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Real Options: A Review of Select Theories and Applications 

 

Renato E. Reside, Jr., UPSE 

 

Abstract 

 

This paper is an introduction to the concepts and methods used in the field of real options as they 

related to investments. The analog between financial and real options is explained. The discrete 

version of a model is introduced, then solutions to the canonical model in continuous time using 

dynamic programming and contingent claims analysis are discussed. Finally, the paper covers 

extensions of the canonical model to various other option structures.     

 

 

I. Introduction 

 

This research paper aims to provide an introduction into developments in the field of real 

options theory over the last few decades. It aims to serve as a basis of lecture notes for my course 

at the University of the Philippines. Real options theory draws parallels with the financial options. 

This is insofar as real options confers to anyone who possesses them, the right to acquire, let go 

of, purchase or sell real assets, much like the owner of a financial option can at some point, exercise 

the right to buy or sell underlying financial assets. A real option therefore refers to the discretion 

to take a course of action. From a firm’s point of view, this often refers to the option to buy or sell 

capital assets, or to undertake investment or incur certain other expenditures such as hiring (or the 

opposite of all these). Some of the seminal articles on real options effects (McDonald and Siegel, 

1986, Pindyck and Dixit, 1994) point out that this discretion has economic value as it imparts 

flexibility on the part of firms to exploit new information about their potential actions over the 

passage of time. These seminal papers therefore emphasize that firms can exploit the option to 

delay new investment because there is a value to waiting due to inherent uncertainty in the 

outcomes of actions in future states. The value to waiting on investment is analogous to the value 

of a call option (to buy) an underlying share of asset, which is dependent on the variance of the 

value of the underlying shares, exercise price, the duration of time in which the option is valid, 

among other things. Over the years, other authors have drawn analogs between other kinds of firm 

actions and other types of financial options (such as put options, which is the option to sell an 

underlying asset). The analogs between real and financial options have led authors to emphasize 

the role played by uncertainty in business decisions. Meanwhile, principles for valuing and pricing 

financial options have also been applied to the valuation of real options. This has given rise to 

modes of investment analysis with very different (invest/do not invest) threshold criteria from 

traditional methods of analysis such as discounted cash flow and net present value (NPV) analysis.  

 

The proposed research will explore extensions of the original theory with potential 

applications of real options analysis to the Philippines and/or to regional economies to shed light 

on policy debates and firms and investment valuation. 
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II. Real Options and the Economics of Uncertainty 

 

 Real options theory is an extension of the theories developed in financial options to real 

activities such as investments, disinvestment, hiring and firing. Financial options can be valuable 

in uncertain environments because they confer on their owners the ability to exploit a wider variety 

of scenarios compared to relatively stable and more deterministic environments. Similarly, real 

options are valuable because agents that possess them can better exploit volatile environments for 

gain. This section will review the economics of uncertainty and the role played by uncertainty in 

influencing the behavior of economic agents. I will also review situations that give rise to real 

options, provide an overview of the varieties of real options identified in the literature and discuss 

the analogy between financial and real options valuation.      

 In valuing real options, focus will be on providing economic intuition behind the derivation 

of valuation formulas and potential actions of economic agents when confronted with uncertainty. 

 

Models of investment prior to the development of the canonical model thus far ignore two 

characteristics of investments: Irreversibility of sunk costs and since investment can be delayed, a 

firm can wait for new information about prices, costs and other market conditions before 

committing resources.  

  

When investments are irreversible and decisions to invest can be postponed, the typical 

criterion for investment – invest when the present value of expected cash flows is at least as large 

as cost is incorrect. In most cases, the opportunity to delay investment is feasible (as firms wait for 

new information about economic conditions). 

  

The Analogy Between Real and Financial Options 

 

An irreversible opportunity to invest is like a financial call option. A call option gives the 

owner the right, for some specified period, to pay an exercise price and in return receive an asset 

(e.g., a share of stock) that has some value. Exercising the call option is irreversible. Although the 

investors can sell the asset to other investors, they cannot recover the option or the money they 

paid to exercise it. A firm with an investment opportunity likewise has the option to spend the 

money (the “exercise price”) now or in the future in return for an asset (an example being a project) 

of some value. Again, it can sell the asset to another firm, but it cannot reverse the investment. As 

with a financial call option, this option to invest is valuable because of the potential for a growing 

net payoff if the value of the asset rises. If the asset falls in value, the firm need not invest and will 

lose only what it spent to obtain the investment opportunity. 

  

Firms get investment opportunities through patents or ownership of land or natural 

resources. More generally, they arise from a firm’s managerial resources, technological 

knowledge, reputation, market position and possibly scale, which enable the firm to undertake 

investments that individuals or other firms cannot undertake.  

 

 The key is that the option to invest is valuable. A substantial amount of the market value 

of most firms arises from their options to invest and grow, as opposed to the capital they have in 

place.  
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 When a firm makes an irreversible investment expenditure, it exercises or “kills” its option 

to invest. It gives up the opportunity of waiting for new information that might affect the 

desirability or timing of the expenditure, it cannot disinvest should market conditions change 

adversely. The value of this lost option is an opportunity cost that must be included as part of the 

investment. Hence, the rule of NPV – invest when the value of a unit of capital is at least as large 

as the purchase and installation cost - must be modified. The value of the unit MUST exceed the 

cost of the purchase and installation by an amount equal to or above the value of keeping the 

investment option alive. 

 

 Recent studies have shown that the opportunity cost of investing can be large and the 

investment rules ignoring it can be erroneous. In addition, the opportunity cost of investing is 

highly sensitive to the future value of the investment project, so that changing economic conditions 

affecting the perceived riskiness of future cash flows can have a large impact on investment 

spending. This can explain why models of neoclassical investment are not empirically successful. 

 

III. Application of Real Options: Binomial Decision Trees 

 

Binomial decision trees (or the binomial lattice model) have been used to value financial 

options. However, they can also be used to solve real options valuation problems. The method uses 

a discrete time framework for working out problems. Binomial decision trees can be used to model 

the flexibility possessed by risk-neutral firms in maximizing uncertain project values at each node 

over time. At each node or time period, risk-neutral firms are modeled as having the flexibility to 

decide between two courses of action that yield uncertain project outcomes, the projects being real 

assets. The risk-neutral probabilities at each node may be derived from market data or from 

assumptions based on theory. Risk-neutral probabilities can be used to determine the expected 

value of payoffs in the next period. In the following example, decision tree analysis can be used to 

determine the timing of an investment with uncertain outcomes.   

 

Consider a firm with the managerial flexibility to decide the timing of an investment worth 

205 now. That investment immediately yields 20 but faces an uncertain payoff in the next period. 

With probability of 50%, the project earns 5 in the next period, and with probability 50%, the 

project earns 35.     

 

The following diagram depicts the pertinent points of the binomial model. Suppose in the 

current time period (now), an investor has the option to undertake an irreversible investment in an 

asset that now costs 205 and now immediately yields 20 with probability 100%. If undertaken next 

year the investment yields 5 with probability 50% or 35 with probability 50%. What is the value 

to the investor of the option to invest at each time period? Assume that the discount rate used for 

the project is 10%. 

 

To value real options in practice, one must first identify whether they exist in a firm’s 

activities. Options typically exist when the activity involves phases and information arriving in 

stages that can affect decisions of the firm. 
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Time  Now  Next year  Eternity   

 

           

 

Payoff             

             

             

            

  

Expected NPV = (20/0.1) – 205 = - 5 

Decision: Do not invest now 

 

Time  Now  Next year  Eternity   

 

           

 

Payoff             

             

             

            

  

But if the investor waits until next year to decide 

If unfavorable outcome (5), (5/0.1) – 205 = - 155 

Decision: Do not invest 

 

If favorable outcome (35), (35/0.1) – 205 = 145 

Decision: Invest   

 

Expected payoff when investor waits till next year to invest = (-155 x 0) (145 x 0.7) = 72.5 

Final Decision: Do not invest now, invest one year from now. 

 

20 

0.5 

0.5 

  5 

 35 

  5 

 35 

20 

0.5 

0.5 

  5 

 35 

  5 

 35 
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Since the present value of waiting one year to invest is (72.5/1.1) = 65.91 > PV of investing 

now (which is - 5) it pays for the investor to wait an additional year to make the irreversible 

investment. The binomial decision tree problem can be converted into the following table: 

 

Table 1: Outcome of Binomial Tree Model 

 Now Next year  

Outcome  Bad Good 

Probability 100% 50% 50% 

    

Development cost 205 205 205 

Payoff 20 5 35 

NPV of investment (20/0.1)  - 205 = - 5 (5/.1) – 205 = -155 (35/.1) – 205 = 145 

Action  Don’t invest Invest 

Future values  0 145 

Expected values  145 x 0.7 = 72.5 

= Sum (probability x 

outcome) 

 
(-155 x 0) (145 x 0.7) = 72.5 

PV of alternatives @ 

10%  

1 x – 5 = - 5 
(72.5/1.1) = 65.91 

 

 Note in the example that the investor earns a way greater return from the investment by 

delaying it and waiting for greater information about the market to flow before buying the asset in 

the following year.  

 

 Binomial tree analysis has been criticized on the basis of using arbitrary discount rates. 

Critics wanted a more rigorous discount rate. The following sections discuss the real options model 

in continuous time, which has since become the canonical model for recent modeling of 

investment. 

 

IV. Solving the Canonical Real Option Model 

 

The canonical real option model of investment owes itself to the seminal literature written 

by MacDonald and Siegel (1986) and Dixit and Pindyck (1994).1 The standard real options model 

of investment timing predicts that, since waiting allows investors to obtain new information about 

market conditions, increased uncertainty discourages investment. In other words, when market 

conditions are uncertain, investors possess a valuable call option that is lost when an irreversible 

decision is made. Hence, there is value to waiting to invest. 

 

In the earliest canonical models of real option theory, firms are expected to invest less when 

the level of uncertainty is high or increases. The reason is that higher uncertainty raises the option 

value of waiting, so that it is optimal to wait to invest rather than to immediately exercise their 

option and undertake costly and irreversible investment. These results are obtained under the 

assumption that a firm holds monopoly rights over the investment opportunity and the investment 

does not affect prices or the structure of markets.   
 

1 Much of this section is based on the latter.  
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The seminal papers on real options and investment analyze the problem of the timing of 

sunk investment cost I, in order to obtain a project with value V. Next, suppose V is a stochastic 

variable and follows a specific form of Generalized Brownian Motion (GBM), an Ito Process, 

generally: 

 

𝑑𝑉 = 𝑎(𝑉, 𝑡)𝑑𝑡 + 𝑏(𝑉, 𝑡)𝑑𝑧 

  

Or more specifically, under risk neutrality 

 

𝑑𝑉 = 𝛼𝑉𝑑𝑡 + 𝜎𝑉𝑑𝑧   (1) 

  

The first term on the RHS is the deterministic component. The second term is stochastic. V follows 

a GBM process with increment dz (of a Wiener process): 

 

𝑑𝑧 = 𝜀(𝑑𝑡)
1

2     ,      𝜀~𝑁(0,1) 
 

𝜀 is a serially uncorrelated and normally distributed random variable. Since 𝜀 𝑡 has a mean of zero 

and unit standard deviation, E(dz) = 0 and var (dz) = E[(dz)2] =dt . Hence, the investment project 

is akin to an American call option.  

 

Equation (1) implies that the current value of the project is known but its future values are 

lognormally distributed with a variance that grows linearly over time. Despite the fact that 

information arrives over time, the future value of the project is always uncertain. McDonald and 

Siegel (1986) suggest that the value of the investment opportunity above is analogous to a 

perpetual call option and the decision to invest is akin to the exercise of the call option. Analogous 

to the solution of financial call options, there are also two ways of solving real options problems. 

One through dynamic programming, and another via contingent claims techniques.   

 

Suppose there is a sunk, fixed and irreversible investment cost I. To solve the problem of 

investment using dynamic programming, a rule is needed that maximizes the value of the 

investment opportunity, F(V): 

 

 

𝐹(𝑉) = max E [(𝑉𝑇 − 𝐼)e
−𝜌𝑇]⏟        

𝑃𝑎𝑦𝑜𝑓𝑓 𝑓𝑟𝑜𝑚 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡=𝑇

 (2) 

 

At some unknown future time t = T, the investment will be made. 𝜌 is the discount rate and 

maximization is subject to (1) for V. Assume that 𝜌  >  and denote  = 𝜌  - .  𝜌 =   +  is the 

total expected return = dividend ratio plus rate of capital gain. The discount rate for this project is 

ρ. For the problem to make economic sense, it must be the case that α < ρ. If α = ρ, the value of 

the option to invest will be the same as the underlying asset and it will never be rationally exercised 

(why?). 

 

At this point, one can ask two questions: (a) How much is this opportunity worth? and (b) 

at what point is it optimal to launch the project?  
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Assume that a decision maker has the opportunity to invest in a project whose value V is 

stochastic over time period 𝑡 ∊ [0,∞]. Let z be a Wiener process. Note that the payoff to the 

investment, V – I is the present discounted value of the payoff stream from the time the option to 

invest is exercised. It is necessary to assume that α < ρ. Otherwise, the value of the project increases 

indefinitely as t approaches infinity. Note that I is lost permanently, because the value of the 

investment has an irreversible sunk cost. The value F(V) will be expanded later using Ito’s lemma. 

This yields: 

 

 

𝑑𝐹 =
δF

δV
𝑑𝑉 +

δF

δt
𝑑𝑡 +

1

2

δ2F

V2
(dV)2 

  

 

In the deterministic case where σ = 0 (stochastic component = 0):  

 

V(t) = 𝑉0𝑒
αt     where 𝑉0 = 𝑉(0), so given the current V, the value of the option to invest at some 

future time T is 

 

𝐹(𝑉) = [(𝑉e−𝛼𝑇 − 𝐼)e−𝜌𝑇]    (3) 

 

Suppose 𝛼 ≤ 0, then V(t) will remain constant or fall over time. So it is clearly optimal to invest 

immediately if V > I and not invest otherwise. Hence, F(V) = Max [V – I, 0}, if α≤ 0. 

 

In the case of 0 < α < 𝜌 : F(V)  > 0 even if V < I  since eventually, V will exceed I, it may 

be better to wait than to invest now. To see this, maximize F(V) above with respect to T to get: 

 
𝑑𝐹(𝑉)

𝑑𝑇
= −(𝜌 − 𝛼)𝑉e−(𝜌−𝛼)𝑇 + 𝜌𝐼e−𝜌𝑇 = 0 

 

Which implies that (solving for T) 

 

𝑇∗ = 𝑀𝑎𝑥 {
1

𝛼
log [

𝜌𝐼

(𝜌−𝛼)𝑉
] , 0}    (4) 

 

= 𝑀𝑎𝑥{                > 0             , =  0} 
 

Therefore, if V is not too much larger than I, 𝑇∗> 0. So the optimal timing of investment is not the 

current period, time t = 0, but later at time t > 0. The reason for delaying the investment is that in 

present value terms, the cost of the investment declines by a fraction of e−𝜌𝑇 , whereas the payoff 

is reduced by the smaller factor of e−(𝜌−𝛼)𝑇. Hence, even without uncertainty, there is already 

value in waiting to invest. 

 

If one sets 𝑇∗ = 0, one gets the critical value of V (= 𝑉∗) at which one should invest 

immediately: 𝑉 ≥ 𝑉∗, where 

 



8 
 

 𝑉∗ = ( 
𝜌

𝜌−𝛼
) > 𝐼  

 

The condition above says that the value of the investment should cross this critical value V* so 

that the project should be worthwhile pursuing. 

 

Finally, substitute (4) into (3) to get: 

 

𝐹(𝑉) = {( 
𝛼𝐼

𝜌−𝛼
) ( 

(𝜌−𝛼)𝑉

𝜌𝐼
)

𝜌

𝛼
, 𝑉 ≤ 𝑉∗

𝑉  −   𝐼                , 𝑉 > 𝑉∗
 (5) 

 

 

A graph of this is depicted in Figure (5.1) in the book by Pindyck and Dixit (1994) for I = 1, 𝜌 =
0.10 and 𝛼 = 0. A general diagram is in the next page. The diagram is also applicable when the 

environment is not deterministic. It will be explained in greater detail in the next section. 
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Stochastic Case 

 

Next, suppose σ > 0? The problem is how to determine the point at which it is optimal to 

invest I in return for an asset worth V when the environment is uncertain. The investment rule will 

now take the form of a critical value of 𝑉∗ such that it is optimal to invest once 𝑉 ≥ 𝑉∗. We will 

see that a higher value of σ will result in a higher value of 𝑉∗ (a greater value to waiting). In 

general, both growth (𝛼 > 0) and uncertainty (σ > 0) can create a value to waiting and hence delay 

the timing of investment.  

 

Consider an investor making an investment decision under an uncertain environment. The 

decision to invest under uncertainty can also be modeled in the graph in Figure 1. Think of the 

vertical axis as measuring net present value of investment projects. The horizontal axis measures 

the uncertain cash flows from the project, V or investment cost I. The upward sloping line is the 

present value of the cash flows to the project. The NPV rises along with the cash flows. It intersects 

the horizontal axis at I, the cost of investment. At this point of intersection, PV = I and NPV = 0, 

at which point conventional decision-making following the NPV criterion would recommend the 

investment be made. However, the option value of waiting exceeds V at point I (V – I < F(V)) and 

therefore it is optimal to delay investment at V = I.  It is only optimal to invest when F(V) = V*.  

 

But the real options criterion is very different. Under real options, investors decisions are 

dynamic in nature. Unlike the static decision-making using the NPV criterion (invest now or not 

at all), investors make investment decisions (to invest or not to invest) in each period. The value 

of the option to invest, F(V), is compared to an optimal threshold V called V*. F(V) is also growing 

as V increases (why?). The optimal threshold V* is dependent on several factors and is > I. So, the 

question is about the optimal timing of investment an optimal timing of investment exists. 

 

The option to invest has value F(V) because: 

 

- The passage of time resolves uncertainty; 

 

- If a year from now, the conditions deteriorate, the investor can decide not to invest in 

a bad project; and 

 

- By waiting the investor is cutting off some of the left tail of the distribution of 

outcomes. 

 

The real options approach gives a more restrictive investment strategy since the value of waiting 

for information about uncertain future trends, which affect the project’s cash flow (area AI0 in 

the graph above) is explicitly taken into account in the project evaluation. 

 

When F(V) < V*, the option to invest is not exercised since the option to invest still does 

not exceed the real option investment threshold and the investor waits to invest. In the zone 

below V*, the investor obtains the value of the unexercised option.  
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When F(V) > V*, the option to invest is exercised and the investment takes place. It is the 

optimal time to invest. Thereafter, F(V) = V – I and the investor obtains the excess of cash flows 

over the cost of investment.  

  

There exists a critical value of V* so that it is optimal to wait if V < V* (continuation region)  

 

𝐹(𝑉(𝑡)) = 𝑒−𝜌𝑑𝑡𝐸[𝐹(𝑉(𝑡 + 𝑑𝑡)] 

 

There will also be a stopping region: invest if V > V* 

Ω(𝑉(𝑡)) = 𝑉(𝑡) − 𝐼 = F(V) = payoff at stopping region 

 

It is optimal to wait if V < V* (continuation region). The tangency point of F(V) with V – 

I is at the critical value  𝑉∗ = ( 
𝜌𝐼

𝜌−𝛼
). Beyond that and to the right is the stopping region. Note that 

F(V) increases when 𝛼 increases as does the critical value 𝑉∗ (growth 𝛼 pushes the tangency point 

to the right). Growth in V creates a value to waiting and increases the value of the investment 

opportunity (= the option to invest). 

 

 Also note from Figure 1 that the more volatile is V, the more likely it is that V* will be 

breached. So, the option to invest is more valuable the more volatile is V. 

  

There are two ways of solving the canonical model. The first is via dynamic programming. 

The second is via contingent claims analysis.  

 

 

Dynamic Programming (DP) Solution 

 

The problem is to invest I and get V, with V a GBM 

 

𝑑𝑉 = 𝛼𝑉𝑑𝑡 + 𝜎𝑉𝑑𝑧 

  

The payout rate is δ and the expected rate of return is 𝜌 so that α = 𝜌 - δ. We want to solve for the 

value of the investment opportunity (the option to invest), F(V) and the decision rule V*.   

Since the investment opportunity F(V), yields no cash flows up to time T when the investment is 

made, the only return from holding the option to invest is capital appreciation.   

 

The solution via dynamic programming must satisfy the Bellman equation: 

 

𝜌𝐹𝑑𝑡 = 𝐸𝑑𝐹  (6) 

 

 

F is F(V) and this can be expanded using Ito’s lemma. 
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Derivation of the DP Solution 

 

The LHS term is the total expected return on the investment opportunity, while the RHS is 

the rate of capital appreciation. The DP method transforms the problem into an optimal stopping 

problem.  

 

Recall that in DP, one breaks down a larger problem into a set of smaller problems. A 

function that is defined over all time periods t is divided into a discrete step Δt and the full solution 

is formed by solving for the value of the function one step at a time.  

 

Let π(x(t), t) be the rate of profit flow from the investment. Hence, total profit is π(x(t), t) 

Δt and total discounting over a discrete step is 
1

1+𝜌Δt
 . 

 

Hence, the value of the investment at continuous time t is 

𝐹(𝑉, 𝑡) = 𝑀𝑎𝑥 {π(V(t), t) +
1

1 + 𝜌
𝐸[𝐹(𝑉(𝑡 + 1), 𝑡 + 1)]} 

 

This is the Bellman equation in continuous time. On each discrete step Δt, we have  

 

𝐹(𝑉, 𝑡) = 𝑀𝑎𝑥 {π(V(t), t)Δt +
1

1 + 𝜌Δt
𝐸[𝐹(𝑉(𝑡 + 1), 𝑡 + Δt)]} 

 

 

Multiply both sides by 1 + 𝜌Δt to get  

 

(1 + 𝜌Δt)𝐹(𝑉, 𝑡) = 𝑀𝑎𝑥{π(V(t), t)Δt(1 + 𝜌Δt) + 𝐸[𝐹(𝑉(𝑡 + 1), 𝑡 + Δt)]} 
 

Subtract 𝐹(𝑉, 𝑡) from both sides to get 

 

𝜌Δt𝐹(𝑉, 𝑡) = 𝑀𝑎𝑥{π(V(t), t)Δt(1 + 𝜌Δt) + 𝐸[𝐹(𝑉(𝑡 + 1), 𝑡 + Δt) − F(V(t), t)]} 
 

= 𝑀𝑎𝑥{π(V(t), t)(1 + 𝜌Δt)Δt + 𝐸[ΔF(V(t), t)]} 
 

Then, divided both sides by Δt  and let t -> 0, which leads to 

    

𝜌F(𝑉, 𝑡) = 𝑀𝑎𝑥 {π(V(t), t) +
1

𝑑𝑡
𝐸[𝑑𝐹(𝑉(𝑡), 𝑡)]} 

 

Assume that there are no profits as the project generates cash flow only at the time the investment 

is undertaken so that π(V(t), t) = 0 so that the Bellman Equation reduces to 

 

𝜌𝐹(𝑉, 𝑡)𝑑𝑡 = 𝐸[𝑑𝐹(𝑉(𝑡), 𝑡)]    (6.1) 

     LHS = RHS 
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This is a no-arbitrage condition. The LHS is the discounted normal return that an investor would 

require from holding an option. The RHS is the expected total return per unit of time from holding 

the option. 

 

If this condition holds, then the firm is equating the expected return from delaying the 

investment with the opportunity cost of delay. 

 

Since we assumed that V follows Geometric Brownian Motion (GBM), we can expand the 

RHS of (6.1) using Ito’s lemma, the properties of the Wiener process for z and E(dz) = 0 to obtain 

the total differential of the continuous time stochastic process, which is the RHS of equation (6): 

 

RHS of (6.1)  = 𝐸[𝑑𝐹(𝑉, 𝑡)] = 𝐸 [
𝜕𝐹(𝑉)

𝜕𝑉
] 𝛼𝑉𝑑𝑡 + 𝜎𝑉𝑑𝑧 +

1

2

𝜕2𝐹(𝑉)

𝜕𝑉2
(𝛼𝑉𝑑𝑡 + 𝜎𝑉𝑑𝑧)2 +⋯ 

  

= 𝐸 [
𝜕𝐹(𝑉)

𝜕𝑉
𝛼𝑉𝑑𝑡 +

𝜕𝐹(𝑉)

𝜕𝑉
𝜎𝑉𝑑𝑧 +

1

2

𝜕2𝐹(𝑉)

𝜕𝑉2
𝜎2𝑉2𝑑𝑡] 

 

 

=
𝜕𝐹(𝑉)

𝜕𝑉
𝛼𝑉𝑑𝑡 +

1

2

𝜕2𝐹(𝑉)

𝜕𝑉2
𝜎2𝑉2𝑑𝑡 = 𝜌𝐹(𝑉)𝑑𝑡 

 

= 𝛼𝑉𝐹′(𝑉) +
1

2
𝜎2𝑉2𝐹′′(𝑉) = 𝜌𝐹(𝑉) = LHS of (6.1) 

 

The LHS of (6.1) is expected rate of capital appreciation. The RHS is the total expected return to 

the investment opportunity. α = ρ – δ. To ensure that am optimum exists, Assume δ < ρ or δ > 0. 

With this, rewrite the Bellman equation as: 

 

(ρ –  δ)𝑉𝐹′(𝑉) +
1

2
𝜎2𝑉2𝐹′′(𝑉) − 𝜌𝐹(𝑉) = 0  (7) 

 

Based on (7), F(V) must satisfy the following boundary conditions: 

the 

F(0) = 0      (8) 

 

𝐹(𝑉∗) =  𝑉∗ − 𝐼 value-matching condition (9) 

 
𝑑𝐹(𝑉∗)

𝑑𝑉
= 1  smooth pasting condition (10) 

 

The first boundary condition states that if V goes to zero, it will stay at zero so that the option to 

invest will have no value. Meanwhile, 𝑉∗ is the price at which it is optimal to invest and condition 

𝐹(𝑉∗) =  𝑉∗ − 𝐼 states that upon investing, the firm receives a net payoff of  𝑉∗ − 𝐼. The last 

boundary condition is called the “smooth pasting” condition. If F(V) were not continuous and 

smooth at the critical option exercise point  𝑉∗,  an investor could do better by exercising the option 

at a different point.  
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As for the second boundary condition, on 𝐼 =  𝑉∗ − 𝐹(𝑉∗).  So when a firm invests, it gets 

the project value V*, but also gives up the opportunity or option to invest, which is valued at F(V).   

 

         𝑉∗                        =              𝐹(𝑉∗)                              +                  𝐼                             
 

  Critical value = opportunity cost of investment + direct cost of investment 

 

This can be solved using the option pricing approach. This way, one avoids the problem of 

choosing 𝜌 and 𝛼. 

 

We have 2 other optimality conditions for the solution 

 

𝐹(𝑉∗) =  𝑉∗ − 𝐼 
 

This is the valid payoff at the optimal stopping point. 𝑉∗ is the critical value of V at which it is 

optimal to invest  

 
𝑑𝐹(𝑉∗)

𝑑𝑉
= 1 

 

Determines the unique stopping point. It is also called the smooth pasting condition. If F(V) were 

not continuous or smooth at the exercise point 𝑉∗, one can do better by exercising at a different 

point. 

 

The solution boundary that satisfies the boundary and optimality conditions can be derived 

as follows: 

 

𝛼𝑉𝐹′(𝑉) +
1

2
𝜎2𝑉2𝐹′′(𝑉) − 𝜌𝐹(𝑉)= 0 is a second order differential equation. To solve for F(V), 

solve this equation subject to the boundary conditions. To satisfy F(0) = 0, the solution must have 

the form 

 

𝐹(𝑉) = 𝐴𝑉𝛽1       (11) 

 

Where A is a constant, and the root 𝛽1 is a constant whose value depends on σ, ρ and δ. To solve 

for 𝑉∗, insert (11) into (9) and (10) and rearrange to get the optimal investment rule 

 

𝑉∗ =
𝛽1

𝛽1−1
𝐼  (12) 

 

So that  

 

𝐴 =
(𝑉∗ − 𝐼)

𝑉∗𝛽1
=

(𝛽1 − 1)
𝛽1

[(𝛽1)𝛽1)𝐼𝛽1−1]
 

 

Given the above, 𝑉∗ > 𝐼, so the simple net present value rule is violated. Uncertainty and 

irreversibility drive a wedge between 𝑉∗ and 𝐼 in (12).  
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Next, note that (7) is a second order differential equation in F(V) of form ar2 + br + c = 0. 

Equation (7) is linear in F. For such second order differential equations, the general solution can 

be expressed as a linear combination of any 2 independent solutions.  

 

If we try solution 𝐴𝑉𝛽, insert into (7) as F(V) and get: 

 
1

2
𝜎2𝛽(𝛽 − 𝐼) + (𝜌 − 𝛿)𝛽 − 𝜌 = 0 

 

So that the two roots that solve the above are 

 

𝛽1 ,  𝛽2 =
1

2
−
(𝜌 − 𝛿)

𝜎2
±√(

(𝜌 − 𝛿)

𝜎2
−
1

2
)

2

+
2𝜌

𝜎2
   > 1 

 

So that the general solution to (7) can be written as  

 

𝐹(𝑉) = 𝐴1𝑉
𝛽1 + 𝐴2𝑉

𝛽2 

 

The boundary condition F(V) = F(0) = 0 implies that 𝐴2=0, leaving 𝐴1𝑉
𝛽1. Note that the quadratic 

expression (= Q) is an inverted parabola (See page 143 of Dixit and Pindyck (1994)). One can then 

use comparative statics to determine the effects of various parameters on 𝛽1  and hence on size of 

wedge and 𝑉∗ in (12). 

 

We can see from the roots that as 𝜎 (level of uncertainty) increases, 𝛽1 declines and the wedge 

falls and the larger is the excess return the firm will demand before it is willing to make the 

irreversible investment. Also, as 𝛿 increases, 𝛽1 increases (lower wedge) and as 𝜌 increases, 𝛽1 
falls and the wedge increases. 

 

Derivation of the Solution via Contingent Claims Analysis 

 

Contingent Claims Analysis (CCA) Chapter 4 section 2 of Dixit and Pindyck 

The problem is to invest I and get V, with V a GBM 

 

𝑑𝑉 = 𝛼𝑉𝑑𝑡 + 𝜎𝑉𝑑𝑧    (12) 

  

The payout rate is δ and the expected rate of return is  so that α =  - δ. We want to solve for the 

value of the investment opportunity (the option to invest), F(V) and the decision rule V*.   

Let x be the price of an asset or dynamic portfolio of financial assets perfectly correlated 

with V and denote by 𝜌𝑣𝑚 the correlation between V and the market portfolio. x evolves according 

to       dx = xdt + xdz. Furthermore, according to the Capital Asset Pricing Model (CAPM), the 
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expected return on V is  = r +  𝜌𝑣𝑚   where r is the risk-free rate and  is the market price of 

risk. Assume that α, the expected percentage change of V, is less than its risk adjusted rate of 

return, . The difference between  and α is denoted by δ and δ =  - α. Analogous to the financial 

call option, if V were the price of a share of common stock, δ would be the dividend rate on the 

stock. Hence, the total rate of return on holding the stock would be  = α + δ, or the dividend rate 

plus the rate of capital gain. Note that α is the return to holding the option, while δ is that part of 

the return that can only be realized if one actually exercises the call option (to invest I).  

 If the dividend rate δ = 0, a call option on the stock would never be exercised prematurely 

and would always be held up to maturity. The reason is that the entire return of the stock is captured 

in its price movements and hence, by the call option. Hence, there is no cost to keeping the option 

alive. But if the dividend rate δ > 0, keeping the option to invest alive and not exercising it carries 

a positive opportunity cost. This cost is the dividend stream that is foregone by holding the option 

rather than buying the stock. Since δ is a proportional dividend rate, the higher is the price of the 

stock, the greater is the flow of dividends. Hence, at some high enough price threshold, the 

opportunity cost of foregoing growing dividends becomes worthwhile enough to exercise the 

option.    

For the present investment problem,  is the expected rate of return from owning the 

completed investment project, the equilibrium established by the capital market, and it includes an 

appropriate risk premium. Since  = α + δ, it follows that if δ > 0, then the expected rate of capital 

gain on the project, α, is less than  Hence, δ is an opportunity cost of delaying implementation 

of the investment project and instead, keeping the option to invest alive, and the investment would 

never be worthwhile, no matter how high the NPV of the project is. For that reason, δ > 0 is 

assumed. If, on the other hand, δ is very large, the value of the option will be very small because 

the opportunity cost of waiting is large. As δ approaches, infinity, the value of the option goes to 

zero. In effect, the only choices are to invest now or never, and the standard NPV rule will again 

apply.  

The parameter δ can be interpreted in different ways. For instance, it could reflect 

competitors’ entry and expansion of capacity. It could simply reflect cash flows from the project. 

If the project is infinitely lived, then equation (12) can represent the evolution of V during the 

operation of the project and δV is the rate of cash flow the project yields. Since δ is assumed to be 

constant, this interpretation is consistent with the point that future cash flows are a constant 

proportion of the project’s market value.      

 

The CCA method is similar to valuation of financial options similar to (Black and Scholes). 

It is applicable when the risk dzt can be spanned by assets that exist in financial markets – it 

requires a deep set of assets. The market has to be in a state of equilibrium; no arbitrage. Under 

this method, one can value F(V) without any assumption about the discount rate or the investor’s 

risk attitude (i.e., without knowing r). The price of the option is relative to other assets that are 

traded in the market. 
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To obtain a solution for F(V) and the optimal investment rule via contingent claims 

analysis, one needs to construct a riskless portfolio (as in Black-Scholes). This can be done by 

holding the option to invest worth F(V) (= going long on the option) and going short     n = F’(V) 

units of the project. Or, equivalently, of the asset or portfolio x that is perfectly correlated with V.  

The value of this portfolio is 𝛷 = 𝐹 − 𝐹′(𝑉)𝑉 .  

 

This portfolio is dynamic. As V changes, F’(V) changes, so the composition of the portfolio will 

also change.   

The short position in this portfolio will require will require a payment of VF’(V) dollars 

per time period. Otherwise, no rational investor will ever enter into the long side of the transaction.  

 

The return from this portfolio over dt equals the change in the value of the portfolio over 

dt (capital appreciation): 𝑑𝐹 − 𝑛𝑑𝑉    and dividend payout δVndt 

 

Hence, the total return is 𝑑𝐹 − 𝐹′(𝑉)𝑑𝑉 −  δVF’(V) dt   

= 𝑑𝐹 − 𝑛𝑑𝑉 −   δVF’(V) dt  

 

The change in the value of the portfolio is 𝑑𝐹 − 𝑛𝑑𝑉  , meanwhile, the dividend payout is δVndt. 

Hence, the total risk-free rate of return on the investment in the portfolio with the long and short 

positions is 

𝑑𝐹 −               𝐹′(𝑉)𝑑𝑉      −              δVF’(V) dt    

 

Capital appreciation   cost of shorting the project 

 

dF can be expanded using Ito’s lemma: 

 

𝑑𝐹 =
δF

δV
𝑑𝑉 +

δF

δt
𝑑𝑡 +

1

2

δ2F

V2
(dV)2 

  

In revised notation, Ito’s lemma is: 

 

𝑑𝐹 = 𝐹′(𝑉)𝑑𝑉 +
1

2
 𝐹′′(𝑉)𝜎2 𝑉2 dt 
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Hence, the total riskless return on the portfolio is 

𝐹′(𝑉)𝑑𝑉 +
1

2
 𝐹′′(𝑉)𝜎2 𝑉2 dt − 𝐹′(𝑉)𝑑𝑉 − δVF’(V) dt  

First 3 terms is capital appreciation, the last term is the cost of shorting the project 

 

=
1

2
 𝐹′′(𝑉)𝜎2 𝑉2 dt − δVF’(V) dt  

  

This is the risk-free rate of return on the riskless portfolio.  

Hence, the no-arbitrage condition is that the risk-free rate of return equals the value of the 

risk-free portfolio: 

 

𝑟Φ𝑑𝑡 =
1

2
 𝐹′′(𝑉)𝜎2 𝑉2 dt − δVF’(V) dt  

 𝑟[F(V) − F′(V)]𝑑𝑡 =
1

2
 𝐹′′(𝑉)𝜎2 𝑉2 dt − δVF’(V) dt 

 

One can rearrange this and obtain the characteristic equation (using CCA): 

=
1

2
 𝐹′′(𝑉)𝜎2 𝑉2 dt + (𝑟 − δ)VF’(V)dt − rF(V)𝑑𝑡 = 0  (13) 

 

Compare this with the dynamic programming solution 

=
1

2
 𝐹′′(𝑉)𝜎2 𝑉2 dt + 𝛼VF’(V)dt − ρF(V)𝑑𝑡 = 0 

 

Note that the risk-neutral valuation is characterized by replacing ρ by r. and replacing the expected 

return α by r – δ. 

Hence, under contingent claims solution, there are the same boundary, value-matching and 

smooth pasting conditions as in the dynamic programming solution.    

We have the same solution for F(V)  

 

𝐹(𝑉) = 𝐴𝑉𝛽1  for V ≤ V* 
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𝐹(𝑉) = V - I  for V > V* 

 

𝛽1 =
1

2
−
(𝑟 − 𝛿)

𝜎2
+√(

(𝑟 − 𝛿)

𝜎2
−
1

2
)

2

+
2𝑟

𝜎2
 

 

With the same critical value V* and A as before. Therefore, the contingent claims solution 

to the investment problem is equivalent to a dynamic programming solution under 

assumption of risk neutrality. 

The solutions give the value of the investment opportunity and the optimal investment rule. 

That is, the critical value of  𝑉∗ at which it is optimal to invest (the critical value which maximizes 

the firm’s market value). The solution is obtained by showing that a hedged (risk-free) portfolio 

can be constructed consisting of the option to invest and a short position in the project. However, 

F(V) must be the solution to equation (13) even if the option to invest (or the project) does not 

exist and could not be included in the hedge portfolio. All that is required is spanning – it must be 

possible to find or construct am asset or dynamic portfolio of assets x, that replicates the stochastic 

dynamics of V. As Merton (1977) has shown, the value function can be replicated with a portfolio 

consisting only of asset x and risk-free bonds. 

 

V. Extensions of the Canonical Model 

 

The Value of Growth Options in investing in Offshore Oil Reserves (Paddock, Siegel and 

Smith, 1988 (PSS)) 

 

PSS apply option pricing methods to value the multistage investment options in oil 

exploration and development embedded in conventional petroleum leases. For any given oil field 

or prospect that is not too far “in the money,” random variation in oil price creates an incentive for 

the company to delay exploration and development. Moreover, this also applies to highly profitable 

projects if substantial time remains before the lease expires. PSS valuation incorporates the impact 

of price risk directly, using contingent claims analysis, and demonstrates that holding all else 

constant (including the expected value of the cash flow stream), increased price volatility increases 

the value of marginal investments and leads to delays in the timing of commencement. 

 

PSS break down investment in oil industry into 3 components: 

 

1) Exploration 

2) Development 

3) Extraction 

 

They focus on the development of a proven reserve because this stage involves the greatest 

capital expenditure and this stage also has the greatest option value. Hence, this stage involves 

the valuation of an undeveloped reserve and the decision as to WHEN to develop it. PSS reckon 

https://elibrary.imf.org/view/journals/001/2012/287/article-A999-en.xml#A01ref56
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that the real option value of an undeveloped reserve and that of a call option on a stock are 

analogous to one another. The table below shows the analog between financial options and real 

options. 
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Table 2: Analogy Between Call Options and Undeveloped Oil Reserves 

Call Option Undeveloped Reserve 

Stock price Current value of undeveloped reserve (V) 

Exercise price of option Cost of investment to develop the reserve (D) 

Stock dividend Cash flow net of depletion as proportion of V 

(d) 

Volatility of stock price Volatility of developed reserve value (s) 

Time to expiration of option Relinquishment requirement (t) 

Risk free interest rate Risk free interest rate (r) 

 

Pindyck and Dixit (1994) discuss PSS in Chapter 12. First, they derive the value of a 

developed reserve. Let Bt be the number of barrels of oil in a developed reserve, Vt be the value 

per barrel of the developed oil reserve and Rt be the instantaneous return to the owner of the 

developed reserve. Rt will have 2 components: the flow of profit from production and the capital 

gain on the oil remaining in the reserve.  

 

Production from a developed reserve is modeled as exponentially declining at negative 

growth rate 𝜔 to reflect depletion.  

 
𝑑𝐵

𝐵𝑡
= −𝜔𝑑𝑡   (14) 

 

Given this, the return is 

 

𝑅𝑡 = 𝜔𝐵𝑡𝛱𝑡𝑑𝑡 + 𝑑(𝐵𝑡𝑉𝑡)
𝑑𝐵

𝐵𝑡
= −𝜔𝑑𝑡 (15) 

 

𝑅𝑡 = 𝜔𝐵𝑡𝛱𝑡𝑑𝑡 + 𝐵𝑡𝑑𝑉𝑡 − 𝜔𝑉𝑡𝐵𝑡𝑑𝑡 (16) 

 

𝛱𝑡 is the after-tax profit from producing and selling a barrel of oil. 

 

Next, assume that the rate of return on the developed reserve (the return as a fraction of 

total value of the developed reserve) follows a Brownian motion process: 

 
𝑅𝑡𝑑𝑡

𝐵𝑡𝑉𝑡
= 𝜇𝜈𝑑𝑡 + 𝜎𝜈𝑑𝑧 (17) 

 

𝜇𝜈 is the risk-adjusted rate of return required by a competitive capital market. Combining 

equations (14) and (15) yields the equation of motion for V, the unit value of a developed 

reserve: 

 

𝑑𝑉 = (𝜇𝜈 − 𝛿𝑡)𝑉𝑑𝑡 + 𝜎𝜈𝑑𝑧 (18) 

 

𝛿𝑡 is the payout rate from a unit of producing developed reserve. This payout rate equals 

 

𝛿𝑡 = 𝜔(𝛱𝑡 − 𝑉𝑡)/𝑉𝑡 (19) 
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Value of Undeveloped Reserves 

 

Next, calculate the value of an undeveloped reserve and the optimal development rule. 

Let F (V,t) be the value of a one-barrel unit of undeveloped reserve. Using equation (4) and 

doing the usual derivations, one finds that F (V,t) must satisfy:  

 
1

2
𝜎𝜈
2𝑉2𝐹𝑉𝑉 + (𝑟 − 𝛿)𝑉𝐹𝑉 − 𝑟𝐹 = −𝐹𝑡 (20) 

 

This equation will be solved subject to boundary conditions. Letting D be the per barrel cost of 

developing the reserve (D is the exercise price of the option), the conditions are: 

 

 

𝐹(0, 𝑡) = 0    (21) 

 

𝐹(𝑉, 𝑡) = max (𝑉𝑡 − 𝐷, 0)  (22) 

 

 
𝐹(𝑉∗, 𝑡) = 𝑉∗ − 𝐷  (23) 

 

𝐹𝑉(𝑉
∗, 𝑡) = 1   (24) 

 

Condition (22) states that expiration, the option to develop will be exercised if 𝑉𝑡 > 𝐷. The other 

boundary conditions are standard. 

 

Equation (20) cannot be solved analytically, but it can be solved using finite difference 

methods. The critical value V*/D is not very sensitive to the time to expiry if that time is greater 

than 1 or 2 years. Hence, for many such investments in oil reserves, it is a reasonable 

approximation to ignore the relinquishment requirement altogether and simply treat the option to 

develop as perpetual. Then the term Ft disappears and the equation can be solved analytically.   

  

Equation for undeveloped reserve. F (V,t) must satisfy (6) 

 
1

2
𝜎𝜈
2𝑉2𝐹𝑉𝑉 + (𝑟 − 𝛿)𝑉𝐹𝑉 − 𝑟𝐹 = −𝐹𝑡 (25) 

 

F (V,t) be the value of a one-barrel unit of undeveloped reserve 

V = value of developed reserve = Can equal BP, P = price of oil per barrel 

Let Bt be the number of barrels of oil in a developed reserve, Vt be the value per barrel of the 

developed oil reserve 

𝛿 = dividend yield for V 

𝜎𝜈
2 = volatility for V 

D = development cost 

 

 

To satisfy F(0, t) = 0, the solution must have the form 
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𝐹(𝑉) = 𝐴𝑉∗𝛽1    (26) 

 

Where A is a constant, and the root 𝛽1 is a constant whose value depends on σ, ρ and δ 

To solve for 𝑉∗, insert (26) into (24) and (25) and rearrange to get the optimal investment rule 

 

𝑉∗ =
𝛽1

𝛽1−1
𝐷  (27) 

 

 

So that  

 

 

𝐴 =
(𝑉∗−𝐷)

𝑉∗𝛽1
=

(𝛽1−1)
𝛽1

[(𝛽1)𝛽1)𝐼𝛽1−1]
 (28) 

 

Given the above, 𝑉∗ > 𝐷, so the simple net present value rule is violated. Uncertainty and 

irreversibility drive a wedge between 𝑉∗ and 𝐷. 

 

So, the root 𝛽1  is 

 

𝛽1  =
1

2
−
(𝑟−𝛿)

𝜎2
+√(

(𝑟−𝛿)

𝜎2
−
1

2
)
2

+
2𝑟

𝜎2
   > 1   (29) 

 

  

The Appendix to this paper demonstrates that the methods discussed above are also 

applicable to a situation where the basic uncertainty is over the demand for the project’s output. 

Hence, output price is exogenous, the value of the project is determined as well as the value of the 

option to invest in terms of the stochastic process for the output price.   

 

VI. Other Real Options Theories – Exceptions to the Canonical Model 

 

Over time, researchers have shown that real options exist whenever investment decisions 

attain a multi-stage character, involve sequential investments or multiple option like features. The 

multi-stage project is akin to a compound option – success achieved at each stage gives one the 

option to do additional stages.  This can also be true of research and development activities.  

Investments such as these have very different characteristics relative to the canonical model, and 

hence, can produce different outcomes.  

 

Growth and Compound Options in a Model of Real Estate by Bar-Ilan and Strange (1996) 
 

The standard real options model of investment timing predicts that, since waiting allows 

investors to obtain new information about market conditions, increased uncertainty discourages 

investment. In other words, when market conditions are uncertain, investors possess a valuable 

call option that is lost when an irreversible decision is made.  
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Bar-Ilan and Strange (1996) applied investment lags on irreversible investments and they 

found that a lag can reduce the effects of uncertainty in an investment, since the investor has 

more time to act on an unexpected fall in the price or changes in the investment. Bar-Ilan and 

Strange (1996) show that, when it takes time to build and funds must be committed up front, 

flexibility at the completion date also gives investors a put option (an option to abandon).  

 

The option to abandon a project which is the right to sell cash flows for the remainder of 

the project's life in exchange for salvage value, are analogous to American put options. When the 

present value of the remaining cash flows falls below the liquidation value of an investment, the 

asset may be sold. Hence, to abandon a project is to exercise a put option. These put options are 

particularly important for large capital-intensive projects such as infrastructure investments. 

They are also important for investments involving new products where market acceptance is 

uncertain. 

 

Bar-Ilan and Strange (1996) assume that there is an investment lag with a time-to-build 

and an abandonment option available for each project. Since an option to abandon exists, losses 

(bad news) are bounded from below in bad states, limited to the initial development costs. 

Meanwhile time-to-build forces the firm to invest earlier, in order to be able to capture 

opportunities in the near future (good news, prizes). A situation such as this were there are 

compound options can cause the rational firm to invest sooner in a high uncertainty environment. 

Bar-Ilan and Strange show that for some parameter values, the overall effect of an investment lag 

is to lower the trigger price at which investment is started to below the price that would trigger 

investment in a world of certainty. 

 

When long investment lags exist, uncertainty can actually encourage investment, in the 

sense of reducing the trigger price at which it is optimal to start construction. The price of the 

underlying good might rise over the intervening period, which would raise profits, while the 

downside risk from a price fall is limited by the option of abandoning the project. Waiting to 

start investment still has a value, since the firm learns more about the evolution of prices. It is 

costly, however, since if prices rise strongly, a firm that has not started to build will not be able 

to exploit this immediately, and will have foregone potential profits. By investing/building 

immediately, the investor can waive its decision to wait, lose only the initial costs in the case of 

bad news, and keep its competitive advantage in the market in the case of good news.  

 

Wheaton (1987) finds that “the lag between issuing a construction permit and the 

completion of an office building is between 18 and 24 months”. These kinds of long lags tend to 

mitigate the negative effects of uncertainty on investment, and under some circumstances, even 

to stimulate investment. They act as negative real option phenomena since the investor can 

interrupt its decision and lose only the initial costs in the case of bad news, and keep its 

competitive advantage in the market in the case of good news. This also explains why there is 

often excess capacity in the real estate sector. 
 

Research and Development  

 

Growth options of the type in Bar-Ilan and Strange (1996) can be applicable to other 

projects with long development or gestation times, such as research and development activities. 

https://webcache.googleusercontent.com/search?q=cache:QhkHQ1WvreEJ:https://bfi.uchicago.edu/wp-content/uploads/MacroFinanceReview_v11_DLM-1.pdf+&cd=8&hl=en&ct=clnk&gl=ph#134
https://webcache.googleusercontent.com/search?q=cache:QhkHQ1WvreEJ:https://bfi.uchicago.edu/wp-content/uploads/MacroFinanceReview_v11_DLM-1.pdf+&cd=8&hl=en&ct=clnk&gl=ph#134
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Note that if firms have long delays in completing projects — perhaps because of time-to-build or 

time-to-develop — then uncertainty can have a positive effect on investment. As time-to-develop 

increases, uncertainty can have an even more positive effect on investment. As an illustration, 

consider a pharmaceutical company developing a new drug that notices a mean-preserving 

increase in demand uncertainty has occurred.  

 

The costs of bad outcomes of the development process (e.g., the drug or vaccine turns out 

to be ineffective or unsafe during trials) combined with the option to abandon, means the firm has 

a limited lower bound because the it can simply cancel the project. It loses only its sunk research 

and development costs. However, good draws (the product turns out to be even more useful and 

profitable than expected) are not similarly constrained. Therefore, a rise in mean-preserving risk 

will mean higher expected profits when the product is marketed.   

 

Real Options in Internet Development 

 

 The combination of the call (growth) and put (abandonment) options that characterize real 

estate and R and D investments can also facilitate investment in internet startups (websites, apps, 

others). Since developing websites and apps takes time, building any of these qualifies as investing 

in a “call-option” on the future success of technology and the internet. Growth options can be 

invoked to explain the dot-com boom of the late 1990s. At that time, firms were unsure about the 

internet but that uncertainty encouraged investment. The worst outcome for firms would be losing 

their development costs, while the best outcome looked ever more profitable as the range of 

products sold over the internet expanded and networks grew and more and more consumers 

connected to them, creating to large potentially exploitable economies of scale and of scope.  

 

Synthesis 

 

The above models suggest that real options sometimes involve interactions between the 

gestation and duration of investment activities and preemption of rivals. Even a slight possibility 

of rival preemption changes the conventional attractiveness of waiting. Longer duration increases 

the possibility of rival preemption and decreases the project value over time. As this negative 

effect is much stronger than the positive effect, the effect of duration on investment becomes 

negative in the presence of rival preemption. 

 

Two contributions of the growth options literature: (a) They present an analytic solution 

to the investment problem with lags; (b) they show it is possible that an increase in uncertainty 

hastens the decision to invest. The price that triggers investment under uncertainty may be lower 

than the trigger price under certainty. Thus, investment lags offset uncertainty and tend to reduce 

inertia, contrary to conventional wisdom.  

 

These results suggest that for investment characterized by long lags, policymakers have 

less reason to be concerned with uncertainty. The more immediate investment with long lags is 

also consistent with chronic excess supply observed in certain industries (e.g., real estate). Their 

results contrast with papers that show that an increase in uncertainty delays investment.  
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Projects with different investment lags respond to uncertainty differently. With a short 

lag, an increase in uncertainty delays investment so the volatility of the economic environment is 

a hindrance to investment. With a longer lag, an increase in uncertainty may increase investment. 

In any case, the deterrent effect of uncertainty is smaller than it would have been with a short lag. 

Hence, policies designed to reduce volatility during periods of uncertainty have smaller effects 

on projects with long investment lags than on projects with short investment lags. 

 

Papers on strategic growth options tend to fall under two categories: (a) those that suggest 

that firms will make a preemptive move to invest immediately under threat of competition; (b) 

those that anticipate future growth through investment in acquisition of assets that can enhance 

growth opportunities available to the firm, enabling them to gain a competitive advantage relative 

to potential rivals.    

 

VII. Conclusion 

 

If waiting is an option, the conventional canonical result of McDonald and Siegel can 

arise. In the canonical model, a firm can delay investment to avoid learning of low prices (of the 

good to be produced by the investment) after it has made an irreversible decision to enter/invest. 

Since the likelihood of observing a low price rises with uncertainty, so does the benefit of 

waiting. The opportunity cost of waiting is income that could have been earned from the project, 

which depends on the price of the good during the delay. Since the firm has the capacity to enter 

the market immediately, the opportunity cost of a short delay in entering a market is independent 

of uncertainty. In other words, the negative impact of uncertainty on investment may not matter 

if time to market is very short. If, however, time to market is very long, a delay could lead prices 

to rise as well. Hence, to avoid being out of the market when prices rise, firms with long build 

times invest immediately.   

 
In Bar-Ilan and Strange (1996), with longer lags, a firm that delays invest cannot enter 

the market immediately. Thus, the opportunity cost of waiting does not depend on the (price of 

the good) during the delay/today.  

 

Instead, it depends on the price of the good in the future.  Longer lags increase the 

likelihood of extreme prices in the interim period. With long investment lags, the price of the 

good might rise during the period of delay, which increases profits. Meanwhile downside risk 

from a fall in prices is limited by the option of abandoning the project. While waiting to start the 

investment still has a value, in that the firm learns more about the evolution of prices. However, 

waiting is costly, because the firm will be unable to immediately exploit any increase in price (or 

any other good news), and will have missed out on some potential profits.  

 

But because the firm can abandon the investment project (an abandon option exists), even 

if not costlessly, the firm’s profits in bad states are bounded from below. Because the firm can 

exploit the upside of the investment with protection from the downside by having an option to 

abandon the project, the opportunity cost of waiting rises with uncertainty.  

 

This means that the effect of uncertainty on the timing of an irreversible investment is 

ambiguous. An increase in uncertainty may in fact hasten investment (which is the opposite of 
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what happens in the canonical model) by providing the firm with a growth option that it can 

exercise. This is consistent with the “good news principle”. With long investment lags, the firm 

hurries to invest sooner rather than later in order to avoid learning of high prices while it is still 

out of the market.  

 

In the Bar-Ilan and Strange model, the option to abandon allows the firm to vary output 

by exiting when output price is low. This makes profit a convex function of the stochastic price 

and increases expected profit in a more uncertain environment. Hence, a firm will invest at a 

lower price when time to build (investment lags) forces the firm to decide in advance whether to 

be active or not a few periods ahead. The effect competes with the option value of waiting. With 

longer lags, the threshold value of investment is lower. 

 

Paddock, Siegel and Smith show that decision over investment in the development of oil 

reserves is akin to possessing a call option. When there is considerable uncertainty in the price of 

an underlying commodity (for instance, oil reserves), investing in extraction of the commodity 

may not be currently viable but can still be worthy because of the potential to create value if 

commodity prices increase. 

The development of an offshore petroleum lease consists of sequential investments in 

exploration, development and extraction (production) of oil. During the development stage, 

managers can get a better sense about revenues or costs regarding the investment, and based on 

this information, they can review and recalibrate decisions on future stages of investment. Note 

that the value of investment in this case can explicitly incorporate various sources of managerial 

flexibility that allow the firm to commit itself sequentially to investment decisions in future 

stages. 
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Appendix 

 

The Appendix to this paper demonstrates that the methods discussed above are also 

applicable to a situation where the basic uncertainty is over the demand for the project’s output. 

Hence, output price is exogenous, the value of the project is determined as well as the value of the 

option to invest in terms of the stochastic process for the output price.   

 

Alternative Model: Treat the price of the project’s output, rather than the value of the project, as a 

geometric random walk (and possibly one or more factor inputs as well). It would also allow the 

project to be shut down (permanently or temporarily) if prices fell below the variable cost. In this 

case, option pricing methods can be used to find the value of the project and the optimal investment 

rule.  

 

Suppose output price, P, follows a stochastic process, 

 

𝑑𝑃 = 𝛼𝑃𝑑𝑡 + 𝜎𝑃𝑑𝑧  (A.1) 

  

Assume that α < , where  is the expected rate of return on P, adjusted for market risk, or an asset 

perfectly correlated with P, and let α =  - δ as before. If the project’s output is a storable 

commodity (e.g., oil or copper), δ will represent the net marginal convenience yield from storage, 

or the flow of benefits (less storage costs) that the marginal stored unit provides. Assume for 

simplicity that δ is constant. (For most commodities, the marginal convenience yield fluctuates as 

the total amount of storage fluctuates.) Also assume that: (a) the marginal and average cost of 

production is equal to a constant, c; (b) the project can be shut down at no cost if P falls below c 

and can later be restarted if P rises above c; and (c) the project produces one unit of output per 

period and is infinitely lived, and the (sunk) cost of investing in the project is I.  

  

 In this case, there are now two problems to solve. The first is to find the value of the project, 

V(P). To solve this problem, remember that the project is itself a set of options. Specifically, once 

the project has been built, the firm has, for each future time t, an option to produce a unit of output, 

that is, an option to pay c and receive P. Hence, the project is equivalent to a large number of 

operating options, and it can be valued accordingly.  

 

 The second problem is to find the value of the firm’s option to invest in the project, given 

the project’s value, and the optimal exercise (investment) rule. The solution involves finding a 

critical P* at which the firm invests only of 𝑃 ≥ 𝑃∗. The two steps of this problem can be solved 

sequentially using the same methods used in the previous section. 

  

It is assumed that existing assets span the uncertainty over P, the project (as well as the 

option to invest) can be valued using CCA.   

      

As before, construct a risk-free portfolio, one in which the project is held long and Vp units 

of the output are held short. This portfolio has a value V(P) - Vp P and yields an instantaneous cash 

flow of j (P – c)dt -  Vp Pdt, where j = 1 if 𝑃 ≥ 𝑐 so that the firm is producing and j = 0 otherwise. 

Recall that  Vp Pdt is the payment required to maintain the short position. The total return on the 

portfolio is dV - Vp dP + j (P – c)dt -  Vp Pdt. Since this return is risk-free, set it equal to r (V - 
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Vp P)dt. Expanding dP using Ito’s Lemma, substituting equation (A.1) for dP and rearranging yield 

the following differential equation for V: 

 

(
1

2
) 𝜎2𝑃2𝑉𝑝𝑝 + (𝑟 − 𝛿)𝑃𝑉𝑝 − 𝑟𝑉 + 𝑗(𝑃 − 𝑐) = 0  (A.2) 

 

This equation must be solved subject to the following boundary conditions 

 

𝑉(0) = 0 (A.3) 

 

𝑉(𝑐) = 𝑉(𝑐∗)  (A.4) 

 

𝑉𝑝(𝑐) = 𝑉𝑝(𝑐
∗) (A.5) 

 

lim
𝑃→∞

𝑃
𝛿⁄ − 𝑐 𝑟⁄  (A.6) 

 

Condition (A.3) is an implication of (A.1): if P is ever zero, it will remain zero and the project has 

no value.  Condition (A.4) says that as P becomes very large, the probability that over any finite 

period it will fall below cost and production will cease becomes very small.  Hence, the value of 

the project approaches the differences between the two perpetuities: a flow of revenue, P, that is 

discounted at the risk adjusted rate  but is expected to grow at rate  and a flow of cost c, which 

is constant and hence is discounted at rate r. Finally, conditions (A.5) and (A.6) say that a project’s 

value is a continuous and smooth function of P. 

 

The solution to equation (A.2) has two parts, one of P < c and another for 𝑃 ≥ 𝑐. Check 

that by substitution, that the following satisfies equation (A.2), as well as the boundary conditions 

(A.4) and (A.5): 

 

𝑉(𝑝) = {
𝐴1𝑃

𝛽1                                   ;    𝑃 < 𝑐

𝐴2𝑃
𝛽1 + 𝑃 𝛿⁄ − 𝑐 𝑟⁄         ;    𝑃    ≥ 𝑐         

  (A.7) 

 

where 

𝛽1 =
1

2
−
(𝑟−𝛿)

𝜎2
+√(

(𝑟−𝛿)

𝜎2
−
1

2
)
2

+
2𝑟

𝜎2
  (A.8) 

 

and  

𝛽2 =
1

2
−
(𝑟−𝛿)

𝜎2
−√(

(𝑟−𝛿)

𝜎2
−
1

2
)
2

+
2𝑟

𝜎2
  (A.9) 

 

The constants A1 and A2 can be found by applying the boundary conditions (A.4) and (A.5): 

 

𝐴1 =
𝑟−𝛽2(𝑟−𝛿)𝑐

(1−𝛽1)

𝑟𝛿(𝛽1−𝛽2)
  (A.10) 
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𝐴2 =
𝑟−𝛽1(𝑟−𝛿)𝑐

(1−𝛽2)

𝑟𝛿(𝛽1−𝛽2)
  (A.11) 

 

The solution for V(P) (equation (A.7)) can be interpreted as follows. When P < c, the project is not 

producing. Then 𝐴1𝑃
𝛽1 is the value of the project’s options to produce when P increases. When 

𝑃 ≥ 𝑐, the project is producing. If, irrespective of changes in P, the firm had no choice but to 

continue producing throughout the future, the present value of the future flow of profits would be 

given by 𝑃 𝛿⁄ − 𝑐 𝑟⁄ . However, should P fall, the firm can stop producing and avoid losses. The 

value of its option to stop producing is 𝐴2𝑃
𝛽2. 
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