rates to implement monetary policy.
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responses are quick and are put in place within a matter of days. In September 2019, for example,

the federal funds rate spiked up on the 16th and 17th; starting on the 18th, the Federal Reserve

expanded the reserve supply by providing cash in the repo market, and rates returned to their prior

levels (Afonso et al. (2020a)).

The second type of endogeneity is due to the activity of non-reserve Federal Reserve accounts

that are correlated with money-market conditions and the demand for reserves. An example is

the Treasury General Account (TGA) with the Federal Reserve. When banks buy Treasuries at

a Treasury auction, they transfer funds from their Federal Reserve accounts to the TGA, which

results in an increase in the TGA balance and a decrease in reserves. Around the same time, their

demand for short-term funding increases as they finance their Treasury purchases with overnight

repos. The temporary increase in repo rates can push the demand for reserves up because overnight

federal funds and repos are close substitutes; in other words, federal funds rates increase not only

because reserves decline but also because repo rates increase (Schulhofer-Wohl and Clouse (2018)).7

Martin et al. (2019) point out that the issuance of Treasuries also affects the federal funds rate by

placing upward pressure on Treasury yields. The reason is that when Treasury yields go up, MMFs,

which hold a large share of Treasuries in their portfolios, become a more attractive investment than

bank deposits. This competitive pressure induces banks to increase their wholesale deposit rates,

pushing the federal funds rate up.

Other examples of non-reserve Federal Reserve accounts correlated with money-market condi-

tions are the ONRRP facility and FHLB balances. When a MMF invests overnight in the ONRRP

facility, it instructs its custodian bank to make a transfer to the ONRRP account; the result is a

decrease in the bank’s reserves and an increase in the ONRRP balance. Similarly, FHLBs do not

hold reserves with the Federal Reserve, which is the reason why they do not earn the IORB rate on

their balances, but use their Federal Reserve accounts to lend to banks in the federal funds market;

when they do so, their Federal Reserve balances decrease, and aggregate reserves increase.

One way variations in the ONRRP and FHLB balances correlate with the demand for reserves

is through the “window dressing” of European banks around month-ends. In Europe, the Basel III

leverage ratio is calculated using only month-end data, which gives European banks an incentive to

temporarily reduce their overnight borrowing around those dates, both in the federal funds market

and from MMFs (Banegas and Tase (2020)). This window dressing has two effects on the market

for reserves. First, it lowers rates as the demand for borrowing declines. Second, it lowers aggregate

reserves because FHLBs lend less in the federal funds market, and MMFs compensate the reduction

in European banks’ demand for funding by investing more in the ONRRP facility.

More generally, changing conditions in the repo and Treasury markets, in addition to affecting

banks’ demand for reserves, also affect the level of reserves by changing the incentives of FHLBs to

7Another confounding factor related to the TGA are tax payments. When MMF investors use their shares to pay

taxes, the MMF instructs its custodian bank to submit the payment to the Treasury, resulting in a decline in reserves

and an increase in the TGA. Around the same time, to meet redemptions, MMFs also tend to reduce their overnight

repo lending, which can lead to a temporary rise in repo and federal funds rates. Both Treasury settlements and tax

payments played important roles in the money-market turmoil of September 2019 (Afonso et al. (2020a)).
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lend in the federal funds market and of MMFs to invest in the ONRRP facility. These institutions,

in fact, hold a sizable share of their portfolios in Treasuries and are the main lenders to banks in

the overnight repo market. Overnight Treasury repos are especially relevant because they are a

close substitute to overnight federal funds borrowing, and their relative importance in both banks’

funding demand and MMF’s lending supply has increased significantly after the 2014 SEC reform

of the MMF industry (Cipriani and La Spada (2021); Anderson et al. (2020)).8

The endogeneity due to non-reserve Federal Reserve accounts has become more severe since 2008.

One reason is that the repo and Treasury markets have increased substantially over the past decade.

For example, in the Tri-party segment of the repo market, the volume of lending collateralized by

Treasuries and agency debt increased from $1.3 trillion in May 2010 to $1.9 trillion from in March

2021, reaching a peak of $2.4 trillion in March 2020.9 Another reason is that the variability of the

non-reserve accounts has also increased significantly since the 2008 crisis (Afonso et al. (2020b)).

Figure 3 shows that, excluding currency in circulation, non-reserve liabilities amounted to 10% of

aggregate reserves in November 2013 and to 90% in July 2020. The TGA increased from $90 billion

at the end of 2010 to $350 billion at the end of 2019, a hike from 9% to 20% of aggregate reserves.

In July 2020, amidst the response to the Covid crisis, the TGA jumped to $1.8 trillion, reaching

almost 70% of total reserves. The ONRRP facility only opened in September 2013; since then, its

balance has fluctuated between less than a billion and more than $400 billions, reaching 20% of

aggregate reserves in late December 2016.

In Section 4, we propose a general instrumental-variable methodology to control for the en-

dogeneity issues caused both by the activity of non-reserve Federal Reserve accounts and by the

Federal Reserve’s supply of reserves.

3 Data

We use daily data from January 1, 2009 to March 29, 2021. Since the federal funds market is only

open on business days, we drop weekends and all federal holidays, including Mondays following

holidays that fall on a Sunday.10

Using daily data is key for our identification strategy because it allows us to directly address

the endogeneity issues due to the “window dressing” by European banks around month-ends. The

regulation-induced reduction in European banks’ short-term borrowing reverts within a day or two.

To control for this high-frequency and transitory omitted variable in the reserve demand equation,

we exclude one-day windows around month-ends.

Our main variables of interest are aggregate reserves and federal funds rates. To calculate

8The reform led investors to move more than $1 trillion from prime MMFs, which can lend to banks both unsecured

and secured, to government MMFs, which can only lend to banks via Treasury and agency repos.
9These data are from the Data and Statistics Group at the Federal Reserve Bank of New York and; see https:

//www.newyorkfed.org/data-and-statistics/data-visualization/tri-party-repo#interactive/volume.
10We use the standard holiday schedule for the Federal Reserve System and keep business days according to the

isBusinessDay function in the TIS package https://cran.r-project.org/web/packages/tis/tis.pdf.
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(a) Federal Reserve’s liabilities (b) Ratio of non-reserve liab. (exc. currency) to reserves

(c) TGA (d) ONRRP

Figure 3: Federal Reserve Liabilities. Evolution of the Federal Reserve’s liabilities (panel

(a)), ratio of non-reserve liabilities (excluding currency in circulation) to aggregate reserves (panel

(b)), Treasury General Account (TGA) (panel (c)), and Overnight Reverse Repurchase Agreement

(ONRRP) facility (panel (d)) from January 2010 to March 2021. Data are weekly from Federal

Reserve Statistical Release H.4.1.
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aggregate reserves, we use daily confidential data on aggregate reserve balances held by depository

institutions; these data are provided by the Federal Reserve Bank of New York.11 To take into

account the significant growth of the banking system over our sample, we normalize reserves by

commercial banks’ assets. Data on banks’ assets are publicly available at weekly frequency from the

Federal Reserve Economic Data, FRED (“TLAACBW027SBOG”). We linearly interpolate weekly

data to obtain a daily series of commercial banks’ assets.

For the federal funds rate, we use the daily volume-weighted average based on transactions

data, published by the Federal Reserve Bank of New York. The underlying transactions data are

the same as used for the official calculation of the effective federal funds rate (EFFR). As explained

in Section 2.2, to control for changes in the monetary policy stance, we subtract the IORB rate

from the volume-weighted average federal funds rate. We use daily interest rate on excess reserves,

publicly available from FRED (“IOER”).

In some of our robustness checks, we control for repo rates. We use the volume-weighted

average rate of overnight repos collateralized by Treasuries (with maturity up to 30 years) cleared

by the Fixed Income Clearing Corporation (FICC), which is publicly available on the website of

the Depository Trust & Clearing Corporation (DTCC).12 We choose these data because overnight

Treasury repos are the largest segment of the repo market and the most closely related to overnight

federal funds transactions. In additional robustness checks, we control for the daily market yields on

Treasury securities at one-year constant maturity; data are publicly available from FRED (“DGS1”).

Finally, data on the daily rate at the Federal Reserve’s primary credit DW program are also publicly

available from FRED (“DPCREDIT”).

4 Empirical Implementation

4.1 Empirical model and estimation

As discussed above, estimating the sensitivity of federal funds rates to reserve shocks is challenging

for three reasons: (i) the reserve demand curve is a nonlinear function of aggregate reserves, which

means that the slope is itself a function of aggregate reserves; (ii) after the 2008 crisis, persistent

structural changes may have moved the curve over time; and (iii) potential endogeneity issues due to

the Federal Reserve’s response to dislocations in the federal funds market and due to high-frequency

confounding factors.

To tackle the first two challenges, instead of estimating a nonlinear function with low-frequency

shifts, we estimate the following linear model with time-varying coefficients at daily frequency:

pt = αt + βtqt + σtvt, (2)

where p and q are the price and quantity of reserves, and v is a daily demand shock. To account

11A weekly version of these data is available in the H.4.1 report (“Reserve balances with Federal Reserve Banks”).
12https://www.dtcc.com/charts/dtcc-gcf-repo-index.
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for the growth of the banking sector over time, we measure q as aggregate reserves divided by

commercial banks’ total assets; to control for changes in the monetary policy stance, we measure

p as the spread between the average federal funds rate and the IORB rate. All parameters in

(2), including the variance σ of the demand shocks, are allowed to vary at daily frequency. The

time-varying slope βt measures the elasticity of rates to reserves on each day.

Model (2) is a locally linear approximation of the reserve demand curve (1) implied by the

theory. Every day, we estimate a straight line; as time passes, these lines move and retrace the

demand curve. This approach enables us to capture the nonlinear nature of the curve, without

specifying a particular functional form and allowing for low-frequency structural shifts.

Changes in the parameters of model (2) are due to either exogenous changes in the supply of

reserves (i.e., movements along the curve) or structural changes in banks’ demand for reserves (i.e.,

persistent movements of the curve). The assumption behind model (2) is that its parameters evolve

more slowly than the liquidity demand shocks that hit banks on a daily basis, which allows us to

disentangle (low-frequency) variation in β from (high-frequency) variation in v. This assumption

is plausible for two reasons. First, it took banks months to adjust to the post-crisis changes in

regulation, supervision, and functioning of the reserves market described in Section 2. Second,

as we explain below, our daily movements along the curve are small, so that the locally linear

approximation works well, and reflect exogenous variation in the expansion-contraction path of the

Federal Reserve balance sheet, which took place over many years.

To control for endogeneity, we use an instrumental variable (IV) approach. We propose a

forecasting model of the joint dynamics of the quantity and price of reserves and use past forecast

errors of reserves as an instrument in equation (2).13 The idea is to use variation in reserves that

is residual to the Federal Reserve policy response to dislocations in the federal funds rate and

uncorrelated with the transitory confounding factors due to non-reserve Federal Reserve accounts.

Our forecasting model is the following time-varying vector autoregressive (VAR) model with

stochastic volatility based on Primiceri (2005) and Del Negro and Primiceri (2015):

qt = cq,t + bq,q,1,tqt−1 + bq,p,1,tpt−1 + ...+ bq,q,m,tqt−m + bq,p,m,tpt−m + uq,t,

pt = cp,t + bp,q,1,tqt−1 + bp,p,1,tpt−1 + ...+ bp,q,m,tqt−m + bp,p,m,tpt−m + us,t,
(3)

where q and p are defined as in equation (2), the c’s and b’s are the time-varying coefficients, and the

u’s are the forecast errors. These errors are serially uncorrelated and jointly normally distributed

with mean zero and time-varying covariance matrix Ωt, i.e., (uq,t, up,t)
′ ∼ N (0,Ωt).

We estimate model (3) at the daily frequency using Bayesian methods; each parameter is modeled

as a stochastic process. Consistent with our approximate reserve demand curve (2), the basic

assumption behind the estimation of model (3) is that its parameters evolve more slowly than the

daily errors. Specifically, as Primiceri (2005), we assume that the parameters follow slow-moving

13This identification strategy is inspired by the work of Hamilton (1997), who measures the slope of the reserve

demand curve in 1989-1991 using forecast errors from a time-invariant model as instrument. More recently, Del Negro

et al. (2020) use a similar approach for the estimation of the Phillips curve.
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random walks, whose innovations are uncorrelated with the u errors at all leads and lags. Given

the data, our estimation gives us the joint posterior distribution of the parameters (c’s, b’s, and Ω)

on each day. Our IV estimation then maps these parameters into the slope of the demand curve.

Using the forecast error for reserves h days ago (uq,t−h) as an instrument for reserves today (qt)

in equation (2), we can write the IV estimate of βt as

βIVt =
cov(pt, uq,t−h)

cov(qt, uq,t−h)
. (4)

Our estimation of the forecasting model (3) gives us simultaneously the forecast errors u and their

time-varying covariances with the observables q and p. These covariances are functions of the

time-varying model parameters and can be obtained by drawing from their posterior distribution.

In Appendix A.1, we describe in detail how to conduct inference on βIVt and explain how the

covariances in equation (4) can be interpreted as the h-day-ahead impulse responses of rates and

reserves to a reserve shock under a Choleski decomposition with reserves ordered first.

Finally, inference on βIVt depends on the choice of the forecast horizon h. There is a clear

trade-off between the exogeneity of the instrument and the precision of the estimate. The longer

is the horizon, the more plausible is the exogeneity assumption. A longer horizon, however, also

implies larger estimate uncertainty. As we discuss in the next section, we use h = 5 (i.e., one week)

because, based on the institutional details of the market for reserves, this choice should satisfy the

exogeneity requirement, while keeping our estimates sufficiently precise.

4.2 Exogeneity and relevance of our instrument

The exogeneity assumption underlying our identification strategy is that the forecast error for

reserves at time t from model (3) is uncorrelated with the shock at time t + 5 in the demand

equation (2). That is, an error in the forecast of reserves only affects banks’ (future) demand for

reserves through its effect on the (future) level of reserves. A sufficient condition for this exclusion

restriction is the absence of contemporaneous correlation between reserve supply shocks and daily

demand shocks. This condition, however, is not necessary; the instrument is exogenous if the

confounding factors, related to either the Federal Reserve’s response to rate dislocations or factors

outside the Federal Reserve’s control, have transitory effects disappearing within a week. The

exogeneity of our instrument is plausible for two reasons.

First, since 2008, the Federal Reserve has changed the IORB rate to implement monetary policy,

rather than adjusting the reserve supply via daily open market operations. In this monetary policy

framework, the Federal Reserve’s supply does not reflect a contemporaneous reaction to changing

conditions in the federal funds market; it only responds to past price dislocations, quickly but with

a delay of at least a day (Afonso et al. (2020a)). For this reason, it is important to use daily data

to extract exogenous variation in the reserve supply. By using average data at lower frequencies,

say weekly or monthly, variation in reserves would mix supply and demand shocks.
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In principle, the demand shocks in equation (2) could be serially correlated; in this case, today’s

change in the Federal Reserve’s supply, which is a response to yesterday’s demand shock, could

be correlated with today’s demand shock. By conditioning on past daily data up to ten lags and

allowing for time-varying coefficients, our forecasting model can control for the Federal Reserve’s

response function to price volatility; as a result, its errors should be residualized with respect to

this confounding factor even if demand shocks were correlated. Moreover, even if our forecasting

model were misspecified, and today’s error for reserves were contaminated by a contemporaneous

demand shock, the error from five days before should not; the reason is that, in our sample, the

Federal Reserve’s actions have effectively stabilized price dislocations quickly, typically within days.

Second, the effects of those factors outside the Federal Reserve’s control that are correlated

with both reserves and banks’ demand for them are likely to last less than five business days. The

settlements of Treasury auctions and tax payments are good examples. Although these events

affect aggregate reserves through changes in the Treasury’s account at the Federal Reserve and are

correlated with banks’ demand for short-term borrowing, they are transitory in nature. Therefore,

even if today’s forecast error may be correlated with today’s demand shock due to the activity of

these non-reserve Federal Reserve accounts, the error from five days ago should not be.

As we explain in Section 2, conditions in the repo and Treasury markets are particularly impor-

tant confounding factors. To further strengthen our identification, in robustness checks, we include

daily repo and Treasury bill rates in the VAR forecasting model. In this way, our IV estimation

directly controls for possible spillovers from the repo and Treasury markets to the federal funds

market. The estimation of these trivariate VAR models is similar to that of the baseline bivariate

model; details can be found in Appendix A.1.

The relevance of our instrument stems from the persistence of the reserve path in our sample and

the forecasting accuracy of our model. From 2010 to 2019, the Federal Reserve gradually expanded

and contracted the total supply of reserves and then expand it again in March 2020 in response to

the Covid-19 crisis. These trends, which last for months and around which higher-frequency events

can occur, are well captured by the autoregressive nature of our forecasting model; as we formally

show in Appendix A.4, in fact, our model displays reasonable out-of-sample predictive accuracy.

As a result, the time-varying covariance of reserves five days ahead with their forecast error today

(i.e., the denominator in the IV estimate (4)) is significant throughout our sample (see panel (b) of

Figure 6). This covariance measures the relevance of our instrument and can be interpreted as the

result of the first-stage regression in the two-stage least-squares (2SLS) estimation.

An important advantage of our approach relative to ordinary 2SLS is that we do not need to

test for instrument strength because our inference is automatically robust to weak instruments.

The reason is that the Bayesian posterior distributions of βIVt already reflects the uncertainty in

both the numerator (i.e., the reduced-form coefficient) and the denominator (i.e., the first-stage

coefficient). In this way, our inference directly accounts for the possible non-normality of the IV

estimate in equation (4), which could occur if the denominator is close to zero.

Our IV estimation is also robust to autocorrelation and heteroschedasticity of the demand

shocks in equation (2). The reason is that the elasticity βt is derived as a function of time-varying
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covariances estimated from a VAR model with ten lags and stochastic volatility.

4.3 Predictive accuracy of our model

Our forecasting model (3) is very flexible and general because the parameters of the model, as well

as the variances and covariances of the residuals, are allowed to change over time. Thanks to this

feature, the model can account for complex and evolving dynamic interactions between the federal

funds rate and reserves. In many contexts, however, high model complexity comes with the curse

of dimensionality; that is, the model tends to overfit in-sample and perform poorly out-of-sample.

Several papers have shown that, when used for macroeconomic forecasting, the class of models to

which model (3) belongs does not suffer from this pathology and can produce accurate forecasts

even in real time with quarterly macroeconomic data (D’Agostino et al. (2013)). The reason is that

the priors specified by Primiceri (2005) are very conservative in the amount of time variation.

This is true also in our context, with daily financial data. Figure 4 reports in-sample and

out-of-sample joint forecasts of federal funds rates and reserves five days ahead; it shows that

model (3) is not affected by the curse of dimensionality as the in-sample and the out-of-sample

predictions are similar and close to the realized data. In Appendix A.4, we formally evaluate the

out-of-sample accuracy of the model’s predictions of the model in real time under various metrics

(root-mean-square error, log-scores, probability integral transform). We find that the out-of-sample

predictions are similar to the in-sample predictions and show that the model provides reliable and

stable inference. The predictive accuracy is a key advantage of our framework as it enables us to

monitor in real-time the relative ampleness of reserves in the banking system.

5 Empirical Results

5.1 Suggestive evidence from the forecasting model

Figure 4 provides qualitative suggestive evidence of the two main results of the paper: (i) the reserve

demand curve is nonlinear and (ii) it has shifted outward over the last ten years, both horizontally

and, especially, vertically.

To reflect the different cycles of expansion and contraction of the Federal Reserve balance sheet,

we split our sample in Figure 4 in three periods: from 2010 to 2014 (expansion), from 2015 to mid-

March 2020 (contraction), and from mid-March 2020 to March 2021 (expansion). Consistent with

economic theory, the relationship between the federal funds rate and aggregate reserves is nonlinear

in all periods: it is negative for levels of reserves that are sufficiently low, say below 10-11% of

banks’ assets, whereas it is flat if reserves are sufficiently large, say above 14-15% of banks’ assets.

Has the location of the reserve curve shifted over time? The level of reserves at which the

relationship between prices and quantities transitions from being flat to negative seems to slightly

change over time, even after adjusting reserves for the growth of the banking system. During 2010-
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Figure 4: In-sample (a) and out-of-sample (b) joint forecasts of federal funds rates and

reserves five days ahead. The forecasts are generated using the bivariate time-varying model

(3), drawing 100 times every five business days from the joint posterior distribution of reserves and

rates for each day. The black squares represent the realized data on the day for which forecasts

are generated (i.e., t + 5). Reserves are measured as a ratio to commercial banks’ assets. Federal

funds rates are measured, in basis points, as a spread to the IORB rate. Each time series excludes

one-day windows around month-ends to control for the transient changes in the level of reserves and

federal funds rates caused by month-end window-dressing of European banks (see Section 2). Daily

data on reserves and federal funds rates are provided by the Markets Group at the Federal Reserve

Bank of New York. Weekly data on total assets for commercial banks in the U.S. and for U.S.

branches and agencies of foreign banks are publicly available from the Federal Reserve Economic

Data, FRED (“TLAACBW027SBOG”). Daily interest on reserve balances is available from FRED

(“IOER”).
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2014, the slope is negative for reserve levels below 11-12% of banks’ assets, which roughly correspond

to 2010 and 2011; during 2015-2019, a negative slope of similar magnitude emerges for reserve levels

below 13-14% of banks’ assets, which correspond to 2018 and 2019. The seemingly higher threshold

between the sloped and flat regions in the second half of the sample suggests a modest horizontal

shift to the right. This shift is consistent with the regulatory and supervisory changes developed

in response to the 2008 crisis and implemented over the following years. As discussed in Section 2,

these changes may have increased banks’ demand for reserves at every price level. Since this increase

is due to permanent structural shocks, rather than to high-frequency liquidity shocks, it is captured

by the slow-moving time-varying coefficients of our forecasting model.

More importantly, over 2010-2020, the relationship between the federal funds rate and aggregate

reserves seems to mainly move vertically. As shown in Figure 4, the 2015-2020 curve is above the

2010-2014 curve not only in the sloped region but also in the flat one, which would not happen if the

curve had only moved horizontally. In particular, the 2015-2017 rates tend to be consistently above

the 2012-2014 ones at every level of reserves, although the curve is flat in both periods. This upward

shift is consistent with an increase in the bargaining power of FHLBs and MMFs, key lenders to

banks in the overnight funding markets, due to the introduction of the ONRRP in late 2013, among

other factors.

A second and even more relevant vertical shift is visible for the last period. From March 2020 to

March 2021, federal funds rates and their forecasts have been consistently above those from previous

years, even by more than 10 bp, at every level of reserves; this is true also in the flat region of the

curve, which represents most of this time period. This sizable upward shift is consistent with a

steady increase of FHLBs’ and MMFs’ bargaining power over time, as well as with an increase in

market risk aversion and persistent uncertainty caused by the Covid-19 crisis.

The next section presents our time-varying IV estimates of the slope of the reserve demand curve,

which are consistent with a nonlinear demand function; in Section 6, we quantify the horizontal and

vertical shifts through a post-processing methodology and discuss in greater detail their possible

economic interpretations.

5.2 The slope of the reserve demand curve and the region of ample reserves

5.2.1 OLS estimation

We now turn to estimating the time-varying slope of the reserve demand curve, i.e., the elasticity

βt in equation (2). Before showing the results of our IV estimation, for illustrative purposes, we

present the results of a simpler exercise: a rolling-window OLS regression of the federal funds-IORB

spread against normalized reserves using in-sample forecasts from model (3) as pseudodata. Every

five days, we draw N = 2, 500 forecasts from the model-implied five-day-ahead joint distribution of

spreads and reserves and run a pooled regression over the past year (244 days). Figure 5 shows our

findings. The slope of the curve changes considerably over time, following the evolution of aggregate

reserves: it is negative up to mid-2014 as reserves went from $1 to $2.7 trillion, fluctuates around
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zero between 2014 and 2018 as reserves stayed above $2 trillion, steadily decreases during 2018-2019

as reserves declined to a minimum of $1.4 trillion, and goes back to zero after March 2020 as the

Federal Reserve expanded the reserves supply above $3 trillion.

Figure 5: OLS estimate of the elasticity of federal funds rates to reserves. The slope of

the reserve demand curve is estimated by running OLS regressions on rolling windows (244 business

days) of in-sample forecasts of the spread between the federal funds rate and the IORB rate against

in-sample forecasts of reserves normalized by banks’ assets. Each time series excludes one-day

windows around month-ends to control for the transient changes in the level of reserves and federal

funds rates caused by month-end window-dressing of European banks (see Section 2). Daily data

on reserves and federal funds rates are provided by the Markets Group at the Federal Reserve Bank

of New York. Weekly data on total assets for commercial banks in the U.S. and for U.S. branches

and agencies of foreign banks are publicly available from the Federal Reserve Economic Data, FRED

(“TLAACBW027SBOG”). Daily interest on reserve balances is available from FRED (“IOER”).

5.2.2 IV estimation

The slopes in Figure 5, however, cannot be interpreted causally because those forecasts do not

control for endogeneity. To address identification issues, we use the IV approach described in

Section 4; Figure 6 presents the results. Panels (a) and (b) show the time-varying posterior medians

of the numerator and denominator of our IV estimate in equation (4), together with their 95% and

68% confidence bands; panel (c) shows the same information for the IV estimate itself.

The numerator in equation (4), depicted in panel (a), is the time-varying covariance of rates

and past reserve forecast errors, which can be interpreted as the coefficient from the reduced-

form regression of the dependent variable against the instrument in the traditional IV estimation.

Figure 6 shows that, over time, the reduced-form coefficient and IV estimate closely move together,

in terms of both sign and statistical significance, which reassures us of the validity of our inference.
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Figure 6: In-sample IV estimate of the elasticity of federal funds rates to reserves. The

in-sample IV estimate of the elasticity (panel (c)) is obtained as the ratio between the impulse

response of federal funds rates (panel (a)) and the impulse response of reserves (panel (b)) to

a forecast error in reserves at a five-day horizon; see equation (4). Forecast errors and impulse

responses are estimated in-sample from model (3) with ten lags (m = 10 days). The solid blue line

represents the posterior median. The dark and light blue shaded areas correspond to 68% and 95%

confidence bands. The elasticity is calculated daily. Reserves are measured as a ratio to commercial

banks’ assets. Federal funds rates are measured, in basis points, as a spread to the IORB rate. Each

time series excludes one-day windows around month-ends to control for the transient changes in the

level of reserves and federal funds rates caused by month-end window-dressing of European banks

(see Section 2). Daily data on reserves and federal funds rates are provided by the Markets Group

at the Federal Reserve Bank of New York. Weekly data on total assets for commercial banks in the

U.S. and for U.S. branches and agencies of foreign banks are publicly available from the Federal

Reserve Economic Data, FRED (“TLAACBW027SBOG”). Daily interest on reserve balances is

available from FRED (“IOER”).
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The denominator in equation (4) is the time-varying covariance of reserves and their past forecast

errors, which can be interpreted as the strength of our instrument. Panel (b) of Figure 6 shows

that the 95% confidence bands around this quantity are always above zero, suggesting that our

instrument is strong throughout the sample. Moreover, when the instrument is relatively weaker,

such as in 2010-2013, this is directly reflected in larger confidence bands around the IV estimate in

panel (c). As mentioned in Section 4, the fact that our inference is directly robust to instrument

weakness is an important advantage of our methodology relative to traditional IV approaches.

Panel (c) shows the ratio of (a) to (b), i.e., our IV estimate (4) of the sensitivity of the fed-

eral funds rate to reserve shocks from 2010 to 2021. Although different in magnitude, results are

consistent with the evidence in Figure 5: the time path of the IV estimate is similar to the time-

varying slope from the rolling OLS regression on the model’s forecasts of rates and reserves. The

rate elasticity was significantly negative but steadily increasing from 2010, when reserves ranged

between 8% and 10% of banks’ assets, to 2011, when reserves exceeded 12% of banks’ assets for

the first time in their history. Starting in 2012, with normalized reserves hovering around 12%,

it became insignificantly different from zero and remained so throughout 2013-2017, as normalized

reserves ranged from 13% to 19%. In early 2018, a significant negative slope emerged again, as

the Federal Reserve balance-sheet normalization led reserves to drop below 13% of banks’ assets,

reaching a minimum of 8% in September 2019. The slope returned to be indistinguishable from

zero in mid-2020, as the Federal Reserve expanded its balance sheet in response to the Covid crisis

and reserves jumped above 16% of banks’ assets, staying above 13% through the end of the sample.

Panel (a) of Table 1 reports the quantitative effect of a shock in normalized reserves on the

federal funds-IORB spread by year, based on our daily-frequency estimates. For each year, we draw

from the joint posterior distribution of the daily IV estimates of the slope of the demand function,

βIVt , in that year. In 2010, a one-percentage-point drop in the ratio of reserves to banks’ assets

would lead to a median increase in the federal funds-IORB spread of 1.3 basis points. The same

drop in normalized reserves would have no effect in 2014; in contrast, it would lead to an increase

of 1 basis point in 2019.

The effects in 2010 and 2019 are also economically important, as they explain a significant share

of the in-sample variation in the federal funds-IORB spread. In our sample, the standard deviation

of daily changes in the spread is 1 bp; that of daily changes in normalized reserves is 0.2 percentage

points (pp). Therefore, our locally linear estimates of the slope of the demand curve imply that, in

2010 and 2019, a daily movement along the curve equal to the standard deviation of reserves’ daily

changes explains more than 20% of the standard deviation of rates’ daily changes.

Taken together, the results in panel (c) of Figure 6 and in panel (a) in Table 1 are consistent

with the nonlinear reserve demand curve predicted by the theory in Section 2. Our time-varying

estimates of the elasticity of the federal funds rate to reserve shocks suggest that the slope of the

reserve demand curve is itself a function of aggregate reserves: throughout our sample, it is always

significantly negative if the ratio of reserves to commercial banks’ assets is below 11%, whereas it is

always insignificant if this ratio exceeds 14%. Importantly, our results are qualitatively similar if we

divide reserves by GDP instead of banks’ total assets, confirming that our choice of the normalization
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factor does not drive our results but simply removes a time trend in nominal reserves.

Still, for the interpretation of our findings, an important question remains: where does the

low-frequency time variation in our estimate of the curve’s slope come from? The slope of our

locally linear approximation can change either because of small exogenous movements along the

curve or because of structural horizontal movements of the curve (vertical ones would not change

the estimated slope). Since our time-varying estimate closely follows the path of reserves over time,

most of the time variation in βIVt seems to come from small exogenous supply shocks captured by

our instrument.

Our results, however, also suggest the presence of modest low-frequency horizontal shifts. In

fact, the level of reserves at which the demand curve transitions from being flat to being negatively

sloped seems to have changed over time. The transitions between the flat and sloped regions occur

when reserves are around 12% of commercial banks’ assets in the first half of our sample and around

13% in the second one. These transitions correspond to reserve levels of $1.6 trillion at the end of

2011 and $2.2 trillion at the beginning 2018. This modest shift to the right of the demand curve

is consistent with an increase in the demand for reserves due to the regulatory and supervisory

liquidity requirements implemented after the 2008 crisis.

The results of this section are important for monetary policy implementation because they inform

policy makers on the transition between the region of abundant reserves, where the slope of the

reserve demand curve is statistically insignificant, and the region of ample reserves, where the slope

is significantly negative but only moderately steep. Moreover, as we discussed in Section 4.3, the

forecasting model we use to construct the time-varying instrument for aggregate reserves displays

good predictive accuracy out-of-sample, enabling us to monitor conditions in the reserve market

in real time. Real-time estimates of the curve’s slope from our model can be interpreted as an

early-warning signal for the transition from abundant to ample reserves.

The results of this section, however, do not tell us: (i) whether there have been vertical structural

shifts over time, as they do not affect the slope of the curve; and (ii) for what level of reserves the

curve transitions from the ample to the scarce region, where the curve becomes increasingly steeper

and reaches its maximum (negative) slope. In Section 6, we address both questions using a non-

structural, post-processing approach.

5.2.3 Robustness: Controlling for repo rates and Treasury yields

Model (3) may be misspecified as other factors could affect the relationship between the federal

funds rate and aggregate reserves, such as the repo and Treasury markets. To explicitly control

for the effect of repo-market conditions, we augment the forecasting model (3) by including daily

repo rates (relative to the IORB rate). We then use the reserve forecast errors generated by this

trivariate time-varying VAR as the instrument for reserves in our IV estimation; as in our baseline

specification, we use forecast errors from five days before. Figure 7 shows the results of the trivariate

model, which are consistent with those of the bivariate one. We find that the reserve demand curve

displays a negative slope in 2010-2011 and in 2018-April 2020, whereas its slope is statistically
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insignificant during the interim period between 2012 and 2017 and after April of 2020.14

Panel (b) of Table 1 reports the effect of a shock in normalized reserves on the federal funds-

IORB spread by year, when controlling for repo rates. Results are quantitatively consistent with

those from our baseline specification, and even stronger in the earlier part of the sample. A decrease

of 1 pp in normalized reserves leads to an increase in the federal funds-IORB spread by 2 bp in

2010 and 1 bp in 2019; during 2012-2017 and 2020-2021, the slope is statistically insignificant.

To explicitly control for the possible confounding effect of Treasury-market conditions, we pro-

ceed in a similar fashion. We augment our forecasting model (3) with the spread between daily

market yields on 1-year U.S. Treasury securities and the IORB rate. Then, we use the reserve

forecast error from five days before as the instrument for reserves in our IV estimation. Figure 8

shows the results for this specification. Consistent with the results of the bivariate model in Figure 6

and the trivariate model with repo rates in Figure 7, the demand curve exhibits a negative slope in

2010-2011 and in April 2018-April 2020, while it is flat throughout 2012-2017 and since May 2020.

Quantitatively, the effect of a movement along the demand curve when controlling for Treasury

yields is also very close to that obtained from the baseline specification. Panel (c) of Table 1 reports

our estimates of the yearly elasticities: in 2010, a one-percentage-point decrease in normalized

reserves leads to a median increase in the federal funds to IORB spread of 1.3 bp. The same drop

in the reserves-to-assets ratio has no effect in 2014, whereas it leads to an increase of 1 bp in 2019.

6 Implications for the Reserve Demand Curve

Our estimation methodology is highly flexible and able to identify the time-varying sensitivity of the

federal funds rate to reserve shocks, but it does not directly allow for the recovery of the full reserve

demand function. In this section, we develop and implement a method to recover the underlying

demand function based on the joint forecasts of prices and quantities from our time-varying VAR

model. We assume a nonlinear functional form for the demand curve consistent with the theoretical

discussion in Section 2. We assume that the shape of the demand function is time-invariant but allow

for slow-moving structural shifts in the vertical and horizontal locations of the function. In addition

to providing an empirical description of the demand for reserves, this exercise also facilitates the

assessment of the relative scarcity of the reserve supply, as discussed below.

6.1 Post-processing of model forecasts

While our time-varying IV estimates of the slope of the reserve demand curve inform us on the

transition between abundant and ample reserves, they do not answer two important questions. The

first one is whether the demand curve has moved vertically in our sample period; our IV estimates

14The only exception is the 2012Q4-2013Q2 period. A slight but steady decline in reserves begins in the second

quarter of 2011, just after the second round of large-scale asset purchases (LSAPs), and lasts until the fourth quarter

of 2012, when the third round of LSAPs starts. As a result, the slope becomes slightly negative in October 2012, but

it returns to be indistinguishable from zero in June 2013, during the persistent balance sheet expansion of 2013.
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Figure 7: In-sample IV estimate of the elasticity of federal funds rates to reserves

controlling for repo rates. The in-sample IV estimate of the elasticity (panel (c)) is obtained as

the ratio between the impulse response of federal funds rates (panel (a)) and the impulse response

of reserves (panel (b)) to a forecast error in reserves at a five-day horizon; see equation (4). Forecast

errors and impulse responses are estimated in-sample using a trivariate version of model (3) that

includes daily repo rates, with ten lags (m = 10 days). The solid blue line represents the posterior

median. The dark and light blue shaded areas correspond to 68% and 95% confidence bands. The

elasticity is calculated daily. Reserves are measured as a ratio to commercial banks’ assets. Federal

funds rates are measured, in basis points, as a spread to the IORB rate. Each time series excludes

one-day windows around month-ends to control for the transient changes in the level of reserves

and federal funds rates caused by month-end window-dressing of European banks (see Section 2).

Daily data on reserves and federal funds rates are provided by the Markets Group at the Federal

Reserve Bank of New York; daily data on repo rates are for overnight Treasury repos and available

from the Depository Trust & Clearing Corporation (DTCC) at https://www.dtcc.com/charts/

dtcc-gcf-repo-index. Weekly data on total assets for commercial banks in the U.S. and for U.S.

branches and agencies of foreign banks are publicly available from the Federal Reserve Economic

Data, FRED (“TLAACBW027SBOG”). Daily interest on reserve balances is available from FRED

(“IOER”).
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Figure 8: In-sample IV estimate of the elasticity of federal funds rates to reserves

controlling for 1-year U.S. Treasury securities yields. The in-sample IV estimate of the

elasticity (panel (c)) is obtained as the ratio between the impulse response of federal funds rates

(panel (a)) and the impulse response of reserves (panel (b)) to a forecast error in reserves at a

five-day horizon; see equation (4). Forecast errors and impulse responses are estimated in-sample

using a trivariate version of model (3) that includes daily yields on 1-year U.S. Treasury securities,

with ten lags (m = 10 days). The solid blue line represents the posterior median. The dark and

light blue shaded areas correspond to 68% and 95% confidence bands. The elasticity is calculated

daily. Reserves are measured as a ratio to commercial banks’ assets. Federal funds rates are

measured, in basis points, as a spread to the IORB rate. Each time series excludes one-day windows

around month-ends to control for the transient changes in the level of reserves and federal funds

rates caused by month-end window-dressing of European banks (see Section 2). Daily data on

reserves and federal funds rates are provided by the Markets Group at the Federal Reserve Bank

of New York. Weekly data on total assets for commercial banks in the U.S. and for U.S. branches

and agencies of foreign banks are publicly available from the Federal Reserve Economic Data,

FRED (“TLAACBW027SBOG”). Daily interest on reserve balances and daily yields on 1-year U.S.

Treasury securities are available from FRED (“IOER” and “DGS1” respectively).
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cannot answer this question because vertical shifts do not affect the curve’s slope. Moreover, we

cannot use the time-varying intercept from the approximate linear model (2) either because the

intercept of the linear approximation will change not only if the underlying nonlinear curve moves

vertically, but also if we move along the demand curve due to supply shocks or if the curve moves

horizontally due to low-frequency structural changes.

Knowing whether structural factors move the reserve demand curve up or down is important for

several reasons. Structural vertical shifts can permanently push the federal funds rate closer to the

bounds of its target range, increasing the probability that the policy rate moves outside its range.

Moreover, if persistent vertical shifts are present, there is no one-to-one mapping between the rate

level and the slope of the curve, which means that the federal funds rate cannot be used as a proxy

for the rate elasticity to reserve shocks. After 2008, in fact, one may be tempted to use the rate

level to make inference on the curve’s slope because, according to the theory, both the curve and

the absolute value of its slope are strictly decreasing in the region between scarce and abundant

reserves (see Section 2).15 As a result, absent vertical shifts, an increase in the federal funds rate

would imply an increase in the rate elasticity, suggesting that reserves are becoming scarcer. In

the presence of vertical shifts, however, this one-to-one mapping no longer holds, and trends in the

federal funds rate do not necessarily reflect changes in the rate elasticity.

The second question that our locally-linear IV estimates of the slope do not address directly

is the transition between ample and scarce reserves. Based on the theory, the distinction between

abundant and ample reserves is clear: the minimum level of reserves above which the reserve

demand curve is flat; in the empirical analysis, this definition naturally maps into the level of

reserves above which the rate elasticity to reserve shocks is statistically insignificant at a given

confidence level. The distinction between ample and scarce reserves, in contrast, is more arbitrary:

loosely speaking, reserves transition from ample to scarce when the slope goes from gently negative

to very steep. A natural way to formalize this statement is by looking at the rate at which the

absolute slope increases as reserves decrease (i.e., the curve’s second derivative): we could define the

transition between ample and scarce as the reserve level for which this rate reaches its maximum.

To operationalize this definition, however, we need a nonlinear model.

Consistent with the reserve demand curve implied by the theory in equation (1), we specify the

following demand function for reserves:

pt = p∗t + f(qt − q∗t ; θ) with f(x; θ) =

(
arctan

(
θ1 − x
θ2

)
+
π

2

)
θ3, (5)

where p∗ and q∗ are the vertical and horizontal locations, θ1 is a location parameter, θ2 is a scale

parameter, and θ3 is a normalization factor. We choose this transformation of the arctan function

because it has a smooth and decreasing sigmoid shape that goes to zero as x→∞, as predicted by

the theory. Consistent with the evidence in Figure 4, we consider three periods, corresponding to

different locations of the curve: 2010-2014, 2015-3/09/2020, and 3/16/2020-3/29/2021. We assume

that q∗ and p∗ do not change within each period; e.g., q∗t = q∗1 and p∗t = p∗1 for all t in 2010-2014.

15In the left part of the curve, instead, the absolute slope increases with reserves because the curve must flatten

around the DW rate as reserves go to zero.
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Our post-processing exercise finds the parameters {θ1, θ2, θ3, (p∗1, q∗1), (p∗2, q
∗
2), (p∗3, q

∗
3)} minimiz-

ing the following objective function:

3∑
k=1

∑
t∈Tk

N∑
i=1

[pit − p∗k − f(qit − q∗k; θ)]
2 (6)

where T1, T2, and T3 represent 2010-2014, 2015-3/13/2020, and 3/16/2020-3/29/2021; i = 1, . . . , N

are draws from the in-sample five-day-ahead joint posterior distribution of the federal funds-IORB

spread (p) and normalized reserves (q) from our bivariate time-varying VAR model (3).16 We

generate these forecasts every five days and set N = 100. To improve efficiency and reliability, we

also provide the optimization algorithm with the analytical gradient of the objective function (6).

In other words, we perform a nonlinear least-square fit on the time-varying joint forecasts of

prices and quantities from our forecasting model; in this way, we can exploit an entire cross-section

of pseudo-data at each point in time, as opposed to one single observation as in the realized times

series. This approach leverages the forecasting accuracy of our time-varying VAR model, but in

contrast to our IV estimates of the rate elasticity, its results cannot be interpreted causally.

6.2 Parameter interpretation and constraints

Our estimation method is silent regarding the origins of the vertical and horizontal shifts in (5).

Based on the economic theory and institutional framework discussed in Section 2, several factors can

lead to structural shifts in the demand for reserves. In model (5), for example, p∗ denotes the lower

asymptote of the demand curve, which represents the wedge between the federal funds and IORB

rates when reserves are abundant; factors affecting this wedge include market fragmentation, the

introduction of the ONRRP facility, and bank regulations based on balance-sheet size.17 Horizontal

shifts in q∗, in contrast, reflect all those factors that shift out the demand curve at every price level,

including changes in banks’ liquidity-risk management such as the LCR and internal stress tests.

For normalization, we set q∗1 = 0 and interpret q∗2 and q∗3 as horizontal shifts of the curve relative

to its 2010-2014 position.

Regarding the time-invariant nonlinear part of the curve, θ1 represents the point of maximum

absolute slope, i.e., the level of normalized reserves at which the negative slope of the curve is the

steepest. We can think of the region around θ1 as the region of scarce reserves, where the federal

funds rate is highly sensitive to even small reserve shocks. The point of maximum slope growth,

instead, is x = θ1 + θ2/
√

3; this point is where the curve’s absolute slope increases at the highest

rate as reserves decrease, which we interpret as the threshold between ample and scarce reserves.18

16We choose five-day-ahead forecasts to be consistent with our instrument in the IV analysis.
17As discussed in Section 2, absent frictions, p∗ should be zero.
18Since the arctan function is strictly decreasing everywhere, there is no reserve range where the curve (5) is perfectly

flat, which would correspond to the region of abundant reserves. For inference on the transition between abundant

and ample reserves, we rely on the IV estimates of the rate elasticity reported in Section 5, which suggest that this

transition occurs when reserves are between 11% and 13% of banks’ assets, depending on the time period.
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θ3 is a normalization factor that measures the vertical distance between the upper and lower

asymptotes of the nonlinear time-invariant function in (5): lim
x→−∞

f(x; θ) − lim
x→+∞

f(x; θ) = πθ3.

Reserves cannot go to minus infinity, but we can interpret this parameter in the limit of zero

reserves. The theory predicts that, absent frictions, the federal funds rate should converge to the

DW rate from below as reserves go to zero.19 As a result, θ3 should be of the same order of

magnitude as the spread between the DW and IORB rates.

To ensure that minimizing (6) leads to economically meaningful results, we use the theoretical

and institutional framework of Section 2 to initialize the parameters and set bounds on them.

Appendix B provides a detailed description of the algorithm, parameter bounds, and initialization

values. Importantly, none of our parameter estimates are equal to their bounds or initial values.

Finally, our IV estimates show that, below a given reserve threshold, the slope of the demand

curve becomes increasingly negative as reserves decrease. This evidence indicates that, in our

sample, the federal funds market has operated to the right of the scarcity region. For this reason,

we minimize (6) imposing the constraint that the algorithm only fits the right tail of the curve (i.e.,

qit − q∗t > θ1 for all t); in robustness checks, we use milder constraints and obtain similar results.

6.3 Results

Figure 9 shows the results of our nonlinear least-squares fit, with low-frequency horizontal and

vertical shifts, evaluated on the joint forecasts of prices and quantities from the time-varying VAR

(3). The estimates of the shifts are in Table 2; the estimates of the parameters governing the

nonlinear shape of the curve are in Table 3.

The reserve demand curve has moved vertically and horizontally over time. As shown in Panel

(a) of Table 2, from 2010-2014 to 2015-2020, it moved upward by roughly 2 bp and to the right by

roughly 3 pp. This horizontal shift is consistent with our IV estimates of the rate elasticity, which

suggest that the reserve level at which the curve starts displaying a significantly negative slope was

higher in the second part of the sample. In 2020-2021, the curve seems to move back toward its

initial horizontal location by 1 pp, for a total shift to the right of 2 pp from the beginning to the end

of the sample. The vertical location, in contrast, jumps further up in 2020-2021 by additional 10

bp, for a total increase of 12 bp relative to the first period. These shifts, and especially the vertical

ones, are economically material, as the in-sample standard deviation of the federal funds-IORB

spread is around 6 bp and that of normalized reserves is around 3 pp.

These results confirm the evidence in Figure 4 and suggest that, although there seems to be a

horizontal shift to the right over 2010-2021, upward vertical shifts seem to be the more relevant

source of time variation in the reserve demand curve, especially in the last part of the sample.

This result is particularly important because, as we discuss above, the presence of vertical shifts

implies that a raise in the federal funds rate cannot be interpreted as a signal of increased reserve

scarcity. To identify the transition between abundant and scarce reserves, instead, one needs to

19Frictions such as stigma or borrowing caps may push the federal funds rate above the DW rate.
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Figure 9: Post-processing nonlinear fit of the reserve demand curve with horizontal and

vertical shifts using model forecasts as data. This figure shows the results of the nonlinear

least-squares (NLLS) minimization in equation (6). The NLLS fit is estimated on a sample of

five-day-ahead joint forecasts of the federal funds-IORB spread and normalized reserves from the

in-sample estimation of the time-varying VAR model in equation (3). Forecasts are generated

every five days; for each day, we draw N = 100 forecasts from the model-implied posterior joint

distribution. Results are obtained constraining the fit to the right of the point of maximum absolute

slope of the nonlinear demand function in (5). A detailed description of the minimization algorithm,

parameter bounds, and initialization values can be found in Appendix B.

directly estimate the rate elasticity to reserve shocks.

In terms of the time-invariant nonlinear part of the reserve demand function, our estimates show

that the point of maximum slope (θ1) occurs when reserves are around 5% of banks’ assets; the

point of maximum slope growth (θ1+θ2/
√

3), instead, is around 8%. This estimate suggests that, in

2010-2014, the transition between ample and scarce reserves occurred around 8% of banks’ assets.

In 2015-2020, as a result of the 3-pp shift to the right q∗2, this transition point seems to move to

11%. Finally, the normalization parameter θ3 is 18 bp, which is close to the average DW-IORB

spread in our sample divided by π (15 bp), confirming that our results are reasonable.

Looking back at the path of realized reserves over 2010-2021, these results suggest that, in both

2010 and 2019, with reserves between 8% and 10% of banks’ assets, the federal funds market may

have been operating around the transition between ample and scarce reserves; in the second half of

2019, in particular, with reserves consistently below 9% of banks’ assets and the threshold between
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ample and scarce around 11%, the market may have been operating inside the scarcity region.

1/2010-12/2014 01/2015-03/2020 03/2020-03/2021

(a) Forecasts based on bivariate time-varying VAR

Horizontal shifts q∗ 0 2.62 1.69

Vertical shifts p∗ -23.67 -21.47 -11.94

(b) Forecasts based on trivariate time-varying VAR with repo rates

Horizontal shifts q∗ 0 2.80 1.34

Vertical shifts p∗ -24.09 -22.03 -12.06

(c) Forecasts based on trivariate time-varying VAR with treasury rates

Horizontal shifts q∗ 0 2.97 0.13

Vertical shifts p∗ -24.23 -22.48 -11.20

Table 2: Post-processing nonlinear fit of the reserve demand curve with horizontal and

vertical shifts using model forecasts as data: estimates of the shifts. This table shows

the estimates of the horizontal (q∗) and vertical (p∗) shifts in equation (5) from the nonlinear

least-squares (NLLS) minimization in equation (6). The NLLS fit is estimated on a sample of five-

day-ahead joint forecasts of federal funds-IORB spreads and normalized reserves from the in-sample

estimation of our time-varying VAR forecasting model. Results in panel (a) are obtained using the

bivariate model (3) to generate the forecasts; results in panel (b) and (c) are obtained using the

trivariate models that add repo rates and Treasury yields to model (3). Forecasts are generated

every five days; for each day, we draw N = 100 forecasts from the model-implied posterior joint

distribution. Results are obtained constraining the fit to the right of the point of maximum absolute

slope of the nonlinear demand function in (5). A detailed description of the minimization algorithm,

parameter bounds, and initialization values can be found in Appendix B.

6.4 Robustness

For robustness, we repeat the nonlinear minimization (6) using the forecasts from the trivariate time-

varying VAR with repo rates and with Treasury yields as pseudo-data. The coefficient estimates

from these specifications are in Tables 2 and 3; Figure 11 and Figure 12 in Appendix B replicate

Figure 9 for the trivariate models with repo rates and with Treasury yields, respectively. Results

are consistent with those obtained using the bivariate forecasting model. The reserve demand curve

shifts upward by 2 bp from 2010-2014 to 2015-2020 and by additional 10 to 11 bp in the last year

of the sample, for a total vertical shift of 12 to 13 bp, which is substantial. The curve also shifts to

the right by 3 pp from 2010-2014 to 2015-2020, but its horizontal position at the end of the sample

is very close to the initial position: the total right shift is just 1 pp when using the model with repo

rates and 0 pp when controlling for Treasury yields.
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Forecasting model θ1 (%) θ2 (%) θ3 (bp)

Bivariate 5.02 5.31 17.87

Trivariate with repo rates 5.12 5.73 17.36

Trivariate with treasury rates 5.03 5.89 17.42

Table 3: Post-processing nonlinear fit of the reserve demand curve with horizontal and

vertical shifts using model forecasts as data: estimates of the nonlinear time-invariant

parameters. This table shows the estimates of θ = (θ1, θ2, θ3) in equation (5) from the nonlinear

least-squares (NLLS) minimization in equation (6). The NLLS fit is estimated on a sample of five-

day-ahead joint forecasts of the federal funds-IORB spread and normalized reserves from the in-

sample estimation of our time-varying VAR forecasting model. Results in the first row are obtained

using the bivariate model (3) to generate the forecasts; results in panel (b) and (c) are obtained

using the trivariate models that add repo rates and Treasury yields to model (3). Forecasts are

generated every five days; for each day, we draw N = 100 forecasts from the model-implied posterior

joint distribution. Results are obtained constraining the fit to the right of the point of maximum

absolute slope of the nonlinear demand function in (5). A detailed description of the minimization

algorithm, parameter bounds, and initialization values can be found in Appendix B.

For both trivariate models, the estimates of the parameters governing the nonlinear part of the

demand curve are also similar to the baseline ones. In 2010-2014, the point of maximum slope is

around 5% and the point of maximum slope growth around 8%. Combined with the evidence on

the horizontal shifts, these results suggests that reserves would go from ample to scarce around 8%

of banks’ assets in 2010-2014 and around 11% in 2015-2020, confirming that in 2019, the federal

funds market may have entered the scarcity region.

In Appendix B, we report additional robustness checks. For example, instead of fitting the curve

to the right of the point of maximum slope, we fit it over a broader region that includes the point

of maximum slope. We also repeat our post-processing exercise allowing the horizontal and vertical

shifts to change at daily frequency; to do so, we include a loss function penalizing daily jumps in

the path of p∗ and q∗ in the objective function (6). Results are similar and show that a large part of

the time variation in the reserve demand curve is due to persistent upward shifts starting in 2013,

whereas horizontal shifts seem to be less material.

7 Conclusion

Estimation of the reserve demand curve – the relationship between the prices at which banks

are willing to trade their reserve balances and the aggregate reserves in the banking system – is

important for the implementation of monetary policy. A key question is whether the price of reserves,

the federal funds rate, responds to shocks to reserves even when reserves are in the trillions of dollars,

as it has been since the 2008 financial crisis.
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In this paper, we provide a structural time-varying estimate of the elasticity of federal funds

rates to reserve shocks over 2010-2021, as reserves ranged from $1 to $4 trillion. We make several

contributions. First, we make a methodological contribution in providing a methodology that can

deal with the three main issues affecting the estimation of the reserve demand curve: nonlinearity,

time variation due to slow-moving structural changes in the reserves market, and endogeneity. Our

methodology uses of high-frequency (daily) data and an instrumental-variable approach combined

with a time-varying vector autoregressive model of the joint dynamics of rates and reserves.

Second, we show that, as predicted by economic theory, the reserve demand curve is highly

nonlinear: it is flat when reserves in the banking system are sufficiently large and negatively sloped

as aggregate reserves decline. In the earlier part of the sample, we observe a significantly negative

slope when reserves are below 12% of banks’ assets (2010-2011); in the second half, a gentle slope

re-emerges as normalized reserves drop below 13% (2018-2019).

Third, we show that the demand curve has shifted over time, both vertically and horizontally.

Upward vertical shifts seem to be especially relevant in the later part of the sample. This observation

has an important implication: the level of the federal funds-IORB spread may not be the appropriate

summary statistic for the rate sensitivity to reserve shocks.

Finally, while our focus is on estimating the curve’s slope and documenting its shifts rather

than explaining them, studying the causes of the shifts we document here is an important task for

future research. Many factors may have moved banks’ demand for reserves over the past decade.

Lessons learnt from the 2008 crisis may have led to changes in banks’ risk management and liquidity

preferences. The introduction of liquidity regulation, supervisory stress tests, and resolution plans

may have also played an important role. Structural changes in the reserves market, such as a drastic

drop in inter-bank volumes, may have shifted the bargaining power across participants. Similarly,

the introduction of the ONRRP facility may have impacted rates by providing an additional outside

option to overnight non-bank lenders such as FHLBs and MMFs.
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A Appendix: The Time-Varying VAR

A.1 Model description

To generate daily reserve forecasts, we model the relationship between aggregate reserves and the

federal funds rate at a daily frequency using a time-varying vector autoregression (TV-VAR) based

on Primiceri (2005) and Del Negro and Primiceri (2015). The model is a multivariate time series

model with time-varying coefficients and time-varying covariance matrices for the innovations. The

model can be written as follows:

qt = cq,t + bq,q,1,tqt−1 + bq,p,1,tpt−1 + ...+ bq,q,m,tqt−m + bq,p,m,tst−m + uq,t,

pt = cp,t + bp,q,1,tqt−1 + bp,p,1,tpt−1 + ...+ bp,q,m,tqt−m + bp,p,m,tst−m + us,t,
(A.1)

where p is the federal funds-IORB spread, q is aggregate reserves divided by banks’ total assets,

and uq and us are serially uncorrelated, heteroskedastic unobservable errors. These errors are

assumed to be jointly normally distributed, with zero mean and a 2× 2 covariance matrix Ωt; i.e.,

(uq,t, up,t)
′ ∼ N (0,Ωt) on each day t. The number of lags is m = 10.

The vectorized form of model (A.1) is:

yt = ct +B1,tyt−1 + ...+Bm,tyt−m + ut with t = 1, ..., T, (A.2)

where yt is a 2×1 stacked vector of (qt, pt)
′; ct is an 2×1 vector of stacked constant terms (cq,t, cp,t)

′;

Bi,t, with i = 1, . . . ,m, are the following 2× 2 matrices of time-varying coefficients:

Bi,t =

[
bq,q,i,t bq,p,i,t
bp,q,i,t bp,p,i,t

]
.

To model time variation in the covariance matrix of the errors, we reparameterize Ωt as follows:

AtΩtA
′
t = ΣtΣ

′
t, (A.3)

where Σt =

[
σ1,t 0
0 σ2,t

]
is a diagonal matrix, and At =

[
1 0

α21,t 1

]
is a lower triangular matrix. It

follows that

yt = ct +B1,tyt−1 + ...+Bm,tyt−m +A−1t Σtεt, (A.4)

V ar(εt) = In,

where εt is a 2× 1 vector of reserve and rate shocks that are uncorrelated with each other at each

point in time by construction. The factorization of the covariance matrix in (A.3) is convenient

because the first ε error is proportional to the forecast error in reserves (σ1,tε1,t = uq,t). As shown

in the next section, this modeling strategy implies that the impulse response functions of qt and pt
to ε1,t−h are proportional to the covariances of qt and pt with uq,t−h.
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Stacking all the time-varying coefficients in a vector Bt, we can represent the model in the

following companion form:

yt = X ′tBt +A−1t Σtεt, (A.5)

X ′t = In ⊗ [1, y′t−1, . . . , y
′
t−m],

where ⊗ denotes the Kronecker product.

We model the parameters in the following way:

Bt = Bt−1 + νt, (A.6)

αt = αt−1 + ζt, (A.7)

log σt = log σt−1 + ηt, (A.8)

where αt = α21,t is the non-zero off-diagonal term in At, and σt = (σ1,t, σ2,t)
′ is the 2 × 1 vector

of diagonal terms in Σt. B and α are modeled as random walks; σt is modeled as a geometric

random walk, which belongs to the broader class of stochastic volatility models. All innovations in

the model (εt, νt, ζt, ηt) are assumed to be jointly normally distributed with covariance matrix

V = V ar


εtνtζt
ηt


 =

I2 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W

, (A.9)

where I2 is the 2 × 2 identity matrix, S is the variance of ζt, and Q and W are positive-definite

matrices.

In our robustness checks, we consider tri-variate versions of this TV-VAR model that also include

either repo rates or Treasury yields. We augment yt to become a 3×1 vector of system variables, with

the following order: normalized reserves, the repo-IORB spread (or the Treasury-IORB spread),

and the federal funds-IORB spread. The vector Bt expands to include the additional auto-regressive

parameters and constant. At maintains its lower triangular structure, expanding to

At =

[
1 0 0

α21,t 1 0
α31,t α32,t 1

]
,

so that αt in (A.7) becomes a 3×1 vector of the stacked parameters of At. Σt maintains its diagonal

structure and expands to include σ3,t, so that σt in (A.8) becomes a 3× 1 vector.

The covariance matrix of εt expands to become I3. The covariance matrices of the parameter

innovations (Q, S, and W ) also expand to account for the additional parameters. We assume S is

a block-diagonal matrix, with blocks corresponding to parameters belonging to separate equations:

S =

[
S1,1 0 0

0 S2,1,1 S2,1,2
0 S2,2,1 S2,2,2

]
,

where S1,1 is the variance of the ζ innovation for α21, and the lower block is the covariance of the

ζ innovations for (α31, α32)
′.
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A.2 Covariance between errors and observables: an impulse-response view

In this section, we show how the covariances in equation (4) can be interpreted as the h-day-ahead

impulse responses of rates and reserves to a reserve shock under a Choleski decomposition with

reserves ordered first, such as the factorization in (A.3).

Let n be the number of variables in the system, i.e., two in our case. We rewrite the VAR in

the companion form:


yt
yt−1
yt−2

...
yt−m+1


︸ ︷︷ ︸

Yt

=


ct
0n
0n
...

0n


︸ ︷︷ ︸

ct

+


B1,t B2,t . . . Bm−1,t Bm,t
In 0n×n . . . 0n×n 0n×n

0n×n In . . . 0n×n 0n×n
...

...
. . .

...
...

0n×n 0n×n . . . In 0n×n


︸ ︷︷ ︸

Bt


yt−1
yt−2
yt−3

...
yt−m


︸ ︷︷ ︸

Yt−1

+


ut
0n
0n
...

0n


︸ ︷︷ ︸

ut

Define J = (In 0n×n . . . 0n×n︸ ︷︷ ︸
m−1 times

)′; we have yt = J′Yt and ut = J′ut. Iterating the model backward

for h periods, we get:

Yt =

ct +
h∑
j=1

j∏
k=1

Bt−k+1ct−j

+

ut +
h∑
j=1

j∏
k=1

Bt−k+1ut−j

+
h∏
k=0

Bt−kYt−h−1,

and therefore

yt =

J′ct +

h∑
j=1

J′
j∏

k=1

Bt−k+1ct−j

+

J′ut +

h∑
j=1

J′
j∏

k=1

Bt−k+1ut−j

+ J′
h∏
k=0

Bt−kYt−h−1.

We can now compute the covariance between the observables and the reserve forecast error,

conditional on the model parameters Γ1:T = {ct, B1,t, ..., Bm,t, At,Σt; t = 1, ..., T}. As reserves are

ordered first in our system, we can write the reserve forecast error as u1,t = u′t j1, where j1 is the

first column of J. Also note that ut = Jut, as JJ′ = Inm by construction. Since the forecast errors

have zero mean and are serially uncorrelated, we have

cov (yt, u1,t−h|Γ1:T ) = E [ytu1,t−h|Γ1:T ] = J′
h∏
k=1

Bt−kE
[
ut−hu

′
t−h|Γ1:T

]
j1 = J′

h∏
k=1

Bt−kJΩt−hJ
′j1,

= J′
h∏
k=1

Bt−kJΩt−hι1

where ι1 = (1 0 . . . 0︸ ︷︷ ︸
n−1 times

)′. Ωt−hι1 is the first column of the covariance matrix Ωt−h.
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The Cholesky factorization (A.3) implies that Ωtι1 = A−1t ΣtΣ
′
t (A′t)

−1 ι1 =
(
A−1t ι1

)
σ21t. As a

result,

cov (yt, u1,t−h|Γ1:T ) =

(
J′

h∏
k=1

Bt−kJA
−1
t−hι1

)
σ21t−h. (A.10)

For simplicity, to estimate these covariances at day t, we approximate past values of the model

parameters with their most recent value; in this way, the matrix product
∏h
k=1 Bt−k simply becomes

the matrix power Bh
t . This approximation is valid because, given our priors, the model parameters

evolve significantly more slowly than the daily errors (see Appendix A.3), and because we choose a

relatively short time horizon (h = 5) for the forecast errors used in our IV estimation.

Up to the scaling factor σ21,t, our estimates of the covariances in (A.10) are therefore equal

to the h-day-ahead impulse responses of the system variables to the standardized reserve shocks

calculated using factorization (A.3); in fact, in the traditional VAR literature, the i-th variable’s

impulse response to ε1 after h days,
∂yi,t+h
∂ε1,t

, is estimated with the i-th element of the vector

J′Bh
t JA

−1
t ι1. Note also that the scaling factor σ1,t is the same for all variables in the system; as a

result, our IV estimate (4), obtained as ratio of the covariances in (A.10), is exactly equal to the

ratio of the h-day-ahead impulse responses of rates and reserves to reserve shocks.

A.3 Priors

We use Bayesian methods to estimate model (A.1). As outlined in Primiceri (2005), we use the

following prior densities for the initial states of the time-varying parameters:

P (B0) = N(B̂, 4 · Ψ̂B),

P (α0) = N(α̂, 4 · Ψ̂α),

P (log σ0) = N(log σ̂, In),

where N(µ, σ2) denotes a normal density function with mean µ and variance σ2, and B̂, α̂, log σ̂,

Ψ̂B, and Ψ̂α are set using a time-invariant VAR with the same ordering as in (A.3) estimated by

OLS on the pre-sample from 01/05/2009 to 01/19/2010, covering T0 = 226 daily observations. The

prior means, B̂ and α̂, are set to the OLS point estimates. The prior variances, Ψ̂B and Ψ̂α, are set

equal to the sampling variances of the OLS point estimates. The prior means of the initial states

of the log-volatilities are set to the logarithm of the standard errors of the OLS residuals.

Following Primiceri (2005), we set the prior densities for Q, S, and W as:

P (Q) = IW (λ21 · T0 · Ψ̂B, T0),

P (S) = IW (λ22 · 2 · Ψ̂α, 2),

P (W ) = IW (λ23 · 3 · I3, 3),
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where IW (A, df) is the inverse-Wishart density function with scale matrix A and degrees of freedom

df . Smaller values of λi imply less time variation in the dynamic parameters of the model; we set

λ1 = 0.04, λ2 = 0.1, and λ3 = 0.01. These tight priors, especially that on Q, ensure that the model

parameters move more slowly than the daily errors and liquidity shocks affecting banks’ demand

for reserves.

The posterior distribution of the parameters and the forecasts are obtained by Montecarlo

simulations, as described in Primiceri (2005); D’Agostino et al. (2013), and Del Negro and Primiceri

(2015).

A.4 Out-of-sample validation: forecasting

To evaluate the forecasting performance of the bi-variate TV-VAR model (A.1), we conduct a series

of out-of-sample (OOS) forecasting exercises and compare the TV-VAR against traditional time-

series models. To construct OOS predictive forecast densities, the model is recursively estimated,

and the forecasts are generated, every 5 business days from January 20, 2010 to March 29, 2021,

using an expanding window of observations.

For comparison, we also generate OOS forecasts using two time-invariant models: a standard

bi-variate VAR and a vector of two independent AR processes (one for each series). In both models,

the innovations in qt and pt are assumed to have zero mean, to be serially uncorrelated, and to be

normally distributed (jointly in the VAR and independently in the AR processes). Both models

are estimated via OLS on daily data, using a 260-day rolling window to allow their parameters to

adapt to a changing environment. As in the TV-VAR, both the VAR and the AR models include

ten lags and are estimated every five business days.

A.4.1 Point forecasts

We first evaluate the median forecasts for normalized reserves (qt) and the federal funds-IORB

spread (pt) from the three forecasting models. For each variable we calculate the root-mean-square

forecast errors (RMSE) at forecasting horizons of 5, 10, and 20 business days. We also report the

determinant of the variance-covariance matrix of the forecast errors, as a measure of joint predictive

accuracy.

Table 4 presents these marginal and joint forecasting performance of each model over different

sample periods. On the full sample, both the marginal and the joint RMSE of the TV-VAR are

smaller than those of the VAR and AR models at any forecasts horizon. The only exception is the

VAR’s RMSE for the spread at h = 10, which is slightly smaller than the corresponding TV-VAR’s

RMSE: 2.08 bp vs 2.12 bp.

The TV-VAR displays a higher forecasting accuracy at all horizons also when the RMSE are

calculated on non-overlapping two-year windows (e.g., 2010-2011, 2012-2013); only for the 2014-2015

period, when reserves were so large that their relationship with federal funds rates was completely

flat, results are more mixed, and no model clearly dominates the others.
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Sample Model Reserves/Assets (%) FF-IORB Spread (bp) Joint
h = 5 h = 10 h = 20 h = 5 h = 10 h = 20 h = 5 h = 10 h = 20

2010 - 2021 TVVAR 0.41 0.61 0.87 1.73 2.12 2.37 0.70 1.24 2.00
VAR 0.44 0.65 0.99 2.04 2.08 2.69 0.88 1.30 2.43

AR 0.43 0.63 1.01 2.74 3.99 6.37 - - -

2010 - 2011 TVVAR 0.35 0.46 0.68 1.47 1.76 2.23 0.45 0.74 1.43
VAR 0.38 0.53 0.81 1.66 2.09 2.93 0.52 0.90 1.81

AR 0.36 0.50 0.75 1.58 1.99 2.77 - - -

2012 - 2013 TVVAR 0.34 0.44 0.53 1.29 1.74 2.47 0.42 0.72 1.23
VAR 0.35 0.47 0.65 1.38 1.87 2.70 0.46 0.80 1.49

AR 0.35 0.46 0.61 1.37 1.90 2.69 - - -

2014 - 2015 TVVAR 0.58 0.84 1.04 0.78 1.04 1.26 0.46 0.87 1.32
VAR 0.62 0.78 0.816 0.82 1.04 1.29 0.51 0.81 1.05

AR 0.59 0.77 0.85 0.78 0.99 1.29 - - -

2016 - 2017 TVVAR 0.36 0.53 0.75 0.42 0.65 0.97 0.15 0.34 0.72
VAR 0.38 0.60 0.83 0.47 0.72 0.99 0.17 0.41 0.78

AR 0.37 0.56 0.77 0.46 0.71 1.04 - - -

2018 - 2019 TVVAR 0.26 0.37 0.47 2.45 2.79 2.98 0.55 0.82 1.13
VAR 0.31 0.46 0.55 3.37 2.70 3.57 0.94 1.05 1.74

AR 0.27 0.39 0.52 5.43 8.28 14.0 - - -

2020 - 2021 TVVAR 0.53 0.91 1.60 3.14 3.94 3.82 1.64 3.48 5.91
VAR 0.55 1.03 2.10 3.19 3.49 3.96 1.75 3.57 7.19

AR 0.57 1.07 2.23 3.32 4.02 4.04 - - -

Table 4: OOS RMSE. Out-of-sample (OOS) root-mean-square error (RMSE) for normalized re-

serves and the federal funds-IORB spread from the TV-VAR (A.1) and the VAR and AR models

described in Section A.4.

A.4.2 Density forecasts

We then evaluate the entire predictive forecast density. Given the draws from each predictive

forecast density, we fit a normal distribution to the marginal draws and a multivariate normal

distribution to the joint draws. For each fitted predictive forecast density, we generate a score by

evaluating the density function at the realized data and then take its logarithm. This score measures

the likelihood of the realized data under the predictive density implied by the forecasting model.

Lower scores correspond to lower likelihoods, suggesting lower model’s accuracy.

Table 5 presents the average marginal and joint log scores of each model over the whole sample

period and over non-overlapping two-year sub-periods . Over the full sample, the TV-VAR displays

significantly higher log-scores both for the marginal density of reserves and for the joint density

at all horizons. The log-score for the density of the federal funds-IORB spread is slightly lower
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than those from the VAR and AR models, but the difference is practically immaterial at horizons

of 5 and 10 business days, (e.g., for h = 5, the spread’s log-score is -2.31 for the TV-VAR and

-2.29 for the VAR). Moreover, when considering the performance by sub-period, all log-scores from

the TV-VAR, including those for the spread, tend to be higher than those from the time-invariant

models in the early and late part of the sample (i.e., 2010-2013 and 2018-2021). It is only in the

interim part (2014-2017), when reserves were so abundant that the relationship between rates and

reserves was practically zero, that the TV-VAR’s performance tends to be slightly worse.

Sample Model Reserves/Assets (%) FF-IORB Spread (bp) Joint
h = 5 h = 10 h = 20 h = 5 h = 10 h = 20 h = 5 h = 10 h = 20

2010 - 2021 TVVAR -0.51 -0.87 -1.38 -2.31 -2.47 -3.38 -2.92 -3.34 -4.72
VAR -0.69 -1.17 -1.97 -2.29 -2.34 -2.71 -3.21 -3.79 -5.04

AR -0.60 -1.08 -1.83 -2.28 -2.39 -2.62 - - -

2010 - 2011 TVVAR -0.39 -0.67 -1.13 -1.82 -2.02 -2.29 -2.09 -2.64 -3.35
VAR -0.58 -0.96 -1.77 -2.02 -2.29 -2.76 -2.40 -3.09 -4.44

AR -0.50 -0.86 -1.47 -1.94 -2.19 -2.60 - - -

2012 - 2013 TVVAR -0.37 -0.66 -0.97 -1.87 -2.18 -2.69 -2.24 -2.83 -3.61
VAR -0.43 -0.82 -1.31 -1.75 -2.13 -2.70 -2.13 -2.88 -3.83

AR -0.41 -0.74 -1.09 -1.74 -2.14 -2.67 - - -

2014 - 2015 TVVAR -1.11 -1.45 -1.61 -1.62 -2.45 -4.25 -2.75 -3.93 -5.80
VAR -1.25 -1.41 -1.43 -1.30 -1.59 -1.91 -2.64 -3.17 -3.43

AR -1.11 -1.39 -1.49 -1.21 -1.47 -1.86 - - -

2016 - 2017 TVVAR -0.43 -0.83 -1.54 -1.08 -2.22 -4.23 -1.51 -3.05 -5.72
VAR -0.46 -0.93 -1.30 -0.55 -0.90 -1.32 -1.03 -1.92 -2.80

AR -0.42 -0.82 -1.14 -0.55 -0.89 -1.31 - - -

2018 - 2019 TVVAR -0.16 -0.53 -0.94 -5.16 -3.50 -3.31 -5.88 -4.03 -4.22
VAR -0.35 -0.78 -0.96 -5.56 -4.55 -4.75 -6.96 -6.18 -6.67

AR -0.13 -0.51 -0.85 -5.65 -4.90 -4.46 - - -

2020 - 2021 TVVAR -0.62 -1.14 -2.45 -2.19 -2.38 -3.37 -2.96 -3.56 -5.83
VAR -1.24 -2.67 -6.86 -2.68 -2.74 -2.87 -4.44 -6.38 -11.3

AR -1.26 -2.74 -6.67 -2.73 -2.94 -2.95 - - -

Table 5: Mean Log Scores: Average of the marginal log scores for Reserves and Spread (VWA

FFR - IOR), and joint log scores for from the TV-VAR (A.1) and the VAR and AR models described

in Section A.4.

Lastly, we assess the calibration of the predictive forecast densities by using probability integral

transforms (PITs). The PITs are the values of the predictive marginal cumulative distributions

evaluated at the realized data. For each variable, we estimate the PIT by computing the fraction

of draws from the forecast density that are less than the realized value. If the predictive density

is well calibrated, the PIT should be distributed uniformly on [0, 1]. Figure10 plots the empirical
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cumulative distribution functions (CDFs) of the PITs for each horizon and each series across different

models. For a well-calibrated forecast, the PIT should have a CDF matching that of a uniform

distribution, i.e., a 45-degrees line.

For normalized reserves, the empirical CDF of the PIT from the TV-VAR is close to the 45-

degree line and within its 90% confidence bands at all horizons; in contrast, the empirical CDFs of

the PITs from the VAR and AR models tend to be consistently above the 45-degree line and outside

their confidence bands over a sizable share of the [0, 1] support, especially at longer horizons. This

is particularly evident for the AR forecasting model at horizon h = 20.

For the spread, all models are less well calibrated: the CDFs of the PITs for the spread fore-

casts are further away from 45-degree line than those for the reserve forecasts, especially at longer

horizons. That CDF of the PIT from the TV-VAR, however, has a clear sigmoid shape crossing

the 45-degree line from below around 0.5, which suggests that the predictive distribution is quite

dispersed but centered around the realized data. The PITs’ CDFs from the VAR and AR models,

instead, tend to be below the 45-degree line for most of the [0, 1] support, suggesting that the

predictive distributions may be biased; this is particularly visible for the VAR model at horizons

h = 10 and 20.

Figure 10: Empirical CDFs of PITs. Empirical cumulative distribution function (CDF) of the

probability integral transforms (PITs) of the forecasts of normalized reserves and of the federal-

funds-IORB spread from the TV-VAR (A.1) and the VAR and AR models described in Section A.4.

The colored dashed lines represent the 90% confidence bands for the different models, constructed

using the bootstrap method outlined in Rossi and Sekhposyan (2019)
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B Appendix: The Post-processing Nonlinear Fit

B.1 Algorithm details

To solve the minimization problem in (6), we use the fmincon function in MatLab. We choose the

interior-point algorithm and set the maximum number of function evaluations to 109, the maximum

number of iterations to 1012, the step tolerance to 10−18, and the tolerance on constraint violations

to 10−12. We analytically derive the gradient of the objective function in (6) and include it in the

minimization program.

To ensure that our results are reliable and economically meaningful, we set bounds on the

variables of the minimization problem. We are agnostic about the origins and possible magnitude

of the horizontal shift, q∗, in the reserve demand curve; for this reason, in all periods, we set its

upper and lower bounds equal to two and minus two times the maximum level of normalized reserves

in our sample, respectively. For the vertical shift p∗, we choose bounds based on the discussion of

its economic interpretation in Section 6. The lower bound is the same for all periods and is equal

to the minimum ONRRP-IORB spread in our sample; the rationale behind this choice is that the

ONRRP rate is the safe outside option for FHLBs and MMFs, the main lenders to banks in the

wholesale overnight funding market. The upper bound changes across periods and is equal to the

average realized federal funds-IORB spread in the period; the reason is that f(x; θ) in equation (5)

is strictly positive everywhere, which implies that p∗t < pt for all t by construction.

For the θ parameters governing the nonlinearity of the demand curve in (5), we impose the

following bounds. θ1 represents the point of maximum absolute slope of the demand curve, where

reserves are highly scarce. To bound θ1 from below, we calculate the ratio between the aggregate

reserve requirement and banks’ total assets on each day, compute the minimum value in our sample,

and then take 10% of that value. To bound θ1 from above, we multiply the maximum of normalized

reserves in our sample by two. We use the same bounds for θ2, which measures the distance between

the point of maximum absolute slope and the point of maximum slope growth (i.e., the transition

point between scarce and ample reserves) in the nonlinear function in (5).

The upper asymptote of the nonlinear function (5) is equal to p∗t + πθ3. In the federal funds

market, absent stigma, frictions, and caps on discount-window (DW) borrowing, the federal funds

rate should be bounded from above by the DW rate. Therefore, given our bound on p∗, we set the

upper bound on θ3 to be equal to the maximum of the spread between the DW and ONRRP rates

in our sample divided by π. The lower bound on θ3 is simply set to zero.

To initialize the variables, we also build on our discussion of their economic interpretation in

Section 6. We initialize θ1 with the average level of reserves in 2009, which is the period of lowest

reserve balances since the 2008 crisis; reserves in 2009 were most likely scarcer than in the rest

of our sample. To initialize θ2, we exploit the experience of September 2019, which suggests that

reserves may have transitioned from ample to scarce around that time (Afonso et al., 2020a). Since

the point of maximum slope growth in (5) is θ1 + θ2/
√

3, we initialize θ2 with
√

3(q2019 − θ(0)1 ),

where q2019 is the average value of reserves in September 2019, and θ
(0)
1 is the initialization of θ1.
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The initial value of θ3 is set equal to the average spread between the DW and IORB rates in our

sample divided by π.

Finally, we initialize q∗ to zero in each subperiod, as we don’t have strong priors on its path over

time; in each subperiod, we initialize p∗ to one basis point below the minimum federal funds-IORB

spread in that period, as p∗ is strictly smaller than p by construction.

Parameters Lower Bound Upper Bound Initial Value

θ1 ∈ [0.1qreq, 2q̄] 0.18 37.17 θ
(0)
1 = q2009 = 7.3

θ2 ∈ [0.1qreq, 2q̄] 0.18 37.17 θ
(0)
2 =

√
3(q2019 − θ(0)1 ) = 2.89

θ3 ∈ [0, π−1 max (DWt −ONRRPt)] 0 25.5 θ
(0)
3 = π−1avg(DWt − IORBt) = 15.3

q∗t ∈ [−2q̄, 2q̄] -37.17 37.17 q
∗(0)
t = 0 for all t

p∗t ∈ [min (ONRRPt − IORBt) , avg (pt)] p
∗(0)
t = min(pt)− 1

01/20/2010-12/29/2014 -25 -12.52 -20.00

01/09/2015-03/09/2020 -25 -6.33 -15.00

03/16/2020-03/29/2021 -25 -1.73 -5.88

Table 6: Bounds and initializations of the variables in the minimization of the objective

function (6). θ1, θ2, and θ3 are the parameters defining the nonlinear time-invariant functional

form of the reserve demand function in (5); q∗ and p∗ are the horizontal and vertical shifts. qreq

is the in-sample minimum of the aggregate required reserves normalized by banks’ total assets; q̄

is the in-sample maximum of normalized reserves; q2009 and q2019 are the average levels of reserves

normalized by banks’ assets in 2009 and in September 2019; DW is the discount-window rate; IORB

is the interest rate on reserve balances; and ONRRP is the overnight reverse repurchase agreement

rate.

B.2 Robustness

B.2.1 Controlling for repo rates and Treasury yields

Figure 11 shows the results of the nonlinear fit (6) on the joint forecasts of the federal funds-IORB

spread and aggregate reserves from the trivariate time-varying VAR model that includes repo rates

as additional variable.20 Our findings are similar to those obtained using forecasts from the baseline

bivariate model (see Figure 9). There seems to be a modest shift to the right from 2010-2014 to

2015-2020, but the most significant structural movements in the curve are upward shifts, especially

in the last part of the sample (see Tables 2 and 3 in Section 6).

20Details on the specification of these trivariate models and their priors are in Appendix A.1.
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Figure 11: Post-processing nonlinear fit of the reserve demand curve with horizontal and

vertical shifts using model forecasts as data. This figure shows the results of the nonlinear

least-squares (NLLS) minimization in equation (6). The NLLS fit is estimated on a sample of

five-day-ahead joint forecasts of the federal funds-IORB spread and normalized reserves from the

in-sample estimation of the time-varying VAR model in equation (3). Forecasts are generated

every five days; for each day, we draw N = 100 forecasts from the model-implied posterior joint

distribution. Results are obtained constraining the fit to the right of the point of maximum absolute

slope of the nonlinear demand function in (5). A detailed description of the minimization algorithm,

parameter bounds, and initialization values can be found in Appendix B.
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Figure 12: Post-processing nonlinear fit of the reserve demand curve with horizontal and

vertical shifts using model forecasts as data. This figure shows the result of the nonlinear

least-squares (NLLS) minimization in equation (6). The NLLS fit is estimated on a sample of

five-day-ahead joint forecasts of the federal funds-IORB spread and normalized reserves from the

in-sample estimation of the time-varying VAR model in equation (3). Forecasts are generated

every five days; for each day, we draw N = 100 forecasts from the model-implied posterior joint

distribution. Results are obtained constraining the fit to the right of the point of maximum absolute

slope of the nonlinear demand function in (5). A detailed description of the minimization algorithm,

parameter bounds, and initialization values can be found in Appendix B.

B.2.2 Fitting the curve on a larger range

In this section, instead of fitting the curve to the right of the point of maximum slope, we fit it to

the right of the point where the curve flattens around its upper asymptote. Namely, we impose the

following constraint: qit − q∗t > θ1 − θ2/
√

3; it is easy to show that, in fact, θ1 − θ2/
√

3 is the point

at which the absolute slope of the curve decreases at the fastest rate as reserves decrease. This is a

milder constraint as this region includes the point of maximum slope.

Results are very close to the baseline results in Section 6, confirming that our findings are not

driven by our choice of the region over which we fit the demand curve. In particular, from the

beginning to the end of the sample, we find a significant upward vertical shift of 12-13 bp and a

more modest horizontal shift to the right of 1 to 2 pp.

The estimates of the time-invariant nonlinear curve are also close to the baseline ones: the
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point of maximum slope is reached when the reserves-to-assets ratio is around 7-8%, and the point

of maximum slope growth when this ratio is around 10%. Together with the estimates of the

horizontal shift q∗, these results suggest that the transition between ample and scarce reserves

occurs around 10% of banks’ assets in the first half of the sample and around 12% in the second

half.

1/2010-12/2014 01/2015-03/2020 03/2020-03/2021

(a) Forecasts based on bivariate time-varying VAR

Horizontal shifts q∗ 0 2.75 1.69

Vertical shifts p∗ -21.10 -19.00 -9.23

(b) Forecasts based on trivariate time-varying VAR with repo rates

Horizontal shifts q∗ 0 2.86 1.12

Vertical shifts p∗ -21.16 -19.13 -8.77

(c) Forecasts based on trivariate time-varying VAR with treasury rates

Horizontal shifts q∗ 0 2.93 0.82

Vertical shifts p∗ -21.07 -19.19 -8.48

Table 7: Post-processing nonlinear fit of the reserve demand curve with horizontal and

vertical shifts using model forecasts as data: estimates of the shifts. This table shows

the estimates of the horizontal (q∗) and vertical (p∗) shifts in equation (5) from the nonlinear

least-squares (NLLS) minimization in equation (6). The NLLS fit is estimated on a sample of

five-day-ahead joint forecasts of federal funds-IORB spreads and normalized reserves from the in-

sample estimation of our time-varying VAR forecasting model. Results in panel (a) are obtained

using the bivariate model (3) to generate the forecasts; results in panel (b) are obtained using the

trivariate model that adds repo rates to model (3). Forecasts are generated every five days; for each

day, we draw N = 100 forecasts from the model-implied posterior joint distribution. A detailed

description of the minimization algorithm, parameter bounds, and initialization values can be found

in Appendix B
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Forecasting model θ1 (%) θ2 (%) θ3 (bp)

Bivariate 7.45 4.42 11.51

Trivaraite with repo rates 7.63 4.47 11.17

Trivaraite with treasury rates 7.64 4.46 11.07

Table 8: Post-processing nonlinear fit of the reserve demand curve with horizontal and

vertical shifts using model forecasts as data: estimates of the nonlinear time-invariant

parameters. This table shows the estimates of θ = (θ1, θ2, θ3) in equation (5) from the nonlinear

least-squares (NLLS) minimization in equation (6). The NLLS fit is estimated on a sample of

five-day-ahead joint forecasts of the federal funds-IORB spread and normalized reserves from the

in-sample estimation of our time-varying VAR forecasting model. Results in the first row are

obtained using the bivariate model (3) to generate the forecasts; results in panel (b) are obtained

using the trivariate model that adds repo rates to model (3). Forecasts are generated every five

days; for each day, we draw N = 100 forecasts from the model-implied posterior joint distribution.

A detailed description of the minimization algorithm, parameter bounds, and initialization values

can be found in Appendix B

B.3 Post-processing NLLS with daily shifts

In this section, we present a modification of our post-processing exercise in which we let the hor-

izontal and vertical shifts change at daily frequency, instead of fixing them within three periods

spanning several years (i.e., 2010-2014, 2015-3/2020, and 3/2020-3/2021 periods). To do so, we

re-write the objective function (6) as follows

T∑
t=1

N∑
i=1

[(pit − p∗t )− f(qit − q∗t ; θ)]
2 +Nλp

T−1∑
t=2

[
∆2p∗t+1

]2
+Nλq

T−1∑
t=2

[
∆2q∗t+1

]2
(A.11)

where N is the number of draws from our joint forecast distribution (N = 100), λp and λq
are positive constants, ∆2p∗t+1 =

(
p∗t+1 − p∗t

)
−
(
p∗t − p∗t−1

)
, ∆2q∗t+1 =

(
q∗t+1 − q∗t

)
−
(
q∗t − q∗t−1

)
,

and all other variables are defined as in Section 6. The goal is to find
{
θ̂, p̂∗t , q̂

∗
t ; t = 1, ..., T

}
that

minimize (A.11).

The idea of this post-processing exercise is to perform a nonlinear least-squares estimation with

horizontal and vertical shifts at daily frequency that imposes that these shifts are slow-moving. By

including terms that are proportional to the sum of the squares of the double-differences in the

shifts, the objective function (A.11) penalizes sudden jumps and fast growth in p∗ and q∗. The

larger are the constants λp and λq, the higher is the penalty.

Since the minimization problem in (A.11) is somewhat similar to the Hodrick-Prescott filter

commonly used in macroeconomics, we follow the same procedure to set the lambdas; namely, since
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our forecast are at the daily frequency (i.e., we use forecasts every five days), we set λp = λ1 =

(52 ∗ 10)2. For robustness, we also considered alternative specifications, ranging from (52 ∗ 1)2 to

(52 ∗ 20)2, and obtain qualitatively similar results.

The results of this nonlinear fit with daily-varying shifts are in Figures 13, 14, 15, and in Table 9.

Consistent with the results in Section 6, these results suggest that vertical shifts seem to be more

important than horizontal ones in explaining the movements of the reserve demand curve over time.

In particular, starting from late 2013, the lower bound of the curve, p∗, seems to steadily move

upward, implying a vertical shift of around 15 bp from the beginning to the end of the sample.

In terms of the time-invariant nonlinear part of the curve, the point of maximum absolute slope

is attained when aggregate reserves are around 8% of banks’ assets, and the point of maximum

slope growth, which we interpret as the transition between ample and scarce reserves, is around

10%. These numbers are consistent with our results in Section 6 and suggest that, in 2019 (as in

2010), as reserves dropped below 10% of banks’ assets, reserves may have transitioned from being

ample to being scarce.

Figure 13: Post-processing fit of nonlinear reserve demand function with horizontal and

vertical shifts on bivariate model forecasts. This figure shows the results of the nonlinear

least-squares (NLLS) minimization in equation (A.11). The NLLS fit is estimated on a sample

of five-day-ahead joint forecasts of federal funds-IORB spreads and normalized reserves from the

in-sample estimation of the TV-VAR model in equation (3). Forecasts are generated every five

days; for each day, we draw N = 100 forecasts from the model-implied posterior joint distribution.

Results are obtained constraining the fit to the right of the point of maximum absolute slope

of the (sigmoid-shaped) demand function. A detailed description of the minimization algorithm,

parameter bounds, and initialization values can be found in appendix.
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Figure 14: Post-processing fit of nonlinear reserve demand function with horizontal and

vertical shifts on bivariate model forecasts: time path of vertical shifts p∗.

Figure 15: Post-processing fit of nonlinear reserve demand function with horizontal and

vertical shifts on bivariate model forecasts: time path of horizontal shifts q∗.
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Forecasting model θ1 (%) θ2 (%) θ3 (bp)

Bivariate 8.05 3.61 13.04

Trivariate with repo rates 7.93 3.84 12.35

Trivariate with treasury rates 8.04 3.69 12.82

Table 9: Post-processing nonlinear fit of the reserve demand curve with horizontal and

vertical shifts using model forecasts as data: estimates of the shifts. This table shows

the estimates of the horizontal (q∗) and vertical (p∗) shifts in equation (5) from the nonlinear

least-squares (NLLS) minimization in equation (6). The NLLS fit is estimated on a sample of

five-day-ahead joint forecasts of federal funds-IORB spreads and normalized reserves from the in-

sample estimation of our time-varying VAR forecasting model. Results in panel (a) are obtained

using the bivariate model (3) to generate the forecasts; results in panel (b) are obtained using the

trivariate model that adds repo rates to model (3). Forecasts are generated every five days; for each

day, we draw N = 100 forecasts from the model-implied posterior joint distribution. A detailed

description of the minimization algorithm, parameter bounds, and initialization values can be found

in Appendix B.
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