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Abstract
Nonparametric methods have been widely used for assessing the performance of organizations in

the private and public sector. The most popular ones are based on envelopment estimators, like the
FDH or DEA estimators, that estimate the attainable sets and its efficient boundary by enveloping
the cloud of observed units in the appropriate input-output space. The statistical properties of these
flexible estimators have been established. However these nonparametric techniques do not allow to make
sensitivity analysis of the production outputs to some particular inputs, or to infer about marginal
products and other coefficients of economic interest. On the contrary, parametric models for production
frontiers allow richer and easier economic interpretation but at a cost of restrictive assumptions on the
data generating process. In addition, the latter rely mostly on regression methods fitting the center
of the cloud of observed points. In this paper we offer a way to avoid these drawbacks and provide
approximations of these coefficients of economic interest by “smoothing” the popular nonparametric
estimators of the frontiers. Our approach allows to handle fully multivariate cases. We describe the
statistical properties for both the full and the partial (robust) frontiers. We consider parametric but
also flexible approximations based on local linear tools providing local estimates of all the desired partial
derivatives and we show how to deal with environmental factors. An illustration on real data from
European Higher Education Institutions (HEI) shows the usefulness of the proposed approach.

Key Words: Nonparametric production frontiers, DEA, FDH, partial frontiers, directional distances, linear
approximations, local linear approximations.

JEL Classification: C1,C14, C13;

1 Introduction and Basic Notations

The theory of production and efficiency analysis examine how firms or production units transform their
inputs (like, labour, energy and capital) into outputs, that is the quantities of goods or services that are
produced by the units. These analyses have been developed for manufacturing plants, for business, profit
oriented firms but also for schools, non-profit organizations, providers of public goods and services to examine
how these units organize their production process.

For achieving this goal, production economics has developed a rich theory since the pioneering work of
Koopmans (1951) and Debreu (1951). Farrell (1957) and Afriat (1972) were among the first to investigate
these issues from an empirical perspective. The efficient production frontier is defined in the appropriate
input-output space as the locus of the optimal combinations of the inputs and the outputs. Formally, let
the attainable set, i.e. the set of technically feasible combinations of inputs and outputs, be defined as

Ψ = {(x, y) ∈ Rp+q| x can produce y}. (1.1)

This set shares the usual characteristics coming from economic theory (see e.g. Shephard, 1970), the efficient
boundary (frontier) of this set is the set of efficient combinations of inputs and outputs

Ψ∂ = {(x, y) ∈ Rp+q|(γ−1x, γy) /∈ Ψ,∀γ > 1}. (1.2)

*Department of Computer, Control and Management Engineering A. Ruberti (DIAG), Sapienza University of Rome,
via Ariosto 25, 00185, Rome, Italy. The financial support of Sapienza project awards n. RM11916B8853C925 and n.

RM12117A8A5DBD18 is gratefully acknowledged.
§Institut de Statistique, Biostatistique et Sciences Actuarielles (ISBA), LIDAM, Université Catholique de Louvain, Voie du
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There are several ways for measuring the efficiency of a production plan (x, y) as the distance from this
boundary. In this paper we mainly focus on the very flexible directional distances measures (see Chambers
et al., 1998), defined as

δ(x, y) = sup{δ| (x− δdx, y + δdy) ∈ Ψ}, (1.3)

where dx ∈ Rp
+ and dy = Rq

+. So the distance is measured along a path determined by a direction vector
d′ = (−d′x, d

′
y) in an additive way. Clearly if (x, y) ∈ Ψ, δ(x, y) ≥ 0 and if (x, y) lies on the efficient frontier

(1.2), δ(x, y) = 0. The Farrell-Debreu oriented radial distances and the radial hyperbolic distances (Färe et
al., 1985) can be recovered as special cases (see below in Section 3.5). It will be useful below to denote as
w∂ = (x∂ , y∂), the projection of w = (x, y) on the efficient frontier in the direction d, i.e. w∂ = w + δ(w)d.
Component by component

x∂ = x− δ(x, y)dx, and y∂ = y + δ(x, y)dy. (1.4)

Note that distance functions satisfy the “translation” property:

δ(w + ηd) = δ(w)− η, for all η ∈ R. (1.5)

Similarly, partial frontiers (as initiated by Cazals et al, 2002, Aragon et al., 2005, Daouia and Simar,
2007) can also be considered providing order-m frontiers and order-α quantile frontiers. This allows to
define δm(x, y) and δα(x, y) which by construction are smaller than δ(x, y), unless m → ∞ and α → 1
(see Simar and Vanhems, 2012). These efficiency measures benchmark a production plan (x, y) against less
extreme frontiers, and so share robustness properties, robustness against outliers or extreme observations.
For instance for the order-m case, the “partial frontier” points are defined as

x∂
m = x− δm(x, y)dx, and y∂m = y + δm(x, y)dy, (1.6)

and similarly for the order-α frontiers.
In practice, the objects defined above are unknown and must be estimated from a random sample of

observations Xn = {(Xi, Yi)}ni=1. The paradigm considered here is the so called “deterministic frontiers
approach” where the Data Generating Process (DGP) specifies that

Prob
(
(X,Y ) ∈ Ψ

)
= 1, (1.7)

so that the support of the joint density f(x, y) of (X,Y ) is a subset of Ψ.1 The popular nonparametric
estimators of Ψ are based on envelopment estimators, like Free Disposal Hull (FDH) or Data Envelopment

Analysis (DEA) estimators. From these estimators, it is easy to define for any (x, y), δ̂n(x, y), a nonpara-

metric estimators of δ(x, y). Estimators of partial efficiency scores δ̂m,n(x, y) and δ̂α,n(x, y) are derived in
Simar and Vanhems (2012) and share very nice and attractive properties (see below). Practical ways to
compute these estimators are described in Daraio et al. (2020).2

These nonparametric estimators are widely used because they rely on very few assumptions: no particular
shape for the attainable set and its frontier (only free disposability for the FDH and in addition, convexity
of the attainable set for the DEA) and no particular distributional assumption for the distribution of (x, y)
on Ψ.3 The statistical properties of these envelopment estimators have been established and inference is
available (see Simar and Wilson, 2013 and 2015, for recent surveys). Their drawback is that the results
are difficult to interpret in terms of the sensitivity of the production of certain output to particular inputs,
marginal rates of substitution between inputs, marginal rates of transformation between outputs and so on.

On the other hand, parametric models have been proposed. Most of the parametric models are based
on standard regression methods taking into account for the one sided error term: shifted OLS, corrected
OLS and MLE (see e.g. Kumbhakar and Lovell, 2000). These parametric models offer an easier and richer
economic interpretation of the production process but at a risk of misspecification resulting in a risk of
inconsistent estimates. In particular most of these techniques imply the specification of a parametric family
for the density of the one-sided stochastic error term. In addition, as noted in Florens and Simar (2005)
these parametric regression methods fit the center of the cloud of observed points rather than the shape of
the cloud near its efficient boundary.

Hence, Florens and Simar (2005) have suggested to approximate nonparametric estimators of the frontier
by parametric models, to allow for richer economic interpretation of the resulting model and reach a better fit

1This is opposed to the “stochastic frontier models”, often denoted by the acronym SFA (Stochastic Frontier Analysis),
which allows for noise in the DGP, and so the support of f(x, y) may extend outside Ψ.

2Daraio et al. (2020) provide the Matlab codes for the needed computations. These are also available in the FEAR software
package in R, introduced by Wilson (2008).

3Free disposability means that for any x̃ ≥ x and any ỹ ≤ y, if (x, y) ∈ Ψ then (x̃, ỹ) ∈ Ψ.
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of the efficient boundary. They show how a two-stage method provides an estimation of the parametric model
that overcomes most of the drawbacks of traditional one-stage regression models, in particular avoiding to
specify any parametric family of densities for the stochastic part of the model and fitting a cloud of points
near the efficient boundary. They illustrate the advantage of their method compared with the traditional
methods by various illuminating simulated examples.

As most of the parametric approaches, Florens and Simar (2005) is restricted to the case of univariate
response (a cost function for univariate x or production function for univariate y). Their analysis is done
for full frontier where FDH estimators are used in the first stage (here only consistency of the resulting
estimators is proven) and for order-m frontiers (where asymptotic Gaussian inference is available). Daouia
et al. (2008) extend the latter to order-α frontiers.

For fully multivariate setup, parametric models for radial efficiency measures, have been proposed. These
involve regressing one of the outputs on the inputs and the other outputs divided by the dependent variable.
Hence, this leads to endogeneity problems that are either ignored or solved by adding restrictive assumptions
(see e.g. Grosskopf et al., 1997, Coelli and Perelman, 1999). We propose in this paper a way to overcome
these drawbacks. The difficulty of the multivariate setup, where r = p + q, is that the efficient frontier in
the (x, y)-space is an (r − 1)-manifold. One way to overcome this difficulty is to express, in an appropriate
coordinates system, the efficient frontier as a scalar-valued, (r − 1) variate function. In a nutshell, the
transformation is a rotation of the (x, y) coordinate system so that one coordinate is parallel to the chosen
direction vector d, and the others are orthogonal to d.

This transformation has been used to provide natural ways to build estimators of SFA in a fully mul-
tivariate setup in Simar and Wilson (2021) (hereafter SW). SFA models have their advantages (allowing
noisy data) but also their drawbacks (identification issues, possibility of wrong skewness of the composite
error term, see SW for a discussion and suggested solutions). In our paper, we will see how to adapt the
DGP described in SW to our setup of deterministic frontier models, we are also able to derive new explicit
relations between the characteristics in both coordinate systems. Then we will show how the strategy of
Florens and Simar (2005) and Daouia et al. (2008) can easily be adapted. This allows us to capture the
shape of the cloud of points near its efficient boundary, without specifying any parametric family of densities
for the stochastic part of the model and this avoids the endogeneity problems mentioned above. The idea
is to “smooth” by some appropriate models the usual nonparametric estimators of the frontier. We present
our approach in a directional distance setup, but we show how to adapt the approach to any other measure
of efficiency (hyperbolic, input or output radial oriented). We present first a parametric approximation (in
the lines of Florens and Simar, 2005). Then we show that more flexible local linear approximations are also
easy to handle, providing approximations of all the coefficients of economic interest, including derivatives,
despite its nonparametric nature. Finally, we illustrate how the approach can easily be extended to deal
with environmental factors.

The paper is organized as follows. In the next section, we describe the main objective of our paper and
its contribution to the existing literature. Section 3 illustrates the underlying statistical model (i.e. the
DGP) and the transformation necessary to implement the fully multi-inputs multi outputs case. Section
4 introduces the best approximation and its estimation. Section 5 details linear approximation models
(including the special cases of Cobb-Douglas and Translog) and the related statistical properties. Section 6
presents the local linear approximation and the related inference. Section 7 explains how we can extend the
approach when environmental factors may influence the frontier. Section 8 reports numerical illustrations
on simulated and real data and Section 9 concludes the paper.

2 Aim and Contribution

In this paper we address a long-standing issue in efficiency analysis, which is whether to choose a parametric
or nonparametric approach to perform an efficiency analysis. As we have seen in the previous section, both
approaches (parametric and nonparametric) have merits (pros) and demerits (cons) and do not always offer
satisfactory solutions for users of efficiency techniques interested in the results, their robustness, and their
interpretability in the application context. Our proposal is not to leave the users of efficiency techniques with
the Hamletic choice of “Parametric or non-parametric, this is the problem...” but to provide an approach
that combines the two approaches (parametric and non-parametric) seeking a balance between the two, as
an old Latin saying goes in medio stat virtus (meaning “virtue lies in the middle”).

We propose a two-stage approach that combines the flexibility of a first-stage based on nonparametric
models (like FDH, DEA and partial efficiency measures) with a flexible second-stage based on a paramet-
ric adjustment of the nonparametric efficient frontier estimated in the first-stage. Compared to existing
approaches, our contribution adds (i) a parametric adjustment of the efficient frontier that represents a
“smoothing” of the nonparametric frontier estimated in the first-stage that does not assume any arbitrary
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choice of the frontier function; (ii) a smoothing parametric adjustment that captures the shape of the non-
parametrically estimated efficient frontier instead of capturing the center of the cloud of points as is usually
done in existing approaches; (iii) an approach in which it is not necessary to specify a functional form of
the inefficiency (such as a half normal, exponential or gamma); (iv) a treatment of fully multi-output and
multi-input cases; (v) a flexible underlying efficiency model based on directional distances where one can
choose the desired benchmark direction; (vi) guidelines for statistical inference for both the full and the
partial (robust) frontiers approximations, and (vii) a flexible approximation based on local linear models.

To show the usefulness of our approach we report an illustration in the field of higher education where
the assumptions underlying parametric models have longed been challenged.

According to Hanushek (1979) who has questioned parametric models in education, the measurement of
educational performance and its determinants is affected by a lack of conceptual clarity and severe analytical
problems, including the consideration of multiple output in isolation without taking into account the inter-
actions among them in the production. The estimation raises a series of conceptual and statistical problems
related to the choice of the functional form, the level of aggregation, selection effects and causation and
multicollinearity to cite a few. In standard microeconomics, a production function describes the maximum
achievable (feasible) output for given inputs. Differently with respect to inputs-outputs characterization,
production functions defined as above, implicitly assume a profit maximizing behavior of the units.4 Later,
Figlio (1999), Dewey et al. (2000) and Baker (2001), put further the inquiry about the results obtained
by traditional education production functions based on parametric approaches and showed that without
imposing restrictive assumptions different results were obtained.

Stock (2010) traces the development of econometric models from the traditional ones of the eighties,
mostly parametric and characterized by a linear functional form, to more recently developed nonparametric
ones, thanks to the development of the computer power and the advancements of mathematical and statistical
research. He identifies one of the causes of the development of nonparametric models in dissatisfaction
towards traditional parametric models that were not always a good approximation.5

In this paper, we take the next step of what Stock (2010) described, and propose to combine the new
nonparametric methods (i.e. robust directional distances) and related inferential approaches (i.e., local linear
models) to obtain more robust coefficients and quantities of economic interest that do not rely on arbitrary
choices of functional forms.

3 The Statistical Model and the Transformation

3.1 The DGP

The statistical model describes the way the observations are obtained, i.e. the DGP. We adapt the SFA
model proposed in SW (Assumptions 2.2 and 2.3 in SW) to our setup. We assume that the production
process generates efficient but unobserved production plans. Then we describe how the observed production
plans are generated due to inefficiency. Formally, the DGP generates random optimal production plans on
the effcient boundary Ψ∂ via some probability mechanism, providing identically, independently distribted
(iid) values W ∂

i = (X∂
i , Y

∂
i ), i = 1, . . . , n.

We then assume that the random deviations from the efficient frontiers providing the observed production
plans are along the direction vector d. In our approach, d is fixed and non-stochastic and the same for all
organizations. The observed input-output pairs are denoted by Wi = (Xi, Yi) and defined by the model
Wi = W ∂

i − δid, i.e., component by component,[
Xi

Yi

]
=

[
X∂

i

Y ∂
i

]
− δi

[
−dx
dy

]
, (3.1)

4Hanushek (1986) states: “Production functions are generally assumed to be known precisely by decision makers, to involve
only a few inputs that are measured perfectly, and to be characterized by a deterministic relationship between inputs and outputs
(that is, a given set of inputs always produces exactly the same amount of output). Furthermore, it is assumed that all inputs
can be varied freely. The realities of education differ considerably from such pedagogical assumptions. Indeed, the production
function is unknown (to both decision makers and researchers) and must be estimated using imperfect data; some important
inputs cannot be changed by the decision maker; and any estimates of the production function will be subject to considerable
uncertainty. Perhaps the largest difference between applying production functions to education and to other industries, however,
has been in its immediate application to policy considerations. Statistical estimates of educational production functions have
entered into a variety of judicial and legislative proceedings and have formed the basis for a number of intense policy debates”.

5Stock (2010) states as follows: “The past three decades have seen significant changes in the tools of econometrics, many
motivated by a desire to minimize the effect of whimsical assumptions on inference about the object of interest. By whimsical
I mean arbitrary assumptions that are subsidiary to the empirical purpose at hand, but which affect inference about the causal
effect of interest. The new tools provide reliable inference without implausible subsidiary assumptions (Stock, 2010, pg. 84-85).”
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where the δi are conditionally to W ∂
i independent with δi | W ∂

i ∼ D+

(
η(W ∂

i )
)
and D+(·) being some one-

sided distribution on R+ characterized by finite dimensional parameters η(W ∂
i ). We will come back below

to this distribution, we only assume for now that the corresponding density is strictly positive at zero (as in
Park et al, 2000 for FDH and Kneip et al., 2008 for DEA) to guarantee the rates of convergence used below
for the envelopment estimators.

These assumptions ensure we have a random sample of observations Xn = {(Xi, Yi)}ni=1 that we can use
to derive the envelopment estimators like FDH, DEA and also their robust versions: order-m and order-α.

The resulting estimator δ̂(x, y) shares the known properties described in the literature (mainly Simar and
Vanhems, 2012, Simar et al., 2012). To summarize, for the full frontiers, we have (under mild regularity
conditions) for a fixed point of interest (x, y), as n → ∞,

nκ
(
δ̂•(x, y)− δ(x, y)

)
L−→ F•(ξx,y), (3.2)

where κ determines the rate of convergence and depends on the assumptions on Ψ and the chosen estima-
tor with “•” representing FDH or DEA and F•(ξx,y) is a non-degenerate distribution depending on some
unknown parameters. Under the free disposability assumption only, the FDH estimator has to be used
and κ = 1/(p + q), if we add the convexity assumption then we can also use the DEA estimator with

κ = 2/(p+ q + 1). Typically the points of interest are the observations and so we may obtain estimators δ̂i.

Kneip et al. (2015) derive central limit theorems for functions of δ̂i. The achieved rates of convergence given
by nκ illustrate the curse of dimensionality, common in nonparametric estimation: if p + q increases, we
loose precision in the estimation and we may be far below the usual

√
n rate of convergence usually reached

by parametric estimators.
The partial robust frontiers share two attractive properties: (i) by construction, they are less extreme

than the full frontier and so their estimators will not envelop all the data hence they are more robust to
extreme data points and outliers and (ii) they are asymptotically normally distributed with mean zero around
the true values, with the parametric rate

√
n. We have, as n → ∞,

√
n
(
δ̂⋆(x, y)− δ⋆(x, y)

)
L−→ N(0, σ2

⋆,x,y), (3.3)

where “⋆” represents the order-m (e.g. δm(x, y)) or the order-α (e.g. δα(x, y)) case, and σ2
⋆,x,y has a known

expression depending on the chosen measure ⋆ and of the characteristics of the DGP. So inference with these
estimators is much more easy. We will come back to all these nonparametric estimators below.

3.2 The rotation

A natural way to transform the coordinates w = (x, y) in the original space into a new system where the
distance to the frontier (defined in (3.1)) can be expressed by a scalar-valued equation, is to rotate the
coordinates so that in the new system, one coordinate is parallel to d and the remaining r − 1 coordinates
are orthogonal to d. As described in Simar and Wilson (2021) this is achieved by considering an arbitrary,
but fixed, orthonormal basis for the direction vector d.6 Let Sd = [s1 . . . sr−1] be such r × (r − 1) matrix
with s′jsj = 1, s′jsk = 0 for j 6= k and s′jd = 0 for j = 1, . . . , r − 1. Clearly S′

dSd = Ir−1 and S′
dd = 0r−1.

7

Now we can define the r × r rotation matrix

Rd =

[
S′
d

d′/||d||

]
, and its transpose R′

d = [Sd d/||d||] , (3.4)

where || · || denotes the L2-norm. Clearly Rd is an orthogonal matrix, implying R−1
d = R′

d. We note that
Rdd = [0′r−1 ||d||]′.

We consider now the linear transformation from Rr to Rr given by

gd : w 7→ t = Rdw, (3.5)

which can easily be inverted, i.e. w = R′
d t. To see the consequence of this transformation, we partition

t′ = (v′ u) where v = S′
dw and u = d′w/||d||, the rotation puts the coordinate u in the direction d and the

6As noted by SW, an orthonormal basis for d, the matrix Sd, is not unique, but this does not create any problem provided
Sd is fixed after it is selected. Most of the statistical packages have a build-in function to obtain Sd. In case, an easy to program
algorithm is described in Jeong and Simar (2006).

7Ik denotes the identity matrix of order k and 0k a k-dimensional column vector of zeros.
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r − 1 remaining coordinates v are orthogonal to d (and hence to the u-axis). In the new coordinate system,
the attainable set Ψ is represented by

Γd = {t ∈ Rr | t = gd(w), w ∈ Ψ}. (3.6)

The efficient frontier can now be represented in terms of the scalar valued function

ϕ(v) = sup{u | t = (v′ u)′ ∈ Γd}, (3.7)

which permits to describe the attainable set in terms of this function

Γd = {t = (v′ u)′ ∈ Rr | u ≤ ϕ(v)}. (3.8)

Figure 1, in Section 8.1.2 below, illustrates this rotation for the case p = q = 1.
Applying the rotation to the observations Wi = (Xi, Yi) ∈ Xn yields the random sample of values

{(Vi, Ui)}ni=1. To be explicit [
Vi

Ui

]
= RdWi =

[
S′
dWi

||d||−1d′Wi

]
, (3.9)

and the inverse relation between the observations is

Wi = R′
d

[
Vi

Ui

]
=
[
SdVi + ||d||−1dUi

]
. (3.10)

Hence our model (3.1) is transformed into[
Vi

Ui

]
=

[
V ∂
i

U∂
i

]
− δi

[
0r−1

||d||

]
, , (3.11)

or component by component
Vi = V ∂

i

Ui = U∂
i − ||d||δi

, (3.12)

or simply due to (3.7)
Ui = ϕ(Vi)− ||d||δi, (3.13)

where the heteroskedastic nature of δ in (3.1) can now be expressed in terms of Vi, sinceW
∂
i = R′

d[V
′
i ϕ(Vi)]

′.
So (3.13) provides the scalar-valued equation to be estimated.

3.3 Some relations between the two spaces

We will see in Section 4 that we can provide approximations for the function ϕ(v) and for the (r− 1)-vector
of partial derivatives, ∂ϕ(v)/∂v′ at any value v in its range (we assume smoothness of the frontier to ensure
the existence of the partial derivatives below). So it is important to see if we can recover from these, the
properties of the frontier and of the distance function in the original units.

3.3.1 Characteristics of the frontier

Since t = (v′ u)′ = Rdw and w = R′
dt, the frontier surface in the w = (x, y)-space is a (r − 1)-manifold

that can be obtained as

w∂ =

[
x∂

y∂

]
= [Sd d/||d||]

[
v

ϕ(v)

]
, (3.14)

i.e. a mapping from Rr−1 to Rr. One of the interest in this multivariate setup is to characterize the
hyperplane tangent to this surface at some given point w∂

0 and to derive various parameters of economic
interest. This can be done as follows.

In the t-space, the hyperplane tangent at the frontier ϕ(v) at a frontier point t∂0 = (v′0 u∂
0 )

′ with
u∂
0 = ϕ(v0) is given by the equation

c′t(t− t∂0 ) = 0, where c′t = [▽′ϕ(v0) − 1], (3.15)

6



with ▽ϕ(v0) =
[
∂ϕ(v)
∂v

]
v=v0

being the (r − 1)-vector of the gradients of ϕ(v) evaluated at v0. Now in the

w-space this hyperplane has equation c′tRd(w − w∂
0 ), i.e.

c′w(w − w∂
0 ) = 0, where cw = R′

d

[
▽ϕ(v0)
−1

]
and v0 = S′

dw
∂
0 . (3.16)

Clearly the vectors ct and cw are given at a multiplicative constant ( 6= 0).8

Hence, the partial derivatives of the frontier surface in the (x, y)-space at the point w∂
0 can be written as

∂wℓ

∂wk

∣∣∣∣
w=w∂

0

= −ck
cℓ
, (3.17)

provided cℓ 6= 0. This can be used to derive the marginal products ∂Yℓ/∂Xk, marginal rates of substitution
∂Xℓ/∂Xk and the marginal rates of transformation ∂Yℓ/∂Yk. If cℓ = 0, then the derivative in (3.17) is not
defined, however, this indicates that wℓ has no effect on the frontier at this particular frontier point. So, if
ck 6= 0

∂wk

∂wℓ

∣∣∣∣
w=w∂

0

= 0. (3.18)

3.3.2 Distance function

We can also recover the distance function δ(x, y) in the original units and its partial derivatives. In the
transformed space, we have from (3.13)

δ(v, u) = ||d||−1
(
ϕ(v)− u

)
, (3.19)

so in the original w = (x, y)-space we have

δ(w) = ||d||−1
(
ϕ(S′

d w)− d′w/||d||
)
. (3.20)

It is easy to check that this distance function satisfies the translation property (1.5). This confirms that
the transformation has preserved all the desired properties of the original distance function. The reader can
verify that we would obtain the same relation for δ(w) by writing w∂ = w + δ(w)d. Since from (3.14) we
have w∂ = Sdv + dϕ(v)/||d|| then by plugging v = S′

dw we obtain (3.20).9

Note that we can also obtain the partial derivatives

∂δ(w)

∂w
= ||d||−1

(
Sd

∂ϕ(v)

∂v′
− d

||d||

)
, (3.21)

where v = S′
dw. Now we know that the frontier points w∂ are characterized by the equation δ(w∂) = 0.

Hence the (r − 1)-manifold describing the frontier in (3.14) can also be given by

ϕ(S′
d w

∂)− d′ w∂/||d|| = 0, (3.22)

which is nothing else than rewriting, in terms of w∂ , the equation for frontier points in the t-space, δ(v, u) = 0,
or equivalently ϕ(v)− u = 0.

3.4 Two simple examples

Before going into simple examples where all the elements described above have simple analytic expressions,
we first remark that in the particular case of univariate output (q = 1) and output orientation (d = [0′p 1]′),
the transformation is trivial, Rd = Ir, so there is no rotation: v = x and u = y, and we are back to the
univariate response case described in Florens and Simar (2005).

8Note that we provide by (3.16) an explicit expression for cw. It is easy to check that cw is a basis of the null space of
the Jacobian of the transformation defined in (3.14), which was the way chosen by Simar and Wilson (2021) to characterize
implicitly the vector cw.

9To see this, we use the fact that Rd is orthogonal, so that R′
dRd = SdS

′
d + dd′/||d||2 = Ir.
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3.4.1 A toy example

We consider the simplest one input and one output case (p = q = 1) with the direction vector d =

[−1 1]′/
√
2, so that ||d|| = 1 to simplify the notations. Here we can choose Sd = [1 1]′/

√
2 so that

Rd =
1√
2

[
1 1

−1 1

]
.

Here ▽ϕ(v) is the (univariate) derivative of ϕ(v) and ct = [▽ϕ(v) − 1]′, from this we derive

cw =
1√
2

[
▽ϕ(v) + 1
▽ϕ(v)− 1

]
=

[
cx
cy

]
.

Hence we have the relation between the derivative of the frontier in the original space and the characteristics
in the t space given by the following by using (3.17) : at some frontier point w∂

0 ,

∂y

∂x

∣∣∣∣
w∂

0

= −cx
cy

=
1 + ▽ϕ(v0)
1− ▽ϕ(v0)

, (3.23)

where v0 = (x∂
0 + y∂0 )/

√
2 = (x0 + y0)/

√
2.

Let us now particularize to an even simpler case where the frontier is linear and so, y∂ = a + bx∂ . In
this case some simple algebra leads to the distance function δ(x, y) = (a+ bx− y)

√
2/(1 + b). Applying the

transformation Rd, it is easy to check that v = (x+ y)/
√
2 and u = (y − x)/

√
2. For the frontier points we

have also (remember that v∂ ≡ v)[
v
u∂

]
= Rd

[
x∂

y∂

]
=

1√
2

[
a+ (b+ 1)x∂

a+ (b− 1)x∂

]
.

Then from this system of equations (the first equation gives x∂ as a function of v that can be plugged in the
second equation) we obtain the following explicit expression for ϕ(v)

u∂ = ϕ(v) =

√
2a

b+ 1
+

b− 1

b+ 1
v,

leading to the derivative ▽ϕ(v) = (b− 1)/(b+ 1).
Now we let the reader verify that from the only knowledge of Rd, ϕ(v) and ▽ϕ(v) we can recover all

what we need in the (x, y)-space (see also the linear example below). In particular, by using (3.23), we
have (∂y/∂x)w∂

0
= b as it has to be, and using (3.20) we obtain indeed δ(x, y). Then by (3.21) we have

∂δ(x, y)/∂x =
√
2b/(b+ 1) and ∂δ(x, y)/∂y = −

√
2/(b+ 1), as it should be.

3.4.2 A linear frontier

We now consider a more general linear model for the frontier when p, q ≥ 1 and a general direction vector
d = [−d′x dy]

′. The frontier surface is given by the hyperplane in Rr with equation

γ0 + γ′w = 0, (3.24)

for some γ0 ∈ R and γ ∈ Rr.10 We can derive the distance function, for any w ∈ Ψ,

δ(w) = −γ0 + γ′w

γ′d
. (3.25)

Now after simple algebra, it easy to see that the frontier surface in the t = (v, u)-space has equation

γ0 + β̃′t = 0, with β̃ = Rdγ and we note that (β̃1 . . . β̃r−1)
′ = S′

dγ and β̃r = d′γ/||d||. Equivalently we can
write for the frontier points in the t-space:

u∂ = α+ β′v = ϕ(v), (3.26)

10 Note that the parameters are defined at a multiplicative constant c ̸= 0, i.e. (γ0, γ) can be replaced by (cγ0, cγ) in (3.24)
for some c ̸= 0.
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where β = −(β̃1 . . . β̃r−1)
′/β̃r and α = −γ0/β̃r. Here we have ▽ϕ(v) = β.11

As we will see in Section 4, we will provide estimates of α and β so the question is how from the knowledge
of Rd, ϕ(v) and ▽ϕ(v), we can recover all what we need in the w = (x, y)-space. From (3.20) we can recover
the linear distance function in the w = (x, y)-space

δ(w) = ||d||−1
(
α+ γ̃′w

)
, where γ̃ = Sdβ − d/||d||. (3.27)

We see that the hyperplane defining the frontier is given by the equation δ(w) = 0, so we can recover
γ0 = ||d||−1α and γ = ||d||−1γ̃ (remember also Footnote 10).

Due to the definitions of α and β above, we have (see also Footnote 9) γ̃ = −γ/β̃r, the distance function
can be written as

δ(w) = −γ0 + γ′w

||d||β̃r

, (3.28)

Since β̃r = d′γ/||d||, we recover the original equation for δ(w) in (3.25). Note also that from (3.16), we have
cw = Sdβ − d/||d|| = γ̃ and at frontier points, ∂wℓ/∂wk = −γ̃k/γ̃ℓ = −γk/γℓ, as it should be.

Finally the derivatives ∂δ(w)/∂w can also be obtained from the knowledge of ϕ(v). Indeed from (3.21)
we have

∂δ(w)

∂w
= ||d||−1

(
Sdβ − d

||d||

)
= ||d||−1γ̃ = − γ

d′γ
, (3.29)

as it should be in our linear model, by (3.25).

3.5 Oriented radial measures

To be exhaustive we summarize here the point of Simar and Wilson (2021) (see SW, Section 3.5.1) showing
that the directional model (3.1) can be used for handling radial distance functions. Suppose we are interested
in the hyperbolic measures of efficiency (see Färe et al., 1985)

τ(x, y) = inf{τ | (τx, τ−1y) ∈ Ψ}. (3.30)

Here the projection of a point (x, y) on the frontier has coordinates x∂ = τ(x, y)x and y∂ = τ−1(x, y)y.
Provided all of the inputs and outputs are strictly positive, we can work with the logs of (Xi, Yi) and we can
write, analogous to (3.1) [

logXi

log Yi

]
=

[
logX∂

i

log Y ∂
i

]
− δi

[
−ip
iq

]
, (3.31)

where ik is a k-vector of ones. Then we obtain τi = exp(δi). Hence, we are back to our model (3.1), in the
log-scale and using the direction vector as in (3.31).

As shown in SW, similar transformations allow to consider the Farrell (1957) radial input efficiency
(setting d = [−i′p 0′q]

′ in (3.31)) and the radial output efficiency (here d = [0′p i′q]
′).

4 Best Approximation and Estimation

Hence, the problem is to estimate the function ϕ(·) in (3.13) from the sample of iid observations {(Vi, Ui)}ni=1,
where δi has some density, D+(·), on R+ with characteristics that may depend on Vi. We repeat here (3.13)
for convenience

Ui = ϕ(Vi)− ||d||δi.
This is exactly the paradigm described in Florens and Simar (2005) (hereafter FS) but in the transformed
space. We might be tempted to use classical regression techniques to estimate ϕ(·), Let µδ(v) = E(δ(V ) | V =
v), we could then use traditional regression techniques for estimating the function r1(v) = ϕ(v)− ||d||µδ(v)
since we have the equation

Ui = r1(Vi)− εi, (4.1)

where εi = ||d||(δi − µδ(Vi)) so that now E(εi | Vi) = 0. Therefore, least squares techniques may be used
(parametric or nonparametric) to provide consistent estimates r̂1(v). Then if we fix the particular density
D+(·) for δi, we can derive, in most of the cases, the equation of µδ(v) as a function of its higher moments.

11We note that if γ has the same direction than d (i.e., d is orthogonal to the frontier surface), we have γ = kd for some
k ̸= 0, then S′

dγ = 0r−1 and β = 0r−1, i.e. the surface in the transformed space is, as expected, parallel to the v-axis.
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For the one parameter scale family (like Exponential or Half Normal), the knowledge of the variance is
enough.12 This variance may be estimated by regressing in a second stage the squared residuals from the

regression in (4.1) on v. Then we can derive µ̂δ(v) and shift back r̂1(v) to get the estimate ϕ̂(v). Simar et
al. (2017) have used this technique in the stochastic frontier framework, and it is easy to adapt the method
to the deterministic case.

This traditional approach for deterministic models is well known, however, as noted in FS, it suffers from
two drawbacks. First, the first stage regression (parametric or nonparametric) to get r̂1(v) captures the
shape of the cloud of points {(Vi, Ui)}ni=1 near its center (E(Ui|Vi)), whereas we want to fit the shape of
points near its efficient boundary (U∂

i ). Secondly, we need a parametric family to be able to identify µδ(v),
and the chosen density heavily precondition the characteristic of the final estimate of ϕ. In particular a
wrong choice provides wrong estimates.

The method suggested by FS avoids these two drawbacks and can be summarized as follows. First project
the observations on a nonparametric frontier and in a second stage, approximate the cloud of estimated
frontier points by some suitable parametric model, by using least-squares approximations. FS analyze mainly
linear parametric models and show that when using a full nonparametric frontier estimation (like FDH) in
the first stage, the obtained estimates converge to the pseudo-true values (the best chosen parametric model
to approximate the true frontier). To get inference on the resulting parameters, they use the partial order-m
frontiers because they have better rates of convergence and asymptotic normality (Daouia et al., 2008, obtain
a similar result for the case of order-α frontiers).

The FS approach adapted to our framework goes along the following lines. Since the frontier function
ϕ(v) is unknown, we consider a class of parametric functions that can be written as {ϕθ | θ ∈ Rk}, where
the functions ϕθ are defined on Rr−1 and depend on a finite number of parameters θ. The best parametric
approximation of the true frontier function ϕ in the parametric family {ϕθ | θ ∈ Rk} is defined through the
pseudo-true value of θ:

θ0 = arg min
θ∈Rk

∫ (
ϕ(v)− ϕθ(v)

)2
fV (v)dv. (4.2)

If the parametric model is true, this coincides with the true value of θ. As pointed in FS, the existence and
uniqueness of the pseudo-true values are based on technical conditions (integrability identification structure
of the functional space {ϕθ | θ ∈ Rk}). As FS, we consider that this set is squared integrable with respect
to fV (v), then if the set {ϕθ | θ ∈ Rk} is closed and convex, the pseudo true value exists and is unique (see
FS for details).

The density fV is unknown but we can define the “sample” or the “empirical” version of the pseudo-true

value by using the empirical discrete density f̂n,V , putting a mass 1/n at each observed value Vi, i = 1, . . . , n.
So we define

θ0,n = arg min
θ∈Rk

n∑
i=1

[ϕ(Vi)− ϕθ(Vi)]
2
,

= arg min
θ∈Rk

n∑
i=1

[
U∂
i − ϕθ(Vi)

]2
, (4.3)

since U∂
i = ϕ(Vi). In practice, U∂

i is not observed but we can replace these frontier points by their nonpara-

metric estimators Û∂
i .

So, in our setup, the steps of the method can be described as follows:

[1 ] From the sample Xn = {(Xi, Yi)}ni=1 compute the nonparametric estimators δ̂i, i = 1, . . . , n of the
directional distances, and transform the data by the rotation13[

Vi

Ui

]
= Rd

[
Xi

Yi

]
, (4.4)

where Rd is the fixed nonrandom matrix defined in (3.4).

[2 ] Project the observed Ui on the nonparametric frontier, providing

Û∂
i = Ui + ||d||δ̂i, (4.5)

12For the Gamma density and for the Truncated normal, we need also the 3rd moment, see Greene (1980) and Stevenson
(1980).

13We drop the index “•” or “⋆” in δ̂i to indicate which estimator is used (FDH, DEA or partial frontiers).
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which are the nonparametric estimates of the unobserved true values

U∂
i = Ui + ||d||δi. (4.6)

[3 ] Use the sample {(Vi, Û
∂
i )}ni=1 to find the best parametric approximate of the function ϕ(·), by least

squares approximation:

θ̂n = arg min
θ∈Rk

n∑
i=1

[
Û∂
i − ϕθ(Vi)

]2
, (4.7)

where ϕθ(·) is a given class of parametric functions.

The last step provides, for any v, an estimate of the best parametric approximation of the frontier ϕ̂(v) =

ϕθ̂n
(v) and gives also estimates of its derivatives ▽̂ϕ(v) = ̂∂ϕ(v)/∂v and we know from Section 3.3 how to

recover, from these estimates, the objects of interest in the original w = (x, y)-space.
We analyze in the next section how this particularizes to linear approximations. Then we will investigate

how to extend the approach to the more flexible local linear approximations. The properties of the resulting
approximations will depend on the chosen nonparametric frontier estimate and on the chosen approximation
method.

5 Linear approximation

5.1 The linear model

We start with the simple parametric approximation determined by a linear model.14 So the model chosen
to approximate the frontier in (4.3) and therefore in (4.7) is given by

ϕθ(v) = α+ β′v. (5.1)

Denote θ = [α β′]′ the r-vector of parameters. Our least-squares estimator of the best approximation in
(4.7) is given by solving

(α̂n, β̂n) = argmin
α,β

n∑
i=1

[
Û∂
i − (α+ β′Vi)

]2
, (5.2)

where Û∂
i is the chosen estimator of the frontier (full or partial) we want to approximate. The solution can

be written in closed form

θ̂n =

(
α̂n

β̂n

)
= (V ′V )−1V ′Û

∂
, (5.3)

with the notation V for the augmented data matrix of size n × (p + q) (augmented by the first column

of ones) whose ith row is [1 V ′
i ] and Û

∂
is the n-vector of components Û∂

i , i = 1, . . . , n. So we have

ϕ̂(v) = α̂n + β̂n v and ▽̂ϕ(v) = β̂n.

5.2 Statistical properties

Florens and Simar (2005) describe the statistical properties of θ̂n and analyze their behavior with respect
to the pseudo-true value θ0,n, defined as the solution of the least-squares problem (4.3), providing the best
linear approximation of the frontier. Here we have to specify which frontier is approximated. For the full
frontier case, the unavailable pseudo-true values are defined as

θ0,n =

(
α0,n

β0,n

)
= (V ′V )−1V ′U∂ , (5.4)

14For sake of brevity and notational simplicity, we restrict the presentation to the simple linear model in (5.1). As shown in
Florens and Simar (2005) and Daouia et al. (2008), all what follows can be extended to linear models of the form ϕθ(v) = g′(v)θ,
where g′(v) = (g1(v) . . . gk(v)) with the k functions gj(v) being known linearly independent scalar functions of the vector v.
See Section 5.3 for an example.
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where U∂ is the n-vector of true values U∂
i = ϕ(Vi). Similarly if robust order-m frontiers are used we have

θ
(m)
0,n =

(
α
(m)
0,n

β
(m)
0,n

)
= (V ′V )−1V ′U∂

m, (5.5)

where U∂
m is the n-vector of true order-m values, U∂

m,i = ϕm(Vi), i.e., U
∂
m = U + ||d||δm where δm is the

vector of the n true values of the distance of order-m at the n data points (Xi, Yi), i = 1, . . . , n. Analog
expression would be used for order-α robust frontiers.

5.2.1 Using robust partial frontiers

The advantage of using partial robust frontier (order-α quantile or order-m) is twofold: (i) it provides
estimates of nonparametric frontier more robust to outliers and extreme data than traditional envelopment
estimators (FDH or DEA) and (ii) the statistical properties of the resulting estimators are much better
(functional convergence of the error of estimation with the parametric

√
n-rate to a centered Gaussian

process). We will present the arguments for the order-m frontier case as in Florens and Simar (2005), but
the presentation would be similar for the order-α case (see Daouia et al., 2008 for details). Here the estimator

of the pseudo-true value θ
(m)
0,n is given by

θ̂(m)
n =

(
α̂n

β̂n

)
= (V ′V )−1V ′Û

∂

m, (5.6)

where Û
∂

m = U + ||d||δ̂m,n, where δ̂m,n is the vector of the n estimated values of the distance of order-m at
the n data points (Xi, Yi), i = 1, . . . , n. So we have

θ̂(m)
n − θ

(m)
0,n = (V ′V )−1V ′(Û∂

m −U∂
m

)
,

= ||d||(V ′V )−1V ′(δ̂m,n − δm). (5.7)

Here the situation is easy, due to the nice asymptotic properties of δ̂m,n − δm, by using Theorem 3.1 in
Florens and Simar (2005), we have as n → ∞

√
n
(
θ̂(m)
n − θ

(m)
0,n

)
L−→ N(0,Σ), (5.8)

where Σ is a matrix depending on several characteristics of the DGP. The structure of the variance of√
n
(
δ̂m,n − δm

)
is described in Florens and Simar (2005). For practical inference they suggest to estimate

Σ by bootstrap methods.15

The bootstrap is done in the original units, i.e. generating the bootstrap sample X ∗
n = {W ∗

i =

(X∗
i , Y

∗
i ), i = 1, . . . , n} to provide the values (V ∗

i , U
∗
i ) in the (v, u)-space and the bootstrap analog δ̂

∗
m,n

of the distances δ̂m,n. We can use the basic model in (3.1) that describes how the data are generated. So

the bootstrap values are defined as W ∗
i = Ŵ ∂

i − δ∗i d where Ŵ ∂
i are the projected data points on the non-

parametric frontier (DEA or FDH), and δ∗i are random drawn from some smooth consistent nonparametric
estimator of the density of δ, taking into account the boundary condition (see e.g. the details in Section
4.3.5, Simar and Wilson, 2008 or in Section 3.1.2, Simar and Wilson, 2013). The reader can verify that since

the W ∗
i are generated along the direction d, we have V ∗

i = Vi and U∗
i = Ûi − ||d||δ∗i , for i = 1, . . . , n.

By using the sample X ∗
n as reference sample, we can compute the estimator of the order-m distances for

all the original data points δ̂
∗
m,n = {δ̂∗m,n(Xi, Yi)}ni=1 providing the bootstrap version Û

∂,∗
m = U + ||d||δ̂

∗
m,n.

Finally, applying (5.6) in the bootstrap world with V ∗ = V , we obtain θ̂
∗,(m)
n the bootstrap analog of θ̂

(m)
n .

By repeating this bootstrap simulation a large number of times, we obtain the bootstrap distribution of
√
n
(
θ̂
∗,(m)
n − θ̂

(m)
n

)
as approximation of

√
n
(
θ̂
(m)
n − θ

(m)
0,n

)
.

The bootstrap also provides the bootstrap values of the quantities of interest described in Section 3.4.2,
since they are known (non-random) linear or continuous transformation of θ. From the bootstrap distribution,
we can, e.g., evaluate confidence intervals for these objects. For all these quantities the basic bootstrap
method is recommended (rather than the percentile method) due to the possible bias in finite samples for
these quantities.

15For the order-α case, we refer to Theorem 3.1 in Daouia et al. (2008).
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5.2.2 Using full frontiers

For the full frontier we can use either the FDH or the DEA estimates δ̂n,i.
16 Here the story is less easy due to

the bias introduced by the DEA/FDH estimators and the lack of functional convergence of these estimators.
Here we have, analog to (5.7), the relation

θ̂n − θ0,n = ||d||(V ′V )−1V ′(δ̂n − δ), (5.9)

where δ̂n (and δ) is the vector of the n nonparametric estimators (resp. the n true values) of the efficiency
scores evaluated at the data points (Xi, Yi), i = 1, . . . , n.

Theorem 3.2 in Florens and Simar (2005) implies that θ̂n − θ0,n
p→ 0, which is fine but not enough for

practical inference on θ0,m. Equation (5.9) indicates that the rates of convergence will be the same as the
original FDH/DEA estimator used (see Kneip et al., 2015).

5.3 Cobb-Douglas and Translog cases

Some practitioners like to use in the original w-space generalized Cobb-Douglas or Translog parametric
models for the frontier. These are particular cases of linear models (linear in the parameters) but in the
log-scale.

The Cobb-Douglas is a first order approximation in the log-scale and since the rotation is a linear

transformation, the link between the two spaces is immediate. Denote by W̃i the original data and so

Wi = log W̃i. We can then follow what is described above keeping the same notations. In the units w, we
have the linear model given in (3.24)

γ0 + γ′w = 0, (5.10)

and after the rotation Rd we obtain the linear model described in (3.26) which is indeed linear in t = Rdw

and has the linear form given in (5.1). Then from the observed values of Vi, Û
∂
i we obtain the estimates α̂n

and β̂n.
Hence, to get the estimates of the parameters in the generalized Cobb-Douglas model in the original units

w, we have ̂̃γn = Sdβ̂n − d‖|d||, which is all we need to characterize the frontier, see Section 3.4.2. Indeed
from (3.27), the frontier function can be written for any w = log(w̃) as

α̂n + ̂̃γ′
nw = 0. (5.11)

The Translog idea is based on second order approximation, therefore it is a bit more complicated and the
links are not so immediate. If we use a quadratic model in the transformed space, instead of (5.1) we have

ϕ(v) = α+ β′v +
1

2
v′Λv, (5.12)

where Λ′ = Λ. This model can be viewed as an extension of the linear model since it allows quadratic terms
in v. The linear model corresponds to the case Λ = 0. This model can be estimated by usual least-squares
techniques (adapting the notation in (5.3)) providing estimates of (α, β,Λ). Then by using (3.22), we obtain
for any w = log(w̃) on the frontier

α+ γ′w +
1

2
w′Γw = 0, (5.13)

where γ = Sdβ − d‖|d|| and Γ = SdΛS
′
d, fixing the parameters of the frontier in the units w. This looks

like a Generalized Translog, but it is a “constrained” translog model. Indeed, it is easy to see that, since
S′
dd = 0r−1, we have Γd = 0r, which remind us that the second order terms have been introduced in the

v-space which is orthogonal to d.
Note that in the particular case mentioned at the beginning of Section 3.4, when q = 1, p ≥ 1, dx = 0p

and dy = 1, there is no need for a rotation: Rd = Ir, u = y and v = x and we have the usual Translog model
for a production frontier.

16The DEA estimators provides estimates with a better rate of convergence, but they are not consistent if the set Ψ is not
convex.
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6 Local linear approximation

When it is difficult to specify a priori a global parametric model for the frontier function ϕ, using more
flexible local parametric approximation would allow us a richer interpretation of its shape providing also its
local derivatives. We investigate now how local linear models can easily be adapted to our setup.

In place of looking for the best linear approximation, we might indeed search for more flexible approxi-
mations for functions ϕ(v) which admit for all values of v a local linear approximation. If the true function
ϕ(v) is smooth enough (differentiable till order 2), we can use the first terms of a Taylor expansion of the
function around v

ϕ(ṽ) = ϕ(v) +

(
∂ϕ(ṽ)

∂v

)′

ṽ=v

(ṽ − v) + o(||ṽ − v||), (6.1)

and the leading terms can be written, for ṽ in a neighborhood of v as

ϕ(ṽ) = α(v) + β′(v)(ṽ − v). (6.2)

Here, is the spirit of (4.2), the pseudo-true values are defined as the best local linear approximation of ϕ(v),
so we can define the local pseudo-true value at any point v as

(α0(v), β0(v)) = argmin
α,β

∫ (
ϕ(ṽ)− [α+ β′(ṽ − v)]

)2
Kh(ṽ − v)fV (ṽ)dṽ, (6.3)

where Kh(ṽ − v) is a weighting function localizing the values ṽ in a neighborhood of v. We can use any
standard multivariate kernel function and h is a bandwidth vector tuning the weights. In practice we will
use a product kernel, so that

Kh(ṽ − v) =

r−1∏
j=1

1

hj
K
( ṽj − vj

hj

)
, (6.4)

andK(·) is a simple univariate kernel function. We will use below kernels with compact support, i.eK(u) = 0
when |u| > 1, like e.g. Epanechnikov kernels. The empirical version of the pseudo-true values are defined
similarly to (4.3) as

(α0,n(v), β0,n(v)) = argmin
α,β

n∑
i=1

(
U∂
i − [α+ β′(Vi − v)]

)2
Kh(Vi − v), (6.5)

where as above U∂
i = ϕ(Vi) are the true (unobserved) frontier points. The nice thing of local linear approx-

imations, is that a closed form is available for the solution in (6.5). It is known (see e.g. Fan and Gijbels,
1996) that

θ0,n(v) =

(
α0,n(v)
β0,n(v)

)
= (V ′W (v)V)−1V ′W (v)U∂ , (6.6)

where the n× (p+ q) matrix V has its ith row given by [1 (Vi − v)′] and the n× n weights matrix W (v) is

diagonal with ith element given by Kh(Vi − v) and U∂ is the n-vector of true values of frontier points, i.e.
ϕ(Vi).

For the order-m frontier, we have

θ
(m)
0,n (v) =

(
α
(m)
0,n (v)

β
(m)
0,n (v)

)
= (V ′W (v)V)−1V ′W (v)U∂

m, (6.7)

where now U∂
m is the n-vector of true values of order-m frontier points, i.e. ϕm(Vi).

If the frontier functions are sufficiently smooth (differentiable till order 2) we know by (6.1) that α0,n(v) →
ϕ(v) and β0,n(v) → ∂ϕ(ṽ)/∂v and that α

(m)
0,n (v) → ϕm(v) and β

(m)
0,n (v) → ∂ϕm(ṽ)/∂v as h → 0.

Now the true values U∂ are unavailable, but as above we will in practice use their appropriate (FDH/DEA

or robust) estimators Û
∂
. So the (local) values of θ(v) = [α(v) β′(v)]′ will be estimated from the sample

{Vi, Û
∂
i }ni=1 by the weighted constrained least squares problem

(α̂n(v), β̂n(v)) = argmin
α,β

[
n∑

i=1

(
Û∂
i − (α+ β′(Vi − v))

)2
Kh(Vi − v)

]
. (6.8)
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From the Taylor expansion (6.1), it is clear that α̂n(v) is the estimated smoothed value of ϕ(v) and that

β̂n(v) provides an estimator of the first derivatives ▽ϕ(v). They are computed by

θ̂n(v) =

(
α̂n(v)

β̂n(v)

)
= (V ′W (v)V)−1V ′W (v)Û

∂
. (6.9)

Clearly we have for all v,

θ̂n(v)− θ0,n(v) = (V ′W (v)V)−1V ′W (v)
(
Û

∂
−U∂

)
= ||d||(V ′W (v)V)−1V ′W (v)

(
δ̂
∂
− δ∂

)
, (6.10)

which is similar to what we have above for the simple linear approximations in (5.9). In practice the
bandwidths h are determined by least-squares cross validation (LSCV) and this provides bandwidths with an
optimal order hj = O

(
n−1/(r+3)

)
since v ∈ Rr−1. Since for a given v, (6.10) is a simple linear transformation

of the estimation errors δ̂
∂
− δ∂ , we keep the same properties as described in Florens ans Simar (2005), i.e.

only consistency for full frontier approximations, i.e. for all v we have θ̂n(v)− θ0,n(v)
p→ 0 as n → ∞.

For the order-m frontiers, we have

θ̂(m)
n (v) =

(
α̂
(m)
n (v)

β̂
(m)
n (v)

)
= (V ′W (v)V)−1V ′W (v)Û

∂

m. (6.11)

Clearly we have for all v, as n → ∞

θ̂(m)
n (v)− θ

(m)
0,n (v) = (V ′W (v)V)−1V ′W (v)

(
Û

∂

m −U∂
m

)
= ||d||(V ′W (v)V)−1V ′W (v)

(
δ̂
∂

m − δ∂m
)
, (6.12)

where here again the bandwidths can be selected by LSCV. So for a given v we keep the proprties established
in Theorem 3.1 of Florens and Simar (2005), specifically, for any v,

√
n
(
θ̂(m)
n (v)− θ

(m)(v)
0,n

)
L−→ N(0,Σ(v)), (6.13)

where Σ(v) is a matrix depending on several characteristics of the DGP. Here again practical inference will
be obtained with the bootstrap as described above for the simple linear case.

To summarize, we generate the bootstrap sample according to the basic model, i.e. W ∗
i = Ŵi − δ∗i d,

which provides the values V ∗
i = Vi and U∗

i = Ûi − ||d||δ∗i , for i = 1, . . . , n. We have also, as for the linear

case above, the estimator of the order-m distances for all the original data points δ̂
∗
m,n = {δ̂∗m,n(Xi, Yi)}ni=1

providing the bootstrap version Û
∂,∗
m of Û

∂

m. Finally applying (6.11) in the bootstrap world, keeping the

same matrices V and W (v), we obtain the value θ̂
∗,(m)
n (v), the bootstrap analog of θ̂

(m)
n (v) which in turn

can provide, by Monte-Carlo simulations, the bootstrap approximation to (6.13) (see above Section 5.2.1 for
additional details).

7 Dealing with environmental factors

In the presence of environmental factors Z, which are neither inputs nor outputs, but are factors that
might influence the production process, Cazals et al. (2002) and Daraio and Simar (2005) have introduced
he concept of conditional frontiers and conditional efficiency measures. This leads to define a conditional
attainable set

Ψz = {(x, y) | x can produce y when Z = z}. (7.1)

Clearly Ψz ⊂ Ψ which includes as particular case Ψz = Ψ for all z. The latter is known as the “separability”
condition, which may be quite restrictive in many applications (see Simar and Wilson, 2007). A formal
test of separability has been derived in Daraio et al. (2018) and Simar and Wilson (2020). If the model is
non-separable, the unconditional efficiency measures have no real economic meaning since they describe the
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distance for the unit (x, y) to the boundary of Ψ instead of Ψz if the unit faces the condition z for Z. So, in
this case it is more appropriate to define conditional efficiency measures as

δ(x, y | z) = sup{δ| (x− δdx, y + δdy) ∈ Ψz}. (7.2)

Nonparametric estimators have been proposed by Cazals et al. (2002) and Daraio and Simar (2005) and
most of its statistical properties are derived in Jeong et al. (2010). CLTs have been obtained for averages
of these measures in Daraio et al. (2018).

If Z is separable, it has no effect on the frontier of the attainable set, so z has no influence on the shape
of the frontier and on the quantities of interest developed in this paper. So the analysis for the full frontier
models above can be completed without reference to Z, by using the unconditional measures.

If Z is non-separable or if we are interested to partial frontiers (because, in any case, Z may influence
the partial frontier levels), then the measures δ(x, y) above should be replaced by the conditional measures
δ(x, y | z) and their estimators. The transformation of w to t in (3.5) remains the same providing, by (3.9),
the transformed data. Then in the approximation in the (v, u) space developed above, we could introduce
the additional variables z to approximate the frontiers. Hence we would have in place of (4.5)

Û∂(Zi) = Ui + ||d||δ̂(Wi | Zi), (7.3)

and the approximating equation (4.7) becomes

ϕ̂(·, ·) = arg min
ϕ(·,·)

n∑
i=1

[
Û∂(Zi)− ϕ(Vi, Zi)

]2
, (7.4)

where ϕ(·, ·) belongs to the class of linear or local linear models, as above. Note that here, even with
partial frontiers, the dimension of Z introduces some curse of dimensionality, because the estimators of
the conditional measures have convergence rates deteriorated by the dimension of Z, for the order-m and
order-α,

√
n becomes n2/(rz+4), where rz is the dimension of Z.

Note also that the bootstrap method for the order-m case has to be slightly modified to handle the
possible dependence on Z. We generate the bootstrap sample on the “pairs”, i.e. here on (Wi, Zi) to keep the
dependence between (X,Y ) and Z in the bootstrap sample, providing the bootstrap sample {(W ∗

i , Z
∗
i )}ni=1.

The latter sample gives the bootstrap analog δ̂∗m(Wi | Zi) of δ̂m(Wi | Zi), evaluated at the original data

points (Wi, Zi). Note that here the bootstrap analog of Û∂
m(Zi) will be defined as

Û∂,∗
m (Zi) = Ui + ||d||δ̂∗m(Wi | Zi). (7.5)

Apart from this, the procedure goes as above for the unconditional cases. The procedure will be illustrated
in a real data example below.

8 Numerical Illustrations

8.1 Some simulated examples

8.1.1 A linear frontier and linear approximation

Many researchers assume that the unknown frontier is linear (after eventually a log-transformation). We can
handle this case for the directional distance case and avoiding the drawbacks of the traditional regression
type methods and avoiding also to specify the distribution of the efficiencies. We illustrate this for the case
of one output (q = 1) and two inputs (p = 2) but, which is unusual, we use a directional distance with
d = (−1 1)′. Note that even here, in this simple example, traditional parametric methods cannot be used
without our transformation (rotation) due to our chosen d = (−1 1)′. Our frontier model is given by

y∂ = 1 + 2x∂
1 + 2x∂

2 . (8.1)

According to our DGP in Section 3.1 we generate points (X∂
i , Y

∂
i )ni=1 on the frontier. We first simulate the

two components of X∂
i by two independent uniform on (0, 1), i.e. X∂

i,k ∼ Unif(0, 1) for k = 1, 2. Hence the

Y ∂
i are given by (8.1). Finally the observations (Xi, Yi)

n
i=1 are generated according to our DGP in (3.1), i.e.[

Xi

Yi

]
=

[
X∂

i

Y ∂
i

]
− δi

[
−dx
dy

]
,
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where the δi are independent half-normal distributed, δi ∼ N+(0, σ2
δ ). For the illustration here we select

n = 200 and σδ = 0.20.
By using the results of Section 3.4.2, we can compute the true values of the full frontier equation in the

transformed space t = (v, u). For instance the full frontier is determined by the equation

u∂ = α+ βv.

Note that we do not have the true equation of the order-m frontier, but we use here the order-m frontier
as a robust estimate of the frontier, so we select for illustration m = 50, 100 and m = 200, to give some
insights on the sensitivity of the robust order-m frontiers to the choice of m. Table 1 provides the true
values of the estimates with the full frontier (FDH) projections and with the order-m values. Of course

Table 1: Simulated example, linear case with n = 200, frontier in the (v, u) space.

True FDH m = 50 m = 100 m = 200
α 0.3464 0.2270 0.1342 0.1745 0.2019
β1 0.0732 0.0558 0.0462 0.0491 0.0524
β1 0.2732 0.2745 0.2573 0.2649 0.2703

we are not so much interested to the values in the (v, u) space, but as explained above we can recover the
estimate of the frontier in the original space. We standardise the γ’s such that the coefficient of y, γ3 = −1
to recover the values in (8.1) (see Footnote 10). The results are given in Table 2. We see that the order-m
values approaches the FDH values. Of course, by construction (being robust against potential outliers) the
m-frontiers are “below” the FDH frontier, as seen by the values of the intercept, note that for the latter,
from m = 100, both estimates are quite similar (as they should when m → ∞). By using the results from

Table 2: Simulated example, linear case with n = 200, frontier in the (x, y) space.

True FDH m = 50 m = 100 m = 200
γ0 1.0000 0.6502 0.3681 0.4874 0.5717
γ1 2.0000 2.0157 1.9174 1.9605 1.9915
γ2 2.0000 1.9463 1.8323 1.8770 1.9139

Section 3.4.2 we can also estimate the partial derivatives of the distance function δ(x, y) with respect to all
the inputs and the output. Here, in our simulated linear model, the true values are constant (not dependent
of (x, y)) and they are given by (3.29). The results are displayed in Table 3. We see that these partial
derivatives are very well estimated, even from the order-m estimates as small as m = 50.

Table 3: Simulated example, linear case with n = 200, derivatives of δ(x, y).

True FDH m = 50 m = 100 m = 200
∂δ(x, y)/∂x1 0.4000 0.4062 0.4037 0.4053 0.4060
∂δ(x, y)/∂x2 0.4000 0.3923 0.3858 0.3880 0.3902
∂δ(x, y)/∂y -0.2000 -0.2015 -0.2105 -0.2067 -0.2039

Finally we show how the bootstrap works for the parameters of the frontier in the w = (x, y) space and
also for the partial derivatives ∂δ(w)/∂wk. We use the basic-bootstrap techniques with B = 1000 loops
and we provide in the tables the 95% confidence intervals. In Table 4 the confidence intervals are for the

pseudo-true value θ
(m)
0,n of the order-m frontier ϕm(x, y) (that are unknown). We have seen in (6.13) that

these intervals have the parametric
√
n precision.

If we want the confidence intervals for θ0,n the parameters of the full frontier ϕ(x, y), we cannot use the
FDH estimators since we don’t have the asymptotic distribution for the full frontier case. But we can use
the confidence intervals of Table 4 if m is large enough. In addition these estimates are robust to outliers.
We show how the confidence intervals (obtained from one sample) cover the true values of θ0,n (given in the
first column). As a matter of fact, only the intercept is less well estimated, whereas for the most important
parameters, i.e. the slopes γ1 and γ2, the robust order-m approximations provide useful information. This
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was already noticed in Florens and Simar (2005) and this is due to the inherent bias of using order-m
frontiers to estimate the full frontier.17 Table 5 provides another important information for the practitioner:

Table 4: Simulated example, linear case with n = 200, 95% bootstrap confidence intervals for frontier
parameters of ϕm(x, y).

True values m = 50 m = 100 m = 200
γ0 1.0000 0.4192 0.6511 0.5374 0.7819 0.6233 0.8819
γ1 2.0000 1.7736 2.0288 1.8271 2.0955 1.8583 2.1379
γ2 2.0000 1.7203 1.9581 1.7591 2.0052 1.8042 2.0547

confidence intervals for the partial derivatives of δm(x, y). Here we see indeed that from m = 100 we have
even the relevant information for δ(x, y). We observe also that all the derivatives have the appropriate sign.

Table 5: Simulated example, linear case with n = 200, 95% bootstrap confidence intervals for derivatives of
δm(x, y).

True values m = 50 m = 100 m = 200
∂δ(x, y)/∂x1 0.4000 0.3817 0.4202 0.3848 0.4250 0.3861 0.4258
∂δ(x, y)/∂x2 0.4000 0.3690 0.4072 0.3683 0.4082 0.3716 0.4099
∂δ(x, y)/∂y -0.2000 -0.2178 -0.2033 -0.2196 -0.1981 -0.2106 -0.1945

8.1.2 A nonlinear frontier and its local linear approximation

We analyze here a more complicated situation where the frontier model is nonlinear and we will use the
local linear approximations. We simulate the frontier points in a multivariate setup, inspired by the DGP
defined in Daraio et al. (2018). We first generate a (p+ q)-tuple s = (s′p, s

′
q)

′ uniformly distributed on a unit

sphere centered at the origin of Rp+q, where sp and sq are column vectors of length p and q, respectively.
Then we set X∂ = 2(1 − |sp|) and Y ∂ = 2|sq|). We repeat this for i = 1, . . . , n to obtain W ∂

i = (X∂
i , Y

∂
i ).

The observations Wi = (Xi, Yi) are generated according to our DGP in (3.1), i.e. Wi = W ∂
i − δid, where

d = (−i′p, i
′
q)

′ (ik denotes a k-vector of ones) and δi are independent half-normal distributed, δi ∼ N+(0, σ2
δ )

with σδ = 0.10. In the example below we will choose p = q = 2.
For illustration, Figure 1 displays the frontier points and the data in the simple case where p = q = 1 both

in the original (x, y) space (left panel) and in the transformed (v, u) space (right panel). For the estimation
we use with p = q = 2, n = 400 observations and we fix m = 200. The bandwidths obtained by LSCV for the

full frontier case, using the FDH estimators Û∂
i , are hFDH = (0.6204, 0.4959, 0.3442)′. Here in this simulation

scenario we have the true values of the frontier points U∂
i , so we can compute the pseudo-true values θ0,n(Vi),

by (6.6). Figure 2 allows to see that, as expected, the pseudo-true values of the frontier fit α0,n(Vi) are not
far from the true values U∂

i . For the order-m frontier, the LSCV provides hm = (0.4262, 0.5067, 0.3423)′.

Here we do not have the true values U∂
m, so we cannot evaluate the pseudo-true values θ

(m)
0,n (Vi), however,

since m = 200 is large we can compare the estimated values α̂m
n (Vi), computed by (6.11) with the FDH values

α̂n(Vi) and with the pseudo-true full frontier values α0,n(Vi). This is shown in Figure 3 to appreciate if the
three distributions of the n values of the frontier seem to be coherent. As we noticed above for the simple
linear case, the distributions are similar with a bias due to the FDH and the bias of the order-m relative to
the full frontier values. To see what is the effect of this when estimating the quantities of economic interest,
we first look at some of the marginal rates ∂yℓ/∂xk. By using equations (3.16) and (3.17) we compute those
for k = 1. Figure 4 displays the boxplots of the distribution of these values over the n points, for various
estimators, including the true full frontier values and the pseudo-true values for the full frontiers. It is easy
to see that the true values are given by ∂yℓ/∂xk = (2−xk)/yℓ. Of course the same could be done for x2. We
see that globally the estimators (both the FDH and the order-m cases) have a similar distribution than the
true values and of course of the pseudo-true values. Again we do not have the order-m pseudo-true values

17Daouia et al. (2012) investigate how order-m frontier estimators can be tuned to estimate the full frontier, by letting
m = m(n) → ∞ when n → ∞. The application of these concepts to our setup is rather complicated and is left for future
research.
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Figure 1: Nonlinear case: a simulated data set of size n = 100 with p = q = 1.
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Figure 2: Nonlinear case: pseudo-true fitted values α0,n(Vi) versus true values U∂
i , n = 400 with p = q = 2.

but we see that with m = 200 we have rather good estimates of the distribution of the marginal rates over the
sample data points. We note that most of the estimated ratios, evaluated at data points, have the expected
right sign, except a few cases when using the FDH estimator. Finally, we evaluated how the estimators of
the partial derivatives of δ(x, y) with respect to the p+ q elements (x, y) behaves. They are given by (3.21),
where ∂ϕ(v)/∂v is evaluated for each value of Vi by using the corresponding values of β(v) obtained by our

local linear approximations: i.e. the pseudo-true values β0,n(v), the FDH estimators β̂n(v) and the order-m

estimators β̂
(m)
n (v) given by (6.6), (6.9) and (6.11) respectively. In the latter cases, the estimates provide

estimation of the partial derivatives of δm(x, y), but with large values of m, we expect that δm(x, y) ≈ δ(x, y).
We can observe how well the distribution of the estimators follows the distribution of the pseudo-true values
for the full frontier, even for the order-m case with m = 200. We observe also that most of the derivatives
evaluated at the data points have the expected right sign. We can also, if of economic interest, look at the
derivatives of the distance function with respect to the variables, i.e., ∂δ(w)/∂wk as a function of wk. We
show below in Figure 6, just for illustration, the cases for ∂δm(x, y)/∂x1 and ∂δm(x, y)/∂y1.

Now we estimate the sampling distribution of the order-m estimators by using the bootstrap. We are
using B = 1000 bootstrap loops and we can provide, for each quantity of interest estimated above, bootstrap
confidence intervals. To illustate this we will provide confidence intervals for the partial derivatives evaluated
at each data points. Table 6 displays the 95% confidence intervals obtained by the basic-bootstrap method of
the partial derivatives ∂δm(x, y)/∂x and ∂δm(x, y)/∂y. We limit the presentation of this simulated example
to the first 20 data points to save space.
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Figure 4: Nonlinear case: distribution of the marginal rates, from left to right by pairs: (∂y1/∂x1, ∂y2/∂x1),
the true values (cases 1 and 2), the full frontier pseudo-true values (cases 3 and 4), the FDH estimators
(cases 5 and 6) and the order-m estimators (cases 7 and 8). Here n = 400, m = 200 with p = q = 2.

We see that these individual confidence intervals are rather narrows, showing that the estimation of the
partial derivatives of the order-m distance function are quite reliable. This is not a surprise since we have
by (6.13) the

√
n-parametric rate of convergence. We see also that most of the intervals cover values with

expected sign and in the Table, only the unit #15 has an interval covering the value zero.
Hence globally, this nonlinear example indicates that the local linear approximations can be handled

to smooth nonparametric frontiers (here the FDH and the order-m) leading to reasonable estimates of the
quantities of economic interest. In addition the bootstrap provides an easy way to make reliable inference
by using the robust order-m estimators.

8.2 Application on European higher education data

Efficiency analysis in education has a long tradition (see, e.g., Ruggiero, 2004 and Johnes, 2006). The analysis
of European universities is more recent and has been developed from the pioneer project called AQUAMETH
described in Bonaccorsi and Daraio (2007), in which the first empirical evidence at the European comparative
level is also reported (see also Bonaccorsi et al., 2007). A number of recent surveys have shown a steady
increase in the quantity and variety of contributions proposed to assess the efficiency of education in general
and higher education in particular (see, e.g., Grosskopf et al. 2014, and De Witte and Lopez-Torres, 2017).

In this section we illustrate our methodology by analyzing a sample of data from European universities
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Figure 5: Nonlinear case: distributions of the partial derivatives of δ(x, y) with respect
to the p + q elements (x, y), they are given from the left to the right by quadruples
(∂δ(x, y)/∂x1, ∂δ(x, y)/∂x2, ∂δ(x, y)/∂y1, ∂δ(x, y)/∂y2): cases 1 to 4, pseudo-true values, cases 5 to 8, the
FDH estimators and cases 9 to 12, the order-m estimators. Here n = 400, m = 200 with p = q = 2.

that was recently analysed in Daraio et al. (2021) to which readers are referred for more details and
information.

Data include as inputs total number of academic staff (ACAD), total number of non-academic staff
(NONAC) and total expenditures (TEXP) that is the sum of all expenditures (includes expenditure for
personnel, non-personnel, capital and unclassified expenditure); as outputs total number of degrees (TDEG)
in all the educational levels without the PhDs which are considered as an additional output (PHD) and
total number of publications (PUB) considered as an output which includes the total number of scholarly
publications indexed in Scopus. As external-environmental variables we consider the quality latent factor
(QUAL) identified in Daraio et al. (2021) and the specialization index (SPEC) that measures the thematic
concentration/dispersion of scientific outputs, varying between 0 and 1 and indicating, respectively, generalist
versus specialist universities.

Due to the high correlation between the three inputs and between the two research outputs (PUB and
PHD), Daraio et al. (2021) applied a dimension reduction analysis based on factor analysis, as suggested
in Daraio and Simar (2007) and analyzed by Monte-Carlo analysis in Wilson (2018). The resulting input
factor, denoted FX, is determined by the first eigenvector of the second moment matrix of the three inputs
ux = (0.5723 0.6218 0.5346)′, which can roughly be interpreted as an average of the scaled inputs; it explains
96% of the total inertia and so little information is lost by using this single input factor. Its correlations
with the three original inputs are 0.9777, 0.9474 and 0.9325 respectively. For the two research outputs we
have similar results with uy = (0.6986 0.7155)′ which explains 97% of the total inertia. The resulting output
research factor, denoted FY , has correlations 0.9676 and 0.9691 with PUB and PHD, respectively. So we
end up with 337 observations with one input X = FX and two outputs Y = (TDEG,FY ) the first one
being the teaching activity and the second summarizing the research activity. A descriptive statistics on the
sample is illustrated in the following table taken from Daraio et al. (2021).

In the analysis, all the variables are scaled by their empirical standard deviation. This improves the
numerical stability when selecting the optimal bandwidths. So, all the derivatives have to be rescaled by
scX = 1.6471, scY = (3196.67, 0.001369) and scZ = (0.2903, 0.1249).

We test the separability condition according to Daraio et al. (2018) and Simar and Wilson (2020)
obtaining a p-value near zero, hence we reject the separability condition and we work with conditional
frontiers. The sensitivity analysis carried out for selecting the value of m to compute order−m measures
showed an elbow effect around a value of m = 550, for which 31% of observations lies above the (marginal)

order-m frontier, showing negative values of δ̂m(Xi, Yi). For the conditional order-m frontiers, that include
also the external factors QUAL and SPEC, the elbow effect is also present around m = 550 but with only

10% of the points located above the frontier, with negative values of δ̂m(Xi, Yi|Zi).
The optimal bandwidths hz for conditional FDH and conditional order-m frontiers, estimated by LSCV

are respectively hz = (0.9099, 0.7591). The optimal bandwidths for the local linear approximation of Û∂
i by
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Figure 6: Nonlinear case: ∂δm(x, y)/∂x1 and ∂δm(x, y)/∂y1 as function of x1 (left panel) and y1 (right panel)
respectively. Here n = 400, m = 200 with p = q = 2.

Table 6: Nonlinear example: bootstrap 95% confidence intervals of the partial derivatives ∂δm(w)/∂w for
the first 20 units in the sample. For each unit and each derivative we have the lower bound and the upper
bound of the corresponding intervals. Here n = 400, m = 200 and p = q = 2.

∂δm(x, y)/∂x1 ∂δm(x, y)/∂x2 ∂δm(x, y)/∂y1 ∂δm(x, y)/∂y2

1 0.2678 0.3163 0.3085 0.3685 -0.2336 -0.1954 -0.1798 -0.1267
2 0.2277 0.2688 0.2619 0.3035 -0.1843 -0.1556 -0.3237 -0.2772
3 0.0884 0.1495 0.0929 0.1771 -0.3671 -0.3112 -0.4437 -0.3713
4 0.1606 0.2380 0.1324 0.2063 -0.2072 -0.1383 -0.5011 -0.4102
5 0.4240 0.5190 0.1232 0.2676 -0.1937 -0.1131 -0.2490 -0.0949
6 0.4302 0.4858 0.2598 0.3122 -0.1513 -0.1149 -0.1464 -0.0969
7 0.1871 0.2459 0.2218 0.2707 -0.2479 -0.2038 -0.3371 -0.2833
8 0.1195 0.1641 0.3250 0.3983 -0.1405 -0.0976 -0.4116 -0.3379
9 0.1357 0.2907 0.2584 0.3432 -0.2418 -0.1584 -0.3442 -0.2347
10 0.2461 0.2959 0.1061 0.1629 -0.3098 -0.2558 -0.3494 -0.2847
11 0.3007 0.3936 0.1790 0.2497 -0.3439 -0.2367 -0.1993 -0.1063
12 0.0519 0.1511 0.1685 0.2446 -0.3827 -0.3273 -0.3831 -0.2823
13 0.0339 0.1292 0.1849 0.2409 -0.3807 -0.3178 -0.4035 -0.3185
14 0.2329 0.2816 0.3973 0.4893 -0.1189 -0.0692 -0.2560 -0.1500
15 -0.0210 0.0892 0.3258 0.4264 -0.4172 -0.3466 -0.2597 -0.1739
16 0.1878 0.2292 0.2965 0.3591 -0.2235 -0.1835 -0.2872 -0.2346
17 0.1756 0.2636 0.1476 0.2780 -0.1509 -0.0689 -0.5480 -0.3991
18 0.2511 0.2995 0.1280 0.1883 -0.1307 -0.0724 -0.4988 -0.4287
19 0.1362 0.2100 0.0753 0.1366 -0.2648 -0.2051 -0.5322 -0.4399
20 0.2482 0.2991 0.1087 0.1558 -0.4099 -0.3655 -0.2398 -0.1763

(Vi, Zi) are given by (2.6416, 5.6873, 1.2370, 5.4950) and for the order-m frontier approximation of Û∂
m,i by

(Vi, Zi) we have (2.6444, 5.6683, 1.2427, 2.7212).
To illustrate the results we show some pictures of the obtained estimates and some tables with the

estimated confidence intervals obtained by applying a basic bootstrap with B = 1000 replications.
Figure 7 shows the distribution of the frontier fits obtained by the local linear approximations for the

FDH case (boxplot on the left) and for the order−m case with m = 550 (boxplot on the right).
Figure 8 in the left panel, shows the distribution of the estimated marginal rates of substitution reporting

the FDH case in boxplots 1 and 2 and the order−m case with m = 550 in boxplots 3 and 4. Figure 8, right
panel, illustrates the boxplots of the transformation rates estimated with FDH (boxplot 1) and order−m
with m = 550 (boxplot 2).

Figure 9 shows the boxplots of the estimated derivatives of the distance functions with respect to x, y1
and y2 estimated with FDH (boxplots 1, 2 and 3) and with order-m (boxplots 4, 5 and 6).

Figure 10 shows the plots of the estimated derivatives of the conditional distance functions δm(x, y|z) (i)
w.r.t. x versus the observed values of x (left panel), (ii) w.r.t. y1 versus the observed values of y1 (middle
panel) and (iii) w.r.t. y2 versus the observed values of y2 (right panel). Overall, we observe the expected
signs for all the estimates illustrated in Figures 7: 10.

Table 8 shows the 95% bootstrap confidence intervals for the rates ∂(y1)/∂x1 (second and third columns),
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Table 7: Inputs, Outputs and Environmental variables used in the analysis: averages by country. Source:
Daraio et al. (2021, p.8).

Country (Code) #obs ACAD NONACAD TEXP TDEG PUB PHD SPEC SIZE

Belgium (BE) 5 297065158.52 2851.11 1425.54 5002.40 330.80 12685.60 0.50 9.40
Switzerland (CH) 11 334058152.35 2251.07 1115.27 2417.00 315.09 8884.00 0.65 9.23

Cyprus (CY) 1 107912583.34 389.00 566.00 1525.00 43.00 2862.00 0.71 8.81
Germany (DE) 73 431951227.71 2009.73 2458.53 2801.77 351.82 7352.86 0.65 9.63
Denmark (DK) 8 310038255.68 2106.25 1694.25 4023.50 193.12 8438.25 0.66 9.47
Hungary (HU) 7 300646738.90 1310.14 3225.29 4325.43 134.71 3927.14 0.70 10.05
Ireland (IE) 10 163345454.22 929.21 814.84 3826.90 136.80 4019.30 0.62 9.42
Italy (IT) 60 261088844.47 1448.43 959.42 4890.20 181.73 5989.38 0.67 9.87

Lithuania (LT) 4 354822075.78 955.25 927.75 3416.50 47.00 2292.00 0.80 9.41
Luxembourg (LU) 1 112655414.25 741.98 306.53 803.00 57.00 1643.00 0.74 8.46

Malta (MT) 1 104048589.04 791.00 759.00 3345.00 19.00 897.00 0.67 9.22
Netherlands (NL) 13 412966543.19 1868.71 1381.97 5836.38 295.46 14897.46 0.62 9.78

Norway (NO) 10 193484267.88 1298.14 938.31 2417.30 127.60 4955.40 0.70 8.94
Portugal (PT) 17 88363541.43 860.31 599.77 2757.24 115.06 2968.94 0.69 9.24
Sweden (SE) 20 224089812.76 1215.27 920.08 2478.10 166.30 6234.75 0.67 9.62

United Kingdom (UK) 96 279935092.91 1339.79 1517.76 6464.06 261.30 6801.55 0.64 9.73
Europe (EU) 337 298163446.67 1538.62 1506.55 4411.41 241.41 6760.74 0.66 9.64
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Distribution of the frontier fits: FDH and order-m

Figure 7: Higher Education Institutions (HEI) data: distribution of the frontier fits obtained by the local
linear approximations. FDH case: boxplot 1 (on the left); order-m case with m = 550: boxplot 2 (on the
right).

∂(y2)/∂x1 (fourth and fifth columns) and ∂y1/∂y2 (sixth and seventh columns) evaluated at conditional
order-m frontier points, with m = 550. The table shows the results of 20 observations to save space. We
observe that for most observations the estimated results are statistically significant at 95% except for units
#9, 15, 16, 18 and 19 which include zero in their confidence intervals.

Table 9 shows the results of the bootstrap confidence intervals for ∂δm(x, y|z)/∂(x) (second and third
columns), ∂δm(x, y|z)/∂(y1) (fourth and fifth columns) and ∂δm(x, y|z)/∂(y2) (sixth and seventh columns),
with m = 550. The table, again, reports 20 institutions to save space. We observe that all institutions
except unit # 19 (that includes zero in one of its estimated confidence intervals) show results statistically
significant at 95%.

Overall, we observe that the estimated quantities showed in Tables 8 and 9 have the expected signs.
Note that the derivatives and the particular rates are in the units of the factors X = FX and Y2 = FY .

In Appendix A we describe how these derivatives in “factor units” can provide the derivatives in the original
units.

9 Conclusions

Nonparametric methods providing envelopment estimators, like the FDH or DEA are very attractive since
they do not rely on restrictive parametric assumptions on the DGP, in particular the shape of the boundary
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Figure 8: HEI data: distribution of the estimated marginal and transformation rates at frontier points. Left
panel, marginal rates: FDH case ∂y1/∂x (boxplot 1) and ∂y2/∂x (boxplot 2), order-m case with m = 550:
∂y1/∂x (boxplot 3) and ∂y2/∂x (boxplot 4) . Right panel transformation rates ∂y1/∂y2:FDH case (boxplot
1) and order-m case with m = 550 (boxplot 2).

and the distributions of inputs and outputs in the attainable set. However these nonparametric techniques
do not allow to make sensitivity analysis of the estimated frontiers, e.g. derivatives of the optimal production
outputs relative to some particular inputs, or to infer about marginal products and other coefficients of the
frontier of economic interest. Parametric models for production frontiers permit easier economic interpreta-
tion but at a cost of restrictive assumptions on the DGP. In addition, these parametric models rely mostly
on regression techniques fitting the center of the cloud of observed points instead of capturing its efficient
boundary.

In this paper we propose an approach which avoids these drawbacks and provide approximations of
the economic coefficients of interest by “smoothing” the nonparametric estimators of the frontiers. It is
an extension of the ideas initiated by Florens and Simar (2005) who propose linear approximations of
(univariate) frontier functions. The novelty of our approach is manifold. In particular, it allows to handle
fully multivariate cases in a flexible underlying efficiency model based on directional distances and it provides
also flexible approximations based on local linear tools providing local estimates of all the desired partial
derivatives. Simple bootstrap algorithms allow for inference on all the coefficients of interest. We also extend
the methods for dealing with environmental factors. Illustrations with some simulated data sets and with a
real data from European universities show the usefulness and the flexibility of the proposed approach.

A Derivatives: from Factors to Original Units

Consider an output factor Fy defined as Fy = a′y̌ for some y̌ ∈ RL
+ where L ≤ q is the number of outputs

aggregated in Fy. We denote the eventual outputs in y not aggregated by ẙ ∈ RK
+ , where K = q − L, so

y = (y̌′ ẙ′)′. We know that a ∈ RL, with a′a = 1 is the eigenvector of the 2nd moments matrix of the L
outputs y̌, corresponding to its largest eigenvalue.

Similarly we may have an input factor Fx defined as Fx = b′x̌ for some x̌ ∈ RJ where J ≤ p is the
number of inputs aggregated in Fx and b ∈ RJ is the eigenvector, with b′b = 1, of the second moment matrix
of these J inputs x̌, corresponding to its largest eigenvalue. Again we denote by x̊ ∈ RI

+, where I = p− J ,
the inputs not aggregated by Fx so that x = (x̌′ x̊′)′.

Suppose we have a procedure to evaluate (or to estimate) the derivatives of Fy w.r.t. some variables
(another output in ẙ or some inputs in x̊ or to an input factor Fx) at the corresponding frontier point, say
Fy. We know that this frontier point Fy has coordinates in the y̌-space given by

y̌ = Fya ∈ RL
+. (A.1)

Consider now a differential ∂Fy relative to some other variable. This differential shifts the frontier point along
the direction a at the point Fy+∂Fy, which has coordinates in the y̌-space given by (Fy+∂Fy)a = y̌+∂Fya,
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Figure 10: HEI data: plots of the estimated derivatives of δm(x, y|z), from left to right with respect to x, y1
and y2 versus the observed values of x, y1 and y2.

so that we may define the corresponding differential in the y̌-space as

∂y̌ = ∂Fya ∈ RL. (A.2)

We would obtain a similar result in the x̌-space when considering a differential of Fx relative to some variables
and define

∂x̌ = ∂Fxb ∈ RJ . (A.3)

Now it is easy to consider various derivatives involving the factors Fy or Fx or both. For instance, by
simple algebra we may have the derivatives of the component of an output factor Fy relative to x̊

∂y̌

∂x̊′ =
∂Fya

∂x̊′ = a
∂Fy

∂x̊′ , (A.4)

i.e. a (L× I) matrix with element (ℓ, i) given by aℓ(∂Fy/∂x̊i).
Another case is to consider the derivatives of ẙ with respect to the components of an input factor Fx.

Here we have
∂ẙ

∂x̌′ =
∂ẙ

∂Fxb′
=

∂ẙ

∂Fx
(iJ � b)′, (A.5)

where iL is a L-vector of ones and � stands for the Hadamard division of vectors (element-wise). So we
have a (K × J) matrix with (k, j) element (∂ẙk/∂Fx)(1/bj).
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Table 8: HEI data: 95% bootstrap confidence intervals (lower and upper bounds) for the rates ∂(y1)/∂x1

(second and third columns), ∂(y2)/∂x1 (fourth and fifth columns) and ∂y1/∂y2 (sixth and seventh columns)
evaluated at conditional order-m frontier points, with m = 550.

∂y1/∂x1 ∂y2/∂x1 ∂y1/∂y2

1 0.4923 2.9147 1.2657 2.3184 -1.9174 1.3169
2 2.9255 4.2403 2.1341 3.2376 -1.7754 -0.6607
3 2.2144 3.3965 1.8728 2.4902 -1.6576 -0.5779
4 1.2743 2.8987 1.4926 2.3841 -1.7618 0.2435
5 1.7150 3.3900 1.7738 2.3769 -1.7260 -0.1620
6 1.5881 3.3130 1.6131 2.2146 -1.8981 -0.1620
7 1.5249 3.2928 1.5517 2.1992 -1.9720 -0.1238
8 2.7499 3.6280 2.1313 3.0884 -1.5334 -0.5831
9 1.3585 3.1614 1.5194 2.2331 -1.9087 0.1000
10 1.7500 3.3344 1.6385 2.2320 -1.8971 -0.3550
11 3.8307 4.9358 2.2365 3.1665 -2.0822 -0.7821
12 2.9885 4.2796 2.1723 3.6854 -1.7294 -0.4020
13 1.0276 2.9885 1.5033 2.4155 -1.7418 0.4673
14 3.7620 4.8902 2.2816 3.2678 -2.0211 -0.6914
15 1.2028 3.2295 1.5200 2.1238 -1.9903 0.0808
16 -1.4520 2.8425 1.4608 2.5791 -1.6573 3.8764
17 2.8942 3.8955 2.2305 3.3608 -1.5809 -0.5416
18 -0.7522 2.9323 1.2525 2.4006 -1.8790 3.0719
19 -5.4514 3.0516 1.0189 2.4379 -2.0092 8.3581
20 2.7563 3.8669 2.1203 3.3175 -1.6175 -0.5227

Table 9: HEI data: 95% bootstrap confidence intervals (lower and upper bounds) for ∂δm(x, y|z)/∂(x)
(second and third columns), ∂δm(x, y|z)/∂(y1) (fourth and fifth columns) and ∂δm(x, y|z)/∂(y2) (sixth and
seventh columns), with m = 550.

∂δm(x, y|z)/∂x ∂δm(x, y|z)/∂y1 ∂δm(x, y|z)/∂y2

1 0.4923 0.6628 -0.3707 -0.1481 -0.4237 -0.0722
2 0.6472 0.7515 -0.2232 -0.1481 -0.3102 -0.1654
3 0.5917 0.6776 -0.2549 -0.1843 -0.3264 -0.2127
4 0.5259 0.6477 -0.3293 -0.1715 -0.3842 -0.1324
5 0.5786 0.6682 -0.2770 -0.1825 -0.3382 -0.2041
6 0.5574 0.6580 -0.2879 -0.1677 -0.3697 -0.2118
7 0.5461 0.6641 -0.2962 -0.1537 -0.3854 -0.2040
8 0.6289 0.7139 -0.2389 -0.1784 -0.3008 -0.1690
9 0.5348 0.6596 -0.3114 -0.1606 -0.3883 -0.1821
10 0.5628 0.6604 -0.2782 -0.1674 -0.3662 -0.2206
11 0.6898 0.7621 -0.1847 -0.1412 -0.3120 -0.1842
12 0.6603 0.7680 -0.2302 -0.1396 -0.3074 -0.1271
13 0.5234 0.6609 -0.3453 -0.1623 -0.3802 -0.1338
14 0.6908 0.7698 -0.1876 -0.1425 -0.3065 -0.1721
15 0.5313 0.6583 -0.3119 -0.1505 -0.3924 -0.1946
16 0.4777 0.6696 -0.4508 -0.1621 -0.3830 0.0055
17 0.6453 0.7375 -0.2328 -0.1660 -0.2949 -0.1499
18 0.4713 0.6738 -0.4217 -0.1460 -0.4243 -0.0165
19 0.4264 0.7143 -0.4859 -0.1229 -0.4437 0.0769
20 0.6370 0.7376 -0.2389 -0.1579 -0.3054 -0.1491

If we want to recover the derivatives of y̌ with respect to the elements of x̌, they are given by

∂y̌

∂x̌′ =
∂Fya

∂Fxb′
=

∂Fy

∂Fx
a(iJ � b)′. (A.6)

This is a (L× J) matrix with (ℓ, j) element (∂Fy/∂Fx)aℓ/bj .
Note that we have another useful consequence. The elasticities in terms of the factors are recovered in

terms of their components. This is due to the fact that ∂y̌� y̌ = (a∂Fy)� (aFy) = ∂Fy/Fy. This is because
we distribute the differential ∂Fy in the y̌-space in the direction of a, i.e. in the direction of y̌, i.e. in a radial
proportional way. So it is easy to check that for instance

E(y̌ℓ, x̌j) = E(Fy, Fx), (A.7)

or, for another instance
E(y̌ℓ, x̊i) = E(Fy, x̊i), (A.8)

and many other possibilities.
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We are also able to find the marginal rate of substitutions on the frontier, between inputs in x̌ and inputs
in x̊ or the rate of transformation on the frontier between outputs in y̌ and inputs in ẙ. For instance

∂y̌

∂ẙ′
=

∂Fya

∂ẙ′
= a

∂Fy

∂ẙ′
, (A.9)

i.e. a (L×K) matrix with element (ℓ, k) given by aℓ(∂Fy/∂ẙk).
Note that this approach does not allow to recover from the factors the marginal rates of substitution

between the elements x̌ composing the factor Fx, or the marginal rates of transformation between the outputs
y̌ composing the factor Fy. For instance the information about ∂y̌ℓ1/∂y̌ℓ2 on the frontier is lost if we only
have the factor Fy. Using the ideas above would provide the trivial value aℓ1/aℓ2 , which corresponds to the
radial ratio considered above and has no economic interest.
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