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Abstract

Extreme natural hazards represent, together with crises and wars, the most disruptive phenomena
for economic activity. Their economic impact has been shown to be remarkable, long-lasting, and
growing over time, though the exact mechanisms at stake are challenging to isolate and quantify. As
these trends are likely to endure as global warming becomes more severe, the need for appropriate
modeling of both short and long-run impacts of natural disasters is becoming increasingly pressing.
Building on a mounting number of empirical works, we here provide a critical review of the model-
ing approaches traditionally employed in the related literature. Although with notable exceptions,
conventional methods are generally based on Input-Output or Computational General Equilibrium
models. These approaches, while analytically sound, are structurally ill-suited to capture certain
aspects of natural hazard consequences. Systemic responses to such extreme events are typically
characterized by complex interactions among heterogeneous agents, adaptive behavior, and out-of-
equilibrium dynamics. We here argue that complexity methods can represent a valid alternative
to bridge this policy-relevant gap. In particular, Agent-Based Models offer a powerful toolkit to
account for non-linear geographical and temporal interdependencies, the presence of hysteresis and
path dependency, the impact of technology changes, and can be fruitfully employed as laboratories
for adaptation and mitigation policies.
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1 Introduction

Natural disasters are one of the most disruptive phenomena for economic activity. In addition to the
immediate destruction of buildings, infrastructures, and physical capital (often referred to as direct
damages, Meyer et al. 2013), these events often bring about enduring losses, as a consequence of
interrupted businesses and supply chain disruptions (indirect damages). These perturbations to the
economic activity can be substantial, and can easily exceed the losses experienced in the immediate
aftermath of the event (Kroll et al., 1990; Tierney, 1997). Barro (2006, 2009) has shown that rare
economic disasters have larger consequences in terms of welfare with respect to much more frequent,
bus less sizable, economic fluctuations. Although with substantial regional and temporal differences,
there is growing evidence that this might hold true even more in the case of natural hazards. Indeed,
their economic impacts are not only remarkable in magnitude, but typically persistent over time.
Hsiang and Jina (2014) estimate a reduction in per-capita income of 7.4% as a consequence of a 90th
percentile cyclone, an effect still detectable 20 years after the event. The negative effect jumps to
14.9% when considering extreme cyclones (99th percentile). By comparison, a civil war is estimated
to lower income by 3%, while a banking crisis can arrive up to 7.5%; in both cases, the effects are
generally reabsorbed within 10 years (Cerra and Saxena, 2008). Worryingly, there is growing evidence
that the economic impacts of weather-related natural hazards - especially those arising from the most
severe events - are mounting (Coronese et al., 2019; Grinsted et al., 2019). While it is to date unclear
whether these trends can be attributed to anthropogenic climate change, there is little doubt that
global warming will entail more frequent and intense weather extremes (Van Aalst, 2006; Field et al.,
2012; Otto et al., 2018). Thus, the accurate study of the determinants of both short and long-run
economic effects of natural disasters is of paramount importance and highly policy-relevant.

Despite the blossoming literature around the topic, our understating of the economic consequences
of natural disasters is still limited. Available data sources have allowed researchers to work with rather
accurate figures of direct damages at the global level (EM-DAT Database, MUNICH RE NatCat,
SWISS RE Sigma), leading to a generalized consensus about the negative short-run impacts of natural
disasters (Cavallo and Noy, 2009). However, the general lack of disaggregated data, e.g. by economic
sectors and household income classes, severely limits the assessment of heterogeneity in impacts. A
detailed understanding of direct damages is vital for the construction of damage functions, which link
hazard magnitude (e.g. wind speed, water depth, storm surge) to the experienced losses (Nordhaus,
1992; Hsiang et al., 2017; Prahl et al., 2018; Hallegatte et al., 2011). While such functions are typically
scale-dependent, location-specific, and varying over time (because of e.g. more resilient infrastructures
or adaptive behavioral responses, Prahl et al. 2016), reduced form versions (usually concave and up-
wardly curved) are routinely employed in standard Integrated Assessment Models, which serve as one
of the main operative tools for climate cost-benefit analysis.

Indirect losses, and long-run effects on economic growth, are even harder to estimate, as they require
comparing the observed outcome against a theoretical counterfactual - what would have happened if the
shock did not hit. While robust econometric techniques have shed light on the sign and the magnitude
of these effects (Section 2), little has been explained in terms of underlying economic dynamics, which
often need carefully designed modeling. The two most common modeling approaches are Input-Output
(IO) and Computable General Equilibrium (CGE) models. IO models (IOs henceforth, Section 3.1)
represent the economy (national or regional) in the form of tables describing the flows of products
between the various sectors (including imports and exports). Because the production structure can be
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considered rather fixed in the short term, these models are routinely employed to assess how disruption
of certain nodes in the supply chain propagates to the overall economy. IOs are however not well
equipped to capture economic dynamics that extend beyond the immediate aftermath of the event, as
they do not include any type of behavioral response, long-run adjustment, or technical change, thus
likely leading to an overestimation of damages. To overcome these limitations, scholars usually rely
on CGE models (CGEs henceforth, Section 3.2), which are rooted in the neoclassical tradition of the
general-equilibrium paradigm, entailing profit-utility maximization, rational expectations, and market-
clearing assumptions. Models departing from these premises are instead likely to largely underestimate
the effective costs of sizable hazards, by assuming optimal behavior and immediate market adjustments
(Meyer et al., 2013).

Natural disasters are indeed complex phenomena, involving non-trivial interactions among hetero-
geneous actors, non-linear responses, abrupt changes, and out-of-equilibrium dynamics. Recently, the
complexity approach has gained momentum in multiple scientific disciplines, including economic and
social sciences (Vicsek, 2002). We here argue that complexity methods can represent a powerful tool
in order to model the impacts of such rare, but potentially catastrophic events. In the broadest sense,
a complex system can be described as a system in which its aggregate properties cannot be directly
inferred from those of its components. Among the various analytical methodologies developed within
the complexity perspective, the most promising for hazard-related modeling is certainly that of Agent-
Based Models (ABMs).1 ABMs have extended beyond the realm of natural sciences, and numerous
applications are blossoming within the field of economics (see e.g. Dosi et al. 2010 modeling innovation
dynamics, Filatova et al. 2013 discussing the modeling of human-natural systems interactions). These
models are essentially pieces of software simulating the evolution of a complex system, as a result of
the interaction of various agents among themselves, and with the surrounding environment (intended
as natural, institutional, climatic, etc. . . ). Indeed, part of their attractiveness lies in their ability to
accommodate a number of features of real-world economic systems, without resorting to controversial
assumptions, which are especially implausible in the aftermath of a natural disaster. In particular,
they allow modelers to relax core assumptions of the CGE paradigm:

• Rational expectations vs heuristics: CGEs extensively rely on optimization schemes (profits for
firms, utility for households) to model inter-temporal choices under various degrees of uncer-
tainty. The formalization of how economic actors deal with uncertainty about future events is
usually referred to as rational expectations (Muth, 1961). In this view, agents are assumed to be
able to fully enumerate all the possible future states of the world and to assign a probability to
each one. Further embedded with full knowledge of the modeled economic system and of their
own objective functions, agents then compute the current expected value of all possible trajec-
tories and optimize accordingly. In the real world, the amount of information needed to assign
relative probabilities to each future event is so vast to render this formalization, at least, highly
unrealistic. In several cases, the uncertainty is so deep that it is even impossible to determine
the support of the distribution of future events (deep or Knightian uncertainty, Knight 1921).
Indeed, as shown by Kahneman (2002), human beings, and firms as well, tend to act in ways
that are quite distant from those predicted by the rational paradigm (a paradigm often referred
to as bounded rationality), displaying behaviors such as loss aversion and miscalculation of small

1Other methodologies have been often applied within the complexity approach, see e.g. Naqvi and Monasterolo (2021)
for a network analysis, and Hallegatte et al. (2007) for a system dynamics one.
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probabilities. As stressed by scholars in the evolutionary economic literature, economic actors
tend to deal with complex situations by employing heuristics (e.g. copying a successful strategy,
spending only a certain fraction of income on housing, etc. . . ) and by routinizing complex tasks
(Nelson, 1985). These considerations are of remarkable importance when investigating the after-
math of disastrous events. After such sudden and abrupt changes, individual behavior is not only
characterized by limited information: abnormal solidarity and assistance, radical uncertainty, and
shifts in governance and political processes drive behavioral responses and endogenous changes
in preferences (Hallegatte and Przyluski, 2010), as well as heterogeneous variations in perceived
risk (Filatova et al., 2011b). For instance, consumers may reduce demand as a sign of sympathy
for individuals affected by disasters (Okuyama, 2004). Also, firms’ decisions (investment, adap-
tation, and mitigation) are carried out in a context of bounded rationality, given the uncertainty
about future demand, possible trajectories of technical change, and the complex interactions
between R&D efforts, substitution or upgrading of damaged capital, governmental mitigation
strategies (such as insurance schemes or credit availability) and future supply network structures
(Safarzyńska et al., 2013). In other words, agents’ behavior is not invariant with respect to the
occurrence of a disaster and can be rarely characterized as rational. This does not necessarily
imply sub-optimal outcomes: employing heuristics can indeed represent a rather efficient way to
make choices when facing complex situations characterized by deep uncertainty (Gigerenzer and
Gaissmaier, 2011). In this perspective, ABMs flexibly allow modelers to embed virtually endless
behavioral rules, rigorously built upon empirical evidence.

• Representative agent vs emergent properties: One of the theoretical backbones of the CGE ap-
proach is the representative agent assumption. Because of analytical tractability needs, these
models often postulate a one-to-one mapping between individual and collective behavior, de
facto removing heterogeneity and interaction among actors from the analysis. To assign a com-
plex system with characteristics proper to its individual components is a simplification that is
questionable even on a theoretical ground (Kirman, 1992), and severely limits the understanding
of underlying mechanisms (Fagiolo and Roventini, 2016). Just to provide a concrete example,
adaptation decisions in the wake of a disaster are found to be very heterogeneous, differing both
in space and time, and can rarely be captured by a representative, optimizing agent (Malawska
and Topping, 2016; van Duinen et al., 2016).2 Empirical studies have indeed found a high level
of heterogeneity in individual responses to environmental risk (see e.g. Filatova et al. 2011b).
Ruling out interaction and information sharing can also result in a critical mismeasurement of
aggregate risk, due to collective adaptive behavior (Aerts et al., 2018). In ABMs, aggregate
properties of the system arise instead as emergent properties, as a result of the interaction be-
tween heterogeneous agents and without any ex-ante imposition, through a genuine bottom-up
approach. In particular, network models have produced a fruitful body of literature assessing
the vulnerability of complex systems to external shocks (see e.g. models of macroeconomic risk
from financial imbalances, Battiston et al. 2012), and can be integrated into ABMs to obtain a
dynamic modelling of contagion effects.

• Equilibrium vs coordination: After having specified the behavioral rules governing the system,
models in the neoclassical tradition are typically "closed" through market-clearing assumptions.

2For a recent and comprehensive review on empirical findings, behavioural theories and ABMs in the context of
drought risk assessment, see Schrieks et al. (2021).
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Markets are assumed to always reach the equilibrium, through appropriate adjustments of price
and quantities. As a result, in the long-run, the economy naturally gravitates along a balanced-
path that is deterministically predetermined, while short-run fluctuations are explained through
exogenous shocks. In contrast, in ABMs the robust regularities observed in the real world emerge
as the result of - possibly imperfect - coordination attempts by boundedly rational agents (Dosi
and Virgillito, 2021), without any imposition of market-clearing, thus in a state of persistent
disequilibrium. Indeed, if the occurrence of a natural disaster can be considered fairly exogenous,
its impacts are usually not (Cavallo and Noy, 2009), as they are largely influenced by mitigation
and adaptation measures put in place by the local populations, which are in turn dependent
on behavioral responses, income levels, institutional setting, and past exposure. Even then,
growing evidence is pointing towards persistent effects of natural disasters on aggregate income,
thus rejecting the notion of a gradual return to pre-shock levels of growth - or even greater, as
in the so-called "build-back-better" hypothesis (Hsiang and Jina, 2014). Path dependency and
hysteresis effects extend well beyond aggregate income, as in the case of permanent changes
observed in local labor and housing markets (e.g. after the Katrina hurricane Vigdor 2008)
or shifts in labor structure due to heavy migration (e.g. following the 1992 hurricane in the
Hawaii Coffman and Noy 2012), although it is often difficult to disentangle the pre-shock trends
with those caused by a disruption (Cavallo et al., 2011). Standard CGE approaches are in fact
designed to study the long-run steady state of an economy, but struggle to assess the complex
non-linearities arising after such large events (Naqvi and Rehm, 2014a). These situations happen
in fact out-of-equilibrium, when prices do not adjust and markets do not clear (Otto et al., 2017).
As argued by Noy et al. (2018), economies are constantly changing, and they are even more so
after natural disasters, where agents and policy reactions can change the very own economic
trajectory of the region. For instance, the size and composition of the population may change
(Vigdor, 2008), firms may or may not upgrade their capital (Hallegatte and Dumas, 2009a), and
regional economies might get stuck into poverty traps. From this point of view, ABMs represent
a powerful laboratory to generate reliable synthetic counterfactual scenarios.

In what follows, we first summarize the existing empirical literature about the short and long-
run impacts of natural disasters, concentrating on the latter (Section 2); we then analyze in-depth
the dominant modeling approaches (Section 3); finally, we move to the analysis of existing ABMs of
disaster risk and impact assessment (Section 4), and to the discussion of future avenues of research in
this area (Section 5).

2 What is there to be explained

Econometric techniques are routinely employed to investigate both short and long-run impacts. They
can be a powerful test-bed for competing theories and have undoubtedly advanced our understanding
of the size and the direction of disaster impacts. Nonetheless, such non-structural statistical tools
suffer the lack of an impact theory, leading to difficulties in distinguishing between direct and indirect
losses (Rose, 2004a), and in understanding in which way losses in different sectors depend on each
other. Indeed, reduced-form estimates of disaster losses from econometric models remain often silent
about the channels of transmission leading to substantial indirect damages (Koks et al., 2016).

Hazard risk is typically defined as the product of the hazard probability (the geographical-specific
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probability of facing an event of a given physical magnitude), the exposure (the amount of wealth
and persons possibly affected by the disaster), and the vulnerability (the actual loss experienced when
facing a given hazard, measuring the capability of withstanding a certain phenomenon). In order to
investigate determinants of direct losses, scholars often express experienced damages as a function of a
set of covariates, including disaster magnitude, measures of exposure (e.g. estimates of capital at risk,
proxies for economic activity, local population), and vulnerability measures. Vulnerability measures
are of particular interest, as they can proxy policy intervention. Direct impacts appear to be linked
with country size, as bigger nations, while having higher exposure, are more capable of putting in
place governmental transfers, inter-regional mitigation policies, and absorbing migratory phenomena
(Cavallo et al., 2010). Institutional factors (such as the ability to preserve property rights, openness
to trade, and education levels) can also reduce direct impacts (Kahn, 2005; Toya and Skidmore, 2007;
Cavallo and Noy, 2009). On the other hand, higher levels of inequality tend to augment it (Anbarci
et al., 2005), as they exacerbate coordination problems in the collective actions needed to reduce hazard
risk.3

Because economies evolve over time, estimating the medium or long-run impacts induced by the
occurrence of an exogenous event requires constructing a valid counterfactual to compare against
observed data. Early literature (Skidmore and Toya, 2002) relied on the use of cross-sectional analysis
relating economic outcomes to disaster indicators while controlling for potential determinants of growth.
This type of approach is however problematic, due to the potential presence of omitted variable bias
when determinants of economic outcomes are not included in the model but are correlated with disaster
measures (Botzen et al., 2019). Hino and Burke (2021) investigate the effect of flood risk on house
prices and shows how opposite results are obtained when exploiting both cross-section and temporal
variability, compared with studies exploiting only the former. More recent approaches tend instead to
rely on different flavors of difference-in-differences methods (see e.g. Cerra and Saxena 2008; Belasen
and Polachek 2009), which are instead quite sensitive to the appropriate choice of the control group (Noy
et al., 2018). This is usually accomplished either through composite fixed effects flexibly capturing
pre-existing trends (Zivin et al., 2020) or through the creation of synthetic control groups by e.g.
propensity score matching techniques (Deryugina et al., 2018).

Overall, there is mixed evidence on the long-run effects of natural disasters. These divergences do
not depend solely on the statistical methodology employed, but also on the aggregation level of analysis,
the geographical scale and the intrinsic characteristics of the economy under investigation. Evidence
of long-run impacts is especially hard to spot when investigating country-level indicators. While both
Jaramillo (2009) and Cavallo et al. (2013) report no statistically significant impacts, Loayza et al.
(2012) reveal long-run persistent effects in developing countries. There seems to be little support for
the notion that natural disasters might trigger virtuous effects on aggregate variables, in the form of
renowned capital, ameliorated urban planning, and better infrastructures. This hypothesis is often
referred to as "build back better". Some evidence is reported only for modest disasters taking place in
high-income countries (Crespo Cuaresma et al., 2008). Trade-offs with short-run losses may nonetheless
arise, as the "creative destruction" scenario often involves accurate and lengthy planning, thereby
possibly interacting with resources destined for immediate relief (Hallegatte and Dumas, 2009b). Along
these lines, Lackner (2018) finds evidence of highly persistent negative impacts of earthquakes on
economic growth: while an average event reduces GDP per capita by 1.6% after up to 8 years, high-

3See Noy (2009) for a detailed review on direct damages of natural hazards.
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income countries might experience some beneficial effects. On the other hand, Hsiang and Jina (2014)
find much larger and statistically significant negative impacts when investigating tropical cyclones,
rejecting the hypothesis that these events might stimulate growth, regardless of the income level.
Nonetheless, the authors report significantly lower impacts for countries historically more exposed to
tropical cyclones, thus highlighting the beneficial role of adaptation.4

More clear-cut results start to emerge when moving the analysis from the national to the regional
level (see e.g. Xiao 2011 and Xiao and Feser 2014 on the 1993 Midwest Flood, Vu and Noy 2018 on
Vietnam, Hornbeck and Keniston 2017 on the 1872 Great Boston Fire, duPont IV and Noy 2015 on
the 1995 Kobe earthquake).5 This suggests that the scale of the analysis is a crucial factor in order
to spot potential signals, because of demographic dynamics (see e.g. Husby et al. 2014, Boustan et al.
2012), wealth redistribution, and governmental relief programs (De Alwis and Noy, 2019). Regional
studies also highlight that impacts are highly heterogeneous, both across income classes (with poor
households being more vulnerable and less able to recover) as well as economic sectors, with generally
higher impacts in the agricultural (Xiao, 2011) and manufacturing one (duPont IV and Noy, 2015).

3 Standard modeling approaches

Researchers often resort to modeling approaches in order to carry out structural analysis. The two
most common methodologies are Input-Output models (IOs, Section 3.1) and Computable General
Equilibrium models (CGEs, Section 3.2), or some hybrid forms of the two (Section 3.3). These two
approaches differ substantially in their conceptualization of the economy, and their usage crucially
depends on the time horizon considered in the analysis.

3.1 Input-Output models

The IO approach aims at describing the economy through a static Leontief linear model, representing
both sector-to-sector and sector-to-consumer relationships. Output in each sector is represented as
input for downstream processes (Botzen et al., 2019), allowing the modeler to represent final production
through a set of industry-level coefficients through which the exogenous final demand can be met
(Galbusera and Giannopoulos, 2018). Thus, IOs are generally defined as demand-driven, as they
typically investigate the propagation of the shock to intermediate demand inputs along the supply
chain.

Short-term effects of natural hazards are often analyzed with IO-based approaches. In the short-
run, the production process is in fact generally rigid and constrained by existing infrastructures and
machinery. Thus, when the hazard hits, inputs start lacking, and the supply chain is immediately
influenced through cascade effects. Production is affected through rigidities in inputs coefficients, rather
than through price adjustments and the subsequent substitution of inputs (which are infrequently
observed in such a limited time, Hallegatte (2014)). Even if prices do not adjust and input substitution
is not possible, flexibility might nonetheless come in the form of imports from non-affected areas,
existing inventories, or through postponement of non-urgent activities. Thus, for an IO model to be
suitable, a disturbance must be long enough to produce measurable effects, but also short enough to
avoid relevant substitution effects among factors (Koks et al., 2016). IOs have been applied to several

4See Meyer et al. (2013) for a detailed review of long-run impacts of natural hazards.
5See Noy et al. (2018) for a comprehensive review on regional studies.
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case studies of natural disasters, including the 1995 Kobe earthquake (Okuyama, 2014), the 2006
hurricane Katrina in Louisiana USA (Hallegatte, 2008), and the 2008 Sichuan earthquake (Wu et al.,
2012). IOs have been also amended by considering additional parts of the supply, e.g. by integrating
a description of the water cycle (Rose, 2004b) or of the transportation network (Wen et al., 2014).
Nonetheless, they are typically characterized by some structural shortcomings:

• The most simple (and early) IOs usually entail infinite elasticity of supply with respect to demand,
therefore not considering supply capacity constraints. There have been attempts to create supply-
driven IOs (such as the Inoperability model of Santos and Haimes 2004), though these have been
criticized because they entail perfect demand elasticities with respect to supply, and perfect
substitution of inputs (Oosterhaven and Bouwmeester, 2016; Oosterhaven, 2017).6

• Their fixed structure does not allow for input substitution, and relative price changes have no
impact on the system (null elasticity of demand with respect to prices). While the costs of factor
substitution are indeed often substantial, and unlikely to be made in the short-run (Crowther and
Haimes, 2005), this seldom occurs after a disaster (Koks et al., 2016). Moreover, one of the core
assumptions of I-O models is that any affected input will propagate its scarcity throughout the
entire economy. This may be true to some degree in the very short-run but, eventually, firms will
be able to find alternative suppliers. In their most basic forms, IOs further lack the possibility
of substituting missing inputs through imports (Botzen et al., 2019), perhaps from non-affected
areas (Hallegatte, 2008, 2014).

• There is usually no behavioural response, which in CGEs takes the basic form of price adjust-
ments, and no adaptive capacity.

Because of the lack of these features, IO approaches tend to inflate the estimated impact of a disaster,
and are often interpreted as an upper-bound.

There have been several attempts to ameliorate IOs performances, either through the addition
of CGE-like features aimed at better tailoring medium-long run effects (Section 3.3), or through the
inclusion of additional sectors/regions. As a matter of fact, supply chain disruptions often broaden
beyond the region directly affected by the hazard. In this perspective, Okuyama et al. (1999) employ
a two-regions IO model to evaluate the spatial spillovers of a localized earthquake in the rest of Japan.
However, even when accounting for such effects, overestimation may nonetheless occur if the possibility
of input substitution with imports from non-affected regions is not accounted for (in den Bäumen et al.,
2015; Koks and Thissen, 2016). Along similar lines, Rose (2004a) argued that IOs often lack proper
modeling of resiliency measures that might be put in place after a natural disaster. Rose and Wei (2013)
integrate an IO model with adaptive measures such as ship rerouting, export diversion (the usage of
goods that would normally be exported to substitute for lacking import goods), or putting unused
capacity to work, in order to study hazard-driven disruption of seaports in Texas. Results indicate
that these measures deeply influence the magnitude of the economic impacts, reducing regional impacts
by 70% and national ones by 95%. Similarly, Jonkeren and Giannopoulos (2014) analyze the impact
of extreme weather in Europe through an IO model including inventories, finding a 31% loss reduction
due to adaptive measures.

6Galbusera and Giannopoulos (2018) provide a general, technical review on different IO techniques, focusing in
particular on the distinction between supply- and demand-driven ones.

8



Finally, a generalized extension of the IO approach is represented by Social Accounting Matrix
(SAM). This approach retains a static linear Leontief framework while supplementing the standard
inter-sectoral information including non-corporate actors, such as institutions and households. How-
ever, there have been only a few attempts of analyzing hazard impacts with a SAM approach (see e.g.
Roberts, 2000; Okuyama and Sahin, 2009; Seung, 2014).

3.2 Computable General Equilibrium models

Because of the lack of crucial mechanisms in IOs (e.g. behavioral reaction, input substitution, price
changes, labor force migration), medium and long-run impacts are routinely analyzed by means of
CGEs. These models are rooted in the neoclassical tradition, involving assumptions such as opti-
mizing behavior, perfect rationality, perfect information, representative agent, and market-clearing.
Their micro-foundation allows for a behavioural model of producers and consumers which respond
to price signals, generally in a multi-market context (Rose, 2004a). CGEs are usually employed to
assess impacts on aggregate variables (e.g. GDP as in Noy and duPont 2018), and, unlike IOs, allow
for input and import substitution, thus including real-world responses to natural hazards. From a
technical standpoint, substitutability is usually achieved through the usage of a Constant Elasticity
of Substitution (CES) production function, instead of a Leontief specification. When the hazard hits,
endogenous changes in prices and quantities temporarily alter GDP, until it gradually returns to its
equilibrium level. The cumulative difference between the simulated path and the unshocked counter-
factual is then interpreted as the amount of output lost due to the hazard. Quite obviously, CGEs
are not well equipped to model short-run damages, where inefficient behavior and market disequilib-
rium are likely to be the norm rather than the exception. Shortages are more likely to propagate
through rationing than through price changes (Hallegatte, 2008), which are usually not observed in
the immediate aftermath of a disaster - even though price elasticity can be used as an artificial way of
proxying scarcity (Hallegatte and Przyluski, 2010). On the other hand, the extreme flexibility in fac-
tor adjustment, the assumption of perfect rationality, and that of a deterministic growth path towards
which the economy naturally gravitates, might lead to over-optimistic assessments of long-run losses.
Thus, estimates of economic impacts of natural hazards arising from CGEs are often interpreted as a
lower-bound (Okuyama, 2007).

Early CGEs initially concentrated on national scale impacts. Thanks to increasing data availability,
(multi-)regional CGE are nowadays highly diffused (see e.g. Rose and Liao, 2005; Tsuchiya et al., 2007;
Carrera et al., 2015). In order to exploit the increasing availability of highly granular data, scholars
have embarked into ever finer versions of CGEs, thereby including e.g. fine-grained data on land use
or transportation structure (Anas and Liu, 2007; Tsuchiya et al., 2007), or ameliorated catastrophe
models - see e.g. Pauw et al. (2011) for the inclusion of a hydro-meteorological crop loss model with a
regional CGE model. More recently, Spatial CGEs (SCGEs) introduced a spatially explicit treatment
of impacts in order to study their geographical distribution, allowing for intra- and inter-regional
trading - e.g. transportation networks as in Tatano and Tsuchiya (2008), or household mobility as in
Giesecke and Madden (2013). Another strand of the literature has focused on the role of resiliency
measures, broadly intended as the adaptive capacity of the system. Investigating the disruption of the
water system following an earthquake in the Portland area, Rose and Liao (2005) allow for adaptive
responses by means of dynamically re-calibrating - through survey data - the parameters of a production
function with water as an input. Results show that not accounting for such resilient behaviour would
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magnify indirect losses, from 20% to 90% of direct losses. This confirms the relevance of behavioral
adjustments and is in line with other studies indicating smaller ratios between indirect and direct losses
in CGEs compared to those in IOs (Rose et al., 2016). Finally, Integrated Assessment Models (IAMs),
just like CGEs, are based on the general equilibrium apparatus. They couple a modeled carbon cycle
with a CGE-like macroeconomic model, and a damage function linked with climate-related sufficient
statistics, usually global temperature anomalies (Stanton et al., 2009; Stern, 2013; Parson and Fisher-
Vanden, 1997). Although these models are generally concerned with the overall impacts of climate
change, there are cases of applications of IAMs to the study of specific natural disasters (e.g. Narita
et al. 2010; Diaz and Keller 2016).

As pointed out in Section 1, the micro-foundations of CGEs have been often criticized, mainly
on the grounds of the unrealism of the assumptions upon which they are built on. The paradigm
of the rational agent is indeed in stark contrast with empirical evidence on how individuals behave
in risky situations, especially when dealing with low probability/high impact events such as natural
disasters (Kahneman and Tversky, 2013; Aerts et al., 2018; Safarzyńska et al., 2013; Schrieks et al.,
2021). Ruling out interactions, by assuming that a multitude of interacting, heterogeneous agents can
be adequately described by a single agent, also poses theoretical issues which may impair the proper
modeling of hazard impacts. Individual and social learning can substantially influence the adoption
of protective measures (Shogren and Crocker, 1991), as well as affect the diffusion of information in
times of deep uncertainty (Safarzyńska et al., 2013). Both learning mechanisms are also relevant to
investment decisions in hedging against natural hazards (Siegrist and Gutscher, 2008). Moreover,
collective phenomena such as migration or evacuation are often not strictly due to economic reasons
but have an important sociological component (Entwisle et al., 2016).7 Interactions are particularly
relevant for firms, which are generally interacting within networks of production, and specific failures
can lead to ‘cascading effects’ throughout the economy (Safarzyńska et al., 2013). The relevance of
the network structure is well known to scholars, and it is indeed partially taken into account within
the IO framework. For instance, Henriet et al. (2012) developed a regional economy model based
on the ARIO informed with disaggregated sector-scale IO tables, showing output losses to be related
to both heterogeneities in direct effects, as well as to the production network structure.8 Failing to
account for these effects may lead to a severe misestimation of natural hazard risk. Perhaps, the
most limiting assumption is that of equilibrium. By postulating a return towards a deterministic
growth path, CGEs are effectively assuming that such large-scale events do not alter the trajectory
of the economy, but only temporarily diverge it.9 While the notion of equilibrium has been largely
contested by economists along with the evolutionary tradition (see e.g. Fagiolo and Roventini, 2016),
these criticisms are particularly relevant for such rare events. As noted in Section 2, growing evidence is
pointing to the existence of permanent effects, as well as hazard-induced poverty traps. In some cases,
the economic disruption is so violent to lead to institutional changes and even political revolutions
(Cavallo et al., 2013). Additionally, trade-offs arising from capital destruction (R&D activities vis-à-
vis replacement, Safarzyńska et al. 2013) may induce firms in a specific region to embark on different
technological trajectories (Dosi, 1982), thereby permanently changing the structure of the economy.

7For instance, Riad et al. (1999) show that social influence, together with risk perception and access to resources, is
among the main factors affecting the decision about whether to evacuate or not in case of natural hazard, thus likely to
impact the number of casualties.

8Output losses may be indeed greater if all firms are concentrated in the same location, thus linking the production
network topology to the potential economic losses due to disruptions.

9In theory, one could have models with multiple equilibria, although these are seldom implemented in practice.
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3.3 Hybrid models

Because of their distinct - and to a certain extent opposite - features, there have been notable attempts
to devise hybrid models that incorporate elements from both CGE and IO approaches. Some of
these models attempt at introducing more realistic representations of the production process into a
CGE backbone, thus including reduced substitution elasticities (e.g. Rose et al. 2007) or Leontief
production functions in intermediate inputs (e.g. Horridge et al. 2005). Another approach consists in
augmenting an IO framework with CGE features, such as price reactions (Hallegatte, 2008, 2014). The
Adaptive Regional Input-Output (ARIO, Hallegatte, 2008) is one of the most renowned examples of
hybrid models. ARIO accounts for production constraints, and features several adaptation mechanisms.
Firms are allowed to overproduce in order to counterbalance input shortages, thus effectively taking
into account both supply and demand channels. It further includes price flexibility - with prices
increasing linearly when underproduction occurs - as well as imports and exports across affected regions.
Remarkably, the model appears to be highly sensitive to the parameters governing the behavioral rules.
Koks et al. (2015) further extend ARIO, including input substitution. The authors employ Cobb-
Douglas production functions, calibrated through IO tables, to estimate the effects on production of
both reduced capital and labor supply after a flood. The Multi-Regional Impact Assessment model
(MRIA) by Koks and Thissen (2016) focuses more specifically on modeling suppliers’ input substitution
from outside the affected region, through the application of nonlinear programming to account for
endogenous trade links (calibrated on real multi-regional trade exchanges) and supply constraints.
It also shares several features of ARIO, and accounts for inter-regional trade flows. Even if input
substitution is not accounted for, resilience emerges through flexible movements of production processes
across regions. Results point to an increase in economic activity in non-affected regions - coupled with
reduced indirect losses in affected ones - thus substantially lowering the aggregated impact.

Although these hybrid models generally aim at finding a balance between the CGE and IO ap-
proaches, their outcomes may still differ substantially. Koks et al. (2016) conducted a systematic
comparison between different assessment methodologies, focusing on flooding scenarios of the Italian
river Po. Using the same input data, they compared economic losses as predicted by three different
models: the ARIO by Hallegatte (2008), the MRIA by Koks and Thissen (2016), and a regional version
of the CGE model already employed by Carrera et al. (2015) to study the 2000 Po river flood. Though
losses in the impacted region are rather similar across the three methodologies, they varied by a factor
up to 7 in non-affected parts of the country. More specifically, differences between losses in MRIA and
the CGE model were relatively small compared to those in ARIO, which provided much more negative
estimates. As pointed out by Koks et al. (2016), this is largely due to the linear structure of ARIO,
which does not allow for substitution of imports from non-affected regions.

Lastly, a distinct type of hybrid approach consists of coupling either a CGE or an IO model with
physical sub-models, in order to improve their accuracy. Pauw et al. (2011) combined a CGE model
with a hydrologic sub-model for drought and floods in Malawi, while (Carrera et al., 2015) adopted
the same strategy to analyze the 2000 floods of the Italian river Po. Since infrastructure systems -
especially those related to transport - might substantially catalyze - or reduce - disruptions, Tsuchiya
et al. (2007) augmented their spatial CGE model with a transportation sub-model of freight and
passengers, to investigate cascade losses related to earthquakes in Japan. Finally, the TransNIEMO
model by Cho et al. (2015) uses a multi-regional IO model together with a modeled US national
highway system to study resilience to hazard-driven disruptions, with a focus on bridge collapses and
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tunnels closures.

3.4 Production networks

A network representation allows studying how relationships and interactions between sectors and firms
may propagate localized shocks, giving rise to non-trivial aggregate macro effects (Hallegatte, 2019).
The relevance of such linkages in the context of disaster impacts has encouraged scholars to embed
insights from the network literature into their models.

In this framework, we can identify two main approaches. The first comes from a complexity
perspective, and generally combines an ABM core with insights from the complex networks literature.
As well exemplified by ABM investigating financial instability and macro-prudential policies (see e.g.
Bardoscia et al., 2017), complex linkages can be quite readily implemented in an ABM framework,
given the built-in heterogeneity among agents. Works in this direction include the seminal one by
Henriet et al. (2012), as well as the more recent one by Inoue and Todo (2019) (see Section 4), both
based on the ARIO model (Hallegatte, 2008). The second approach consists of the usage of fully-
fledged General Equilibrium models, augmented with a representation of the production network. The
theoretical underpinnings of this approach come from the literature on the propagation of micro-level
shocks through intra-firm linkages (Gabaix, 2011; Carvalho et al., 2021; Acemoglu et al., 2012; Baqaee
and Farhi, 2020). As in the General Equilibrium tradition, interactions between different units (firms,
but more often industries) rely on price adjustments, arising in turn from optimizing behaviour, while
shocks propagate through the network of input-output or customer-buyer relationships.

Despite the wide range of theoretical works, empirical efforts to study the economic impacts of
natural disasters within this approach have been rather scant, mainly due to the requirement of highly
granular data, which are often unavailable or proprietary. A remarkable exception is constituted by
the work of Barrot and Sauvagnat (2016), who find substantial losses on customers whose suppliers
were affected by natural disasters in the US, especially when the latter are highly specialized. Boehm
et al. (2019) studied instead the propagation of the 2011 Japanese earthquake impacts to US affili-
ates. Finally, the recent work by Carvalho et al. (2021) employs a theoretical framework based on
Acemoglu et al. (2012) to document the propagation of shocks through firm-to-firm linkages for the
same earthquake, exploiting an extensive dataset on Japanese firm-to-firm relationships.

4 Agent-Based Models

Agent-Based Models (ABMs) are particularly well-suited to model complex systems. In principle, they
allow for a detailed representation of sectoral heterogeneity and interdependence just like IOs, coupled
with a model structure of the economy that allows for long-run analysis, without recurring to the
strict assumptions typical of CGEs (e.g. representative agent and market clearing). Their bottom-up
approach and modular structure allow modelers to carefully specify micro-level behavioral rules and
network connections. Agents’ behavior is derived from observed empirical regularities and often comes
in the form of simplified decision rules and heuristics, thus allowing for a more realistic representation
with respect to both IOs and CGEs. Through adaptive learning and feedback mechanisms, behavior
and network structures can evolve endogenously, along with an ever-changing economic environment.

A substantial number of authors have concentrated on the usage of ABMs to better describe
interactions and feedback loops among socio-economic systems and the natural environment, without
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explicitly focusing on the impacts of natural hazards.10 Along these lines, Lamperti et al. (2018a)
developed the first fully-fledged agent-based IAM, focusing on feedbacks between climate dynamics
and the economic system. ABMs have also been applied to the study of water management and
resource-sharing mechanisms (Tesfatsion et al., 2017), agriculture and land use (Coronese et al., 2021;
Parker et al., 2003; Schreinemachers and Berger, 2011; Berger and Troost, 2014; Troost and Berger,
2015), climate-induced migration patterns (Angus et al., 2009; Kniveton et al., 2011), adaptation to
climate variability (Hailegiorgis et al., 2018) and climate-energy nexus (Castro et al., 2020). While the
role of extreme events in these works is often limited or absent, they put forward key concepts about
the co-modeling of human systems and natural ones. Such nexus is indeed increasingly recognized as
complex, with feedback loops along both directions.

In what follows, we review existing ABMs explicitly devised to analyze natural disaster risk and/or
impacts. Because different - and sometimes conflicting - formal definitions ABMs can be found in the
literature, 11 we here concentrate on ABMs which define themselves as such.

4.1 Risk assessment

Hazard risk-assessment is an area of research where ABMs have been fruitfully employed. The good-
ness of a risk-assessment exercise is intimately intertwined with the accuracy of its behavioral repre-
sentations. The severity of assets’ exposure and ensuing losses are indeed strictly related to actions
undertaken by individuals, including investment in mitigating and adaptive capabilities, their degree
of awareness, and purchase of hazard-related insurance policies (e.g. for floods and droughts, Kreibich
et al. 2011). These actions are likely to be undertaken in ways that are not accurately represented by
Expected Utility Theory (Aerts et al., 2018; Aerts, 2020; Schrieks et al., 2021). In this perspective,
ABM offers a suitable framework for appropriately modeling human behavior, possibly leading to an
ameliorated risk-assessment.

Haer et al. (2017) use an ABM to investigate efforts in loss-reducing investments related to flood
risk. Focusing on the case of the Heijiplatt neighbourhood in Rotterdam, they simulate climate-change-
induced physical flood risk and how it interacts with the implementation of protective measures and
the purchase of flood insurance schemes. Investment decisions are carried out under three behavioural
specifications: i) Expected Utility Theory, ii) bounded rationality (as in prospect theory, Kahneman
and Tversky 2013), and iii) a Bayesian-update version of prospect theory. Results highlight a reduction
in risk by a factor of two when individual dynamic adaptation is considered. Remarkably, such reduc-
tion appears to be more marked when agents are employing heuristics instead of rational expectations.
Similarly, Coates et al. (2019) employ an ABM to study the effectiveness of flood risk adaptation efforts
in UK manufacturing SMEs. Filatova et al. (2011a) employ survey data to calibrate an ABM of the
land market, studying the impact of flood risk perception on the evolution of land use in coastal areas
of the Netherlands. The authors show that accounting for a right-skewed distribution of risk perception
- in lieu of the representative agent assumption - generates a much more marked development in riskier
areas (and thus higher potential losses), showcasing the ability of ABM models to replicate stylized
facts (Noy, 2009) by exploiting their built-in heterogeneity. The presence of governmental protection
measures can also reduce the incentive for individual adaptation, and result in riskier behavior, includ-
ing relocations to more exposed areas. Haer et al. (2020) investigate this "paradox of floods" at the

10See Balint et al. (2017) and Lamperti et al. (2019) for reviews on the topic from a complexity perspective.
11For a detailed discussion, we point to Tesfatsion and Judd (2006), or to discussions in Pyka and Fagiolo (2007) and

LeBaron and Tesfatsion (2008).
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European level using an ABM approach, confirming that proactive governmental measures may lead to
lower physical risk but higher impacts, due to moral-hazard. This result echoes the "target shrinking"
strategy advocated by Perrow (2011), who advised the United States to concentrate on reducing the
exposed population in more vulnerable coastal areas, rather than focusing on ex-post assistance that
might generate adverse effects. More akin to the economic geography literature, Taberna et al. (2021)
propose an ABM along with the evolutionary economics tradition, inspired by the K+S macroeco-
nomic ABM family (Dosi et al., 2010). The model is employed to study the interplay between the
geographical distribution and agglomeration of productive units and flood hazards. Concerned with
the endogenous migration decisions of firms and households, as well as technological learning catalyzed
by geographic proximity, the model is able to replicate some key stylized facts of the economy and
provide insights into realistic future scenarios of hazard risk. Overall, despite the limited number of
works, scholars are increasingly looking at ABMs as a useful tool for risk-assessment - see the detailed
reviews in Taberna et al. (2020) and Aerts (2020) for floods, Schrieks et al. (2021) for droughts, and
(Filatova et al., 2011b) for climate-risk perception in land markets.

4.2 Impact assessment

Similarly, a growing number of authors is employing ABMs for hazard impact assessment, as an
alternative to CGEs and IOs. In addition to the reasons which make ABMs suitable for hazard
risk-assessment (built-in heterogeneity and more realistic behavioral responses), they also allow for
non-trivial interactions among agents, and typically do not resort to equilibrium assumptions. As
argued in Chapter 1, both characteristics are highly desirable for a correct modeling of the aftermath
of a natural disaster - which is, almost by definition, an extraordinary event. This strand of literature
is still in its infancy, and existing models vary in scope, level of aggregation and of abstraction, as
summarized in Table 1.

Colon et al. (2021) and Otto et al. (2017) represent two examples of ABMs aimed at analysing
channels of propagation of localized shocks to the supply-chain network. Otto et al. (2017) propose a
novel, global, daily-resolution ABM model, labeled Acclimate, where agents are represented by national
sector industries and consumers, embedded in a network structure of production and international
trade. Sectorial weights are calibrated through IO tables, while agents form expectations on future
levels of demand and maximize their objective functions accordingly. As such, the model shares some
features which are typical of CGE approaches. Results confirm that buffers such as warehousing and
idle capacity are able to substantially mitigate both local indirect effects of natural shocks, as well as
their propagation along globally interconnected value-chains. Similar results on the role of inventories
are obtained by Colon et al. (2021), who propose an extended version of the model presented by
Henriet et al. (2012), further including a firm-level network structure and a model-representation of
the transportation system in Tanzania. Their idealized shocks generate a highly non-linear relationship
between the duration of the disruption and the magnitude of indirect losses, very much in line with
what is usually observed after natural hazards globally (Hallegatte, 2015). Along the same lines, Inoue
and Todo (2019) use an ABM based on Hallegatte (2008) and Henriet et al. (2012), informed with
very granular Japanese firm-level data on customer-buyer relationships, to study the indirect effects
of the 2011 Great East Japan earthquake. Poledna et al. (2018) use instead a macroeconomic ABM
of Austria coupled with a probabilistic damage function to evaluate the overall sign of the indirect
impacts of floods, finding mixed evidence.
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Model Aim Case study Features Main findings

SHEL
(Naqvi and Rehm, 2014a)

Macroeconomic effects of natural
disasters for low-income countries Floods in Pakistan Stock-Flow Consistent ABM

- Low income group more vulnerable
(especially to starvation) and less
likely to be back at pre-disaster levels.
- Positive impact of policy experiment:
food and cash transfer schemes.

Acclimate
(Otto et al., 2017)

Propagation of supply
network shocks in
the global economy

Shutdown of Japanese
manufacturing; global

economic effects of floods
(Willner et al., 2018)

Extensions of an agentified IO model with
elements of flexibility of CGEs

- Mitigation of indirect effects through
warehousing and idle capacities.
- Willner et al. (2018): without
structural adaptation, increased flood
losses by 20%.

Poledna et al. (2018) Sign of economic impacts Floods in Austria
Macroeconomic ABM

(Poledna et al., 2020) with
probabilistic damage function

- Moderate disasters have small but
positive effects in the short-medium
term, negative in the long-term.
- Large disasters have negative impact
in immediate aftermath but temporarily
positive in the short-medium term.

Inoue and Todo (2019)
Propagation of shocks

in a real national production
network

Earthquake
in Japan

Firm-to-firm supply chain network
in an ABM based on

Henriet et al. (2012) and Hallegatte (2008)

- Large impact of indirect effects.
- Importance of the (real) network
of the production system.
- Ability to substitute inputs fundamental
for the resiliency of the system.

Colon et al. (2021)
Resilience of supply-chain
network and transportation

system

Transportation and
supply-chain failures

in Tanzania

Firm-to-firm supply chain network
coupled with transportation system
(built up on Henriet et al. 2012)

- Resiliency measure should aim at
strengthening transportation system,
better inventory and buffers management.
- Longer repairs increase indirect
losses nonlinearly.

Ghaffarian et al. (2021) Physical recovery
after Typhoon

Haiyan Typhoon
in Philipinnes

Estimates of reconstructions
from remote sensing images

- Supporting employment has limited
effects in all areas.
- Relocation of destroyed sites helps
recovery in informal areas.

Table 1: Selected ABMs for natural hazard impact assessment.

Because of the high diversity of observed patterns across income classes, Naqvi and Rehm (2014a) and
Naqvi and Rehm (2014b) propose a novel ABM labeled SHEL, specifically designed for low-income
countries, for which micro-data is often scarce or unavailable. The main focus of the model is to ana-
lyze the distributional impacts on income and consumption for Punjab, a region that flooded in 2010.
It comprises two types of agents (workers and owners), producing two types of goods (a consumption
and a tradable one), in two regions (urban and rural areas). A probabilistic decision-making process
(composed of six distinct modules) governs the evolution of aggregate income and consumption levels.
The model is then calibrated using aggregate data for the Punjab area and runs with a daily reso-
lution. Their findings depict highly unequally distributed impacts, with bottom-earners suffering the
most, both in terms of immediate starvation and in terms of time to recovery to pre-shock income
levels. Notably, the model is stock-flow consistent, and it is used as a testbed for several demand-side
policy interventions (e.g. cash transfers). Naqvi (2017) applied the same framework to study the
2005 earthquake in the northern part of Pakistan, informing the model with detailed spatial data.
Naqvi and Monasterolo (2021) propose instead a theoretical framework to study the effects of climate
shocks on food production in an agriculturally-dependent, low-income country. The model couples
a multi-layered network representation of supply-chain together with a heterogeneous, behaviorally
characterized household side, whose decision-making process (e.g. about migration and trade choices)
is crucially shaped by agents’ interaction. Ghaffarian et al. (2021) develop an ABM to study resiliency
and recovery following the Haiyan Typhoon in the Philippines in 2013. Detailed modeling of physical
recovery using remote sensing images is coupled with behavioral equations governing agent decisions.
The authors experiment with two distinct policy exercises, namely introducing employment support,
and incentives to the reconstruction of sites, tracking the economic recovery12 for residents, in both
formal and informal (slums) urban areas. Their findings indicate that relocation of sites accelerates
recovery in informal areas, while employment support policies have little effect on the velocity of re-

12Recovery is quantified in terms of utility levels.
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covery in both groups. Finally, Kanno et al. (2019) propose an ABM to study interdependencies in
urban systems among industrial production, civil life, and lifeline infrastructures during post-disaster
recovery.

4.3 Mixing ABMs and CGEs

Some scholars have embarked on work aimed at integrating insights and characteristics from ABMs
into CGE structures13, in the attempt to equip the latter with more realistic micro-foundations (Botzen
et al., 2019; Krook-Riekkola et al., 2017). One existing approach departs from a CGE core, and then
allow for features such as heterogeneity and social interactions, generally through disaggregation of
the representative agent (Niamir et al., 2020; Rausch et al., 2011). For instance, Duarte et al. (2016)
employs a regional CGE model to investigate the impact of improving environmental awareness in
Spain, exploiting survey data to calibrate habits, consumption patterns, and households’ sensitivity
to various environmental behaviors. While the usage of survey data ameliorates the representation of
heterogeneity, agents’ choices remain fixed over time and are still taken under conditions of perfect
information, thus neglecting any representation of behavioral changes, bounded-rationality, and social
interactions (Niamir et al., 2020).

From a purely theoretical perspective, there are several methodologies aimed at combining inde-
pendently developed top-down (e.g. a CGE) and bottom-up models (e.g. ABMs or micro-simulation
models).14 Three types of "linking" are usually envisioned (Böhringer and Rutherford, 2008):

• The "soft-linking" approach connects a top-down model with a bottom-up one by using outputs
of one model as inputs for the other. This method often leads to internal coherence problems,
due to the different behavioural assumptions of each module (Husby, 2016).

• The "hard-linking" approach imposes the output of the bottom-up model to be part of the solu-
tion of the top-down one.15 This methodology has however severe limitations, due to difficulties
in convergence in CGE/IO modules.

• A third intermediate approach aims at maintaining the CGE structure while letting its parameters
to be determined by a reduced form model (see e.g. Bosetti et al., 2006).

In the context of hazard impacts assessment, the few works aiming at integrating ABMs and CGEs
use a soft-linking approach. Among them, Husby (2016) employs an ABM of opinion dynamics to
analyze the impact of public concern on disaster losses as predicted by a Spatial CGE model. More
recently, Niamir et al. (2018) investigate the macroeconomic effects of changes in individual behaviour
and social norms - and their interaction - on climate-change mitigation policies, using an ABM of the
family of BENCH models 16 , originally developed to study energy use.

Finally, other authors have proposed alternative integration strategies, although with a high level
of abstraction. Among them, Safarzyńska et al. (2013) put forward an integration method to accom-
modate insights typical of the evolutionary tradition into a more standard (CGE/IO) framework, while
Smajgl et al. (2009) propose a farm-level conceptual integration of ABMs and CGEs for fishery policy
assessment.

13In principle this applies to IOs as well, although to the best of our knowledge there are no works in this direction.
14See Richiardi and Richardson (2017) for a detailed discussion. See also Rausch et al. (2011) and Niamir et al. (2020).
15Böhringer and Rutherford (2008) provide the most detailed example of this methodology.
16See Niamir et al. (2020) for a more recent application.
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5 Towards a complexity-based approach: challenges and ways for-
ward

In this paper, we critically reviewed the state of the art in the modeling of environment-economic
systems, focusing in particular on the analysis of natural disaster impacts. Conventional approaches
are generally based either on Input-Output techniques, on Computable General Equilibrium models,
or on some mixture of the two. Both methods, depending on the end-use, can deliver informative
estimates, and have undoubtedly advanced our understanding of the composite mechanisms at work
in the aftermath of a catastrophic event. Nonetheless, they suffer from intrinsic drawbacks which
limit their ability to fully grasp the complexity of such dynamics. In a nutshell, they boil down to
a scant representation of heterogeneity and interactions, an unrealistic description of behavioral rules
governing agents’ actions, and a deterministic view of the evolution of the economic system. Because
of such drawbacks, dominant approaches are likely to lead to either over-optimistic - as in CGEs - or
over-pessimistic - as in IOs - assessments of hazard risk and related impacts.

Here we have argued that Agent-Based Models represent a powerful tool to ameliorate the modeling
of long-run consequences of natural disasters, and - along with existing approaches - help in the
assessment of hazard risk. Indeed, a complexity-based approach can shed light on critical mechanisms,
which are often overlooked by standard modeling techniques. As extreme events are likely to become
more frequent and severe, due to anthropogenic climate change, a thorough understanding of their
impacts is crucial in order to design appropriate policies. ABMs can in fact serve as laboratories for
artificial counterfactuals and test-beds for synthetic adaptation and mitigation policy experiments, so
to investigate the evolution of risks and impacts across distinct socio-economic and climate scenarios.

A critical point to our argument is that complexity-based methods, and ABMs in particular, are
immune by construction to the criticisms listed above. While this is true in principle, they do suffer
from some limitations in practice. The most obvious is perhaps the presence of several degrees of
freedom in modeling choices, both in terms of structural relationships as well as of behavioral rules.
This lack of unified grammar is likely one of the main reasons that have led researchers to embark
in the development of hybrid models, in the attempt to integrate sound, empirically driven micro-
foundations - typical of ABMs - while maintaining a CGE structure - capable of granting internal
coherence and comparability across models. This avenue of research is certainly promising and can
produce models with an ameliorated representation of heterogeneity. Nonetheless, it still relies on a
theoretical apparatus which is based on equilibrium assumptions, and where the impact of non-trivial
interactions at the meso- and macro-level is structurally circumscribed.

The literature on ABMs applied to disaster risk and impact assessments is still in a nascent state.
Overall, we believe that the ABMs showcased in Section 4 constitute examples of a promising method-
ology. In this spirit, we identify some critical issues which are at the forefront of research both in
agent-based modeling and in hazard impacts analysis, and constitute crucial avenues of future de-
velopments for ABMs to become a prominent and well-established modeling approach to the issues
discussed here.

• Calibration and validation: The flexibility of ABMs often comes at the expense of their tractabil-
ity. Tractability rapidly deteriorates along with the scale (e.g. geographical) and the scope (e.g.
types of hazards, policy toolkit) of the analysis. This often translates into difficult calibration
exercises, especially when dealing with ex-ante policy assessments. The literature on ABMs
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calibration and validation is nonetheless gaining rapid momentum and has already obtained
promising results (Fagiolo et al., 2019; Lamperti et al., 2018b).

• Data availability : The ability of ABMs to accurately replicate real-world-like heterogeneity and
interactions crucially relies on the availability of realistic data to calibrate models with Hallegatte
(2019). The lack of granular data is particularly pronounced in developing countries, which are
projected to suffer the largest impacts from climate change. Thanks to the recent availability
of supply-chain micro data, works such as Inoue and Todo (2019), Ghaffarian et al. (2021), and
Colon et al. (2021) have shown how a more fine-grained representation of the production structure
is fundamental for a better understanding of the economic impacts of natural disasters.

• Stock-flow consistency : Stock-Flow-Consistency (SFC) is a generic property of a model, and is
not directly related to the issue of modeling hazard impacts. SFC refers to the rigorous treatment
of all flows and stocks in the economy. Through a matrix representation, the modeler ensures
a coherent treatment of all inflows and outflows in the economy, which accrue or decrease the
associated stocks. By the same token, SFC is not a distinctive feature of ABMs. While there is
a long history of SFC modeling in the Post-Keynesian tradition (see e.g. Caverzasi and Godin
2015), any modeling strategy which has enough built-in heterogeneity across agents can adopt it.
Indeed, there have been numerous SFC-ABMs developed in the context of financial regulation and
macro-prudential policies (see e.g. Seppecher 2012; Teglio et al. 2012). However, this approach
is still the exception, rather than the norm, in ABM modeling of natural disaster impacts. A
systematic treatment of stock and flows is a key prerequisite for ABMs to achieve a degree
of internal coherence which allows for scaling-up along different dimensions (e.g geographical,
sectorial). Most importantly, SFC becoming a standard feature of ABMs would represent a
major stepping stone in terms of comparability across models.

• Channels of transmission: The general lack of understanding of micro-level channels of adaptation
is a crucial limiting factor in impact assessment. As underlined by Schrieks et al. (2021), the
endogenous dynamics of behavioural responses are still not entirely understood, together with
their repercussion on consumption and population patterns. In this perspective, ABMs constitute
a natural candidate to explore the emergence of macro-level properties of the system. Nonetheless,
micro-behavior should be carefully designed in order to reflect empirical evidence. Failing to
take these aspects into account can lead to a distorted representation of natural hazard impacts
(especially in migration patterns and in the housing market), and in turn to poor policy responses
(Naqvi and Rehm, 2014a).

• Demand effects: Even if routinely analyzed with demand-based approaches (such as IOs), shocks
from natural hazards have a large supply-side component (Hallegatte et al., 2011). Demand
effects are thus often overlooked. Nonetheless, demand-side responses can be remarkable in
case of extreme events, characterized by e.g. market failures, inefficient income stabilizers, and
incomplete insurance markets. These channels are especially relevant if income inequality, het-
erogeneous adaptive capacity, and resilience are taken into account. In this perspective, ABMs
offer a powerful platform to embark e.g. Keynesian features in the analysis (see e.g. Dosi et al.
2010).

• Demand and supply interplay : Because natural disasters affect both the supply and the demand
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side of the economy, their interplay can generate non-trivial dynamics. Shocks to both were
indeed one of the peculiarities of the COVID-19 pandemic recession. Recently, Pichler and
Farmer (2021) and Reissl et al. (2022) have stressed the relevance of their joint interaction in an
IO framework, as well as the importance of a network representation of industries, which might
propagate shocks further. In this spirit, we echo Pichler and Farmer (2021), who underline the
necessity to fully incorporate these dynamics in the analysis of natural disaster impacts.

• Spatial structure: Natural disasters, by their own nature, have a well-defined spatial struc-
ture. Because different signals in impacts appear at distinct scales of aggregation, spatial inter-
dependencies are highly relevant, as they help understand channels of transmission from the
micro-level to the meso and macro scales. Driven by the spur in the availability of high-resolution,
geo-localized data, ABMs can be easily endowed with a spatial structure that embeds geograph-
ical inter-dependencies, in addition to economic ones (as in e.g. Naqvi 2017). Another approach
(as pioneered by Ghaffarian et al. 2021) is to use increasingly available remote-sensing data to
accurately calibrate or validate non-explicitly spatial ABMs.
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