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Introduktion (på dansk)

I 1980 havde ca. 35 procent af makroøkonomiske forskningsstudier et empirisk fokus. I 2015
var det tal steget til ca. 65 procent. Makroøkonomisk forskning er med andre ord blevet mere
empirisk orienteret over de seneste 35 år. Det viser nobelprismodtageren Joshua Angrist og hans
medforfattere bl.a. i deres artikel Economic Research Evolves: Fields and Styles fra 2017.

En af grundene til at denne udvikling har fundet sted er, at man har fået adgang til mere
og bedre data over tid. Et eksempel herpå er det stregkodedatasæt, som anvendes i dele
af denne afhandling. Med datasættet har man mulighed for at følge husholdningers daglige
supermarkedsforbrug fra 2004 og frem til i dag. Med den data kan man bl.a. undersøge,
hvordan indholdet i rige og fattiges indkøbskurve adskiller sig. Datasættet er et eksempel på
den type af information, som er blevet mere og mere almindeligt at anvende i makroøkonomiske
forskningsstudier og spiller en vigtig rolle i forbindelse med besvarelsen af makroøkonomiske
spørgsmål. Denne afhandling dokumenterer for eksempel at forskelle i vareforbrug giver anledning
til en substantiel forskel i inflation mellem rige og fattige. I lyset af den aktuelle debat om den
stigende inflation verdens vestlige økonomier har oplevet de seneste par måneder, giver indsigten
om inflationsulighed anledning til en diskussion om hvis inflation, vi snakker om og om den
(makro)økonomiske politik, man eventuel igangsætter for at stabilisere udviklingen er rettidig og
gavnlig for alle.

En anden årsag til, at det empiriske fokus er blevet større er, at de metoder, som vi anvender til
at analysere data, også er blevet flere og bedre. Værktøjskassen, som forskere og praktikere kan
gribe til for at analysere data, er med andre ord blevet udvidet. Et eksempel herpå er de metoder,
man anvender til at karakterisere fordelingen af inflation blandt alle individer i et samfund. Et
andet eksempel er den seneste udvikling i de metoder, man anvender til empirisk at undersøge
hvordan økonomien reagerer på forskellige typer af stød. Selve spørgsmålet er ældgammelt og
har mere eller mindre fulgt makroøkonomer siden fagets spæde leveår. Den dag i dag forfines
metoderne stadig og forskere udgiver artikler i toptidsskrifter, hvor de deler nye indsigter om
metodernes fordele, ulemper og sammenfald. Forfinelsen af de metoder, vi anvender til at
analysere data, har både været en vigtig årsag til, at vi kan skrive overbevisende og troværdige
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empiriske forskningsartikler men er samtidig også vigtige for det arbejde, makroøkonomer udfører
udenfor forskingsverdenen. Lad mig eksemplificere det med en personlig anekdote. I året inden
jeg blev indskrevet som PhD-studerende, var jeg ansat i den modelgruppe, der har udviklet
Danmarks Finansministeriums nye makroøkonomiske model (kaldet MAKRO). Et af de projekter,
jeg arbejdede på, var empirisk at undersøge hvordan den danske økonomi reagerer på forskellige
typer af stød såsom ændringer i den udenlandske efterspørgsel efter danske varer. I projektet
anvendte jeg i vid udstrækning de forskellige metoder, der både historisk og mere nyligt er
blevet udviklet. I forbindelse med projektet rendte jeg dog også på nogle udfordringer, som
ikke kunne forklares med den nuværende viden om metoderne. Problemstillingen, som den
eksisterende viden ikke kunne svare på, forklarer behovet for at vi stadig undersøger og udvikler
vores metoder. I denne afhandling har jeg fået mulighed for at kaste lys på problemstillingen og
forhåbentlig bidrage til, at der i fremtidigt arbejde kan laves endnu bedre empiriske analyser,
end vi i forvejen kan i dag.

På mange måder er jeg selv og denne afhandling blevet rundet af den empiriske tradition, som
er begyndt at tegne sig indenfor makroøkonomi. Personligt har jeg gennemgået en udvikling fra
at være en selvudnævnt elfenbenstårnsteoretiker i mine unge dage som bachelorstuderende til at
være en empirisk orienteret makroøkonom i løbet af min kandidatuddannelse og senere PhD-
uddannelse. Min interesse for teoretisk makroøkonomi er dog stadig at finde mange steder i denne
afhandling, ikke mindst i udviklingen af metoderne til den empiriske værktøjskasse. I hver enkelt
del af denne afhandling er det gennemgående tema dog en orientering mod empiriske analyser
indenfor makroøkonomiske områder der beskæftiger sig med inflationsulighed, forbrugsadfærd og
impuls-responser. Jeg håber, at du kan få lige så meget glæde ud af denne afhandling, som jeg
har fået af at frembringe materialet i den. Jeg ønsker dig en insigtsfuld og stimulerende læsning
her fra.



Introduction (in english)

In 1980 around 35 percent of macroeconomic research articles had an empirical focus. In 2015 that
share had risen to around 65 percent. Macroeconomic research has in other words become more
empirically oriented over the last 35 years. Nobel price winner Joshua Angrist and his co-authors
show this in their article Economic Research Evolves: Fields and Styles from 2017.

One of the reasons for why this evolution has taken place is undoubtedly because more and
better data has become available over time. One example of this is the scannerdata used in
parts of this dissertation. The dataset allows researchers to follow households’ daily purchases of
supermarket products from 2004 until today. With the dataset researchers have thus become
able to for example investigate, in detail, how consumption behavior differs across households.
The dataset is an example of the type of information that has become increasingly popular to use
in the search for answers to macroeconomic questions. This dissertation for example documents
that differences in consumption baskets between households give rise to inflation inequality. In
light of the recent debate on the rising inflation that western economies have experienced over
the last couple of months, this insight gives reasons for discussing whose inflation, we concern
ourselves with and whether the (macro)economic policy we potentially will see effectuated to
tackle inflation is timely and beneficial for everyone.

Another reason for the evolution towards more empirical oriented macroeconomics is that
the methods we use in empirical analyses have also become more and better. The toolbox
researchers and practitioners reach into is in layman terms more advanced and expanded than
it has been previously. One example hereof is the methods used for empirically estimating the
distribution of inflation rates across households. Another example is the methods we use to
empirically investigate how the economy responds to shocks. This question has been central to
macroeconomists since the early days of the field but the methods used to answer it are to this
day still being explored and advanced. Researchers continue to publish articles in top journals
sharing their recent insights on how these methods work and how they can and cannot be used
in practice. The advancement of these methods is one of the reasons for why researchers are
able to write convincing and credible research articles but its worth also reached all the way
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into the work of macroeconomists outside academia. Let me exemplify that with a personal
anecdote. The year before I enrolled as a PhD-student I worked in the model group who was
assigned by the Danish Ministry of Finance to build a new, large-scale model of the Danish
economy. One of the projects I worked on was to empirically investigate how the Danish economy
responded to different types of shocks such as for example changes in foreign demand for Danish
goods. In this project I extensively used the different types of methods available for this type
of question. While my work yielded a lot of interesting answers to the questions I was hired
to look at, I also realized that some problems could not be answered with the knowledge we
had about the different methods. This was in 2017 and therefore serve as an indication of the
fact that while the empirical methods developed in macroeconomics to a large extent has paved
the way for answering many important and interesting questions, both in research and outside
academia, there is always a demand for improvement even on highly advanced methods. During
my doctoral studies I have been fortunate enough to have had time to look at and improve on
some of the shortcomings that I found these methods had and the insights I have learned are
shared in the last part of this dissertation.

In many ways I myself and this dissertation have been shaped by the empirical tradition that
has slowly begun to form in macroeconomics. Personally I have transitioned from being a
self-proclaimed ivory-tower theorist in my early years as a bachelor student to becoming an
empirically oriented macroeconomist during my masters and PhD education. My love for theory
still shines through in parts of this dissertation, not least in the development of the methods, that
you will read more about if you dive into the chapters where they are presented. The overarching
theme in all chapters is however an orientation towards empirical analyses spread across areas
within macroeconomics that concern themselves with inflation inequality, consumption behavior
and impulse response estimation. I hope that this dissertation will give you the same joy that I
have had while producing the material in it. From hereon, I wish you a stimulating and insightful
read.
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Summary (in english)

The dissertation consists of three self-contained chapters on topics within macroeconomics. All
chapters share an orientation towards empirical analysis of macroeconomic questions. New
methods for empirical analysis are presented in the first and third chapter. The method presented
in the first chapter contributes to analyses of inflation inequality. The method presented in the
third chapter contributes to analyses on how the economy responds to shocks. The inflation
inequality discussed in the first chapter relates to households’ consumption behavior. In the
first and second chapter specific empirical analyses on US households’ consumption behavior is
conducted.

Chapter 1 / A Nonhomothetic Price Index and Inflation Heterogeneity
with Phillip Hochmuth & Markus Pettersson
In this chapter we look at a classic and central topic in macroeconomics: inflation. Specifically, we
look at inflation at the household level and derive a microfounded, nonhomothetic cost-of-living
index. We document that consumption across the expenditure distribution varies and that
this gives rise to differences in inflation rates among households. Inflation inequality has been
documented in other empirical studies but the methodological approach taken in these studies
has some drawbacks as it rests on group- rather than household-specific price indices. The most
apparent drawback of this approach is that it thus does not characterize the full distribution of
inflation but only approximates it. The index we derive in this chapter is instead continuous
in expenditures and therefore overcomes this issue. We couple the US Consumer Expenditure
Survey with goods specific price series from the Bureau of Labor Statistics to conduct an analysis
of inflation inequality based on our index. The new result of our empirical analysis is that the
volatility of inflation has been 2,5 times higher for poorer households than for richer households
over the period from 1996 to 2020. The magnitude of the volatility in inflation for the poor is
similar to that for the nation-wide US consumer price index, CPI, measured between 1970 and
1980. Our analysis further shows that this result is driven by poorer households’ vulnerability to
price changes in food and energy coupled with a limited tendency to substitute between goods.
The empirical results suggest that it is important in future work to investigate why households
make the consumption choices they do (is it because they are forced to buy e.g. food and energy
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out of necessity or because they simply prefer to spend more on these?) and whether economic
policies can be designed such that the welfare costs of price movements can be minimized.

Chapter 2 / Quality and Consumption Basket Heterogeneity
with Rasmus B. Larsen
In this chapter, which in an earlier version also featured in Rasmus B. Larsen’s PhD dissertation,
we look at another core topic within macroeconomics: consumption behavior. We investigate
what households put into their shopping carts and study in detail the differences across the
income distribution. Specifically, we look at two decisions households in general make when
they shop: how much they buy and what quality the products they buy have. We use a large
scanner dataset with detailed information on US households’ purchase of supermarket products.
The dataset is a register that tracks more than 60,000 households’ daily consumption from 2004
and onwards. The key information, the product purchases, is based on barcode information
for each product and gives information on price, quantity, the store in which the product is
bought, where the store is located, whether the product was on sale and so on. This gives us a
unique opportunity to characterize households’ consumption behavior and compare consumption
baskets both across households and over time. We use the dataset to first document a fact:
richer households buy goods of higher quality than poorer households. This fact has been shown
in other empirical studies but since the literature is still young and under development our result
adds to the robustness of this fact. The interesting about this finding is that households make
product purchases based on several margins. The obvious margin is the choice of quantity. The
less obvious one is in light of our findings the quality margin: households do not only adjust
the quantity they buy but also the quality of what they buy. After this has been documented
we continue with an original analysis of how households respond on these margins when they
receive a one-time transfer of money. The new and novel result that we document is that
households adjust their purchases on the quality margin following a one-time increase in income.
Moreover, the adjustment on the quality margin is unequal across the income distribution:
middle-income households make larger adjustments than low- and high-income households who
do not seem adjust extensively. The adjustment response in quality following the one-time
transfer of money is in other words hump-shaped across the income distribution. This finding
is important as it informs us about how we should think about consumption behavior. In the
last part of the chapter we embed this type of consumption behavior into an otherwise standard
consumption-saving model and show that it can play a crucial role in wealth accumulation. In
particular, as households become richer the marginal utility of consumption continues to stay
high due to the increase in quality they can tap into and this induces a want for accumulating
wealth. The model we study is in the end better, relative to the standard model, at mimicking
the wealth distribution that we observe for the US and thus indicates the role the consumption
behavior we empirically document might play in other macroeconomic questions.
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Chapter 3 / Local projections or VARs? A data-driven selection rule for finite-
sample estimation of impulse responses
with Anders F. Kronborg
In this chapter we look at how one in empirical analyses estimates so-called impulse responses
which in other words covers over how the economy responds to shocks. A shock could for instance
be a sudden and unforeseen fall in foreign demand. The question that one seeks an answer to is
in this regard how the economy responds to the fall in foreign demand, both immediately and
over time. We contribute in this chapter with a method that builds bridge between the two most
prominent and already existing methods: the VAR- and LP-method, respectively. Our method
is important as the LP- and VAR-method often give different - and sometimes even opposing -
answers to the same question. This poses a challenge to practitioners as it forces them to take
a stance on which answer they should rely on. Our method firstly shows that the difference
between the VAR- and LP-method does not arise due to unrelated reasons but is a matter of
how data is used. The concrete insight we draw is that the answer from the LP-method can
be obtained from the VAR-method. This in turn allows us to interpret the LP-answer as a
contribution to the VAR’s. The benefit from this is that the final answer on average lies closer to
the true answer. Adding the LP-contribution however comes at the cost of a higher imprecision
and the question we address in the end is whether the cost of that imprecision is made up for
by the benefit it comes with. Our final theoretical contribution is thus to suggest a selection
rule that makes that assessment based on the same data which is used in the overall analysis. A
particular feature of the selection rule is that it does not only give an indication of whether the
VAR or LP answer should be chosen but also whether the two answers should be mixed by only
allowing for a partial LP-contribution to the VAR. The selection rule is important as it tackles a
problem that has been known to the literature for a long time but which we, to the best of our
knowledge, are the first to solve with a fully data-driven approach. The chapter is finished off by
showing that the selection rule does well in simulation studies.



Resumé (på dansk)

Denne afhandling består af tre selvstændige kapitler indenfor makroøkonomi. Kapitlerne deler
alle en orientering mod empirisk analyse af makroøkonomiske spørgsmål. I det første og tredje
kapitel præsenteres der nye metoder til anvendelse i empiriske analyser. I det første kapitel
bidrager den nye metode til empiriske analyser af inflation på tværs af husholdninger. I det
tredje kapitel bidrager den nye metode til empiriske analyser af hvordan økonomien udvikler sig
i kølvandet på stød. De husholdningsspecifikke inflationsmål, der diskuteres i det første kapitel,
hænger tæt sammen med husholdningers forbrugsadfærd. I det første og andet kapitel foretages
der specifikke empiriske analyser af amerikanske husholdningers forbrugsadfærd.

Kapitel 1 / A Nonhomothetic Price Index and Inflation Heterogeneity
med Phillip Hochmuth & Markus Pettersson
Vi ser i dette kapitel på et klassisk og centralt emne indenfor makroøkonomi: inflation. Vi ser
specifikt på inflation på husholdningsniveau og udvikler en teori, der både kan forklare, hvad vi
ser i data og beskrive inflation på tværs af alle husholdninger. Vi dokumenterer, at der på tværs
af husholdninger med forskellige niveauer af forbrugsudgifter er forskel på hvad deres varekurve
består af og at dette kan føre til forskelle i inflation. Forskelle i inflation på tværs af husholdninger
er blevet belyst i en række empiriske studier, men de bagvedliggende metoder og teorier til
at belyse og forstå disse forskelle har nogle begrænsninger. Den empiriske metode, der typisk
har været anvendt, har bl.a. den begrænsning, at den beror på gruppe-, og altså ikke individ-,
specifik forbrugsadfærd. F.eks. samler man fattigere husholdninger i én gruppe og udleder på
baggrund af dette fattiges gennemsnitlige varekurv. På samme måde gør man også dette for
rigere husholdninger og forskellen på de to gennemsnitlige varekurve bruges til at udlede forskelle
mellem rige og fattige. Den mest åbenlyse begrænsing ved denne metode er i denne henseende at
man altså ikke ser direkte på den individuelle husholdnings inflation. Den eksisterende metodes
begrænsinger er anerkendt i litteraturen, men der har hidtil ikke fandtes bedre alternativer.
Metoden som vi bidrager med er vigtig, fordi den netop er et alternativ, der udover at overkomme
den tidligere metodes begrænsinger også åbner op for langt flere muligheder. For det første viser
vi, at den tidligere metode er en approksimativ udgave af vores. Det demonstrerer vi bl.a. ved
at vise, at de tidligere gruppe-specifikke resultater kan genfindes med vores metode. Dernæst
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udfolder vi vores metode i en analyse hvor vi først estimerer den fulde fordeling af inflation på
tværs af husholdninger i USA fra 1996–2020. Vores analyse frembringer et nyt og overraskende
resultat: udsvingene i inflation er mere end 2,5 gange større for de fattigste husholdninger end
for de rigeste set over det seneste kvarte århundrede. Størrelsen på udsvingene i inflationen
for de fattigste er i omegnen af hvad man så i perioden fra 1970–1980 for det brede, nationale
forbrugerprisindeks, CPI, i USA. Resultatet er slående, både på grund af den store ulighed der
er på tværs af husholdninger og på grund af den størrelsesorden, som udsvingene har. I den
sidste del af analysen viser vi, at resultaterne er robuste og vi afslutter med at vise, at forskellen
er drevet af fattigere husholdningers følsomhed overfor udsving i fødevare- og energipriser samt
en begrænset tilbøjelighed til at tilpasse forbruget. De empiriske resultater lægger op til at man
dykker mere ned i præcis hvorfor fattigere husholdninger er så eksponeret overfor fødevare- og
energipriser (er det fordi, de er tvunget til at købe disse goder af nødvendighedsårsager eller
fordi de bare foretrækker det?) og om man med politiske redskaber kan indrette et system hvor
de negative velfærdseffekter af prisudsving kan minimeres.

Kapitel 2 / Quality and Consumption Basket Heterogeneity
med Rasmus B. Larsen
I dette kapitel, som i en tidligere udgave også indgår i Rasmus B. Larsen’s PhD afhandling,
ser vi på et andet kerneemne indenfor makroøkonomi: forbrug. Vi dykker i dette kapitel ned i
hvad folk lægger i deres indkøbsvogn og studerer i detaljen forskelle på tværs af husholdninger.
Helt specifikt ser vi på to beslutninger, som folk generelt træffer, når de handler: hvor meget
køber de af en given vare og hvor høj kvalitet har varen? Vi anvender et stort stregkodedatasæt
med detaljeret information om amerikanske husholdningers køb af dagligvarer. Datasættet
er et register over mere end 60.000 husholdningers daglige køb af varer fra 2004 til i dag.
Nøgleinformationen i datasættet, varekøbet, er baseret på stregkodedata for hver enkelt vare og
giver os information om alt fra pris, mængde, butikken hvori varen blev købt, hvor butikken ligger,
om varen var på tilbud osv. Det giver os en unik mulighed for at kortlægge husholdningernes
forbrug og sammenligne deres varekurve både på tværs af husholdninger og over tid. Ved hjælp
af datasættet dokumenterer vi først et faktum: rigere husholdninger køber varer af højere kvalitet
end fattigere husholdninger. Dette faktum er blevet dokumenteret tidligere, men litteraturen
er ung og stadig under udvikling, hvorfor de resultater vi finder med vores data, er et vigtigt
bidrag til at understrege gyldigheden af dette faktum. Det interessante ved resultatet er, at
husholdningers køb af varer varierer på flere marginer. Den mest åbenlyse margin er mængde:
man køber enten mere eller mindre af nogle varer. Denne margin er typisk hvad man også
arbejder med indenfor teoretisk modellering af husholdningers forbrug i makroøkonomi. Den
mindre belyste margin er kvalitetsmarginen: man vælger ikke kun hvor meget af en given vare,
man vil have, men også varens kvalitet. Efter at dette faktum er dokumenteret for vores data,
fortsætter vi med at foretage en original analyse af hvordan husholdninger reagerer på disse
marginer, når de modtager en pludselig engangsstigning i deres indkomst. Vi dokumenterer

https://www.econ.ku.dk/forskning-og-publikationer/Publikationer/ph.d_serie_2007-/Ph.D.206.pdf
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først et efterhånden klassisk resultat: fattigere husholdninger bruger en større andel af deres
nyerhvervede penge end rigere husholdninger. Dernæst dokumenterer vi et nyt resultat: den
største ændring på kvalitetsmarginen sker blandt husholdninger fra mellemindkomstgruppen.
Fattigere og rigere husholdninger reagerer derimod ikke på kvalitetsmarginen i samme grad.
Indsigterne fra den empiriske analyse i dette kapitel er vigtige, fordi de fortæller os om, hvordan
vi skal tænke på husholdningers forbrugsadfærd. Vi belyser i slutningen af kapitlet vigtigheden
af disse indsigter ved at inkorporere den empirisk dokumenterede forbrugsadfærd i en ellers
standard forbrugs- og opsparingsmodel. Vi viser at denne adfærd kan give anledning til en langt
større velstandsakkummulering blandt rigere husholdninger, hvilket i sidste ende fører til en
mere ulige velstandsfordeling, som man også observerer i data.

Kapitel 3 / Local projections or VARs? A data-driven selection rule for finite-sample
estimation of impulse responses
med Anders F. Kronborg
Vi fokuserer i dette kapitel på hvordan man i empiriske analyser estimerer såkaldte impuls
responser, som med andre ord dækker over hvordan økonomien udvikler sig i kølvandet på et
stød. Et sådant stød kunne f.eks. være en pludselig og uforudset nedgang i efterspørgslen efter
danske varer. Spørgmålet man søger svar på er således hvordan nedgangen i efterspørgslen
sætter sig i økonomien både umiddelbart og over tid. Vi bidrager i dette kapitel med en ny
metode, der bygger bro mellem de to mest prominente og allerede eksisterende metoder: VAR-
og LP-metoden, henholdsvist. Metoden som vi bidrager med er vigtig, da VAR- og LP-metoden
ofte giver forskellige - og nogle gange endda modstridende - svar på det samme spørgsmål. Det
skaber et problem for praktikere i og med at de tvinges til at tage stilling til hvilket svar, de
skal vælge. Vores metode er en løsning på den problemstilling. Vores metode belyser først og
fremmest at forskellen mellem VAR- og LP-metodens svar ikke opstår på baggrund af urelaterede
årsager, men skyldes den måde hvorpå data behandles. Den konkrete indsigt gør os i stand til at
udlede LP-metodens svar fra VAR-metodens. Man kan således forstå LP-metodens svar som et
bidrag til VAR-metodens. Gevinsten ved LP-bidraget er at det endelige svar i gennemsnit ligger
tættere på det sande. At tilføje LP-bidraget til VAR-metodens svar kommer dog med et tab af
præcision og det efterlader os i sidste ende med et behov for at afveje gevinsten ved LP-bidraget
ift. tabet. Vores sidste teoretiske bidrag er et forslag til en selektionsregel der foretager den
afvejning på baggrund af den data, der i øvrigt er anvendt i analysen. Selektionsreglen fortæller
helt konkret om VAR- eller LP-metodens svar skal vælges men foreslår også en blanding af
de to svar, når dette er bedst. Selektionsreglen er vigtig fordi den løser et problem som har
været kendt i literaturen men som vi, til vores bedste kendskab, er de første der kommer med en
data-drevet løsning til. Kapitlet afsluttes med at vi i en række af simulationsstudier viser, at
redskabet virker godt.
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Abstract

We derive a microfounded, nonhomothetic generalization of all known superlative price
indices, including the Fisher, the Törnqvist, and the Sato-Vartia indices. The index
largely avoids the need for estimation, aggregates consistently across heterogeneous
households, and admits different index weights across the expenditure distribution.
The latter property rationalizes the methods used in most previous measurements of
inflation inequality. In an empirical application to the United States using CEX-CPI
data for the period 1995–2020, we find: (i) poor and rich households experience
on average the same inflation rate; but (ii) inflation for the poorest decile is more
than 2.5 times as volatile as that of the richest decile; and (iii) this higher volatility
primarily stems from a larger exposure to price changes in food, gas and utilities. In
these findings, substitution between goods as prices change plays only a second-order
role. Instead, almost all differences come from mechanical changes in the cost of
different base-period reference baskets.
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1 Introduction

Does inflation vary with income? Conventional price indices that are used for the measurement
of inflation cannot answer this question because these rely fully on the assumption of homothetic
preferences. That is, consumers are assumed to make identical consumption allocations, regardless
of income level. Yet, one of the oldest empirical economic facts, dating back to at least Engel
(1857), is that consumption patterns differ systematically between rich and poor consumers.
In other words, preferences are not homothetic. Differences in consumption bundles raises the
possibility for inflation inequality, with implications for any area where inflation matters, not
least monetary policy and the measurement of real incomes. By now there exists an abundance
of empirical research investigating this issue by computing standard (homothetic) price indices
for separate income groups. The question of how to consistently incorporate nonhomothetic
preferences into conventional price index formulas, however, remains unsolved.

The goal of this paper is to tackle this problem head-on. In doing so, we make three main
contributions. First, we derive a cost-of-living index that is consistent with nonhomothetic
consumer demand theory. In its most general form, this index nests all known superlative price
indices as special cases, including the Fisher (1922), the Törnqvist (1936), and the Sato (1976)
and Vartia (1976) indices. Second, we outline a feasible strategy to compute these price indices
without being at the mercy of estimating entire demand systems. Instead, under a relatively mild
assumption, estimation reduces to two parameters which are identified from a single equation.
Third, we implement this approach using consumption and CPI data to investigate US inflation
heterogeneity over the last quarter century.

Our framework allows for a characterization of the cost of living for the full expenditure
distribution as well as at the aggregate level. We achieve this by deriving cost-of-living indices
from a specification of Muellbauer’s (1975, 1976) “price independent generalized linearity”
(PIGL) preferences that has recently gained popularity in the structural change literature.1

These preferences are nonhomothetic but maintain tractable aggregation properties that allow us
to account for consumer heterogeneity. Like many conventional price indices, we show that the
PIGL preferences induce cost-of-living indices that are weighted geometric means of individual
price changes. Unlike their homothetic counterparts, however, the weights on these price changes
vary systematically across the expenditure distribution. Specifically, richer households allocate
higher weights to price changes of luxury goods. Changes in the cost of living are consequently
allowed to differ with the expenditure level.

Due to the nonhomothetic nature of the underlying PIGL preferences, the cost-of-living index
in its most general form is not directly computable without estimating a complete consumer

1 See for instance Boppart (2014), Alder, Boppart and Müller (forthcoming), and Cravino, Levchenko and
Rojas (forthcoming).
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demand system. We overcome this hurdle by imposing a key assumption: that preferences are
weakly separable into necessities and luxuries. Under the weak separability assumption, the cost-
of-living index reduces to observed price changes and expenditure shares and only two unknown
parameters, which are readily estimated by linear as well as nonlinear regression methods. As in
for instance Wachter and Yogo (2010) and Orchard (2021), classification of individual goods as
“necessity” or “luxury” is straightforwardly done by investigating Engel curves. The cost-of-living
index still nests homothetic price indices as special cases, so the assumption of weakly separable
preferences is not a hard restriction when compared to conventional price indices. In our empirical
application, we also show that it is well justified in the data.

We illustrate this implementation method by an empirical analysis of US inflation heterogeneity
over the years 1995 to 2020. In this exercise, we consider twenty-one consumption good categories
from the Consumer Expenditure Survey (CEX) that we match with corresponding CPI sub-
indices. We obtain three main empirical results. First, households in the first expenditure decile
(“the poor”) experienced similar inflation as households in the tenth expenditure decile (“the
rich”) between 1995 and 2020, although substantial differences arise in the period around the
Great Recession. In particular, poor households faced on average a 0.37 percentage points higher
annual inflation rate between 2004 and 2015. Second, while the average inflation rate is relatively
similar between the poor and the rich, inflation volatility is more than 2.5 times higher for the
poor. Third, we find that this higher volatility primarily stems from a larger exposure for the
poor to price changes in food, gas and utilities.

Decomposing the price index, we find that the overall development is almost entirely driven
by mechanical price changes on the base-period consumption basket. Substitution behavior,
as relative prices change, plays only a minor role. Yet, both differential base-period reference
baskets and differential substitution are significant drivers in explaining the differences between
groups, as poor households substitute away from expensive goods to a larger degree than the
rich.

Furthermore, we exploit the fact that the price index can be used to retrieve inflation for a
sequence of varying real expenditures and document the average inflation experienced over the
life-cycle. The results from this analysis indicate that the inflation volatility of the young and
poor is somewhat dampened by their life-cycle path of expenditures, while this is not the case
for the old and poor. Overall, aging effects do not substantially change the fact that households
who are initially poor experience a 2.5 times higher expected volatility of inflation compared to
households who are initially rich.

This paper falls within an old literature on the economic approach to price index theory following
Konüs (1939), Samuelson and Swamy (1974), Diewert (1976, 1978), Feenstra (1994), Redding
and Weinstein (2020), and many others, whereby cost-of-living indices are derived from consumer
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theory via the expenditure function.2 Central to this line of research is Diewert’s notion of a
superlative price index, which includes indices that are exact for some homothetic expenditure
function and can approximate other homothetic indices to the second order. The Fisher, the
Törnqvist and the Sato-Vartia indices are all shown to satisfy this property (see Diewert, 1976,
and Barnett and Choi, 2008). Our paper provides a nonhomothetic generalization of these and
all other currently known indices within this class.

Nonhomothetic preferences have generally received little attention in the price index literature.
Feenstra and Reinsdorf (2000) derive an index for Deaton and Muellbauer’s (1980) almost ideal
demand system (AIDS) and Oulton (2012) proposes a numerical algorithm to calculate indices
of Banks, Blundell and Lewbel’s (1997) generalization of the AIDS. The AIDS is a special case
of the PIGLOG class of preferences, which is itself a limit case of the PIGL preferences used
here. Unlike the PIGL class, the AIDS does not provide a straightforward generalization of
conventional price indices. Redding and Weinstein (2020) also derive a theoretical price index
for the nonhomothetic CES specification of Hanoch (1975) and Sato (1975). In contrast to our
index, however, the nonhomothetic CES specification does not consistently aggregate across
heterogeneous consumers and (to the best of our knowledge) provides no easy implementation
empirically without being forced to estimate all parameters in the utility function.

We also add to an empirical strand of literature concerned with inflation inequality which
dates back at least to the 1950s (see for instance Muellbauer, 1974, and references therein),
with recent advances surveyed by Jaravel (2021). The bulk of this literature approximates
nonhomothetic cost-of-living indices by computing conventional price indices separately for
different income groups.3 This “group-specific” approach posits that differences in inflation
are driven by differences in ex ante tastes and rests on a theoretical foundation where deep
preference parameters jump discontinuously between groups.4 These discrete jumps set aside
straightforward comparisons between groups as well as to an aggregate inflation rate, the
latter being completely lost. By contrast, inflation heterogeneity here stems endogenously from
differences in expenditures. This allows us to characterize the full inflation distribution as well
as aggregate inflation, with clear-cut comparisons between subgroups. Nevertheless, the group-
specific approach provides an easy way to obtain index weights that vary with income, a feature
that lies at the core of our framework. We therefore do not necessarily see these approaches as
direct substitutes. Instead, our framework rationalizes previous empirical methodologies within
a consistent theory for nonhomothetic consumer demand.

2 Diewert (1993) surveys the early stages of this literature, which is far too large for us to do justice to here.
3 Recent papers employing this approach include Hobijn and Lagakos (2005), McGranahan and Paulson (2005),

Broda and Romalis (2009), Kaplan and Schulhofer-Wohl (2017), Jaravel (2019), Orchard (2020, 2021), Argente
and Lee (2021), and Lauper and Mangiante (2021).

4 The implication being, for instance, that poor consumers allocate a larger share of expenditures to, say,
rented housing due to some innate preference for rental homes obtained at birth.
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The paper proceeds as follows. Section 2 covers the theoretical framework, derives the non-
homothetic price index and shows how all superlative price indices can be generalized to a
nonhomothetic setting. Section 3 outlines the strategy of our empirical implementation and
discusses the assumption we make to render the demand system estimation feasible. Section 4 ex-
plains the data we employ, classifies the twenty-one goods into necessities and luxuries and reports
estimates from the tractable demand system estimation. Section 5 reports the main empirical
results, while Section 6 decomposes the price index and inflation further. Section 7 compares
the main results to traditional demand system estimation and Section 8 concludes.

2 Theoretical Framework

The framework we consider is one where consumers maximize utility over a set of goods J
with a corresponding price vector p and where we wish to investigate the change in the cost
of living between a period t and some base period s. In what follows, we drop time subscripts
whenever possible to simplify notation, as long as this causes no confusion. The minimum
expenditure e required to obtain some utility level u when faced by the price vector p is given by
the expenditure function e = c(u,p). Following Konüs (1939), we define a cost-of-living index in
period t relative to base period s to be the ratio of minimum expenditures required to maintain
a constant utility level:

P (u,pt,ps) ≡ c(u,pt)
c(u,ps)

. (1)

Hereinafter we typically leave the arguments of the cost-of-living index implicit and simply write
Pt = c(u,pt)/c(u,ps).

2.1 The Homothetic Case

In general, the Konüs cost-of-living index (1) depends on the reference standard of living u as
well as the prices in the two periods. Samuelson and Swamy (1974) show that independence of u
occurs if and only if we consider the special case of homothetic preferences. Suppose for instance
that consumer preferences are characterized by an indirect utility function of the standard
homothetic CRRA form,

V (e,p) = 1
ε

[(
e

B(p)

)ε
− 1

]
, (2)

where B(p) is a linearly homogenous function of prices and ε is the coefficient of relative
risk aversion. Inverting the utility function to obtain the expenditure function c(u,p) =
(1 + εu)1/εB(p) and using Equation (1), we get

Pt = B(pt)
B(ps)

, (3)
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which is evidently independent of the utility level. All conventional price indices that can be
derived from economic theory satisfy this property.

2.2 The Nonhomothetic Case: Preferences

Our framework extends the indirect utility (2) to allow for nonhomothetic behavior. To this end,
we characterize preferences by an indirect utility function as in Boppart (2014),

V (e,p) = 1
ε

[(
e

B(p)

)ε
− 1

]
− ν

γ

[(
D(p)
B(p)

)γ
− 1

]
, (4)

where B(p) and D(p) are linearly homogeneous functions of prices and the parameters satisfy
ε, γ ∈ (0, 1) and ν > 0. This utility function belongs to the class of PIGL preferences defined by
Muellbauer (1975, 1976) and more generally to the class of “intertemporally aggregable” prefer-
ences defined by Alder, Boppart and Müller (forthcoming). Despite being nonhomothetic, these
preferences consistently aggregate across individual-level expenditures. Aggregate expenditure
shares in this case correspond to a representative expenditure level which is independent of prices
and given by the average expenditure level multiplied by a simple inequality measure.

To gain understanding and intuition of Equation (4), it is convenient to think of B(p) and D(p) as
the expenditure functions of some homothetic sub-utility functions. We refer to these sub-utility
functions as “goods” or “baskets”. The parameter ε controls the degree of nonhomotheticity
between the D and B baskets: the expenditure elasticity of demand for the D basket is 1 − ε,
which is less than one under the restrictions on ε. The D basket therefore covers necessity needs
and B conversely covers luxury needs. In the limit case ε → 0, the expenditure elasticity is
one and we obtain homothetic preferences. Comparing Equations (2) and (4), we also obtain
homothetic preferences for ε ̸= 0 whenever B(p) = D(p) or in the limit case ν → 0. The
parameter ν is a scale parameter that controls the level of demand for the D basket and γ

controls the non-constant elasticity of substitution between the B and D baskets.

In general, there is nothing restricting an individual good j from occurring in both the B and
the D baskets. If there is overlap between the sets of goods within B and D, the allocations
to the B and D goods are not directly observable and we obtain what Blundell and Robin
(2000) call “latent separability”. Latent separability is equivalent to weak separability, but in the
latent goods B and D rather than in purchased goods, with weak separability as the special
case when there is no overlap between B and D. Two-stage budgeting is still valid under latent
separability, meaning that the consumer’s allocation problem can be viewed in two stages where
consumers first allocate expenditures between the B and D baskets and then, conditional on this
first-stage decision, allocate expenditures across individual goods within B and D. Applying
Roy’s identity, the expenditure shares wD and wB allocated to the D and B baskets in the first
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stage are therefore given by

wD = ν

(
B(p)
e

)ε (D(p)
B(p)

)γ
(5)

and

wB = 1 − ν

(
B(p)
e

)ε (D(p)
B(p)

)γ
. (6)

Similarly, the shares wDj and wBj of total D and B expenditures allocated to individual good j

are given by
wDj = pj

Dj(p)
D(p) and wBj = pj

Bj(p)
B(p) , (7)

where Dj and Bj denote, respectively, the partial derivatives of D and B with respect to pj .
Equations (5) to (7) imply an expenditure share wj of good j in total expenditures of the
form

wj = pj

[
Bj(p)
B(p) +

(
Dj(p)
D(p) − Bj(p)

B(p)

)
ν

(
B(p)
e

)ε (D(p)
B(p)

)γ ]
. (8)

Therefore, nonhomotheticity between B and D also creates nonhomothetic behavior across
individual goods, with a good j being a necessity if Dj/D > Bj/B and a luxury vice versa.
Aggregating over any N number of consumers indexed by h, the aggregate expenditure share wj
of good j across these consumers is

wj = pj

[
Bj(p)
B(p) +

(
Dj(p)
D(p) − Bj(p)

B(p)

)
ν

(
B(p)
e

)ε (D(p)
B(p)

)γ
κ

]
, (9)

where e ≡ 1
N

∑N
h=1 eh is the average expenditure level and κ is an inequality measure defined

by

κ ≡ 1
N

N∑
h=1

(
eh
e

)1−ε
. (10)

Aggregate shares wB and wD of the B and D baskets are defined similarly. See Alder, Boppart and
Müller (forthcoming, Proposition 2) for a derivation of Equations (9) and (10). The representative
agent in Muellbauer’s (1975, 1976) sense (henceforth the PIGL RA) is the expenditure level eRA

that induces the aggregate expenditure share. By Equation (9), this expenditure level is given
by eRA ≡ eκ−1/ε.

2.3 The Nonhomothetic Case: Price Index

The indirect utility function (4) allows us to extend the homothetic cost-of-living index (3). Unlike
the homothetic case, the index now depends on a base-period standard of living, represented by
the utility level u in the Konüs definition (1). Because preferences are nonhomothetic over the
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B and D baskets, with an expenditure elasticity of demand for the D basket always less than
one, this utility level is fully captured by wDs, the base-period expenditure share of the D good.
For the remainder of the paper, let

L(x, y) =


x− y

ln x− ln y if x ̸= y,

x if x = y,

denote the logarithmic mean (Carlson, 1972). Moreover, recalling from Equation (3) that the
cost-of-living index of homothetic preferences between some period t and base period s is the
ratio of the corresponding expenditure functions over the same periods, we denote the price
indices of the B and D baskets by PBt ≡ B(pt)/B(ps) and PDt ≡ D(pt)/D(ps). The following
result then shows that the cost-of-living index corresponding to Equation (4) is a function of
wDs, PBt and PDt and the two parameters ε and γ.

Proposition 1 (PIGL cost-of-living index). If preferences are of the PIGL form (4) and the
base-period expenditure share wDs allocated to the D basket is given, the Konüs cost-of-living
index is

PPIGL
t = P

γϕt
ε

Dt P
1− γϕt

ε
Bt with ϕt ≡ L(ψDt, ψDs)

L(ψDt, ψDs) + L(ψBt, ψBs)
, (11)

where

ψBt ≡
(

1 − εwDs
γ

)(
PBt

P̃t

)γ
and ψDt ≡ εwDs

γ

(
PDt

P̃t

)γ
(12)

are shares of a CES-type aggregator P̃t defined by

P̃t ≡
[(

1 − εwDs
γ

)
P γBt + εwDs

γ
P γDt

] 1
γ

. (13)

The aggregate cost-of-living index over any N number of consumers is given identically using
their average expenditure share wDs in ϕt.

Sketch proof (full proof in Section A.1). Set the reference utility to that of the base period
expenditure level, u ≡ V (es,ps). It is then possible to write the period-t expenditure function
corresponding to Equation (4) as c(u,pt) = c(u,ps)P̃

γ
ε
t P

1− γ
ε

Bt . Since P̃t is of a CES form, it can
be rewritten as a Sato-Vartia index with weights 1 − ϕt and ϕt on PBt and PDt, respectively.
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The result then follows from the Konüs definition (1).

Proposition 1 shows that the PIGL cost-of-living index can be written as something akin to a
Sato-Vartia index over the B and D baskets. Unlike the homothetic case, however, the ϕt in
the weights of the two sub-indices varies across the expenditure distribution. Richer consumers
spend a smaller share wD on the D basket, which reduces the weights ψDt and, subsequently,
ϕt. In other words, because richer consumers allocate a smaller share to the D basket, the
corresponding price index PDt is weighted less heavily when determining the overall change in
the cost of living. The weights ψDt and ψBt are not directly observable but are readily computed
given price indices PBt and PDt, an expenditure share wDs, and parameter values for ε and γ. In
Section A.1, we show that wDs(PDt / P̃t)γ is the expenditure share of the D basket at period-t
prices that prevails at the same utility level as wDs. Therefore, the weights ψDt and ψBt ensure
that the consumer remains on the same indifference curve as in the base period.

Two potential caveats to Proposition 1 are that the underlying preferences are identical across
consumers with the same expenditure level and that expenditure shares change monotonically
in the level of expenditure. Redding and Weinstein (2020) emphasize accounting for taste
heterogeneity in cost-of-living indices while Banks, Blundell and Lewbel (1997) highlight the
importance of allowing for hump-shaped expenditure shares to match microeconomic data.
In Section A.4 we show that it is straightforward to incorporate time- and household-specific
tastes between the B and D baskets into the indirect utility function (4) and that this leaves
Proposition 1 unaffected. In Section A.5 we discuss a generalization that allows for hump-shaped
expenditure shares. This generalization works well for household-level indices but requires more
stringent conditions for aggregate price indices to have the same form.

2.4 Generalized Superlative Indices

With Proposition 1 at hand, it is straightforward to generalize standard homothetic indices to the
nonhomothetic PIGL case: just plug in two homothetic indices for PBt and PDt in Equation (11).
To emphasize the importance of Proposition 1, we present generalizations of two classes of indices:
Diewert’s (1976) quadratic-mean-of-order-r class, which consists of all indices of the form

Pt =

√√√√√{∑
j∈J

wjs

(
pjt
pjs

) r
2
} 2
r
{∑
j∈J

wjt

(
pjt
pjs

)− r
2
}− 2

r

, r > 0, (14)

and Barnett and Choi’s (2008) Theil-Sato class, which is defined as

Pt =
∏
j∈J

(
pjt
pjs

)δjt
, δjt ≡ m(wjt, wjs)∑

i∈J m(wit, wis)
, (15)
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where m(x, y) is a symmetric mean of two variables, a function class that includes all linearly
homogenous functions satisfying min{x, y} ≤ m(x, y) = m(y, x) ≤ max{x, y}. These index
classes include several of the most well-known price index formulas. Equation (14) incorporates
Fisher’s (1922) ideal index (r = 2), the arithmetic Walsh (1901) index (r = 1) and, as a limit case,
the Törnqvist (1936) index (r → 0). Equation (15) nests the Törnqvist index (arithmetic mean,
m(x, y) = (x+ y)/2), the geometric Walsh (1901) index (geometric mean, m(x, y) = √

xy), the
Sato (1976)-Vartia (1976) index (logarithmic mean, m(x, y) = (x−y)/(ln x− ln y)), and the Theil
(1973) index (m(x, y) = 3

√
xy(x+ y)/2). While we could choose any underlying homothetic price

indices PDt and PBt, these two classes consists of all currently known superlative price indices
(Diewert, 1976). That is, they are exact cost-of-living indices for some homothetic expenditure
functions and are second-order approximations of any other homothetic price index.5 Therefore,
even if the indices corresponding to the true expenditure functions B(p) and D(p) have some other
forms than those in Equations (14) and (15), we should still be able to reasonably approximate
their corresponding price indices under this specific parameterization. The nonhomothetic
generalization of these indices under Proposition 1 is presented below.

Corollary 1 (Generalized superlative indices). If preferences are of the PIGL form (4), the
base-period expenditure share wDs allocated to the D basket is given, and B(p) and D(p) are
expenditure functions with price indices of the form (14) or (15), the Konüs cost-of-living
index is

PG-S
t =

∏
j∈J

(
pjt
pjs

)χjt
, (16)

where
χjt ≡ γϕt

ε
δDjt +

(
1 − γϕt

ε

)
δBjt, (17)

with ϕt as in Proposition 1. The weights δCjt, j ∈ J , C ∈ {B,D}, are given by

δCjt = 1
2

[
w̃CLjt∑
i w̃

C
Lit

+
w̃CPjt∑
i w̃

C
Pit

]
or δCjt =

m(wCjt, wCjs)∑
im(wCit , wCis)

(18)

if PCt is as in Equation (14) or (15), respectively. In the former case,

w̃CLjt ≡ wCjs L

((
pjt
pjs

) r
2
,
(
PCLt

) r
2
)

and w̃CPjt ≡ wCjt L

((
pjt
pjs

)− r
2
,
(
PCPt

)− r
2
)
,

where PCLt =
[∑

j w
C
js

(
pjt
pjs

) r
2
] 2
r and PCPt =

[∑
j w

C
jt

(
pjt
pjs

)− r
2
]− 2

r . The aggregate cost-

5 This definition differs from Diewert’s original definition but is shown by Barnett and Choi (2008, Theorem 1)
to be equivalent.
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of-living index over any N number of consumers is given identically using their average
expenditure shares in χjt.

Proof. In Section A.2.

In Corollary 1, we have rewritten the quardratic-mean-of-order-r class on a geometric-mean
form following Balk (2004) to highlight the intuitive generalization of the homothetic superlative
indices that we obtain. In doing so, we denote the weights by L and P to capture the fact that
these reduce to standard Laspeyres and Paasche weights when r = 2. The resulting cost-of-living
index is a weighted geometric average of individual price changes with index weights (17) of the
following structure:

Weight
on j = Weight

on D × Weight
on j

within D

+ Weight
on B × Weight

on j
within B

.

The weights on j within B and D, given by Equation (18), are standard homothetic weights
and affect all consumers similarly. The weights on D and B are the same as in Proposition 1.
Therefore, the overall weights χjt vary across the base-period expenditure distribution in a similar
way as before. If B(p) = D(p), we get that δBjt = δDjt for all j and the generalized superlative
indices immediately collapse to the homothetic indices in Equations (14) and (15).

Another feature of Corollary 1 is that it rationalizes the methodology used in much of the
literature concerned with inflation inequality, whereby homothetic price indices are computed for
different income groups separately. In particular, papers like Broda and Romalis (2009), Jaravel
(2019), and Argente and Lee (2021) compute homothetic price indices of the geometric-mean
form lnPt =

∑
j δjt ln(pjt/pjs), where δjt are weights computed separately for each income

group considered. This generates heterogeneous weights across the income distribution. The
method therefore mimics an overall geometric-mean price index with income specific weights,
which is exactly what we also have in Corollary 1. In contrast to the group-specific approach,
however, Corollary 1 allows for a full characterization of the inflation distribution rather than a
discontinuous, discrete distribution.

3 Empirical Implementation

To compute the generalized superlative indices in practice, we need total expenditure shares
between the B and D baskets and the expenditure shares within each basket. Yet, if individual
goods occur in both the B and the D baskets, these across and within expenditure shares are
unobserved in the data. The only feasible approach then is to parameterize B(p) and D(p),
estimate the demand system associated with the expenditure share equations (8) via GMM, and
infer these shares from the estimated model. This methodology, however, suffers from the usual
drawbacks of nonlinear demand system estimation. In particular, for standard parameterizations
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the number of parameters to estimate quickly grows out of proportion as we increase the number
of goods considered.6 The nonlinear nature of the demand system also implies that there is
no guarantee that the GMM estimator converges to the actual global minimum of the GMM
objective function. The latter could in principle be solved by a grid search, but this only
exacerbates the curse of dimensionality further. Estimating more than a few goods is therefore
generally infeasible. These issues, however, are fully circumvented within our framework when a
simple assumption on the structure of the demand system is met.

Assumption 1. Preferences are weakly separable into the B and D baskets. ◁

Under Assumption 1, an individual good occurs in either the B basket or the D basket, but not
in both. Since the D basket captures necessity needs and B basket luxury needs, it follows that
preferences are also weakly separable into necessities and luxuries. The assumption is therefore
easily implemented empirically by allocating luxuries to B and necessities to D.

The immediate consequence of Assumption 1 is that across and within expenditure shares become
observable in the data. Summing the total expenditure shares wj (which are always observable)
over goods in D gives the across share wD. Within shares are then obtained as wDj = wj/wD.
The same applies for the B basket. This knowledge is enough to compute price indices PBt
and PDt for the B and D baskets using Equation (14) or (15). The only additional information
needed to compute the generalized superlative indices are, per Proposition 1, the two parameters
ε and γ. Using Equations (3) and (5), we may write the period-t expenditure share on the D
good as

wDt = ν̃

(
PBt
et

)ε (PDt
PBt

)γ
, (19)

where ν̃ ≡ νB(ps)ε−γD(ps)γ is a scale parameter. Since wDt, et, PBt and PDt are all known,
estimating ε and γ from (19) is easily carried out using either linear (by taking logs of (19))
or nonlinear estimation methods. We summarize this empirical approach by the following
proposition:

Proposition 2 (Tractable demand system estimation). Under Assumption 1, across and
within group expenditure shares are observable in the data and computing the generalized
superlative indices (16) only requires estimation of two parameters, ε and γ, from the single
expenditure share equation (19).

At first sight, Assumption 1 may seem to be at odds with the nonhomothetic generalization of
6 As an illustration, suppose we have n goods and parameterize B(p) and D(p) by the linearly homogeneous

translog expenditure function of Christensen, Jorgenson and Lau (1975), for which the Törnqvist index is an exact
cost-of-living index (Diewert, 1976). The PIGL demand system considered here then requires the estimation of
n(n + 1) + 3 independent parameters.
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the superlative indices: Corollary 1 reduces to the standard homothetic case when B(p) = D(p),
which Assumption 1 excludes by construction. However, the weak separability assumption still
nests homothetic preferences. In particular, as ε → 0 and γ → 0, we obtain Cobb-Douglas
preferences with V (e,p) = ln

[
e

B(p)1−νD(p)ν
]

and a corresponding price index Pt = P 1−ν
Bt P νDt,

where ν = wD is the homothetic and time-invariant expenditure share on D. Thus, if preferences
truly are homothetic, we still expect Proposition 2 to yield a homothetic price index. This index
is approximately equal to the corresponding superlative index when B(p) = D(p), by virtue
of superlative indices being second-order approximations of any other homothetic index. This
highlights that using the generalized superlative indices under Assumption 1 should at least
(approximately) be weakly better than using the standard homothetic indices. Since nonhomoth-
etic preferences is the empirically relevant case, we do not expect the “approximately” part to
matter much, and the empirical application below confirms this. For cases where it nevertheless
might be of importance, it turns out that a special case exists where Assumption 1 exactly nests
the corresponding homothetic index when B(p) = D(p): the Törnqvist index.

Proposition 3 (Homothetic Törnqvist index under weak separability). Suppose that
preferences are of the homothetic Cobb-Douglas form, V (e,p) = ln

[
e

B(p)1−νD(p)ν
]
, and that

B(p) and D(p) are such that their corresponding price indices PBt and PDt are Törnqvist
indices. The cost-of-living index under Assumption 1 is then the standard Törnqvist index:

Pt =
∏
j∈J

(
pjt
pjs

)δjt
, where δjt = wjs + wjt

2 .

Proof. In Section A.3.

4 Data and Estimation

We implement the tractable demand system estimation described in the previous section using
consumption and price data from two sources. Household consumption is taken from the interview
component of the Consumer Expenditure Survey (CEX) and price data are taken from the
product-level Consumer Price Index (CPI) series for all urban consumers. Both are provided by
the US Bureau of Labor Statistics (BLS). The CEX interview survey is a quarterly rotating panel
of households who are representative of the US population. New households are sampled every
month and each household is tracked for up to four consecutive quarters. The survey covers
around 95 percent of total household consumption and contains additional information on annual
income and other background characteristics. The survey has been continuously conducted since
1980, but to ensure consistency across waves and due to the availability of the CPI sub-indices,
we focus on the years 1995 to 2020.
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As is standard in the literature, we select a sample of respondents between the ages of 25 and 65
who report strictly positive income. To avoid issues with seasonality, we aggregate expenditures
to annual levels and, consequently, drop households that do not respond to all four quarterly
interviews. To account for differences in household size, we also divide household income and
expenditures by the number of adult equivalents in the household using the equivalence scale of
the US Census Bureau (see Fox and Burns, 2021). The final dataset on expenditures consists of
approximately 3,000 households per year.

We aggregate consumption expenditures into a rather coarse set of consumption goods categories
as this allows us to compare the empirical approach in Proposition 2 with a full demand
system estimation. All in all, we consider twenty-one categories of nondurable goods using the
hierarchical groupings defined by the BLS. We broadly follow Hobijn and Lagakos (2005) and
construct prices for these categories by matching them with individual CPI series. Table B.1 in
Section B lists the CEX categories and shows their mapping to the CPI item codes.

4.1 Classification of Goods Into Luxuries and Necessities

In order to utilize the tractable demand system estimation in Proposition 2, we impose As-
sumption 1 by allocating luxuries to B and necessities to D. The classification into B and D

is implemented by investigating slopes of the budget share Engel curves: if the Engel curve of
a good decreases as expenditures increase, it is a necessity. Conversely, a good is a luxury if
its Engel curve increases with increasing expenditures. We split households into expenditure
deciles and, for each good j, run a household-level regression of the expenditure share wjh on
the expenditure decile dh of household h:

wjh = αj + βjdh + ϵjh.

If βj > 0, we allocate the good to the B basket, otherwise to the D basket. Figure 1 shows the
Engel curves by expenditure decile together with the resulting classification from the regressions
and Table B.2 in Section B lists the βj coefficient estimates. The resulting classification is
intuitive and all estimates are significantly different from zero. For comparable product groups,
our necessity/luxury split is highly similar to those constructed in similar analyses using CEX
data (see for instance Wachter and Yogo, 2010, and Orchard, 2021), thus suggesting that this
simple classification regression works well on our coarse set of goods.

4.2 Tractable Demand System Estimation

We estimate the preference parameters ε and γ from Equation (19) using a nonlinear GMM
estimator. In doing so, we make explicit corrections for two potential issues.
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Figure 1. Empirical and model implied Engel curves.

Notes. The figure shows the empirical and model implied expenditure shares by expenditure group and
expenditure decile averaged over all years. The model implied expenditure shares correspond to those
under the assumption of weak separability and the Sato-Vartia specification. They are calculated by
first taking the model implied expenditure shares on the B and D goods and then use the empirical
expenditures shares of all households to obtain shares within these groups.

First, it is well known that infrequently bought items, like clothing and transportation, create a
measurement error in the observed level of expenditures. Although we alleviate much of this
concern by excluding durable goods and by aggregating expenditures to an annual level, we
follow the literature (Blundell, Pashardes and Weber, 1993; Banks, Blundell and Lewbel, 1997)
and control for this endogeneity bias by instrumenting expenditures on household income.

Second, an indirect utility specification like the PIGL requires additional attention with respect
to the regularity conditions for utility maximization. Specifically, we need to certify that the
parameter estimates yield a symmetric and negative semidefinite Slutsky matrix. Under the
indirect utility function (4) and Assumption 1, it follows from Boppart (2014, Lemma 1) that a
necessary and sufficient condition for household h to satisfy the Slutsky restrictions in period
t is ν̃

(
PBt
eht

)ε (PDt
PBt

)γ
≤ (1 − γ)/(1 − ε). We enforce this constraint by augmenting the GMM

estimation with a classic penalty method. Consequently, the reported parameter estimates below
satisfy the Slutsky restrictions for all observations in the sample.



17

To gauge the sensitivity to different choices of underlying superlative price indices, we estimate
ε and γ for six different choices of PBt and PDt. These choices correspond to the indices listed
in Section 2.4: the Sato-Vartia, the Törnqvist, the Walsh (geometric and arithmetic), the Theil,
and the Fisher. This robustness check is instructive since there is generally no guarantee that
superlative indices are numerically similar, despite being second-order approximations of each
other (see for instance Hill, 2006). For the estimation exercise, we compute these indices on a
monthly frequency and, since household expenditures are annualized, construct household-specific
annualized price levels by averaging over the months each household is in the sample.

The estimated parameters for the six cases are reported in Table 1. All parameters are statistically
different from zero at conventional significance levels and the fact that ε > 0 and ν̃ > 0 directly
rejects homotheticity. Reassuringly, the choice of price indices for the B and D baskets turns
out to be completely inconsequential as all specifications yield close to identical estimates.
Moreover, Alder, Boppart and Müller (forthcoming, Proposition 3) show that a sufficient
condition for expenditure shares to remain globally nonnegative is 0 < γ ≤ ε < 1. This
condition is also met in our estimation, though we do not impose the constraint explicitly. Other
preference specifications, like the almost ideal demand system, typically violate expenditure
share nonnegativity for sufficiently large expenditures levels.

To get an idea of how well the estimated model matches the data, we compute budget-share
Engel curves using the parameter estimates for the Sato-Vartia specification and plot these
against their empirical counterparts in Figure 1. We construct the model expenditure shares
as the product of model-implied across- and within-expenditure shares wC and wCj for goods
in C ∈ {B,D}. The former is computed from Equation (19) at the representative level of
expenditures within each expenditure decile. Since B(p) and D(p) are homothetic, the latter is
given empirically by the average within-shares wBj , wDj across all households. Figure 1 shows
that the model fits the data quite well. In particular, the model does a much better job at
matching the empirical Engel curves than the constant Engel curves resulting from homothetic
preferences would. This underscores that the assumption of weak separability between the B
and D baskets is not a strong restriction in our sample.

5 Results

The estimation in the previous section suggests that the results are insensitive to the choice
of generalized superlative index.7 For the remainder of the paper, we therefore focus on the
nonhomothetic generalization of the Sato-Vartia index (henceforth G-SV). Since the Sato-Vartia
index is the corresponding Konüs index to the canonical CES expenditure function (see Sato,
1976), this choice implies that we are investigating a generalization of homothetic CES preferences.

7 Figures B.7 and B.8 in Section B show the main results in this section for all choices considered in Section 4.2,
which confirms that this is indeed the case.
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Table 1. Estimated parameters under weak separability.

Sato-Vartia Törnqvist Geom. Walsh Theil Fisher Arith. Walsh

ε 0.677 0.677 0.677 0.677 0.677 0.677
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

γ 0.211 0.211 0.211 0.211 0.211 0.211
(0.023) (0.023) (0.023) (0.023) (0.023) (0.023)

ν̃ 327.271 327.437 327.173 327.273 324.273 324.600
(13.358) (13.365) (13.354) (13.358) (13.217) (13.233)

N 74,372 74,372 74,372 74,372 74,372 74,372
RMSE 0.1487 0.1486 0.1487 0.1487 0.1486 0.1486

Notes. Robust standard errors in parentheses. “RMSE” refers to the root mean squared error of the
expenditure share on the D good:

√∑
h
(wDh − ŵDh)2 / N .

The prominence of CES preferences within macroeconomics and international trade therefore
makes this a case of particular interest. The main reason for selecting the G-SV, however, is
that a parameterization of B(p) and D(p) as CES aggregates contains many fewer parameters
than the parameterizations that induce, for instance, the Fisher or the Törnqvist indices. This
allows us to compare the G-SV index to a relatively parsimonious estimation of the full PIGL
demand system.

Figure 2 shows the evolution of the G-SV price index from 1995 to 2020. We set the base period
to 1995 and, in contrast to Section 4.2, use annual indices for PBt and PDt.8 Even though the
generalized superlative price indices allow characterizations of the entire distribution of indices,
here we focus on expenditure deciles for ease of exposition. Figures B.3 and B.4 in Section B
show the full price index and inflation distributions.

Figure 2 corroborates two findings from the literature: inflation rates vary across households
and poorer households experienced a larger increase in the cost of living than richer households
over the last quarter century. It is noteworthy, though, that the cumulative differences are small.
Table 2 makes this point clear: the mean annual inflation rate of the poorest ten percent is
only 0.06 percentage points higher than that of the richest ten percent over the full sample
period. The changes in the cost of living over the 26 years under study therefore do not diverge
dramatically between groups.

The small differences in the cost of living by 2020 is striking given the substantial heterogeneity
observed in subperiods of the sample. For instance, if we zoom in on the years 2004 to 2015, the
annual change in the cost of living for the poorest ten percent are on average 0.37 percentage

8 Figure B.1 in Section B shows that the choice of base period does not affect our results.
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Figure 2. G-SV price index under weak separability by expenditure decile.

Notes. The price index for each expenditure decile is calculated as the price index of the PIGL representative
agent over households within each respective decile. “PIGL RA” stands for the PIGL representative agent
over all households.

Table 2. Inflation heterogeneity in numbers.

2004 - 2015 1996 - 2020
Exp. dec. mean ∆mean std. rel. std. mean ∆mean std. rel. std.

1 2.57 0.37 2.71 2.38 2.28 0.06 2.14 2.51
2 2.46 0.26 2.25 1.98 2.26 0.04 1.76 2.06
3 2.41 0.21 2.05 1.79 2.25 0.03 1.59 1.86
4 2.38 0.18 1.89 1.66 2.24 0.03 1.46 1.71
5 2.35 0.15 1.78 1.56 2.24 0.02 1.36 1.60
6 2.33 0.13 1.67 1.46 2.24 0.02 1.28 1.50
7 2.30 0.10 1.57 1.38 2.23 0.02 1.20 1.40
8 2.28 0.08 1.47 1.29 2.23 0.01 1.12 1.31
9 2.25 0.05 1.35 1.18 2.22 0.01 1.02 1.20

10 2.20 0.00 1.14 1.00 2.22 0.00 0.85 1.00

Notes. Arithmetic mean and standard deviation of annual inflation over the respective years. “∆
mean” denotes the difference in the mean annual inflation to the tenth expenditure decile. Rel.
std. denotes the relative standard deviation to the standard deviation of the tenth expenditure
decile.
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points higher than the change for the richest ten percent. Jaravel (2019) and Argente and
Lee (2021) focus on the same years, the former using a CEX-CPI dataset similar to ours and
the latter using scanner data for the retail sector, and both find results close to ours. To put
this difference in perspective, the Boskin Commission Report estimated the total bias in the
aggregate US CPI to be 1.1 percentage points (Boskin et al., 1996). Of these, substitution biases
alone account for 0.4 percentage points. The difference we find here is therefore substantial when
compared to previously estimated biases in aggregate price indices.

That the differences in the change in the cost of living varies across subperiods is also visible
from the implied annual inflation rates. Figure 3 plots these rates, which highlights that there
are periods where poorer households experience substantially higher or lower inflation. In several
years, the range of the inflation rate exceeds 2 percentage points. There is another key finding
that stands out from Figure 3 however: the inflation rate of the poor is much more volatile than
that of the rich. More precisely, Table 2 shows that the standard deviation of inflation has been
2.14 and 0.85 for the poorest and richest, respectively, and the poor have thus experienced a 2.5
times more volatile inflation rate than the rich.
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Figure 3. G-SV inflation under weak separability by expenditure decile.

Notes. Inflation for each expenditure decile is calculated as the first difference in the price index of the
PIGL representative agent over households within each respective decile. “PIGL RA” stands for the
PIGL representative agent over all households.

In sum, despite the fact that the overall change in the cost of living has not diverged dramatically
between groups, there is a considerable difference in the volatility of inflation rates. This difference
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in volatility of inflation rates warrants that it is important in future work to understand the
economic implications it may have for instance in terms of welfare on individual household levels
and economic policies that aim at stabilizing inflation rates.

5.1 Changes in Living Standards

Most empirical evidence on inflation inequality, including the results above, compare the change
in inflation rates between two or more groups whose real expenditures stay fixed at some base-
period level. In other words, living standards remain constant. Yet, it is a well-known that
households experience substantial changes in expenditures over the life-cycle. It is therefore not
clear whether the evidence on inflation inequality is of much relevance to the inflation experience
of an average household.

Our framework distinguishes itself from previous attempts to study inflation inequality in that it
is straightforward to compute inflation rates for households even when real expenditures change
over time. The group-specific price index approach poses some challenges in allowing for this due
to the discontinuous change underlying preferences across the expenditure distribution. Since
our framework expresses the price index as a continuous function of expenditures we do not face
that challenge.

Consider an individual whose expenditures, et = c(ut,pt), change over time. The change in
expenditures can arise because prices, pt, change or living standards, ut, change. The relative
change in expenditures between period s and period T may be written as

c(uT ,pT )
c(us,ps)

=
[

T∏
t=s+1

Q(ut−1, ut,pt)
][

T∏
t=s+1

P (ut−1,pt,ps)
P (ut−1,pt−1,ps)

]
, (20)

which is made up of two components: (i) a quantity cost, Q(ui, uk,pt) ≡ c(uk,pt)/c(ui,pt), that
tells how much a household will have to pay to go from living standard ui to uk at prices pt,
and (ii) a per-period price cost, P (ut−1,pt,ps)/P (ut−1,pt−1,ps), that tells how much the cost
of living has changed period by period.9 This latter part is just a chained price index where the
base period is always t− 1.10

9 The quantity-cost in Equation (20) measures the cost of obtaining living standard ut relative to maintaining
living standard ut−1 in present-period prices. That is, it measures the relative cost of obtaining living standard ut
compared to ut−1 in prices when the change takes place. A different definition, the quantity-cost in past-period
prices defined as Qt−1(ut−1, ut), gives a similar expression as the one in Equation (20) but is less intuitive.

10 When living standards do not change throughout period s to period T , we have that

c(uT ,pT )
c(us,ps)

=
T∏

t=s+1

P (us,pt,ps)
P (us,pt−1,ps)

= PT (us,pT ,ps)
P (us,ps,ps)

= P (us,pT ,ps),

which is simply the PIGL price index at time T with base period s.
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From Equation (20), we can also compute the inflation cost from the per-period inflation rate
1 + πt(ut−1) ≡ P (ut−1,pt,ps)/P (ut−1,pt−1,ps). It forms the basis of the following analysis
where we decompose the change in expenditures into quantity and price costs when allowing for
changes in expenditures over time.

5.1.1 Life-Cycle Model

Changes in household expenditures over time is a well-documented empirical fact. Fernández-
Villaverde and Krueger (2007) for example find that US household expenditures follow a
deterministic, hump-shaped pattern over the life-cycle.

Based on our data, we estimate the following deterministic life-cycle model:

ln eit = αi + βt + γ̃it, (21)

where i denotes age, t time period, αi are age-fixed effects, βt year-month-fixed effects, and γ̃it

is the residual. The results of the estimated model in Equation (21) are shown in Figure B.5
of Section B. Our results for the deterministic life-cycle model is in line with what Fernández-
Villaverde and Krueger (2007) find.

We use the estimated deterministic life-cycle model to simulate a 26-year nominal expenditure
path for 30 different types. Each type has a distinct age-by-initial-expenditure-level combination,
where the age is such that in 1995 the type is either young (25 years old), middle-aged (45 years
old) or old (65 years old), and the initial expenditure level is equal to the level of one of the
expenditure deciles in the CEX data as in the main results. For each type we then compute the
price index, inflation series and standard deviation of inflation according to Equation (20).

In panel (a) of Figure 4 we show the simulated path of nominal expenditures for six types:
young-poor, young-rich, middle-aged-poor, middle-aged-rich, old-poor and old-rich. For each age
type, poor refers to an individual whose 1995 expenditure level was equal to that of expenditure
decile 1 and rich refers to an individual whose 1995 expenditure level was equal to that of
expenditure decile 10. The figure shows that nominal expenditures varies greatly across age
groups and by initial expenditure levels.

Panel (b) of Figure 4 shows the corresponding inflation for each of the six types whose nominal
expenditure levels are those in panel (a). The figure shows that different deterministic life-cycle
patterns give rise to different inflation levels for individuals who start out with the same initial
standard of living. For example, the young-poor experience a somewhat more dampened volatility
of inflation over time compared to the old-poor. This is because the young experience changes in
expenditures that exceed the change in prices and therefore allows them to increase their living
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standards. As our main results shows, households with higher living standards have experienced
a much lower volatility of inflation and the young-poor transit towards this over time. The
broad picture, however, is that the deterministic life-cycle components are far from being able to
mitigate the results from the previous section: columns 3–6 in Table 3 show that the relative
standard deviation of inflation remains 2.41 times higher for the young-poor compared to the
young-rich, 2.46 for the middle-aged-poor and 2.55 times for the old-poor. Although not shown,
the mean and standard deviation of inflation are also largely unchanged.
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Figure 4. Expenditures and inflation in the deterministic life-cycle model.

Notes. Panel (a) shows the nominal expenditure levels for six types simulated from the life-cycle model in
Equation (21). Panel (b) shows the corresponding inflation levels for each type based on Equation (20).
Young refers to an individual who was 25 years in 1995, middle-aged to an individual who was 45 years
and old to an individual who was 65 years. Poor refers to an individual whose 1995 expenditure level
was equal to that of expenditure decile 1 in the CEX data. Rich refers to an individual whose 1995
expenditure level was equal to that of expenditure decile 10 in the CEX data.

In addition to the deterministic evolution in the life-cycle expenditures, other empirical studies
such as Blundell, Pistaferri and Preston (2008) also find that US households experience significant
stochastic shocks to expenditures.

The stochastic component comes from the unexplained change in log expenditures between two
ages which is given by

γit ≡ ∆γ̃it = ln eit − ln ei−1,t−1 − (αi − αi−1) − (βt − βt−1), (22)
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Table 3. Relative standard deviation.

Constant utility Life-cycle Stochastic life-cycle
Exp. dec. young middle-aged old young middle-aged old

1 2.51 2.41 2.46 2.55 2.50 2.55 2.63
2 2.06 1.97 2.01 2.08 2.05 2.08 2.13
3 1.86 1.78 1.81 1.87 1.84 1.88 1.91
4 1.71 1.64 1.67 1.72 1.70 1.72 1.76
5 1.60 1.54 1.56 1.60 1.59 1.61 1.64
6 1.50 1.44 1.46 1.50 1.47 1.50 1.53
7 1.40 1.36 1.37 1.40 1.39 1.40 1.43
8 1.31 1.27 1.29 1.31 1.30 1.31 1.33
9 1.20 1.17 1.18 1.19 1.19 1.19 1.21

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes. The table reports the relative arithmetic standard deviations of inflation from 1995 to 2020 between
each type whose 1995 expenditure level was equal to expenditure decile d ∈ {1, . . . , 10} and that of those
whose 1995 expenditure level was equal to expenditure decile 10 in the CEX. “Constant utility” refers to
the baseline results also presented in Table 2 where real expenditures are fixed. “Life-cycle” refers to the
deterministic life-cycle model in Equation (21) where the determinsitic component is shut off (i.e. equal
to 0). “Stochastic life-cycle” refers to the life cycle model in Equation (21) with the stochastic component
activated. Young refers to an individual who was 25 years in 1995, middle-aged to an individual who was 45
years and old to an individual who was 65 years.

and as in Blundell, Pistaferri and Preston (2008), we assume that γ is independently and normally
distributed and we use their estimated variance of γ. In order to preserve the expected life-cycle
expenditures from the estimated model, we impose the restriction that exp{γ} has a mean of
one.

We once again consider the same 30 types as in the deterministic life-cycle model. For each
type, we draw 26 γ-shocks and simulate a nominal expenditure path according to the stochastic
life-cycle model. We repeat the simulation 10,000 times for each type and for each expenditure
path we compute the corresponding price index, inflation series and standard deviation of
inflation. We then average over the 10,000 simulations to get the expected inflation for each
type.

Columns 6–8 in Table 3 show the relative standard deviation of expected inflation for each
type in the stochastic life-cycle model. We see that the stochastic component makes the poorer
types worse off in terms of expected inflation volatility. The relative inflation volatility of
the young-poor compared to the young-rich, for example, goes from 2.41 in the deterministic
life-cycle model to 2.5 in the stochastic model. The broad picture, however, still remains: even
when controlling for deterministic and stochastic changes in expenditures, the expected inflation
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volatility is around 2.5 times larger for the poorest ten percent compared to the richest ten
percent.

These findings show that, although households’ real expenditures change over time, the average
change over a time period of 26 years from ageing and chance is not enough to alter the
conclusions drawn in regards to inflation inequality between households whose real expenditures
stay fixed.11 Instead, this suggests that initial expenditure levels are an important determinant
for households’ expected inflation rates.

6 What Drives the Inflation Differences?

The generalized superlative price index (16) lends itself to a simple decomposition of inflation
into its components. Taking first differences of the log of the price index allows us to compute
the contribution of inflation coming from each expenditure category j. Figure 5 plots this
decomposition for the rich and poor’s inflation. The figure shows the primary expenditure
categories that have driven inflation since 1996.

Panel (a) in Figure 5 shows that the two primary expenditure categories that drive inflation for
the poor are “food at home” and “gas and utilities” (energy). In contrast, panel (b) shows that
these categories play a minor role in driving inflation for the rich. Moreover, the key point in
regards to what drives inflation for the rich is that no expenditure category is a major driver. In
panel (b) we plotted the contributions to the rich’s inflation from “food at home” and “gas and
utilities” to illustrate that these play a minor role. Additionally, we also show how the most
important driver for the rich’s inflation, “owned dwellings”, and the fourth most important driver,
“other vehicle expenditures”, contribute. While “owned dwelling” indeed drives a considerable
amount of total inflation of the rich, it is still minor and “other vehicle expenditures” is almost
invisible in some periods. Figure B.6 in Section B shows the inflation contribution from all
expenditure categories to the rich and poor’s inflation, respectively.

6.1 Decomposition Into Reference Basket and Product Substitution

In order to shed more light on the inflation heterogeneity between poor and rich households, we
decompose the price index into one component that reflects pure price changes of a base-period
reference basket and another component that reflects product substitution away from this basket
as prices change. The former is simply the Laspeyres price index PLt =

∑
j wjs(pjt/pjs), which

11 The results do not reject that other factors such as education could induce changes in expenditures that are
strong enough to make a difference.
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Figure 5. Inflation decomposition by expenditure categories.

can be written on a weighted geometric-mean form as12

PLt =
∏
j∈J

(
pjt
pjs

)δLjt
, where δLjt ≡

wjs L
(
pjt
pjs
, PLt

)
∑
i∈J

wis L
(
pjt
pjs
, PLt

) . (23)

The latter component can then be backed out as the residual between the computed price index
and the corresponding Laspeyres index. Taking logs of the generalized superlative index (16) and
adding and subtracting the log of the Laspeyres index (23), we obtain the decomposition

lnPt =
∑
j∈J

δLjt ln
(
pjt
pjs

)
︸ ︷︷ ︸

Laspeyres price index

+
∑
j∈J

(
χjt − δLjt

)
ln
(
pjt
pjs

)
︸ ︷︷ ︸

Product substitution

. (24)

Figure 6 shows the decomposition of the G-SV price index for the first and the tenth expenditure
decile. It clearly highlights that the biggest share of the increase in the cost of living is driven
by the price changes of the reference baskets and substitution effects only marginally reduce the
G-SV price index. Interestingly, however, the substitution effect among the households in the
first expenditure decile is considerably bigger than the substitution among the households in the
tenth expenditure decile.

Focusing on the difference between the two deciles in Figure 7 shows that the composition of
their reference baskets plays an important role but that the difference in product substitution

12 See Section A.2 or Balk (2004).
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tion.

Notes. Decomposition is performed as shown in Equation (24). The G-SV price index for each expenditure
decile denotes the price index of the representative agent within each respective decile.

becomes relatively more important.
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This section shows that in order to uncover the fundamental drivers of inflation heterogeneity
across households it is primarily necessary to understand inflation heterogeneity across products.
Therefore, we deem it important for future research to investigate this further. In particular,
whether it is a coincidence that the highly volatile product groups are purchased relatively more
by poor households, or if there is a deeper and more structural link. In terms of policy, the
results show that stabilizing prices of selected product groups, and not just an aggregate price
index, are important when inequality is taken into account. Specifically, the results show that
the highly volatile inflation of “food at home” and “gas and utilities” affects poorer households
disproportionately more.

7 Comparison with Full Demand System Estimation

To assess the validity of the weak separability assumption and the robustness of our results, we
perform a full demand system estimation. Full demand system estimation can be carried out
via GMM by using the expenditure share equations (8) and the parameterization for B(p) and
D(p). The parameterization of the Sato-Vartia specification used in our empirical analysis is
given by

B(p) =

 ∑
j∈J

ωjp
1−σ
j

 1
1−σ

and D(p) =

 ∑
j∈J

θjp
1−φ
j

 1
1−φ

, (25)

where σ, φ > 0 and the taste parameters satisfy
∑
j∈J ωj =

∑
j∈J θj = 1 with ωj , θj ≥ 0 for all

j ∈ J .13

Since the GMM estimation under the full demand system specification might exhibit several
local minima, it generally must not hold that a particular local solution of the GMM estimation
is indeed also the global minimum. Therefore, the following results should be interpreted with
this in mind. However, by choosing an appropriate guess for the preference parameters in the
full demand system that corresponds to the preferences under weak separability, we obtain a
local solution for the full demand system which is in the vicinity of the weakly separable case.
In particular, we set the values for ε, γ and ν to the values in Table 1 and equally distribute ωj
and θj among the goods classified as B and D, respectively.14

Table 4 and Figure 8 show the estimates for the full set of preference parameters in the full
demand system.15 We can note that ε is practically unchanged, but γ substantially higher. ν is

13 This parameterization is also considered in Alder, Boppart and Müller (forthcoming).
14 In principle we could perform a grid search over the whole set of feasible parameters. However, depending on

the initial guess, convergence of the GMM estimator is slow and can sometimes take more than 24 hours. Thus,
we deemed a reliable grid search as infeasible.

15 While point estimates are still consistent when some parameters lie on the boundary of the parameter space,
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not important for determining the price index, but still lies fairly close to the estimates under
weak separability. Turning to σ and φ, we can note that they both lie below one, which indicates
that goods within the B and D basket are complements. Figure 8 shows the point estimates of
the complete set of taste parameters ωj and θj for the B and the D basket respectively. Each
category has a blue and an orange bar for ωj and θj , but with the minor exception of “tobacco”,
every single good only has one strictly positive taste parameter. Thus, the estimated parameters
from the full demand system and the implied classification into two baskets is almost perfectly
in line with the classification applied in the weakly separable case.

Table 4. Estimates of the preference parameters
in the full demand system compared to
the estimates under weak separability.

Full demand system Weak separability

ε 0.685 0.677
(0.004) (0.004)

γ 0.505 0.211
(0.018) (0.023)

ν 346.736 327.271
(11.793) (13.358)

σ 0.050
(0.012)

φ 0.360
(0.006)

N 74,372 74,372

Notes. Standard errors in parentheses.

Figure 9 shows a comparison of the resulting price index from the full demand system (left panel)
with the respective price index under weak separability (right panel). The figure shows that the
price indices for the individual expenditure deciles are less spread out under the full demand
system, but the general difference is relatively minor.

The differences between the full demand system estimation and estimation under weak separability
are even less pronounced when looking at the comparison of inflation rates in Figure 10.

Taking these comparisons at face value indicates that the full demand system estimation does
not strongly reject the case of weakly separable preferences. Further, the price index along with
inflation from the full demand system and from the weakly separable preferences are remarkably

standard errors obtained from the standard covariance matrix are not (see Andrews, 1999, 2002). This should be
kept in mind with the standard errors presented here.



30

0.0 0.1 0.2 0.3 0.4 0.5

Owned Dwellings
Oper. and Furnish.

Entertainment
Oth. Vehicle Exp.

Health
Food Away

Apparel
Education

Other Lodging
Public Transport
Other Expenses

Personal Care
Alc. beverages

Reading
Food Home

Rented Dwellings
Utilities

Gasoline
Phone

Tobacco
Water

Figure 8. Point estimates for the taste parameters ωj and θj of the full demand system.

Notes. The figure shows the estimated taste parameters from the full demand system estimation. Results
are for the closest local minimum to the weakly separable case which has been used as initial guess for
the parameters.

1995 2000 2005 2010 2015 2020

1.0

1.2

1.4

1.6

1.8

Pr
ice

 In
de

x

Full demand system

1995 2000 2005 2010 2015 2020

Weak separability

1. decile (poor)
6. decile
PIGL RA

2. decile
7. decile

3. decile
8. decile

4. decile
9. decile

5. decile
10. decile (rich)

Figure 9. Comparison of the G-SV price index for the full demand system and under weak separability.

close and do not change any of our main conclusions.

8 Conclusion

We derive a nonhomothetic cost-of-living index which allows us to describe inflation heterogeneity
along the full expenditure distribution. The cost-of-living index is microfounded with PIGL
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Figure 10. Comparison of the G-SV inflation for the full demand system and under weak separability.

preferences and we show that it can be computed without a full demand system estimation
if weak separability of consumption goods into necessary and luxury goods is imposed. The
theoretical rigor and practical simplicity of our index makes it especially appealing compared to
other approaches previously taken in the literature on inflation heterogeneity.

The price index generalizes several classes of homothetic price indices, some of them particularly
interesting for their superlative property. We present results for generalized Sato-Vartia, Törn-
qvist, geometric Walsh, Theil, Fisher and arithmetic Walsh price indices. Homothetic indices
such as the Sato-Vartia and Törnqvist are used in previous empirical studies to approximate
inflation heterogeneity by computing separate price indices for different income groups. We show
that this approach can be rationalized through the lens of our framework but the usual caveats
of the group-specific approach still apply.

Our empirical results show that from 1996 to 2020 there was a substantial heterogeneity in
inflation between poorer and richer households in the US. The particular striking result we find is
that while mean inflation is around 2.25 percent for everyone, the standard deviation of inflation
has been 2.14 for the poor compared to 0.85 for the rich. Thus, inflation volatility is 2.5 times
higher for the poor.

We find that poorer households are much more exposed to the highly volatile inflation rates of
food, gas and utilities compared to the rich. We furthermore show that substitution behavior
is only of second-order importance. Our findings hence suggest that in order to uncover the
fundamental drivers of inflation inequality it is first and foremost important to understand
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why households make the consumption choices they do and what the explanation for inflation
heterogeneity across product groups is.
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A Proofs and Extensions

A.1 Proof of Proposition 1

Proof. Inverting the indirect utility function (4) gives the expenditure function

c(u,p) =
[
1 + ε

(
u+ ν

γ

{(
D(p)
B(p)

)γ
− 1

})] 1
ε

B(p).

Suppose that the reference utility u corresponds to the expenditure level in some base period s

such that c(u,ps) = es and u ≡ V (es,ps). Using the indirect utility function (4) to substitute
this into some period-t expenditure function and rearranging terms yields

c(u,pt) = es

[
1 + ε ν

γ

(
B(ps)
es

)ε (D(ps)
B(ps)

)γ {(D(pt)
D(ps)

)γ (B(pt)
B(ps)

)−γ
− 1

}] 1
ε B(pt)
B(ps)

= es

[
1 + εwDs

γ

{(
PDt
PBt

)γ
− 1

}] 1
ε

PBt

= es

[(
1 − εwDs

γ

)
P γBt + εwDs

γ
P γDt

] 1
γ

· γ
ε

P
1− γ

ε
Bt ,

where the second equality uses PBt ≡ B(pt)/B(ps), PDt ≡ D(pt)/D(ps) and the expenditure
share (5). By the Konüs definition (1), the cost-of-living index is then

PPIGLt =
[(

1 − εwDs
γ

)
P γBt + εwDs

γ
P γDt

] 1
γ

· γ
ε

P
1− γ

ε
Bt = P̃

γ
ε
t P

1− γ
ε

Bt . (A.1)

Since P̃t has a CES form, we may define hypothetical budget shares corresponding to this price
function by

ψBt ≡
(

1 − εwDs
γ

)(
PBt

P̃t

)γ
and ψDt ≡ εwDs

γ

(
PDt

P̃t

)γ
, (A.2)

with ψBs = 1 − εwDs/γ and ψDs = εwDs/γ. These shares ensure that the price index remains at
the same utility level; wDs(PDt / P̃t)γ is the expenditure share of the D basket at period-t prices



37

that prevails at the same utility level as wDs. To see this, use the expenditure share (5) to get

wDt = ν

(
B(pt)
et

)ε (D(pt)
B(pt)

)γ
(by (5))

= ν

(
B(ps)
es

)ε (D(ps)
B(ps)

)γ esP γ
ε
DtP

1− γ
ε

Bt

et

ε (by (3))

= wDs

P γ
ε
DtP

1− γ
ε

Bt

PtQt

ε (by (5) and et/es = PtQt)

= wDs

(
PDt

P̃t

)γ
Q−ε
t (by (A.1)).

The third equality uses the decomposition et/es = PtQt, where Pt is the Konüs price index and
Qt the corresponding quantity index. Along the same indifference curve as wDs, we necessarily
have Qt = 1 for all t, and the result then immediately follows. Equation (A.2) allows us to write
P̃t as a Sato-Vartia index. The procedure is the same as in the standard case: solve for P̃t from
the shares in Equation (A.2), take logs, multiply by the difference in shares over time, sum over
both B and D and solve for P̃t. For C ∈ {B,D}, the first two steps yields

ln P̃t = lnPCt − 1
γ

ln
(
ψCt
ψCs

)
⇐⇒ − 1

γ
= ln P̃t − lnPCt

lnψCt − lnψCs
.

Multiplying both sides by ψCt − ψCs, summing over both C ∈ {B,D}, and rearranging terms
results in

ln P̃t
∑

C∈{B,D}

ψCt − ψCs
lnψCt − lnψCs

=
∑

C∈{B,D}

ψCt − ψCs
lnψCt − lnψCs

lnPCt.

Then solving for P̃t yields

P̃t = P ϕtDtP
1−ϕt
Bt , where ϕt ≡ L(ψDt, ψDs)

L(ψDt, ψDs) + L(ψBt, ψBs)
. (A.3)

Plugging Equation (A.3) into Equation (A.1) gives the household-level price indices.

Because a representative level of expenditures eRA exists over any group of households, group-
level behavior is characterized by the same indirect utility function and expenditure function as
household-level behavior.16 Aggregate-level cost-of-living indices are therefore derived identically

16 This can be shown by substituting for eRA = eκ− 1
ε in the aggregate expenditure share (9) and integrating

to obtain the group-level indirect utility function.
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to above, with the only difference that group-level expenditure shares wDs and representative
levels of expenditure eRA are used instead of household-level ones.

A.2 Proof of Corollary 1

Proof. The result is immediate by setting both PDt and PDt to either the quadratic-mean-of-
order-r index (14) or the Theil-Sato index (15) and substituting these into the general PIGL
index (11). We only need to rewrite (14) into a geometric-mean form. Balk (2004) does this
for the Fisher ideal index (r = 2), and the generalization to any r > 0 is analogous. As in
Corollary 1, define

PLt =

 ∑
j∈J

wjs

(
pjt
pjs

) r
2

 2
r

and PPt =

 ∑
j∈J

wjt

(
pjt
pjs

)− r
2

− 2
r

,

such that the quadratic-mean-of-order-r index (14) can be written Pt =
√
PLtPPt. PLt weighs

price changes by base-period expenditure shares while PPt uses current-period expenditure
shares, and the definition nests the Laspeyres and Paasche indices as the special case where
r = 2, thus motivating the L and P notation. By the definition of PLt and the logarithmic mean,
it holds that

0 =
∑
j∈J

wjs

(
pjt
pjs

) r
2

− P
r
2
Lt =

∑
j∈J

wjs

[ (
pjt
pjs

) r
2

− P
r
2
Lt

]

=
∑
j∈J

wjs L

(( pjt
pjs

) r
2 , P

r
2
Lt

)
ln
(
pjt/pjs
PLt

) r
2

= r

2
∑
j∈J

w̃Ljt

[
ln
(
pjt
pjs

)
− lnPLt

]
,

with w̃Ljt defined as in Corollary 1. Solving for lnPLt, we get

lnPLt =
∑
j∈J

w̃Ljt∑
i∈J w̃Lit

ln
(
pjt
pjs

)
.

Identical steps for PPt yields

lnPPt =
∑
j∈J

w̃Pjt∑
i∈J w̃Pit

ln
(
pjt
pjs

)
,
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with w̃Pjt defined as in Corollary 1. Substituting these into the overall index Pt yields

Pt =
∏
j∈J

(
pjt
pjs

)δjt
, where δjt ≡ 1

2

[
w̃Ljt∑
i w̃Lit

+
w̃Pjt∑
i w̃Pit

]
,

and we are done.

A.3 Proof of Proposition 3

Proof. If preferences are of the Cobb-Douglas form V (e,p) =
[

e
B(p)1−νD(p)ν

]
, then the cost-of-

living index is Pt = P 1−ν
Bt P νDt by Proposition 1. If PBt and PDt are Törnqvist indices, Corollary 1

and Assumption 1 allow us to write this index as

Pt =
∏
j∈JB

(
pjt
pjs

)(1−ν)δBjt ∏
j∈JD

(
pjt
pjs

)νδDjt
, δCjt =

wCjs + wCjt
2 , C ∈ {B,D}, (A.4)

where JB and JD denote the sets of goods in B and D, respectively. (Under the weak separability
assumption, it holds that JB ∪ JD = J and JB ∩ JD = ∅.) Meanwhile, the standard Törnqvist
index reads

Pt =
∏
j∈J

(
pjt
pjs

)δjt
, δjt = wjs + wjt

2 . (A.5)

Equations (A.4) and (A.5) are equal if (1 − ν)δBjt = δjt for j ∈ JB and νδDjt = δjt for j ∈ JD.
Under Cobb-Douglas preferences, ν = wD is the homothetic and time-invariant expenditure
share on D. Under the weak separability assumption, the total expenditure share on good
j ∈ JC , C ∈ {B,D}, is given by wj = wC w

C
j . Thus,

(1 − ν)δBjt = wB
wBjs + wBjt

2 = wjs + wjt
2 = δjt, j ∈ JB,

νδDjt = wD
wDjs + wDjt

2 = wjs + wjt
2 = δjt, j ∈ JD,

and it follows that the Törnqvist index under weak separability (A.4) is the same as the standard
Törnqvist index (A.5).

A.4 Allowing for Heterogeneity in Tastes

Redding and Weinstein (2020) stress the importance of accounting for heterogeneity in tastes for
the cost of living and it is possible to extend the baseline framework to allow for this. Following
Cravino, Levchenko and Rojas (forthcoming), let the preferences of household h be characterized
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by an indirect utility function of the form

Vh(eh,p) = 1
ε

[(
eh
B(p)

)ε
− 1

]
− νh

γ

[(
D(p)
B(p)

)γ
− 1

]
, (A.6)

where the only difference to the PIGL specification in Equation (4) is that we allow the taste
parameter νh to vary across households (and time). As before, the expenditure share of the
latent good with price function D(·) is given by Roy’s identity as

wDh = νh

(
B(p)
eh

)ε (D(p)
B(p)

)γ
,

and the corresponding aggregate expenditure share over any N households is now

wD =
(
B(p)
e

)ε (D(p)
B(p)

)γ
κ, where κ ≡ 1

N

N∑
h=1

νh

(
eh
e

)1−ε
.

A representative expenditure level eRA = eκ− 1
ε therefore exists and incorporates any heterogeneity

in tastes. Substituting back into the aggregate expenditure share wD and integrating back yields
aggregate-level behavior characterized by the indirect utility function

V (eRA,p) = 1
ε

[(
eRA

B(p)

)ε
− 1

]
− 1

γ

[(
D(p)
B(p)

)γ
− 1

]
,

with corresponding expenditure function

c(uRA,p) =
[
1 + ε

(
uRA + 1

γ

{(
D(p)
B(p)

)γ
− 1

})] 1
ε

B(p).

This expenditure function is independent of the taste parameters νh. We can therefore follow the
same steps as in Section A.1 to derive an identical price index as in Proposition 1. Again, this
index is only a function of the base-period expenditure share for the D basket, price indices PDt
and PBt, and the parameters ε and γ. Heterogeneity in the taste parameters νh only affect the
price index indirectly to the extent that they affect expenditure shares. Whenever expenditure
shares are observed in the data, we therefore do not need to know these individual tastes to
compute the price index. We obtain the same result for household-level cost-of-living indices as
the special case where N = 1.

Taste heterogeneity also poses no challenge with respect to estimating ε and γ. Since PIGL pref-
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erences aggregate consistently, it is possible to estimate these parameters from a aggregate data
without any aggregation bias. Therefore, taking an aggregate time series and estimating

wDt =
(
B(pt)
et

)ε (D(pt)
B(pt)

)γ
κt,

where κt is just a standard time fixed effect, is sufficient and we therefore avoid the need to
estimate all the household-level effects νh.

A.5 Allowing for Hump-Shaped Expenditure Shares

Banks, Blundell and Lewbel (1997) stress the importance of allowing for hump-shaped expenditure
shares to match the microeconomic data and it is possible to extend the baseline framework to
allow for this at the household level. Following Alder, Boppart and Müller (forthcoming), let
preferences be characterized by an indirect utility function of the form

V (e,p) = 1
ε

[(
e−A(p)
B(p)

)ε
− 1

]
− ν

γ

[(
D(p)
B(p)

)γ
− 1

]
, (A.7)

where the only difference to the PIGL specification in Equation (4) is the addition of a linearly
homogeneous function A(p) of prices. The expenditure shares of the three latent goods with
price functions A(·), B(·) and D(·) are given by Roy’s identity as

wA = A(p)
e

, (A.8)

wB =
(

1 − A(p)
e

)[
1 − ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ]
, (A.9)

wD =
(

1 − A(p)
e

)
ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ
. (A.10)

The shares wAj , wBj and wDj of total A, B and D expenditures allocated to an individual good
j are given as before by wCj = pjCj(p)/C(p), C ∈ {A,B,D}. Together with Equations (A.8)
to (A.10), this implies an expenditure share wj of good j in total expenditures of the form

wj = pj

{
A(p)
e

Aj(p)
A(p)

+
(

1 − A(p)
e

)[
Bj(p)
B(p) +

(
Dj(p)
D(p) − Bj(p)

B(p)

)
ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ ]}
. (A.11)
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Since the first term on the right-hand side of (A.11) is decreasing in e while the second term can
be either increasing or decreasing in e, this allows for expenditure shares that are non-monotonic
in expenditures. The derivation of the exact price index of (A.7) is virtually identical to the
PIGL case in Section A.1. The corresponding expenditure function of (A.7) is

c(u,p) =
[
1 + ε

(
u+ ν

γ

{(
D(p)
B(p)

)γ
− 1

})] 1
ε

B(p) +A(p).

Suppose again that the reference utility u is that corresponding to the expenditure level in some
base period s such that c(u,ps) = es and u ≡ V (es,ps). Using the indirect utility function
(A.7) to substitute this into some period-t expenditure function, rearranging terms, and using
PCt = C(pt)/C(ps) together with Equations (A.8) to (A.10) yields

c(u,pt) = es

{(
1 − wAs

)[(
1 − ε

γ

wDs
1 − wAs

)
P γBt + ε

γ

wDs
1 − wAs

P γDt

] 1
γ

· γ
ε

P
1− γ

ε
Bt + wAsPAt

}
,

and it follows that the price index is

P IAt = (1 − wAs)P̃
γ
ε
t P

1− γ
ε

Bt + wAsPAt

where

P̃t ≡
[(

1 − ε

γ

wDs
1 − wAs

)
P γBt + ε

γ

wDs
1 − wAs

P γDt

] 1
γ

.

Writing P̃t as a Sato-Vartia index, we finally obtain the household-level cost-of-living index

P IAt = (1 − wAs)P
γϕt
ε

Dt P
1− γϕt

ε
Bt + wAsPAt,

where ϕt is a Sato-Vartia weight as in Proposition 1 with

ψBt ≡
(

1 − ε

γ

wDs
1 − wAs

)(
PBt

P̃t

)γ
and ψDt ≡ ε

γ

wDs
1 − wAs

(
PDt

P̃t

)γ
.

This index is a direct generalization of Proposition 1 and, as before, is computable given
expenditure shares wAs, wDs, price indices PAt, PBt, PDt and parameter values for ε and γ.
Similarly to Proposition 2, under Assumption 1 and appropriate choices for PAt, PBt and
PDt, estimation reduces to only the two parameters ε and γ which are readily obtained from
Equations (A.8) and (A.10).



43

Unlike the baseline framework, however, these preferences do not aggregate as easily. As shown
in Alder, Boppart and Müller (forthcoming, Proposition 2), aggregate expenditure shares over
N households are now

wA = A(p)
e

,

wB =
(

1 − A(p)
e

)[
1 − ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ]
κ,

wD =
(

1 − A(p)
e

)
ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ
κ.

where

κ ≡ 1
N

N∑
h=1

(
eh −A(p)
e−A(p)

)1−ε
.

Unlike the PIGL case, there is no representative level of expenditure in Muellbauer’s (1975,
1976) sense, even though a representative agent exists.17 Therefore, it is not possible to bake in
the parameter κ into some representative level of expenditure and proceed as for an individual
household. Instead, the expenditure function of the representative agent is now

c(uRA,p) =
[
1 + ε

(
uRA + ν κ

γ

{(
D(p)
B(p)

)γ
− 1

})] 1
ε

B(p) +A(p).

Similar steps as before gives an aggregate price index of the same form as above, P IAt =

(1 − wAs)P
γϕt
ε

Dt P
1− γϕt

ε
Bt + wAsPAt, but with weights given by

ψBt ≡
(

1 − ε

γ

κt
κs

wDs
1 − wAs

)(
PBt

P̃t

)γ
and ψDt ≡ ε

γ

κt
κs

wDs
1 − wAs

(
PDt

P̃t

)γ
.

where

P̃t ≡
[(

1 − ε

γ

κt
κs

wDs
1 − wAs

)
P γBt + ε

γ

κt
κs

wDs
1 − wAs

P γDt

] 1
γ

.

Thus, to compute aggregate price indices, we now either need to know the inequality measures κ
in the time periods considered, or we need to impose the rather strong assumption that these
measures remain constant over time for all groups considered.

17 The expenditure level eRA that induces the average expenditure shares for A and D are given by eRA = e

and
(
1 − A(p)

eRA

) (
eRA − A(p)

)−ε =
(
1 − A(p)

e

) (
e − A(p)

)−ε
κ, respectively, and these generally differ.
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B Additional Figures and Tables

Table B.1. CEX-CPI crosswalk.

CEX category CPI name CPI code

1 Food at home Food at home SAF11
2 Food away from home Food away from home SEFV
3 Alcoholic beverages Alcoholic beverages SAF116
4 Rented dwellings Rent of primary residence SEHA
5 Owned dwellingsa Owners’ equivalent rent of primary residence SEHC
6 Other lodging Lodging while out of townb MUUR0000SE2102

Lodging away from homeb SEHB
7 Utilities Household energy SAH21
8 Water Water and sewerage maintenance SEHG01
9 Phone Communication SAE2
10 Household F&Oc Household furnishings and operations SAH3
11 Apparel Apparel SAA
12 Gasoline Motor fuel SETB
13 Other vehicle expenses Motor vehicle maintenance and repair SETD

Motor vehicle insurance SETE
Motor vehicle fees SETF

14 Public transportation Public transportation SETG
15 Health Medical care SAM
16 Entertainment Recreation SAR
17 Personal care Personal care SAG1
18 Reading Recreational reading materials SERG
19 Education Education and communcation SAE
20 Tobacco Tobacco and smoking products SEGA
21 Other expenses Miscellaneous personal services SEGD

Notes. The CEX categories follow the hierachical groupings defined by the BLS. CPI are non-seasonally
adjusted nationwide data for urban consumers. a. Rental equivalence value of owned dwellings as
reported by the households. b. “Lodging away from home” from 1995–1997 and “lodging while out
of town” afterwards. c. Furnishing and operations, includes “household operations”, “housekeeping
supplies” and “household furnishings and equipment”.
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Figure B.1. PIGL representative agent G-SV price index for different base years.

Notes. The price index is calculated under weak separability. Each line represents the representative
agent price index for a different base year, but normalized to one in 1995.
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Figure B.2. G-SV price index in 2014 by expenditure decile for different base years.

Notes. The price index is calculated under weak separability. The horizontal axis describes the base year
of the price index and the vertical axis the respective value of the price index in 2014. Price indices are
all normalized to one in 1995. The price index for each expenditure decile is calculated as the price index
of the PIGL representative agent over households within each respective decile.
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Table B.2. Marginal effect of a change in expenditure decile on expenditure share.

Dependent variable: Expenditure share (in %)

Luxuries

Owned Dwellings 1.757
(0.019)

Oper. and Furnish. 0.690
(0.010)

Entertainment 0.386
(0.006)

Other Lodging 0.303
(0.005)

Food Away 0.299
(0.005)

Education 0.280
(0.006)

Health 0.215
(0.007)

Public Transport 0.137
(0.003)

Oth. Vehicle Exp. 0.124
(0.006)

Other Expenses 0.105
(0.002)

Apparel 0.098
(0.004)

Alc. beverages 0.044
(0.001)

Personal Care 0.031
(0.001)

Reading 0.028
(0.001)

Necessities

Food Home -2.031
(0.012)

Rented Dwellings -1.496
(0.017)

Utilities -0.362
(0.004)

Gasoline -0.219
(0.004)

Phone -0.186
(0.003)

Tobacco -0.158
(0.003)

Water -0.045
(0.002)

Expenditure Category Dummies Yes
Observations 1,562,211
Adjusted R2 0.579

Standard errors in parentheses.

Notes. The table shows the coefficient estimates from a weighted least square regression of expenditure
share on the expenditure decile interacted with individual good dummies using household weights. We
include expenditure category dummies and cluster standard errors on household level.
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Figure B.3. Distribution of the G-SV price index under weak separability.

Notes. The gray shaded area shows the kernel density estimate of the distribution of G-SV price indices.
The index is calculated for each household in the sample of 1995. The blue line shows the PIGL RA price
index for the poorest 10 percent. The red line shows the PIGL RA price index for the richest 10 percent.
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Figure B.4. Distribution of the G-SV inflation under weak separability.

Notes. The gray shaded area shows the kernel density estimate of the distribution of inflation rates.
The inflation is calculated for each household in the sample of 1995. The blue line shows the PIGL RA
inflation for the poorest 10 percent. The red line shows the PIGL RA inflation for the richest 10 percent.
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Figure B.5. Expenditures over the life cycle.

Notes. The blue line shows the estimated life-cycle expenditures, α̂i’s, from the model in Equation (21).
The orange line shows smoothed expenditure levels using a Locally Weighted Scatterplot Smoothing
(LOWESS). All measures are relative to the smoothed expenditure level at age 25.
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Figure B.6. Inflation decomposition by expenditure categories.
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Abstract

We study how the quality of households’ consumption baskets varies with income
using detailed household-level panel data on purchases. By exploiting the randomized
disbursement timing of the Economic Stimulus Payments of 2008, we show that
households increased spending when receiving the payment and spent more money
on goods of higher quality. While the spending effects are concentrated among
low-income households, the quality effects are driven by middle-income households.
These findings support the theory of nonhomothetic demand. To model this, we
embed nonhomothetic preferences over quantity and quality in an otherwise standard
buffer-stock model. Contrary to the standard model, the nonhomothetic model can
be used to match that the marginal propensity to spend is decreasing in income.
Moreover, the calibrated model implies that households trade up in the quality of
consumption when receiving a transitory income payment. Compared to the standard
model, our nonhomothetic model also generates a more unequal wealth distribution,
which is closer to the data.
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1 Introduction

We explore one of the key aspects underlying households’ consumption-saving decisions: the
composition of their consumption baskets. The paper makes two empirical contributions using
detailed data on U.S. household purchases. First, we show that households not only increase their
spending but also the quality of products purchased when they receive an exogenous and positive
transitory shock to income. Second, we show that the quality response is hump-shaped over
the income distribution. For several reasons, this is important. In its own right, it deepens our
understanding of consumer behavior. When studying aggregate consumption-saving dynamics,
it furthermore delivers two key implications. Firstly, household preferences are nonhomothetic.
Secondly, the hump-shaped quality response to a transitory income shock delivers a new fact to
test model predictions against. To demonstrate the importance of our findings, we develop a
model with heterogeneous household demand. The key novelty of the model is that it features
nonhomothetic preferences, which stem from a microfounded consumption choice, where quality
of the goods consumed enters the decision problem. Consistent with our empirical findings, the
model predicts a hump-shaped quality response following a transitory income shock.

To set the stage, we first build a static model which embeds quality of goods in the utility
function of the household. This allows us to show how consumption behavior depends on income
via the quality channel. The model is similar to that of Handbury (2021) and Faber and Fally
(2021) and distinguishes itself from standard models in two ways. First off, goods are grouped
into product modules – such as fresh milk, shampoo and beer – and the expenditures allocated to
each group depends on income via a Cobb-Douglas aggregator. Second, the quality of each good
enters multiplicatively with the quantity of the same good in a constant elasticity of substitution
(CES) utility function over all goods within a product module. Specifically, households’ tastes
for quality depend on income, which makes preferences nonhomothetic.

The static model lends itself in a useful way to an empirical investigation of the postulated
channels. Most importantly, we answer the following questions: Does demand for quality depend
on income? If yes, does quality demand also respond to transitory income shocks? Do product
module expenditure shares depend on income? If yes, do they also depend on transitory income
shocks? In chronological order, the answers are yes, yes, yes and no, and this serves as the
justification of the exact specifications in the static model. We establish these results using
detailed household-level panel data on purchases in 2008 from the Nielsen Consumer Panel
Data (CPD) combined with scanner data for retail prices from the Nielsen Retail Scanner Data
(RSD). Since the data set does not contain any measures of product quality, we construct a
proxy for the quality of an individual product as its price relative to other products in the same
product module. This approach to measuring quality is traditionally used in the literature (e.g.
Jaimovich, Rebelo and Wong, 2019; Jaimovich et al., 2020; Argente and Lee, 2021; Michelacci,
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Paciello and Pozzi, 2021) and is based on the assumption that consumers are willing to pay more
for a product relative to other similar products because they perceive it to be of higher quality.
Using this approach, we construct various quality indices that control for product size and link
these to each household’s purchases to construct a household-level measure of consumption
quality.

Our empirical analysis proceeds in two steps. In the first step, we show that households with high
income buy higher quality products than poorer households. Similarly, households that spend
more also buy products of higher quality. These findings hold across almost all product modules
and is robust to controlling for various demographic factors. We also document heterogeneity in
the spending shares of product modules across the income distribution. In step two, we estimate
households’ spending and quality response to a positive transitory income shock in an event
study research design. This is done by following the methodology of Broda and Parker (2014)
and exploiting the randomized disbursement timing contained in the Economic Stimulus Act
of 2008. Following this act, U.S. households received, on average, $900 in Economic Stimulus
Payments (ESPs) during the spring and summer of 2008. Our estimates show that households
not only temporarily increase spending when receiving an ESP, but also the quality of their
purchases. When splitting our estimates by tertiles of annual income, we estimate that while the
nominal spending response is higher for low-income households, the quality response is driven by
both low and middle-income households. We find no significant evidence of spending switching
across product modules when receiving an ESP.

Lastly, we incorporate the static model into a dynamic consumption-saving setup. This implies
that the dynamic model features nonhomotheticities in consumption. Except from these non-
homotheticities, the model is similar to the classical Deaton-Carroll buffer-stock model. While
heterogeneous agent models have emerged as one of the most popular modeling frameworks
in contemporary macroeconomics, only very few papers have used this framework to study
heterogeneity in consumption baskets. In this paper, we bridge the gap between the recent
literature on quality in consumption and the rapidly growing literature on heterogeneous agent
models. As a key building block in this, we show how the static model can be expressed in a
tractable way and subsequently built into the buffer-stock model.

We use the relative marginal propensity to consume (MPC) out of the ESPs between income
groups as moments to calibrate the nonhomothetic model. A feature of the model is that it
allows us to match these moments whereas the standard model does not.1 Unconvincingly, the
standard model not only misses the quantitative aspect but also predicts a positive relationship
between permanent income and the MPC out of transitory income shocks. We do not target the
estimates for the consumption quality response to the ESPs in our calibration, but assuringly

1 Throughout, we will refer to the model with quality in consumption as the nonhomothetic model and to the
classical buffer-stock model as the standard model.
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our model predicts an inverse U-shaped relationship between permanent income and the quality
response to a transitory income shock, which we also find in the data. We take both of these
features of the nonhomothetic model to be evidence of the model successfully accommodating
our empirical findings. To demonstrate the implications of taking quality in consumption into
account, we show that this, among other things, implies that the wealth inequality increases
more than threefold compared to the standard model.

Our work is related to four strands of literature. First, several papers have highlighted the link
between business cycles and quality of consumption. Argente and Lee (2021) and Jaimovich,
Rebelo and Wong (2019) show that households traded down in their consumption quality
during the Great Recession, Jaimovich et al. (2020) document that household spending on
high-quality products rises with income, and Jørgensen and Shen (2019) find that households’
consumption quality is negatively correlated with local unemployment fluctuations. These
papers emphasize how households’ quality choice creates heterogeneity in inflation rates due
to heterogeneous consumption baskets across the income distribution (Argente and Lee, 2021),
restricts the ability of low-income households’ to smooth consumption (Jørgensen and Shen,
2019), and that the relatively high labor-intensity of high-quality products amplifies output and
employment fluctuations in business cycle models as well as affects skill premia in the labor
market (Jaimovich, Rebelo and Wong, 2019; Jaimovich et al., 2020). Our work differs from
these paper by relating quality choice to a clearly transitory increase in income and exploring
theoretically how consumption-saving behavior is affected in a buffer-stock model.

Second, this paper is related to an extensive literature on the estimation of marginal propensities
to consume out of transitory income shocks. Most related are the papers by Sahm, Shapiro and
Slemrod (2010), Parker et al. (2013), Broda and Parker (2014), Parker (2017) and Parker and
Souleles (2019). They also exploit the 2008 ESPs to estimate marginal propensities to consume.
However, these papers only consider responses in the dollar amount of spending without analyzing
what kind of products enter households’ consumption basket. To our knowledge, the only other
paper that touches upon this is Michelacci, Paciello and Pozzi (2021). However, they focus on
the adoption of new products rather than adjustments in the quality of products.

Third, our theoretical exercise is related to the literature studying consumption-saving behavior
in buffer-stock models going back to the seminal work of Angus Deaton and Christopher Carroll
(Deaton, 1991; Carroll, 1992; Deaton, 1992). Some authors have incorporated nonhomothetic
preferences into these types of models through a bequest motive (De Nardi, 2004; Straub, 2019)
or by including wealth directly into the utility function (Carroll, 2002). A few of these papers
also analyze how households choose between quantity and quality but do so by modeling the
choice between quantity and quality as the choice between basic and luxury goods (Wachter and
Yogo, 2010; Campanale, 2018).
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Lastly, our modeling approach is based on a framework in which nonhomotheticities are modeled
as changing tastes for quality as in the work by Handbury (2021) and Faber and Fally (2021).
This framework has been used extensively in international trade (e.g. Feenstra (1994) and
Verhoogen (2008)) and the literature on estimation of price indices such as Broda and Weinstein
(2010) and Redding and Weinstein (2019).

The paper proceeds in the following way. In Section 2, we present a static model in which
preferences for different types of goods with different levels of quality depend on income. Section 3
describes the data while Section 4 presents the empirical evidence on the relationship between
consumption quality and transitory income shocks that we use to discipline our model. Next, we
incorporate the static model into a dynamic setup in Section 5 and explore the implications for
and of consumption-saving behavior. Section 6 concludes.

2 Static model

In this section, we present a static model in which households derive utility from consuming
goods that vary in terms of quality. It is important for two reasons. Firstly, it is directly related
to our data presented in Section 3 and thus constitutes a close link between the empirical analysis
and our modeling framework. It further disciplines our empirical analysis and acts as a guiding
tool for understanding exactly how our empirical results feed back into the model. Secondly,
when we set up the dynamic consumption-saving model, we build it on the microfoundation
outlined in this section. Hence, this section provides intuition for the forces acting in the dynamic
model.

2.1 Microfoundation with demand for quality

Borrowing directly from Handbury (2021) and Faber and Fally (2021), households receive an
instantaneous utility from consuming goods that are characterized by belonging to a product
module, m, being of a specific brand/product, i, and being of a given quality, φmi. For every
module m, we denote the set of brands/products Gm. The quality assessment both has an
"intrinsic" term, which is brand/product and module-specific and a "perceived quality" term,
which is household-specific and depends on the income profile, {ξ, P}, of the household. We
distinguish between transitory income shocks, ξ, and permanent income, P , which is conventional
in the consumption-saving literature. The functional form of the instantaneous utility function
is given by

U =
∏
m

 ∑
i∈Gm

(cmiφmi(ξ, P ))
σ−1
σ

αm(P ) σ
σ−1

, (1)
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where σ is the elasticity of substitution between brands/products, αm(P ) is the product module
Cobb-Douglas weight, which depends on permanent income, and cmi denotes quantity of good
mi with quality φmi(ξ, P ). The way we let the product module weights and the quality term
depend on permanent and transitory income is directly motivated by our empirical findings
in Section 4. Specifically, we show that both α and φ depend on permanent income, and in
Section 4.1 we show that only φ depends on transitory income. The quality assessment of a
good is given by

logφmi(ξ, P ) = γ(ξ, P ) log ϕmi, (2)

where ϕmi denotes the intrinsic quality and γ(ξ, P ) denotes the income-specific quality term.

Before proceeding, we note that the utility function in Equation (1) may be re-written in a more
conventional form as

U =
∏
m

 ∑
i∈Gm

c
σ−1
σ

mi bmi(ξ, P )

αm(P ) σ
σ−1

,

where bmi(ξ, P ) ≡ φmi(ξ, P )
σ−1
σ = ϕ

γ(ξ,P )σ−1
σ

mi is the CES weight. From this, two things are worth
noting. Firstly, the way households change their consumption baskets may be thought of as
stemming from changes in the CES weights in the utility function. Second, the effect of an
income shock (irrespective of it being a permanent or transitory income shock) can move these
weights up and down, depending on the intrinsic value of the good.

To get a first impression of how quality matters in our setup, consider the relative demand of
two goods, i and k, within module m, which is given by

log xmi
xmk

= (σ − 1)
[
log φmi(ξ, P )

φmk(ξ, P ) − log Pmi
Pmk

]
, (3)

where Pmi denotes price of good mi and xmi ≡ cmiPmi
X is the expenditure share out of total

expenditures X. From this, it is clear that in the face of an income change, demand is shifted
towards the goods that receive higher relative quality ratings. More so, given that the relative
price and the elasticity of substitution between the two goods is constant, a change in relative
expenditure shares must be due to a change in relative quality assessments. As we shall
demonstrate in our empirical analysis, when households receive a positive, transitory income
shock, relative expenditure shares are shifted toward more expensive goods, and Equation (3)
shows that this may be explained by a relative increase in the quality assessment of the more
expensive good.
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Now, an important step in making the problem more tractable in the dynamic setup is to
reformulate it in terms of indirect utility. In Section A, we show how we can represent Equation (1)
as a function of prices, total expenditures, and income. Specifically, the aggregate price index is
income-specific and given by P(ξ, P ) ≡

∏
m Pm(ξ, P )αm(P ) with the module-specific price index,

Pm(ξ, P ), defined as

Pm(ξ, P ) =

 ∑
i∈Gm

P1−σ
mi φmi(ξ, P )σ−1

 1
1−σ

, (4)

by which we have that

U = X

P(ξ, P )
∏
m

αm(P )αm(P ) = X

P(ξ, P ) ·K(P ). (5)

Hence, utility maximization implies finding the optimal expenditure level given prices and income.
This leads us to specify the utility function more generally as

U = X · f(ξ, P ),

where f ≡ K(P )
P(ξ,P ) captures the nonhomotheticities in consumer demand.

Before proceeding, we note that the utility function implies that households will optimally
consume a positive amount of each product within a module conditional of purchasing products
from that module. It does not imply that households will buy products from all modules. As we
show in Section 3.4, the latter is in accordance with our data since households only purchase
products from around a fifth of the modules.2

2.2 An illustrative, two-period perfect foresight example

To get an idea of how the dynamic model works, we here present a simple two-period perfect
foresight model with instantaneous utility as in Equation (5). Let the problem of the household

2 Households typically only purchase a unique product within a module in a given week, which is at odds with
the CES structure. Nonetheless, we use the CES structure for tractability. Product choice could alternatively be
modeled using a logit discrete-choice framework with quality shifters and household-level taste shocks. This type
of preferences implies that households only consume a unique good within a module but as Faber and Fally (2021)
show, the preferences in equation (1) can be derived from aggregation of discrete-choice preferences across many
households. Equivalently, the preferences in Equation (1) hold at the household level in expectations in the logit
model. These results mirror those of Anderson, Palma and Thisse (1987).
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be given by

max
X1,X2

(
X1·K(P1)
P(ξ1,P1)

)1−ρ

1 − ρ
+ β

(
X2·K(P2)
P(ξ2,P2)

)1−ρ

1 − ρ
, , s.t. X1 +X2 = X̄,

which yields the solution

X1 = X̄
1

β
1
ρ

(
P(ξ2,P2)
P(ξ1,P1)

K(P1)
K(P2)

) ρ−1
ρ + 1

.

For ease of understanding, consider the case under which the household does not discount future
consumption and prefers perfect consumption smoothing, i.e. β = 1 and ρ → ∞, by which the
expression reduces to

X1 = X̄
1

P(ξ2,P2)
P(ξ1,P1)

K(P1)
K(P2) + 1

= s · X̄,

where s ≡ 1
P(ξ2,P2)
P(ξ1,P1)

K(P1)
K(P2) +1

denotes the share, which is spent in period 1 out of total expendi-

tures.

Now, in the standard case, P(ξ1, P1) = P(ξ2, P2) = K(P1) = K(P2) = 1, and hence the household
divides expenditures evenly across the two periods (s = 1

2).

In our case, however, the share depends on the income profile of the household in the two
periods. Say, for example, that the household has a low income in the first period and high
income in the second period. For simplicity, assume that this is purely transitory so that
K(P1) = K(P2). Clearly, s then depends on whether P(ξ1, P1) ≶ P(ξ2, P1). A priori, we cannot
determine the inequality. The calibrated dynamic model in Section 5, however, implies that
P(ξ1, P1) > P(ξ2, P1). This also corresponds to the household valuing quality more when income
is high. In this case, s > 1

2 and the household smooths utility by front-loading expenditures to
the first period. The intuition behind this is that the household, rather than distributing utility
unequally over the two periods, forgoes some consumption of high-quality goods in the second
period in order to increase quantity of the low-quality good in the first period.

3 Data description

We construct a weekly panel of households covering 2008 using the Nielsen Consumer Panel Data,
which is combined with a survey among the households on the Economic Stimulus Payments of
2008. This panel is linked to data from the Nielsen Retail Scanner Data to measure the quality
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of goods purchased at the household level.

3.1 The Retail Scanner Data

The RSD contains weekly pricing and quantity information at the product level from more than
90 retail chains across the contiguous United States. The data set covers approximately 3.2
million products – both food and non-food groceries – sold from over 35,000 different stores
making up about half of all sales from food and drug stores and a third of all sales from mass
merchandisers. Data is recorded at the point-of-sale, which can be matched with geographic
identifiers for each store down to the zip-code level.

Products are identified by their Unique Product Code (UPC) – i.e. barcode – and we treat each
of these UPCs as an individual product indexed by i. Additionally, the brand of each product
is indicated in the data. UPCs are grouped into an hierarchical structure by Nielsen. At the
most granular level, UPCs are grouped into 1,086 product modules, which we index by m.3

The modules are grouped into around 120 product groups, which are aggregated to 11 product
departments. Figure 1 shows an example of the rich detailedness of the data. The product
department dry grocery has a product group called snacks, which has a product module called
snacks – potato chips. One of the UPCs in this module is a 2-pack of Pringles Sour Cream and
Onion tubes, which belongs to the brand Pringles.

Department: Dry grocery

Group: Snacks

Module: Potato chips

UPC: 2-pack of Pringles Sour Cream and Onion tubes

Figure 1. Example of data structure

Nielsen also provides information on the attributes of each UPC such as size in physical units
(e.g. 2 liters of milk or 1 pounds of nuts) and multi-pack information on how many of those
goods appear in a given pack (e.g. a six-pack of soda or a carton of 8 eggs). We treat all
possible combinations of physical units and multi-pack information within a module m as a
unique product size indexed by s ∈ Sm.

The UPCs of private-label products are altered by Nielsen who assign the same UPC to private-
label products with identical core attributes, while the brand code assigned to all private-label

3 In addition, there are slightly fewer than 200 modules consisting of so-called magnet products that do not
use regular UPCs and are only tracked in the CPD (typically fresh produce). We exclude products from these
modules from our data.
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products is the same. This is done to preserve the anonymity of the retail stores reporting data
to Nielsen. We include all products in our analysis, which effectively means that we might lump
some different private-label UPC with identical attributes together into a single UPC within a
module. More importantly, all private-label products are lumped into the same brand within
each module. For example, two private-label products in the module ground and whole bean
coffee get the same brand code even though they are two different products sold by two different
retail chains.4

3.1.1 Measuring quality in the Retail Scanner Data

We construct a number of quality indices for products in the RSD using the relative prices
of similar products as a proxy for quality.5 The assumption underlying this approach is that
quality is an intrinsic product attribute that all consumers agree on. As in the static model
of quality choice presented in Section 2, consumers agree on the quality ordering of products
within a module through the intrinsic quality term, ϕmi, in Equation (2). However, they do not
necessarily agree on how they value quality as a product attribute. This leads to a quality ranking
of products within each product module that is equal to the ranking of prices on average.6

Our first index – henceforth, the size-based quality index – measures the quality of a product
relative to other products of the same size, s, sold within its product module, m, and core-
based statistical area (CBSA), c.7 E.g., we compare the price of a six-pack of 12 oz Coke
cans to the price of a six-pack of 12 oz Pepsi cans that are both sold in the Dallas-Forth
Worth-Arlington metropolitan area. We construct CBSA-specific quality indices to account
for geographic differences in product assortment that limit households’ ability to climb up or
down the entire national quality ladder. Indeed, Handbury (2021) shows that there are large,
systematic differences in product assortment across cities since stores in wealthy cities cater to
high-income households by skewing their assortment toward high-quality products. Moreover,
we compare the prices of similar-sized products to take into account that large sized items are
often cheaper (Nevo and Wong, 2019).

The weekly prices of each product are converted into an annual quantity-weighted average

4 Dubé, Hitsch and Rossi (2018) show that there has been a rise in the market share of private-label products
in the Nielsen data over the last decade, while Nevo and Wong (2019) document that households purchased
more private-label products during the Great Recession. Also Stroebel and Vavra (2019) show that homeowners
purchase fewer private-label products when local house prices rise, while Dubé, Hitsch and Rossi (2018) estimate
a negative effect of income on private-label purchase shares.

5 As mentioned earlier, Jørgensen and Shen (2019), Jaimovich et al. (2020), and Argente and Lee (2021) take
a similar approach to measuring quality of products in the Nielsen data.

6 Other authors have confirmed a positive correlation between prices and other measures of quality. For
example, Jaimovich, Rebelo and Wong (2019) find a positive correlation between customer ratings and price of
goods and services using data from Yelp!.

7 CBSAs are geographic areas consisting of one of more counties anchored by an urban center of at least 10,000
people plus adjacent counties that are socioeconomically tied to the urban center by commuting.



63

price, pi,m,s,c, using the prices of all stores selling the product within CBSA c. This removes
seasonalities from the quality measure.

Let the size-based index, qji,m,s,c, be denoted by superscript j. For a product i of size s belonging
to module m and sold in CBSA c, the index is constructed as the standardized log-distance from
the product’s annual price to the median annual price, p̄m,s,c, of all products of the same size s
in the same module m and sold in the same CBSA c:

qji,m,s,c = ln pi,m,s,c − ln p̄m,s,c
σm,s,c

(6)

where σm,s,c is the standard deviation of the log-distance of annual prices, ln pi,m,s,c − ln p̄m,s,c.
The index is standardized to allow for comparison of the quality measure across product
modules.8

Naturally, the index cannot be computed for a product that is the only product sold of a given
size in its module within a CBSA. We exclude these products from our analysis.

As alternatives to the first index, we construct two other indices that are based on unit prices
(that is, the price per physical unit of the product). For 334 of the 1,086 product modules, the
products are measured in multiple physical units – e.g. mass and volume – which complicates the
construction of unit prices. However, 181 of these multi-unit modules contain products for which
at least 99 percent are measured in the same physical unit. In this case, we remove the fewer
than 1 percent of products that are of another physical unit and calculate unit prices for the
remaining products. This leaves us with 933 modules for which we calculate unit prices.

Let pui,m,c be the annual quantity-weighted average of the unit price for product i sold in CBSA
c. The unit price-based quality index, qki,m,c, denoted by superscript k, is then the standardized
log-distance to the median price of products in the same module sold in the CBSA:

qki,m,c =
ln pui,m,c − ln p̄um,c

σum,c
. (7)

To assess if households also switch between brands of different quality, we lastly construct a
brand-based quality index, qlb,m,c, denoted by superscript l. The index is constructed in the same
manner as for the unit price-based index but using the quantity-weighted average unit price,

8 A histogram of the quality index is shown in Figure B.1 of Section B. We have also confirmed that the
ranking of products is similar in other years as shown in Section C.
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pub,m,c, of products belonging to a given brand b:

qlb,m,c =
ln pub,m,c − ln p̄um,c

σbm,c
(8)

As with the size-based index, both of these indices are standardized to allow for comparison of
the indices between product modules.

3.2 Measuring household-level quality using The Nielsen Consumer Panel
Data

The CPD is a household panel that includes 61,440 households in 2008.9 The households record
information about which products they buy as well as where and on which date the products
were purchased. In addition, the households provide demographic information such as income,
education, employment status and household composition in the fourth quarter prior to the
panel year. Most of the demographic information is provided in brackets (e.g. income is reported
in 19 brackets). Since panelists are not representative of the U.S. population, Nielsen provides
weights to make the sample representative of the population.

A word of caution is warranted regarding the income variable, which we will use when exploring
heterogeneity in consumption responses. Income in the Nielsen data is self-reported, likely suffers
from non-classical measurement error, and households are asked to report annual income that
they earned two calendar years prior to the panel year. To be exact, households in the 2008
CPD are surveyed in the Fall of 2007 about their annual income in 2006. However, Nielsen
believes that households are actually reporting their annualized income as of the time of the
survey. Thus, the income variable is likely a noisy measure of income in the Fall of 2007.10

For our analysis, we exclude households with annual income below $5,000 – the lowest income
bracket – since we suspect that income reported by these households does not reflect their actual
income. These low-income households constitute very little, only 0.8 percent, of the household
panel in 2008.

Households record information about shopping behavior by scanning barcodes after each shopping
trip using a scanning device. Prices are automatically filled in if the purchase was done at a
store partnering with Nielsen. If not, households must enter the prices themselves. Additionally,
households must enter the number of units purchased of each product and indicate if each
product was on sale or purchased using a coupon. Not all products purchased by the households

9 Panelists are randomly recruited either via mail or through the Internet. They are not paid but provided
incentives to join and stay active. These incentives are designed to be non-biasing in selection of retailers and
products. About 80 percent of panelists are retained each year.

10 Kueng (2018) highlight similar concerns about using self-reported income in the context of estimating the
MPC to payments from the Alaska Permanent Fund.
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are scanned and registered as individual products.11 Some products – such as most apparel –
are not coded by Nielsen and therefore not tracked as individual products. However, the total
expenditures on these not-coded products are still tracked.

We link each product purchase made in week t by household h residing in CBSA c to each of
the three quality indices for CBSA c.12 For each of the three quality indices o ∈ {j, k, l} defined
in Section 3.1, we then construct an aggregate quality measure, Qoh,t, for purchases made in
week t by household h as the expenditure-weighted averages of the quality of the households’
purchases:

Qoh,t =
∑
m

∑
i∈Gm

wi,h,tq
o
i,m,c(h), o ∈ {j, k, l}, (9)

where wi,h,t is the expenditure share of good i in household h’s consumption basket in week t
and qoi,m,c(h) is one of the three quality indices.

Not all purchases can be matched with the quality indices. This is either because 1) the product
only occurs in the CPD data but not the RSD, 2) because the product was bought in another
CBSA and not sold by any store within the household’s CBSA of residence, or 3) the product
is a magnet product for which we do not construct the quality index. In addition, a missing
match occurs if the product is a unique size for the size-based index, if a product is in one of the
modules with multiple physical units for the two indices based on unit prices, or if a product is
a unique brand for the brand-based index.

As mentioned above in Section 3.1, the size-based index has the benefit of comparing products
of the same size to each other. By contrast, the two other quality indices are based on unit
prices and therefore compare products of different sizes. For these two indices, this has the
unfortunate by-product of introducing a negative correlation between the indices and product
size unrelated to actual product quality because larger products are often cheaper per physical
unit. To illustrate this, Figure B.2 in Section B shows binned scatter plots of households’ weekly
expenditure share of their purchases that are in the top 40 percent of the size distribution of
products within product modules against weekly spending in Panel (A) as well as the quality of
their weekly purchases according to the three quality indices in Panels (B)-(D).13 Panel (A) shows
that weekly spending and purchases of large products are positively correlated. Hence, when
households increase spending, they tend to buy larger products as well. There is no systematic
correlation between the quality of purchases according to the size-based index and the purchases
of large products as seen in Panel (B). However, there is a clear negative correlation between

11 Nielsen estimates that around 30 percent of household consumption is covered by the categories tracked in
the data.

12 3,901 of the households do not live in a CBSA. We exclude these households from the data.
13 This definition of large-sized products follows Nevo and Wong (2019).



66

the purchases of large products and quality of purchases according to the unit price-based and
brand-based indices as shown in Panels (C) and (D). Hence, we prefer the size-based index over
the two other indices since it is not affected by product size.

Another weakness of the brand-based index besides it being influenced by product size, is the
presence of private-label products. As mentioned above, all private-label products are lumped
into the same brand within a module. Thus, any switching between private-label brands, either
within or across stores, will not affect the brand-based quality index.14 Private-label products
make up 16.5 percent of households’ annual purchases on average. Moreover, this share is
decreasing in annual spending and income as shown in Figure B.3 of Section B. While 12.8
percent of purchases are private-label products on average for households in the top income
category (those with an annual income above $200,000), the same share is 20 percent on average
for households in the bottom income category (those with an annual income between $5,000 and
$8,000). Similarly, the binned scatter plot of annual spending against the share of private-label
products shows that the private-label share ranges from 9 to 23 percent.

3.3 Nielsen Consumer Panel Data survey on ESP

We get information on ESPs received by the CPD households using a survey that was originally
conducted by Nielsen on behalf of Christian Broda and Jonathan A. Parker. A detailed description
of the survey is presented by Broda and Parker (2014) but we provide basic information about it
below.

The survey consisted of two parts, which were to be answered by the adult most knowledgeable
about the household’s income and tax returns. The first part of the survey contained questions
about the household’s liquid assets and household behavior, while the second part described the
ESP program and asked the household if it had received the ESP. If the household responded
yes to receiving the payment, it was also asked about the amount, date of arrival and whether
it was received by check or direct deposit in addition to some questions about the household’s
usage of the ESP.

The survey was fielded in multiple waves by either email or regular mail to all households
meeting Nielsen’s static reporting requirement for January through April 2008. This amounted
to 46,620 households receiving the survey by email and 13,243 receiving the survey by regular
mail. Households with internet access and in contact with Nielsen by email received the survey
in three waves in a web-based version, while other households received the survey in two waves
in a paper/barcode scanner version. Households were surveyed repeatedly conditional on their

14 Coibion, Gorodnichenko and Hong (2015) show that households shift expenditures toward lower-price retailers
when local economic conditions deteriorate. If such a shift is made from private-label to private-label product, it
will not be picked up by the brand-based quality index.
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earlier responses.15 The response rate after all waves was 80 percent.

Some households reported not receiving any ESP or provided inconsistent survey answers. We
handle this by dropping households from the sample following the procedure by Broda and
Parker (2014). First, we drop all households that do not report receiving any ESP (around 20
percent of the respondents) or do not report a date for receiving the ESP. This is done because
non-recipients of the ESP do not make up an appropriate control group due to selection into
receiving an ESP. Additionally, we want to rule out the possibility of households misreporting
that they did not receive ESP even though they actually did. Second, we remove households
reporting in one survey that they did not receive an ESP and in a later survey report receiving
an ESP prior to the response to the earlier survey. Third, we drop households reporting that
they received an ESP on a date after they submitted the survey. Fourth, we drop households
reporting that they received an ESP outside the period of randomized disbursement. We allow a
grace period of two days for misreporting relative to survey submit dates and a grace period of
seven days for misreporting relative to the disbursement period. This procedure reduces the
sample to 29,205 households. The survey is then linked with the CPD giving us a final sample
of 20,174 households for the transitory income shock analysis.16

3.4 Summary statistics

Table 1 shows some summary statistics for the full sample in 2008 as well as the sample used for
the analysis of the ESP.

Table 1. Summary statistics

ESP sample Full sample
Mean S.d. Median Mean S.d. Median

Annual spending, $ 7673.4 4692.3 6599.8 7816.7 4723.1 6767.5
Products bought 1044.5 590.3 931.0 1043.3 583.8 937.0
Unique modules bought 215.6 70.7 217.0 216.3 70.4 217.0
Unique groups bought 76.5 12.9 79.0 76.6 12.8 79.0
Unique products bought 572.9 284.2 530.0 571.1 279.0 531.0
% spending in size-based index 48.1 16.9 48.8 47.7 16.9 48.3
% spending in unit price-based index 45.3 16.0 45.8 44.8 16.0 45.4
Household size 2.4 1.4 2.0 2.4 1.3 2.0

No. of households 20,174 57,049
% with income below $35,000 37.0 38.3
% with income $35,000-$70,000 29.6 33.8
% with income above $70,000 33.4 27.8

Notes. The table shows summary statistics for the sample used in the ESP analysis and the full CPD
panel of 2008.

15 If households completed part one of the survey, they were not asked part one again but resurveyed with part
two only. Households reporting ESP information in part two were not resurveyed, while households reporting that
they had not received an ESP in part two were resurveyed using part two only.

16 Although our ESP sample is based on the same data as Broda and Parker (2014) use, it contains fewer
households than their sample of 21,760 households since we exclude households that do not live in a CBSA.
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Number of goods purchased and household size in the ESP sample are roughly the same on
average as in the full sample. However, there are slightly more high-income households in the
ESP sample, while annual spending is on average somewhat higher in the full sample. In both
the full sample and the ESP subsample, we can link almost half of annual purchases to the
quality indices on average. It is also worth noting that although there are 1,086 product modules
available in the data, the typical household only buys product from around a fifth of these
modules.

Next, we divide the ESP sample into 3 income groups that are of roughly equal size as by Broda
and Parker (2014). Table 2 shows, for each group, the same summary statistics as before along
with statistics for the ESP received. The cutoffs for these groups also correspond to the tertiles
in the 2007 household income distribution reported in the Current Population Survey released
by the Census.

Table 2. Summary statistics for ESP sample by income tertile

Below $35,000 $35,000-$70,000 Above $70,000
Mean S.d. Med. Mean S.d. Med. Mean S.d. Med.

Annual spending, $ 6054.6 3848.3 5167.1 7806.4 4498.2 6883.9 9332.9 5162.5 8295.6
Products bought 935.4 538.7 821.0 1074.2 610.6 956.0 1130.3 601.7 1035.5
Unique modules bought 199.2 67.6 198.0 218.7 72.1 221.0 230.2 68.7 233.0
Unique groups bought 73.6 13.2 76.0 76.9 12.9 79.0 79.1 11.8 81.0
Unique products bought 513.1 258.7 470.0 587.6 294.3 545.0 622.0 287.0 589.0
% spending in size-based index 47.4 17.1 48.0 48.5 16.8 49.2 48.6 16.8 49.3
% spending in unit price-based index 44.4 16.2 44.7 45.6 15.8 46.0 45.9 15.9 46.5
Household size 1.9 1.2 2.0 2.4 1.4 2.0 2.8 1.3 2.0
ESP received 595.5 369.9 600.0 949.0 495.3 900.0 1128.0 502.9 1200.0

No. of households 6,737 7,463 5,974

Notes. The table shows summary statistics for the ESP sample by income groups.

Annual spending, household size and the number of purchases is increasing in annual income.
So is the ESP received, which will be important to keep in mind when analyzing the effects of
the ESP across income groups. Households with higher income buy a larger number of unique
products as well as a larger number of product categories as measured by either products modules
or group. Reassuringly, the share of spending that we can match with the quality indices is
almost the same across the three income groups. Thus, our analysis of consumption quality
across income groups is not affected by heterogeneity in matching purchases to the quality indices
across income.17

Our analysis of the effect of the ESP on quality is complicated by quality only being observed in
weeks, where households actually purchase goods. Moreover, purchasing patterns across weeks
are not random. Panel (A) of Figure 2 shows the distribution of the number of weeks for which

17 Figure B.4 in Section B shows the average spending coverage for the income bins in our data. Coverage is
approximately constant across the income bins.



69

we observe purchases in 2008 across the households in our ESP sample. The distribution is
negatively skewed, and the median household made purchases in 44 weeks of 2008. There is no
notably difference in this pattern by the three income groups as shown in Figure B.5 of Section B.
Panel (B) of Figure 2 shows that the number of households making at least one purchase in a
given week is evenly spaced across the year except for fewer purchases in the first and last weeks
of the year.
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Figure 2. Weekly purchasing patterns in the ESP sample

Notes. Panel (A) shows the distribution of households by the number of weeks in 2008 that we observe
purchases for each household in the ESP sample. The vertical, dashed line indicates the number of weeks
with observed purchases for the median household. Panel (B) plots the number of households making at
least one purchase for each week of 2008.

To get a sense of the variation driving the ESP estimates, we plot the total ESPs per week in
our sample in Panel (A) of Figure 3 along with the total amount of ESPs disbursed according to
the Daily Treasury Statements. Panel (B) of Figure 3 shows the number of households in our
sample receiving an ESP per week.

The ESPs were disbursed in every week from April 14 until July 25 but there is significant variation
in the weekly disbursement amounts. Our sample tracks the weekly ESP disbursements reported
in statements from the Treasury reasonably well although the survey tends to underreport
payments in the later weeks of the ESP program.

4 Empirical results

We begin our analysis by exploring the relationship between quality of purchases, annual spending
and income in the cross-section. This is done using the full sample of households that we observe



70

(a) Total ESP disbursements by week
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(b) Households receiving ESP by week
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Figure 3. ESP disbursements in sample

Notes. Notes: Panel (A) shows the total weekly disbursements of ESPs according to the survey (blue bars)
along with the disbursements according to the Daily Treasury Statements (orange bars). The weekly
ESP disbursements are scaled such that the sum of ESPs in the survey matches the sum of ESPs in the
Treasury data. The Treasury data have been adjusted for the 4th of July holiday. Panel (B) shows the
number of households receiving an ESP payment per week in our sample.

in 2008. Although we do not show this, only including households that are in the ESP sample
yields virtually identical results.

Figure 4 shows the average quality of the households’ annual consumption basket by deciles of the
annual spending distribution in the top panels and income brackets in the bottom panels. Using
the terminology of Bils and Klenow (2001), the figure plots "quality Engel curves" that trace
out the relationship between quality of consumption and income or spending across households.
Panels (A) and (D) use the quality index, which compares prices of products of identical size,
Panels (B) and (E) in Figure 4 use the quality index that compares unit prices of products,
and Panels (C) and (F) use the quality index comparing the average unit prices of different
brands. The blue lines indicate the unconditional averages, while the orange lines plot conditional
averages that control for household size, race, CBSA of residence, age bracket of both household
heads and the education level of both household heads using fixed effects. 95 percent confidence
intervals are indicated by error bands.

Households with higher annual spending or higher annual income consume goods of higher
quality. This is in line with previous findings from the literature using CEX data (Bils and
Klenow, 2001; Jaimovich et al., 2020) as well as CPD data (Jaimovich et al., 2020; Argente
and Lee, 2021; Faber and Fally, 2021). The positive relationship holds across the spending and
income distribution and is precisely estimated. When we control for other factors that might be
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(a) Size-based quality index
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(c) Brand-based quality index
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(d) Size-based quality index
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(e) Unit price-based quality index
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(f) Brand-based quality index
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Figure 4. Quality across the spending and income distribution

Notes. The top three panels show the average quality of households’ annual purchases for 10 annual
spending deciles, while the bottom three panels show average quality of households’ annual purchases for
the income brackets. We assign income levels to the midpoints in these brackets. Panel (A) and (D) plot
the quality using the index that compares products of same sizes, Panel (B) and (E) plot quality using
the index based on unit prices, and Panel (C) and (F) plot quality using the index based on brands. The
blue lines show the average quality, while orange lines control for household size, race, CBSA of residence,
age brackets of both household heads and education levels of both household heads. 95 percent confidence
bands based on heteroskedasticity-robust standard errors are indicated by error bars.

correlated with both spending/income and quality – age, household size, race, CBSA of residence,
and education – the positive relationship is even more pronounced.

The relationship between quality, spending and income generally holds within the product groups.
To show this, we divide the sample into expenditure and income quintiles and estimate the
average quality of households’ purchases for each quintile within product groups, g, using the
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following regression equation:18

Qh,g =
5∑

k=1
βg,k1 {Quintileh = k} + ΓgXh + εh,g, (10)

where Xh is as a vector of controls (household size, race, age brackets of the household heads,
education of the household heads, and CBSA of residence).

βg,k in Equation (10) is the average quality of purchases by households in expenditure/income
quintile k on products from product group g conditional on the controls, Xh. We rank the
estimates according to the difference between average quality in the top and bottom expendi-
ture/spending quintiles, β̂g,5 − β̂g,1, and plot these differences in Figure 5. Blue bars indicate that
the difference is significant at the 5 percent level. The estimates based on spending quintiles are
shown in the left panel, while estimates based on income quintiles are shown in the right panel.
For all but 2 of the 108 product groups, the top spending or income quintile households consume
higher quality goods on average. The difference in average quality is significant for the majority
of the groups. For the two groups where β̂g,5 − β̂g,1 < 0, the difference is insignificant.

(a) Difference in quality by spending quintiles
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Figure 5. Difference in quality by product group

Notes. The figure shows the difference between average quality of products purchases by households at
the top and bottom annual spending (Panel A) and income (Panel B) quintiles for each product group
(β̂g,5 − β̂g,1 from the regression in Equation (10)). The quality variable is the quality of households’ annual
consumption basket measured using the size-based quality index. The dependent variable is winsorized at
the 0.01 and 99.99 percentile to limit the influence of outliers, and we only include product groups that
are purchased by at least 50 households in our sample. Blue bars denote that the difference is significant
at the 5 percent level.

18 We estimate the regression at the group level instead of the more granular module level since the typical
household only buys products from 217 modules as shown in Section 3.4.
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We also observe heterogeneity in the annual expenditure shares of the product modules across
income. This is investigated by estimating Equation (10) with expenditure shares of the
modules as the dependent variable and testing that the shares are equal across quintiles,
β1 = β2 = β3 = β4 = β5, using a Wald test. Figure 6 plots a histogram of the resulting
F -statistics together with the distribution of the statistic under the null hypothesis.19
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Figure 6. Distribution of test statistics for constant product module spending shares across income

Notes. The figure shows a histogram of F -statistics for the Wald test under the null of β1 = β2 = β3 =
β4 = β5 in regression Equation (10), where the dependent variable is the household’s annual spending
share of a product module. The F -statistics are winsorized at 15 for illustrative purposes. The solid line
shows the distribution of the test statistic under the null, which is an F distribution with 4 and N → ∞
degrees of freedom. The vertical, dashed line is the distribution’s 95th percentile.

The estimated F -statistics do not fit the distribution under the null hypothesis of no difference
in spending shares across the income quintiles. There is a large mass of test statistics above the
95th percentile of the distribution, where 37 percent of the F -statistics lie.20 Thus, spending on
each module is not scaled up proportionally with total spending when comparing households
across the income distribution. This implies that the expenditure share for each module, αn(P ),
in our structural model introduced in Section 2, should depend on income.

4.1 Transitory income shocks and quality of consumption

The results above show that households with higher spending and income consume products of
higher quality compared to households with lower expenditures and income. This was a purely
cross-sectional result. Although the correlation is robust to controlling for various demographic

19 The statistic under the null has an F -distribution with 4 and N degrees of freedom, where N is the number
of observations in the regression. We plot the distribution for N → ∞ as most of the regressions include large N .

20 More formally, a Kolmogorov–Smirnov test rejects that the F -statistics follow an F distribution at any
conventional significance level.
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factors, it does not necessarily reflect a causal link from spending or income to quality of
consumption.

In the following section, we show that a transitory income shock in the form of an ESP results
in a temporary increase in the quality of products consumed. That is, the relationship between
quality and income not only holds across but also within households. Additionally, these results
have a clear causal interpretation due to the randomized timing of the ESP disbursement: a
temporary increase in income causes a temporary increase in the quality of consumption.

4.1.1 Empirical framework

The Economic Stimulus Act of 2008 was signed by Congress in January 2008 and enacted on
February 13, 2008. The act authorized the distribution of stimulus payments, the ESPs, to
tax payers during the Spring and Summer of 2008. A basic payment was distributed as the
maximum of $300 ($600 for joint filers) and a taxpayer’s tax liability up to $600 ($1,200 for
joint filers). Households received this payment as long as they had at least $3,000 of qualifying
income. An additional payment of $300 was given per child that qualified for the child tax credit.
The total payment was reduced by five percent of the amount by which adjusted gross income
exceeded a threshold of $75,000 ($150,000 for joint filers). Hence, payments were made to the
bulk of households along the income distribution except those at the very bottom or those at
the very top. These payments were disbursed to households by either paper check or direct
deposit.21

It is clear that whether or not a household received an ESP was not random, nor was the
payment size. As emphasized by Broda and Parker (2014), however, the timing of payment was
randomized since the week of payment disbursement within method of disbursement depended on
the second-to-last digit of the recipient’s Social Security number, which is effectively random.22

Hence, conditional on disbursement method, payment week is random across households. The
randomization allows us to identify the effects of an ESP on quality and spending off the
differential shopping behavior of households receiving the ESP in different weeks by having
timing groups act as controls for each other.

We follow the approach by Broda and Parker (2014) and use the following baseline regression

21 Recipients that had provided the Internal Revenue Service (IRS) with their personal bank routing received
their payments by direct deposit. Each household also received a statement from the IRS a few business days
before the electronic transfer of the ESP.

22 The last four digits of a Social Security number are assigned sequentially to applicants within geographic
areas and group numbers (the middle two digits of the number).
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equation to estimate the effect of the ESP on shopping behavior for household h in week t:

Xh,t = µh + ηt +
L′∑

s=−L
βsESPh,t+s + εh,t, (11)

where Xh,t is one of the measures for quality in Equation (9) or total spending in week t by
household h.23

ESPh,t+s is a dummy variable taking the value of 1 in the week s periods after household h

receives the ESP. Thus, the sequence of coefficients β̃ = (β−L, β−L+1, . . . , β0, β1, . . . , βL′) captures
the dynamic effect of the ESP before receiving the payment, at impact and in the weeks following
the payment. Since ESPh,t+s is a dummy variable, the estimates for β̃ can be interpreted as
average treatment effects.24 Because quality is only observed in weeks in which households
actually go shopping, non-responders to the ESP are excluded from the regressions with quality
as the dependent variable since weeks without any shopping activity are excluded from the
regression. However, this problem is not severe as 80 percent of the households in our data make
a purchase in the same week as they receive the ESP, while an additional 18 percent make a
purchase within four weeks after receiving the payment. It is nonetheless difficult to estimate the
full lead and lag structure for β̃ due to the occasionally missing values. Therefore, we constrain
the parameters in β̃ such that they are constant within four-week periods relative to the week
of ESP receipt. Within these four-week periods, 97-98 percent of households are observed at
least once. The number of leads is set to 16 (L = 16), while the number of lags including the
contemporaneous response is set to 24 (L′ = 23). This ensures that we observe all households
for the entire set of leads and lags in Equation (11).

We include two fixed effects in the regression. First, we include week fixed effects, ηt, to
absorb any common changes over time in shopping behavior across households. Second, we
control for household-level fixed effects, µh, to account for household-specific differences in
shopping behavior unrelated to receiving the ESP. Although the timing of ESP is random within
disbursement method, the ESP was disbursed later by check (from May 16 until June 11) than
by electronic transfer (from May 2 until May 16). Hence, selection into method of disbursement –
e.g. households receiving the ESP by electronic transfer had a higher income on average – might
be an issue if there is a correlation between shopping behavior and household type (for example,
through the positive correlation between annual income and quality of purchases documented

23 Weekly household spending is constructed by aggregating each household’s total spending by trip to the
weekly level. This implies that the spending variable includes products that we could not match to the quality
indices in addition to some products not tracked by Nielsen as mentioned in Section 3.2.

24 Recent econometric papers study the interpretation of event study estimates and propose alternative
estimators of average treatment effects in event study frameworks in the presence of time-varying treatment effects
or cross-sectional treatment effect heterogeneity (Borusyak, Jaravel and Spiess, 2021; Goodman-Bacon, 2021; Sun
and Abraham, 2021). We stick to the conventional OLS estimator with a flexible set of leads and lags.
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in Figure 4 above). Without household fixed effects, this would bias β̃ due to the changing
composition of the sample (Borusyak, Jaravel and Spiess, 2021). A related issue is that our
panel features occasionally missing household quality of consumption in some weeks as discussed
in Section 3.4. Including household fixed effects controls for a possible correlation between
household type and the tendency to have a missing quality variable.

When studying heterogeneity by income and liquidity groups in the data, we estimate the
following model:

Xh,t = µh + ηj,t +
∑
j

L′∑
s=−L

βj,s1 {Grouph = j}ESPh,t+s + εh,t, (12)

where j denotes groups in the data.

This regression equation is identical to regression Equation (11) except that the coefficients of
interest, βj,s, are allowed to differ by group, and that we include week × group fixed effects to
allow for common changes in shopping behavior within groups. Moreover, we scale the ESP
dummies, ESPh,t+s, by the ratio between the average ESP received within group j and the
average ESP in the full sample. This allows for quantitative comparison of the estimates between
groups.

4.1.2 Results

Table 3 presents the estimates of β̃ from Equation (11) for the month prior to receiving the
ESP as well as the following 3 months. The estimates for total spending are shown in column
1, while columns 2 through 4 show the estimates for spending quality using the three quality
indices described in Section 3.1. The quality estimates have been scaled by 100 for illustrative
purposes. Standard errors are robust to heteroskedasticity and clustered at the household level
to account for intertemporal within-household correlation of the error term. All regressions are
carried out using the Stata package REGHDFE for estimation of high-dimensional fixed effect
models by Correia (2019).

Column 1 in Table 3 shows that the households increase their spending when receiving the ESP.
Weekly spending increases by $12.6 on average for the 4 weeks after receipt of the ESP, while
the three-month cumulative increase in spending is around $95 (or 10.7 percent of the ESP since
the average ESP was $884), which is broadly in line with what was originally documented by
Broda and Parker (2014). Although this estimate seems small relative to the existing evidence
on MPCs, we need to remember that spending recorded in the Nielsen data is only a subset of
households’ total spending and predominantly non-durables. According to Broda and Parker
(2014), household-level spending in the CPD is 35 percent of spending on non-durables or 19
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Table 3. Response of spending and product quality to the ESP

Weekly spending Size-based quality Unit price-based
quality

Brand-based quality

1 months before ESP 0.76 0.0048∗∗ 0.0039∗ 0.0046∗∗

(0.691) (0.002) (0.002) (0.002)
Contemporaneous month 8.41∗∗∗ 0.0091∗∗∗ 0.0095∗∗∗ 0.0073∗∗∗

(0.772) (0.002) (0.003) (0.002)
2 months after ESP 1.70∗∗ 0.0049∗∗ 0.0056∗∗ 0.0020

(0.750) (0.002) (0.003) (0.002)
3 months after ESP 0.68 0.00047 0.0028 0.0015

(0.666) (0.002) (0.002) (0.002)

Week × household obs. 1,087,348 849,508 845,186 845,049
Households 20,516 20,506 20,507 20,507

Notes. The table shows the estimates of β̃ from Equation (11). Estimates from regressions with a
quality measures as the dependent variable have been scaled by 100. Standard errors are clustered at the
household level and reported in parentheses. *, ** and *** denote significance at the 0.1, 0.05 and 0.01
level respectively.

percent of total consumption spending. Scaling by these percentages results in a three-month
cumulative increase in spending of $123–$227 or 31–56 percent of the ESP, which is broadly in
line with existing evidence on the consumption response to tax rebates.25

Households not only increase dollars spent but also the quality of their purchases according to
columns 2 through 4 although the estimates are not as statistically significant as the spending
estimates. The effect is most significant for the size-based and unit price-based indices compared
to the brand-based indices. However, the brand-based index will only be affected when households
switch the brand of their purchases, while within-brand changes in purchases affects the two
other indices. This might be why the effects on the brand-based index are muted.

There are indications of a statistically significant effect on both spending and quality in the
4 weeks leading up to receiving the ESP. Due to the truly randomized timing of the ESP, the
presence of effects on spending and quality prior to treatment does not invalidate the research
design or yield biased estimates. Rather they reflect anticipation effects that are part of the
treatment effect (Borusyak, Jaravel and Spiess, 2021). However, as we discuss in Section 4.1.5
below, formal tests cannot reject no presence of a pre-ESP trend, and the significance of the
pre-ESP coefficients are not robust to the number of lags included in the regression. Hence,
we are cautious about interpreting these estimates as actually reflecting effects prior to ESP
receipt.

25 Parker et al. (2013) use the Consumer Expenditure Survey to estimate the response of consumption to the
2008 ESPs and find that consumers increase non-durables spending by 12–30 percent of their stimulus payment,
while the response increases to 50–90 percent when including the response of durable goods. Johnson, Parker
and Souleles (2006) analyze the non-durables spending response to the ESPs distributed in 2001 and estimate a
slightly higher estimate compared to the 2008 rebates (a response of 20–40 percent of the rebates).
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While we observed some heterogeneity in the spending shares of the product modules across
the income distribution as shown above in Figure 6, we do not find much evidence of switching
across modules when receiving the ESP. We estimate Equation (11) module-by-module using
the weekly spending share for the module as the dependent variable. Panel (A) in Figure 7
shows a histogram of the estimates of the coefficient on the ESP indicator in the four weeks
following ESP disbursement along with a histogram of their t-statistics in Panel (B). The red
line in Panel (B) shows the fitted normal distribution of the t-statistics, while the black line
shows their distribution under the null hypothesis of no change in the spending share of the
module when receiving the ESP.

(a) Estimates for module-switching
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Figure 7. Response of module-switching to the ESP

Notes. Panel (A) shows the distribution of estimates of β̃ in the 4 weeks after receiving an ESP from
Equation (11) at the module level, where the dependent variable is the weekly spending share of the
products in the module. Panel (B) shows the distribution of the estimates’ t-statistics based on standard
errors clustered at the household level. The red line shows a normal distribution fitted to the t-statistics.
The black line is the distribution of the t-statistics under the null of β̃ = 0, while vertical lines indicate
the distribution’s 5th and 95th percentiles.

The estimates for module switching are tightly centered around zero. Correspondingly, most
of their t-statistics are insignificant with 6.9 percent having a p-value below 0.05. Hence, the
number of significant estimates for module switching is close to the number of type I errors that
we would observe under a true null hypothesis of no module switching.26

26 A Kolmogorov-Smirnov test of the null hypothesis that the estimated t-statistics are distributed according
to a standard normal distribution has a p-value of 0.15.
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4.1.3 Heterogeneity of response to ESP by income

Next, we look at how the ESP effects differ by income.27 We split our sample into 3 approximately
equally large groups based on annual income using the same groups as Broda and Parker (2014):
a low-income group with income less than $35,000, a middle-income group with income between
$35,000 and $70,000 and a high-income group with income above $70,000. We then estimate
Equation (12) by these groups. Results are presented in Table 4.

Table 4. Heterogeneity of ESP response by income groups

Weekly spending Size-based quality Unit price-based
quality

Brand-based quality

Income below $35,000
1 month before ESP 1.64 −0.0014 0.0075 0.0076

(1.982) (0.007) (0.008) (0.007)
Contemporaneous month 14.5∗∗∗ 0.014∗ 0.021∗∗∗ 0.018∗∗∗

(2.017) (0.007) (0.008) (0.007)
2 months after ESP 3.54∗∗ 0.0016 0.013∗ 0.0062

(1.761) (0.007) (0.007) (0.006)
3 months after ESP 2.16 −0.0012 −0.0019 −0.0013

(1.422) (0.006) (0.006) (0.006)
Week × household obs. 369,145 289,460 287,858 287,792
Households 6,965 6,962 6,963 6,963

Income between $35,000 and $60,000
1 month before ESP 3.83∗∗ 0.0098∗∗ −0.00046 0.0036

(1.564) (0.005) (0.005) (0.005)
Contemporaneous month 10.5∗∗∗ 0.012∗∗∗ 0.0099∗ 0.0082∗

(1.529) (0.005) (0.005) (0.005)
2 months after ESP 4.43∗∗∗ 0.011∗∗ 0.0081∗ 0.0030

(1.357) (0.005) (0.005) (0.004)
3 months after ESP 2.76∗∗ 0.0025 0.0062 0.0050

(1.215) (0.004) (0.004) (0.004)
Week × household obs. 317,788 249,930 248,678 248,635
Households 5,996 5,991 5,991 5,991

Income above $60,000
1 month before ESP 0.85 0.0054 0.0032 0.0038

(1.375) (0.004) (0.004) (0.003)
Contemporaneous month 5.59∗∗∗ 0.0054 0.0023 0.0017

(1.402) (0.004) (0.004) (0.003)
2 months after ESP −0.050 0.0028 −0.00088 -0.00070

(1.289) (0.003) (0.004) (0.003)
3 months after ESP −0.78 0.00058 0.0023 0.00070

(1.061) (0.003) (0.003) (0.003)
Week × household obs. 400,415 310,118 308,650 308,622
Households 7,555 7,553 7,553 7,553

Notes. The table shows estimated β̃s from Equation (11). Standard errors are clustered at the household
level and reported in parentheses. *, ** and *** denote significance at the 0.1, 0.05 and 0.01 level
respectively.

The estimates reveal some heterogeneity in the response to receiving an ESP across the income
distribution. Households spent a smaller share of the ESP, the higher annual income they had,
which is in line with the findings by Parker (2017). From bottom to the top of the income groups,

27 We have also analyzed how the ESP effects differ by households’ access to liquid wealth. The results are
shown in Section D.
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the cumulative three-month MPCs are 16.5 percent, 11.0 percent and 6.7 percent. The ratios
between these MPCs are shown in table 5 and will be used to calibrate the structural model in
section 5.

Table 5. Relative marginal propensities to consume

Bottom-to-top Bottom-to-middle Middle-to-top

Relative MPC 2.463 1.506 1.635
(1.046) (0.451) (0.686)

Notes. The table shows the relative 12-week marginal propensities to consumed between income tertiles
based on the estimates shown in Table 4. Standard errors are calculated using the delta method and
shown in parentheses.

Quality of consumption does not increase for all income groups when they receive the ESP.
The quality of consumption for both the low-income and middle-income groups increases in the
month after receiving the ESP. The response, however, is most significant and longer-lived for the
middle-income group. Lastly, we find no significant effect on the quality of consumption among
high-income households even though we find an economically small but statistically significant
increase in spending.28

We interpret the three income groups as groups for permanent income. Although annual income
in one year is a crude measure of permanent income, we show in Section 4.1.5 that the results
are robust to other ways of grouping by income that use income reported in years after 2008 in
addition to controlling for household size and age.

4.1.4 MPC heterogeneity in relationship to the literature

The empirical literature studying MPC heterogeneity across the income distribution is not
conclusive. Our estimates add to those papers finding that MPCs are higher for households with
lower income such as Parker et al. (2013), Broda and Parker (2014), Parker (2017) and Parker
and Souleles (2019) for the case of the 2008 ESPs. In a related study on the spending response
to ESPs enacted in The Economic Growth and Tax Relief Reconciliation Act of 2001, Johnson,
Parker and Souleles (2006) also find that low-income households have the highest MPCs. Lastly,
Jappelli and Pistaferri (2014) use survey data among Italian households on reported MPCs out
of a fictitious income shock equal to one month’s income and find that the MPC is decreasing in
income.

On the contrary, Shapiro and Slemrod (2003), Shapiro and Slemrod (2009) and Sahm, Shapiro
and Slemrod (2010) use the University of Michigan’s monthly Survey of Consumers to study

28 The statistically significant effects on spending but not quality for the high-income group could reflect that
the spending regressions have more statistical power than the quality regressions because of the larger number of
observations.
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expected spending responses following the two tax rebates in 2001 and 2008. These papers
conclude that MPCs are, if anything, increasing in income. However, whereas our estimates stem
from actual behavior, these authors estimate intended behavior. Misra and Surico (2014) add to
these findings with revealed-preference estimates by using CEX data to estimate the distribution
of MPCs to both the 2001 and 2008 ESPs using quantile regressions. They look at how covariates
change between quantiles of the estimated MPC distribution and show that while the low-income
households primarily belong to the middle-MPC groups, rich households have either higher
or lower MPCs. Lastly, Lewis, Melcangi and Pilossoph (2019) take an agnostic stand on the
source of heterogeneity using machine learning methods to group households. They estimate
the distribution of MPCs out of the 2008 ESPs across households without imposing any ex
ante assumptions on how households are assigned to consumption response groups. Afterwards,
they analyze how the estimated MPCs relate to observable variables and document a positive
relationship between the MPC and total income, mortgage interest payments and the ratio
between annual consumption and annual income. Their best linear regression of the estimated
MPCs on observables in their data, however, can only account for 13 percent of the variance in
MPCs.

4.1.5 Robustness

Our results regarding the response to income shocks are reasonably robust. In this section, we
perform some robustness checks of our findings.

Balancing the sample around ESP receipt Our baseline estimates are estimated using
observations that cover the entire year. As discussed in Section 4.1.1, the inclusion of household
fixed effects controls for the potential bias between the level of the dependent variable and the
timing of ESP receipt. Treatment effect heterogeneity by ESP timing, however, could still affect
the estimates because of compositional changes in the households used to identify β̃ (Dobkin
et al., 2018). To address this, we have estimated Equation (11) with a sample balanced relative
to ESP receipt such that households are only included from 16 weeks prior to ESP receipt until
23 weeks after.29 This ensures that all households are present the same number of weeks in
the sample for the estimation of spending effects (and potentially the same number of weeks
for quality effects). The estimates from the balanced regression are shown in Table B.1 of
Section B. Albeit the spending estimates are slightly smaller and equivalent to a reduction in the
average 12-week spending response from $95 to $81, the estimates are similar to those reported
in Table 3. Additionally, there are no longer any significant effects one month before ESP receipt
on quality measured using the unit price-based and brand-based quality indices. Although not

29 This also requires us to drop two leads as a normalization. We normalize coefficients on the leads 16 and 5
weeks before ESP receipt to zero. If the quality variable is missing in one of these two weeks, we impute it with
the mean of consumption quality within its four-week period lead (e.g. if the 16-week lead is missing, we impute it
with the average quality of weeks 15, 14 and 13).
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shown, there are no statistically significant coefficients prior to the one-month lead for all four
regressions.

Weekly estimates We have so far imposed that the coefficients on the ESP indicator variables
are identical within four-week periods. Imposing this restriction yields more precise estimates –
especially for the estimates concerning consumption quality – but does not allow for the analysis
of high-frequency movements. To estimate Equation (11) without restricting coefficients and
also formally test for pre-ESP effects, we follow Borusyak, Jaravel and Spiess (2021). First, we
exclude the lead furthest away from ESP receipt (16 weeks before) as well as the lead one week
before ESP receipt. If the quality variable is missing in one of these two weeks, we impute it as for
the balancing robustness check with the mean of consumption quality within its four-week period
lead. This is a normalization pinning down a constant and a linear trend between the two leads,
which allows us to test for the presence of a non-linear trend prior to receiving the ESP.30 We
then balance the sample relative to the ESP receipt such that we only include households from
16 weeks prior to ESP receipt until 24 weeks after. Table B.2 in Section B shows the estimates
on spending and the size-based quality measure from this regression. There is a very significant
and positive effect on spending from receiving the ESP, which lasts about 4 weeks, while there is
also a positive – albeit not as significant compared to the spending estimates – effect on quality
lasting about 2 weeks. Besides a couple of non-adjacent weeks, the pre-ESP coefficients are not
statistically different from zero and display no systematic pattern. The bottom of the table also
contains the p-values for an F -test of the hypothesis that the coefficients on all leads are equal
to zero. For spending and quality, the p-values are 0.100 and 0.484 respectively. Thus, we can
clearly not reject that there is no trend in quality before ESP receipt, while no pre-ESP trend in
spending is borderline not rejected at the 10 percent confidence level.

Sensitivity to leads and lags The number of leads and lags in our regressions were chosen
such that all households are observed for the entire set of leads and lags. To analyze the sensitivity
of our estimates to this choice, we have estimated Equation (11) using all combinations of lead
and lag lengths up until the 4 four-week leads and 6 four-week lags for a total of 24 different
combinations. The results of this exercise for the spending estimates and the size-based quality
estimates are shown in Panels (A) and (B) of Figure B.6 in Section B. Point estimates from the
same regression are joined by a dashed line in the figure, and a blue dot indicates that the point
estimate is significantly different from zero at the 5 percent confidence level. There are three
main takeaways from the figure. First, irrespective of the specification, there is a significant
and positive effect on both spending and quality in the 4 weeks following the ESP receipt. For
the spending regression, there is always a significant effect present in the second month after

30 As emphasized by Borusyak, Jaravel and Spiess (2021), the event study design can only identify β̃ up to a
common linear trend. This is because the passing of absolute time cannot be disentangled from time relative to
ESP receipt when household fixed effects are included. Hence, β̃ can be interpreted as deviations from a common
linear trend (if there is any).
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receiving the ESP, while the significant effect on quality in the second month is present in all but
2 of the specifications. Second, increasing the number of leads or lags in the regressions tends to
increase the point estimates. Finally, the estimates of the pre-ESP receipt coefficients are not
significantly different from zero across all specifications.

Income groupings The income split shown in Table 4 is based on income reported by
households in the 2008 CPD. We will use these groups as proxies for permanent income groups
when calibrating the structural model in Section 5. As mentioned in Section 3.2, however, the
income measure in our data is likely a measure of households’ annual income in 2007. One might
worry that this is a too crude measure of households’ permanent income. As an alternative, we
base groups on income reported in subsequent years in the following way inspired by Dynan,
Skinner and Zeldes (2004). For the first alternative grouping, we use income reported in the
years 2008 through 2017 to create year-by-year income groupings using the same income brackets
as in Table 4. We then use the modal value of each household’s income group through the years
and base the income split on this value. For the second alternative grouping, we adjust for
household size and age in the following way. We first use the method by Handbury (2021) to
adjust income in all years for household size by dividing the midpoint of a household’s income
category with the square root of the number of family members.31 We then divide households
into income tertiles year-by-year based on the household size-adjusted income. Similar to the
method by Dynan, Skinner and Zeldes (2004), we create the tertiles within the 9 age bins in the
Nielsen data to account for age differences in income levels.32 Finally, we use each household’s
modal value of these tertiles to group households. Table B.3 in Section B shows the ESP results
for spending and the size-based quality measure by these alternative splits when only including
households that are observed at least in the years 2008, 2009 and 2010. Although this reduces
the sample size by about a third due to attrition, the results are similar to our original estimates
and robust across grouping methods. If anything, the heterogeneity in the quality response
across the income groups is even more pronounced.

Category-level estimates Although Figure 7 does not show any strong indications of
households switching spending across product modules when they receive the ESP, we have
estimated Equation (11) at the three different product category levels (module, group and
department levels). When doing so, we use spending and quality measured for each household at
the product category × week level as the dependent variable and also include product category
× household fixed effects and product category × week fixed effects. Hence, these estimates
reflect the average effects on spending and quality within product categories of the ESP. Note

31 For example, a household consisting of 4 members with annual income in the interval $25,000-$30,000 has an
adjusted income of $27,500√

4 = $13, 750. This way of adjusting income for household size has also been used in the
OECD Income Distribution Database since 2012 (www.oecd.org/els/soc/IDD-ToR.pdf).

32 We group by the age of the male household head or the female head if there is no male head. Grouping by
the female head yields almost identical results.

www.oecd.org/els/soc/IDD-ToR.pdf)
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that this implies that the spending estimates will mechanically be smaller since they measure
the average spending increase within each product category.33 Table B.4 in Section B shows
the estimates from these regressions. Although the magnitude of the estimates are reduced,
there are still significant effects on quality from the ESP at all levels of aggregation. The table
also illustrates that the additional information gained from estimating regressions at the most
disaggregated level is limited since households do not buy products from all modules. Estimating
Equation (11) at the department and group level instead of the aggregated level increases the
number of observations by a factor of almost 4 and 8, respectively. However, estimating the
regression at the product module level only increases the number of observations by around 5
percent compared to the product group level.

Disbursement method Finally, Table B.5 in Section B shows the results from estimating
Equation (11) when we include week × disbursement method fixed effects to control for average
spending and quality in each week specific to households receiving the ESP by check or direct
deposit. This reduces the variation available for estimation since we are now treating the
two disbursement methods as two different experiments by only exploiting within-disbursement
method variation in ESP disbursement timing. Consequently, the estimates reported in Table B.5
is a weighted average of the disbursement method-specific ESP effects (Gibbons, Serrato and
Urbancic, 2018). We still find significant effects on quality although they are less precisely
estimated (especially for the unit price-based and brand-based quality indices). Moreover, the
spending effects are shorter lived and slightly reduced.34

5 Dynamic model

The results presented in the previous section lend themselves to two important characterizations
of our consumption-saving model. First, our findings suggest that the microfoundation for the
intra-temporal problem of the households are better described by a setup as in Section 2. Second,
as will be clear momentarily, the setup allows us to target the relative MPC moments found in
Table 5 in the empirical section and to externally validate the model using the quality responses
found in Table 4.

The model we present in this section is an extension of the standard buffer-stock model. That
is, the economy is populated by N households who all live for T periods. Each household
receives an exogenous stream of income and from this income it chooses how much to save and

33 Additionally, the spending variable for this robustness check is created by summing all purchases recorded
by households since these can be matched to product categories. All of our other results use spending constructed
as the sum of total spending recorded for all shopping trips. For almost all households, total purchases are below
total spending, and the average ratio between total purchases and total spending is 0.58.

34 On the contrary, Broda and Parker (2014) estimate larger effects on spending when including week ×
disbursement method fixed effects but they weight households by the weights provided by Nielsen. We are able to
replicate this finding.
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how much to spend. The optimal choice of expenditures is chosen such that lifetime utility
is maximized. We extend the model to allow for quality to affect the optimal expenditure
choice. The extended model nests the standard model and thus makes a leveled playground for
comparison. Throughout, we use the standard model as a benchmark to our model. We use
this comparison to highlight important shortcomings of the standard model and features of the
extended model.

5.1 Setup

In the dynamic problem, households live for T periods and seek to maximize lifetime utility by
choosing the optimal level of expenditures and savings each period.35 The per-period utility
function has a CRRA form with relative risk aversion parameter ρ and the households discount
future utility by a factor β. Each period, the households receive an exogenous stream of income.
The income process is made up of a permanent and transitory component, denoted by P and ξ,
respectively. The optimal expenditure choice is affected both by the transitory and permanent
income state of the household. The optimal expenditure choice is further governed by how
much cash-on-hand, M , the household holds. Being a dynamic problem, the level of expected
cash-on-hand and transitory and permanent income in the subsequent periods also affect the
optimal choice of current expenditures. Formulated recursively, the Bellman equation of the
household problem is given by

Vt(Mt, Pt, ξt) = max
Xt

U1−ρ
t

1 − ρ
+ βEt[Vt+1(Mt+1, Pt+1, ξt+1)],

where Ut is the utility function in Equation (1) and Vt is the value function. Using Equation (6),
we can write the problem as

Vt(Mt, Pt, ξt) = max
Xt

(Xt · f(ξt, Pt))1−ρ

1 − ρ
+ βEt[Vt+1(Mt+1, Pt+1, ξt+1)]. (13)

Except for the Xt · f(ξt, Pt) term, the rest of the model is specified exactly as the standard
buffer-stock model. Households obey their inter-temporal budget constraint

At = Mt −Xt, (14)

Mt+1 = RAt + Yt+1, (15)

where At denotes end-of-period assets, and Mt is thus beginning-of-period cash-on-hand, and R
35 Note that, building on the intuition from Section 2, "choosing the optimal level of expenditures" is equivalent

to choosing the optimal level of consumption in the standard model, since in the standard model, only one price
index prevails, and hence consumption and expenditure level coincides.
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is an exogenous and constant gross interest rate. Yt+1 denotes income and is further explained
below. Households can borrow up to a fraction of their permanent income and thus

At ≥ −λPt. (16)

Households cannot leave life in debt and therefore

AT ≥ 0. (17)

The income process is exogenous and given by

Yt+1 = ξt+1Pt+1, ξt+1 =

µ with prob. π,
εt+1−µπ

1−π else,
(18)

Pt+1 = GPtψt+1, (19)

where

logψt+1 ∼ N (−0.5σ2
ψ, σ

2
ψ), (20)

log εt+1 ∼ N (−0.5σ2
ξ , σ

2
ξ ). (21)

The income process is similar to that found in e.g. Carroll (2021). We refer to this paper for
further details. For instance, the possibility of a µ-income event (ξt+1 = µ) is consistent with
having a model with unemployment benefits.

Lastly, in the computation, we use a functional form of f(ξt, Pt) given by

f(ξt, Pt) = κe−ιe−δ·ξtPt
, (22)

which belongs to the class of sigmoid functions.36 This function has some particularly nice
features. In general, sigmoid functions follow an S-shape and in terms of Equation (22), the
specific shape of f() is governed by κ, ι and δ. As a special case, one may notice that for δ = 0
and ι = ln κ, including the natural restriction κ > 0, our model nests the standard buffer-stock
model with homothetic preferences and thus generalizes the framework.37 When calibrating the
model, we thus also allow for the possibility that the standard buffer-stock model is favored.

36 Specifically, the function in Equation (22) is the so-called Gompertz function.
37 Note that the "natural restriction" κ > 0 indeed is obvious since κ < 0 would imply that utility is declining

in consumption. Alternatively, since f() proxies the price index derived in equation (5), κ > 0 is a restriction that
ensures that the price index is positive.
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Under the more general specification, the shape of f() is governed by the parameters in the
following way: given that ι and δ are positive, i) κ is the upper asymptotic level for f(), which
is approached as income goes to infinity, ii) ι determines the minimum value of f(), which is
obtained in the zero-income event, where ξtPt = 0, iii) δ determines the rate at which f() goes
from its minimum level to its upper bound.38

Figure 8 shows how f() is affected by the parameters. The black line shows the calibrated
f()-function used in the model solution. For every panel, we fix two parameters and vary the
last one.

The model is solved using an extension of the Endogenous Grid Method (EGM) first proposed
by Carroll (2006). Specifically, we implement the fast multi-linear interpolation algorithm by
Druedahl (2021) combined with an upper envelope algorithm as in Druedahl and Jørgensen
(2017). In Section F, we provide details on the computational part.

5.2 Calibration

For the parts of the model which are specified as a standard buffer-stock model, we calibrate it
in close alignment with the previous literature. Specifically, we use the exact same values for the
standard parameters as in Carroll (2021). Households live in the economy for 50 years. Some
parameters are conventional in the literature: The coefficient of relative risk aversion is set to 2,
the time discount factor is set to 0.96, and the gross interest rate is set to 1.04. The income
process is set to match that found for U.S. households in Carroll (1992): the standard deviation
of the log of the two income shocks equals 0.1, the permanent income growth rate is 3 percent
and with a probability of 0.5 percent the household ends up in a zero-income event.

We once again point out that the standard buffer-stock model is nested for ι = ln κ and δ = 0,
highlighted in the second part of Table 6. In the coming sections, we show how we calibrate κ, ι
and δ and how the standard buffer-stock model disagrees with some important empirical moments.
We further discuss that, under the common calibration, there is no room for improving on this
disagreement in the standard model but that our model does provide such an opportunity.

5.2.1 Matching relative MPCs

In order to pin down κ, ι and δ, we calibrate these to match our findings in Section 2.2.
Specifically, we target the relative MPCs between income groups reported in Table 5 and re-
iterated below. As seen from Table 5 and as we discuss further in Section 5.2.2, these moments
are poorly matched by the standard buffer-stock model but can be targeted using the model

38 We also allow for the possibility where either ι, δ or both are negative. We do, however, not find any support
for this. Section E shows how f() is changed under these scenarios. We also discuss this case when we interpret
our results.
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Figure 8. f() function for different parameter values

Notes. The black line shows the calibrated f() function used in the solution of the model. The parameter
values found in the solution are κ = 29.3, ι = 8.7 and δ = 0.8. The maximum point on the income grid is
the 99.99th earnings percentile in the simulation.

with nonhomothetic preferences. The reason why the nonhomothetic model is able match these
moments is exactly as discussed in Section 2.2: the choice of expenditure allocation over different
periods is affected by the quality demand of the household, which, through changes in price
indices, affects the real expenditures required to smooth utility. Ultimately, this affects the MPC
of the households. The optimal values are found to be κ = 29.3, ι = 8.7 and δ = 0.8 and as seen
in Table 7, it allows us to match the empirical moments fairly well.
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Table 6. Model parameters

Parameter Description Value

Demographics T Years lived 50
Preferences β Time discount factor 0.96

ρ Relative risk aversion 2.0
Borrowing/saving R Gross interest rate 1.04

λ Borrowing limit 0
Income process G Growth rate of permanent income 1.03

σψ Std. dev. of log permanent shock 0.1
σξ Std. dev. of log transitory shock 0.1
µ Low-income event 0.0
π Probability of low-income shock 0.005

Standard buffer-stock model κ No function ∈ R>0
ι No function ln κ
δ No function 0

Buffer-stock model w. non-homothetic preferences κ Upper limit 29.3
ι Scaling of lower limit 8.7
δ Rate of transition 0.8

Table 7. Calibration results for relative MPCs

Model

Empirical Standard Nonhomothetic

Bottom-to-top 2.46 0.86 2.46
Bottom-to-middle 1.51 0.76 1.51
Middle-to-top 1.63 0.86 1.64

Notes. The model-implied relative MPCs are means within income groups.

5.2.2 Discussion on relative MPC moments

It is easiest to understand the properties of the nonhomothetic model if we compare it with
the standard model. As documented by e.g. Carroll (1997), households in the standard model
have the same buffer-stock target of wealth. Due to this feature, all households save in order
to maintain a level of cash-on-hand consistent with this target. This, among other things,
implies that rich households dissave and build their asset position down to a level which is
consistent with the buffer-stock target. This explains why rich households have high MPCs. In
our nonhomothetic model, however, households adjust their buffer-stock target in accordance
with their demand for quality. When households become richer, they instead save more, in
absolute terms, in order to be able to maintain a high level of quality consumption. This feature
lowers their MPCs.

To further understand what is going on, it is helpful to look at the normalized policy functions.39

39 We normalize the policy function by P , as this is in direct analogy to the standard model in ratio form. Due
to the homogeneity of the standard model, the normalization implies that the policy function is unaffected by
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From these, it is possible to infer the MPC from the gradient on a given point on the curve.

Figure 9 plots the policy functions for both models under various scenarios. In each of the four
panels, we show how the policy function is affected by different levels of permanent income,
ranging from a low level (P = 0.86) to a very high level (P = 3.57).40 Within each panel, we
show the policy function in the standard model (dotted line) and the policy function in the
nonhomothetic model when transitory income is high (black line, Y = 2.66) and low (dashed line,
Y = 0.86), respectively. At this point, it is important to notice the central difference between the
two models: In the standard model, the (normalized) policy function is unaffected by changes
in income. In the nonhomothetic model, the policy functions vary with income as highlighted
in Figure 9. This helps explain the underlying reason why the nonhomothetic model is able to
match the relative MPC moments.

Consider a household which has a medium level of permanent income but experiences a bad
transitory income shock (low Y ). Let this be illustrated by point A in Panel (B) of Figure 9.
Imagine now that the permanent income of the household increases but that it still holds the
same level of cash-on-hand. This implies that M/P falls. In the standard model, this would
be illustrated by a shift from point A to point B. Since the gradient in B is higher than the
gradient in point A, this results in an increase in the MPC. This is the only effect in the standard
model. In the nonhomothetic model, however, the change in permanent income implies that the
household also starts demanding goods of higher quality. For a fixed level of Y , this is illustrated
via the change from point B in Panel (B) to point C in Panel (D). At point C, the household
has a very high level of permanent income but Y is still assumed to be low. Comparing the
gradient in point B to the gradient in point C, we realize that the MPC is even higher given
that this is where the household ends up. However, since P increased, Y also increases which, in
the example, implies that it ends up in point D. In point D, the gradient is lower than in any of
the other points and the final result is that for a given increase in permanent income, the now
richer household may exhibit a lower MPC.

What is the difference between a household being in point C and a household in point D?
Remember that in both points, the level of normalized cash-on-hand (M/P ) is the same. Thus,
using Equation (15), we see that the difference between the two households is that the household
with low Y must have a high level of assets in order to have gained the same level of cash-on-hand
as the household with high Y . For the household with a high level of assets (the household in
point C), it spends more out of a windfall than the household with lower level of assets. The
reason is that the household with low level of assets wishes to save more in order to wear off
future bad income shocks. Additionally, the high Y also implies that the household has a demand

varying income. Thus, it is fairly easy to compare the two models under various scenarios.
40 The four levels roughly correspond to the 10th (low), 50th (medium), 75th (high) and 90th (very high)

percentiles in the simulation.
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Figure 9. Policy functions in the standard and nonhomothetic model. Different levels of Y and P .

Notes. Policy functions are normalized by P . In Panel (A), P = 0.86. In Panel (B), P = 1.74. In
Panel (C), P = 2.65. In Panel (D), P = 3.57. In all scenarios, low corresponds to Y = 0.86 and high to
Y = 2.66.

for high quality goods, which it further wishes to maintain consumption of. This adds to its
savings demand.

Now, obviously what lacks in this simplified example is that rich households may, arguably, have
(much) higher levels of cash-on-hand than poor households which, despite their high level of
permanent income, could still imply that M/P is higher for rich households. Thus, to serve
justice to the standard model, we should mention that the standard model could predict MPC
ratios in Table 7 higher than 1 (implying that poor households have higher MPCs than rich
households) but for the given calibration, which is the most commonly used calibration in this
type of models, this is not the case.
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5.3 What does the dynamic model say in terms of quality?

In this section, we put our approximation to how quality enters the consumption choice of the
households under scrutiny. Specifically, we show here that our empirical findings in Section 4.1.3
are indeed consistent with what the model predicts. In essence, we show that for the f()
function to have the shape as in our calibration, it must stem from an overall increase in quality.
Secondly, we show that the quality response following a windfall is hump-shaped over the income
distribution, exactly as our empirical results suggest.

Remember that the f() function is an approximation to the function in Equation (4). Specifically,
f(ξ, P ) = K(P )∏

m
Pm(ξ,P )αm(P ) with

Pm(ξ, P ) =

 ∑
i∈Gm

P1−σ
mi φmi(ξ, P )σ−1

 1
1−σ

.

In our empirical analysis, we study the response in quality following a transitory income shock. It
is straightforward to show that our approximation to f() is increasing in ξ. Hence, what remains
to be shown is what determines the marginal change in the above expression for f(ξ, P ) and
specifically what the requirement for ∂f(ξ,P )

∂ξ > 0 is. We show in Section H.1 that the requirement
is

∑
m

∑
i∈Gm

AmBmi
∂φmi(ξ, P )

∂ξ
> 0, (23)

where it holds that

Am ≥ 0, and Bmi > 0,

which leads us to conclude that in order for f() to be increasing in ξ, it must be that i) the
quality assessment of some goods increases, ii) the quality assessment, overall, increases and iii)
those modules, m, which the household attaches most weight to, is where this quality increase
happens.41 Lastly, coupling this with our study of relative demand of two goods in Section 2, in

41 A simple way to see that a quality increase must be present is to consider the extreme case where all quality
assessments decrease, ie. φmi(ξ,P )

∂ξ
< 0 for all m, i. Alternatively, one could also consider the homothetic case

where ∂φmi
∂ξ

= 0 for all m, i. In this case, f() should be theoretically flat and our approximation would have been
proven wrong.
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particular Equation (3) which we re-iterate here

log xmi
xmk

= (σ − 1)
[
log φmi(ξ, P )

φmk(ξ, P ) − log Pmi
Pmk

]
,

we see that for those goods where quality increases the most, a substitution towards these goods
happens. That is, for those goods where quality increases, relative expenditure shares increase
which is exactly in alignment with our empirical findings in Section 3.

To assess how the quality response in the model matches the quality response found using the
ESP shock in Section 3, we now study the change in the f() function following a windfall. Based
on the definition of the MPC, we define a similar term for the change in f(), which we denote
the marginal quality change (MQC). For each household, i, we compute the MQC as42

MQCi ≡ lim
∆↓0

f(P it , ξit + ∆) − f(P it , ξit)
∆ , (24)

and for each income group, we then take the average MQC. To get a sense of how the MQC
changes at a more granular level, we divide households into 100 groups based on their permanent
income. Figure 10 shows the MQC over the income distribution based on these 100 income
groups. The dashed, vertical lines show the cut-off between low-middle income and middle-high
income, respectively. That is, all households to the left of the first dashed line belong to the
low-income group. All households between the two dashed lines belong to the middle-income
group, and all households to the right of the second dashed line are rich households.

Figure 10 reveals that the the hump-shaped pattern in the quality response suggested by our
empirical findings is also present in the model. That is, what we found in section 4.1.3, is that
the quality response is low for the low-income group, high for the middle-income group and
low for the high-income group. 43 In the model, the poorest 1 percent have a MQC of 0.5, the
richest 1 percent of the households have a MQC close to zero, while the lowest MQC among the
middle-income households is 4.3.44

However, as Figure 10 also shows, the dispersion within the three broader groups is high. Among
the rich households, the MQC ranges between 0 and 8.8 and the average MQC is 6.4. For the

42 Note that we scale the shock so that all households receive the same windfall in absolute terms.
43 Remember that we have not done anything to match this shape of the quality response and the calibration

of f() could easily have given us a different MQC distribution. As an example, consider Section H.2 where κ = 50,
ι = 4 and δ = 4 and the average MQC is 15.6, 1.4 and 0.1 for the low income group, middle income group and
high income group, respectively.

44 Note that the MQC of 0.5 is the average MQC for the 1 percent poorest households. If we calculate the
average of the 0.1 percent poorest household, it is 0.3.
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low-income group, the MQC ranges between 0.5 and 4.3. The average MQC for the low-income
group is 2.5. For the middle-income group, the MQC ranges between 4.3 and 8.3 and the average
MQC is 6.3. That is, in line with our empirical estimates, the average change in quality is low
for the low-income group and high for the middle-income group. However, in the model, the
average change in quality for the high-income group is higher than suggested by our empirical
estimates.
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Figure 10. MQC for different income groups

Notes. Households are divided into income percentiles and for each group, we computed the average
MQC as defined in Equation (24). That is, group 1 is the 1 percent poorest households and group 100 is
the 1 percent richest households. The dashed, vertical lines represent the cut-off between the low-middle
income and middle-high income, respectively.

5.4 Inequality in the two models

To finish this section off, we investigate a result which has been central to previous studies
looking at the effects of nonhomotheticities in dynamic consumption-saving models: the wealth
distribution. As both highlighted in Carroll (2002) and latest in Straub (2019), nonhomotheticities
make the wealth distribution more unequal and help the model match the empirical distribution
better. From the intuition provided for Figure 9, this is also to be expected from our model. In
contrast to other studies, the foundation on which our nonhomotheticities rely are completely
different. In Straub (2019), the nonhomotheticities come from a bequest motive. In Carroll
(2002), he also looks at the bequest motive as in Straub (2019) but finds no evidence for such a
behavior and instead argues for a direct inclusion of wealth in the utility function. In our model,
the nonhomotheticities come from the microfoundation outlined in Section 2 and rigorously
explored in section Section 4. To this end, we feel confident about the source of nonhomotheticity
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of our model.45

Table 8 reports the Gini coefficients of the two models and the corresponding Lorenz curves
are shown in Figure 11. We also show the asset distributions in the two models in Section G.
Wealth inequality is more than three times higher in the nonhomothetic model compared to the
standard model. The standard model provides a fairly equal wealth distribution with a wealth
Gini of 0.15. In the nonhomothetic model, the wealth Gini is 0.49. The differences in the wealth
distributions in the two models is further highlighted in the last three columns of Table 8. Here
we show the wealth holdings of the bottom 50 percent, the top 10 percent and the top 1 percent.
In the standard model, the bottom 50 percent hold 39.1 percent of wealth. In the nonhomothetic
model, the bottom 50 percent hold 17.7 percent. According to the World Income Inequality
Database (WIID),46 the bottom 50 percent owned around 0 percent of (net) wealth in the U.S.
in 2014.47 The top 10 percent own 14.5 percent of total wealth in the standard model, whereas
they own 36.5 percent in the nonhomothetic model. The WIID reports that this figure was 73
percent in the U.S. in 2014. For the top 1 percent, they own 1.6 percent in the standard model
and 6.9 percent in the nonhomothetic model. The WIID reports that this was 38.6 percent in
the U.S. in 2014.

Why does the model with nonhomothetic preferences generate higher wealth inequality? The
intuition for this is similar to that provided in Section 5.2.2. When households become richer
in the nonhomothetic model, their increased demand for high quality goods acts as a savings
motive because they wish to continue consuming goods of high quality. The increased savings of
the richer households exacerbates wealth inequality.

6 Concluding remarks

We use data on households’ purchases to show that households trade up in the quality of their
consumption when they receive a positive, transitory income payment. Moreover, we show
that the response is heterogeneous across the income distribution. In particular, middle-income
households exhibited a larger degree of trading up than low-income households, while high-income
households did not change the quality of their consumption. We also find that the propensity to
spend out of the income payment is decreasing in income.

We incorporate these findings into a canonical buffer-stock model by extending the model with

45 Obviously, by the nature of being a partial equilibrium model, a rigorous analysis of wealth accumulation and
distribution is beyond the scope of our model. However, it does still provide us with some useful insights about
what is going on and what may potentially be very interesting to investigate in a full-fledged general equilibrium
model.

46 Latest version: UNU-WIDER, World Income Inequality Database (WIID4). See Piketty, Saez and Zucman
(2018) for further details.

47 Net personal wealth is defined as the total value of non-financial and financial assets (housing, land, deposits,
bonds, equities, etc.) held by households, minus their debts in the WIID.
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Table 8. Inequality in the models

Wealth distribution

Wealth Gini Income Gini Bottom 50 % Top 10 % Top 1 %

Homothetic 0.15 0.34 39.1 14.5 1.6
Non-homothetic 0.49 0.34 17.7 36.5 6.9

USA, 2014 0.86 0.60 0.0 73.0 38.6

Notes. Data for the U.S. was collected from the World Income Database, latest version: UNU-WIDER,
World Income Inequality Database (WIID4). The wealth Gini is based on net personal wealth defined as
the total value of non-financial and financial assets (housing, land, deposits, bonds, equities, etc.) held by
households, minus their debts. The income Gini is based on pre-tax national income defined as the sum
of post-tax disposable income and public spending.
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Figure 11. Lorenz curves for wealth in the two models.

Notes. The Lorenz curve shows how much wealth the bottom x percent of the population hold, where
x varies along the horizontal axis. The closer the Lorenz curve is to the 45◦ line, the more equal the
distribution is. The more the curve is pushed to the bottom corner, the more unequal is the distribution.

nonhomothetic preferences. In the nonhomothetic model, households not only choose the quantity
but also take into account the quality of their consumption. The nonhomothetic model is able
to generate a decreasing MPC in permanent income, while the homothetic model predicts the
opposite pattern. Moreover, the model predicts that the quality response to a transitory income
shock is hump-shaped over the income distribution as we find the data. Lastly, our model echoes
the results of recent studies regarding nonhomothetic preferences and savings behavior in that
nonhomothetic preferences in our model generate more wealth inequality contrary to a model
with homothetic preferences.
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There are two avenues for further research, which can build on our work. First, we only analyzed
households’ quality choice regarding retail spending on products that are predominantly non-
durable. If anything, the existing literature suggests that the spending response of durables
to transitory income shocks is at least as large as that of non-durables (Parker et al., 2013).
Hence, the consumption of durables should also be analyzed to fully understand the extent of
quality shifting in consumption. One challenge regarding a high-frequency analysis of households’
quality choice of durables, however, is that they are purchased less frequently relative to the
products we analyzed.

Second, our structural model of household behavior is intentionally simple but could, for example,
be extended with an illiquid asset and return heterogeneity as in the framework of Kaplan
and Violante (2014). Embedding the household model into a general equilibrium framework
could also be used to provide a more thorough analysis of how the nonhomothetic preferences
affect wealth inequality. This poses a computational challenge, however, due to the potential
interactions between households’ quality choice and firm behavior. As an example of one such
interaction, changes in consumption quality can affect firms’ price setting through changes in
the type of households purchasing products of a given quality as in the static model by Faber
and Fally (2021). Such a model with two-sided heterogeneity is computationally demanding to
solve since firms’ will need to keep track of the distribution of households in order to set prices
optimally.
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A Additional derivations for the theoretical setup

A.1 Price index and indirect utility function

The household solves the following problem

max
∏
m

 ∑
i∈Gm

(cmiφmi(ξ, P ))
σ−1
σ

αm(P ) σ
σ−1

,

s.t.
∑
m

∑
i

Pmicmi ≤ X.

The Lagrangian is given by

L =
∏
m

 ∑
i∈Gm

(cmiφmi(ξ, P ))
σ−1
σm

αm(P ) σ
σ−1

− Λ
(∑

m

∑
i

Pmicmi −X

)
,

from which it holds that

∂L
∂cmi

= αm(P )
∏
m

 ∑
i∈Gm

(cmiφmi(ξ, P ))
σ−1
σ

αm(P ) σ
σ−1 −1

(cmiφmi(ξ, P ))
σ−1
σ

−1φmi(ξ, P ) − ΛPmi = 0,

and

Pmi
Pmk

=
(
cmi
cmk

)− 1
σ
(
φmi(ξ, P )
φmk(ξ, P )

)σ−1
σ

. (A.1)

Product module price index:
From Equation (A.1) it follows that

(Pmi
Pmk

)−σ
= cmi
cmk

(
φmi(ξ, P )
φmk(ξ, P )

)1−σ
,

⇔ cmk =
(Pmk

Pmi

)−σ (φmi(ξ, P )
φmk(ξ, P )

)1−σ
cmi.
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Total module expenditures is then given by

Xm ≡
∑
k

Pmkcmk =
∑
k

Pmk
(Pmk

Pmi

)−σ (φmi(ξ, P )
φmk(ξ, P )

)1−σ
cmi,

⇔ cmi = XmP−σ
mi φmi(ξ, P )σ−1∑

k P1−σ
mk φmk(ξ, P )σ−1 .

Next, let Cm ≡
[∑

i∈Gm(cmiφmi(ξ, P ))
σ−1
σ

] σ
σ−1 , from which it follows that

Cm ≡

 ∑
i∈Gm

(cmiφmi(ξ, P ))
σ−1
σ

 σ
σ−1

=

 ∑
i∈Gm

(
XmP−σ

mi φmi(ξ, P )σ−1∑
k∈Gm P1−σ

mk φmk(ξ, P )σ−1φmi(ξ, P )
)σ−1

σ


σ
σ−1

=
(

Xm∑
k∈Gm P1−σ

mk φmk(ξ, P )σ−1

) ∑
i∈Gm

P1−σ
mi φmi(ξ, P )σ−1

 σ
σ−1

= Xm

 ∑
k∈Gm

P1−σ
mk φmk(ξ, P )σ−1

−1 ∑
i∈Gm

P1−σ
mi φmi(ξ, P )σ−1

 σ
σ−1

= Xm

 ∑
i∈Gm

P1−σ
mi φmi(ξ, P )σ−1

 1
σ−1

. (A.2)

Lastly, define the income-specific aggregate price index of module m as Pm(ξ, P ) ≡ Xm|Cm=1.
Then it holds that

Pm(ξ, P ) =
(∑

i

P1−σ
mi φmi(ξ, P )σ−1

) 1
1−σ

.

Indirect utility:
From equation (A.2) it follows that

U =
∏
m

 ∑
i∈Gm

(cmiφmi(ξ, P ))
σ−1
σ

αm(P ) σ
σ−1

=
∏
m

[
Xm

Pm(ξ, P )

]αm(P )
,
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which defines the household’s indirect utility from spending Xm on module m with price Pm(ξ, P ).
The budget constraint may likewise be stated as

∑
mXm ≤ X. Thus, the household problem

now reads

max
∏
m

[
Xm

Pm(ξ, P )

]αm(P )
s.t.

∑
m

Xm ≤ X,

from which it holds that

αi(P )
[∏
m

(
Xm

Pm(ξ, P )

)αm(P )
]
X−1
i = Λ,

where Λ is the Lagrangian multiplier. Since this holds for all product modules, we have that

αi(P )
αj(P )

Xj

Xi
= 1 ⇔ Xi = αi(P )

αj(P )Xj ,

and imposing the budget constraint yields

X =
∑
i

Xi =
∑
i

αi(P )
αj(P )Xj = Xj

αj(P )

⇔ Xj = αj(P )X,

where we also use that
∑
i αi(Pt) = 1. This holds for all product modules and thus we may write

the utility function of the household as

U =
∏
n

[
Xm

Pm(ξ, P )

]αm(P )

= X
∏
m

(
αm(P )

Pm(ξ, P )

)αm(P )
.

Thus, when the household knows its income profile, {ξ, P}, it maximizes utility by choosing the
optimal amount of expenditure, X, given the set of prices Pm(ξ, P ). Lastly, the aggregate price
index is given by P(ξ, P ) ≡

∏
m Pm(ξ, P )αm(P ) and hence

U = X

P(ξ, P )
∏
m

αm(P )αm(P ) = X

P(ξ, P ) ·K(P ).
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B Additional figures and tables
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Figure B.1. Distribution of the size-based quality index

Notes. The histogram shows the distribution of the size-based quality index. Dashed lines indicate the
5th and 95th percentiles.
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(a) Spending

−200 0 200 400 600 800 1,000

−0.04

−0.02

0.00

0.02

0.04

Spending

La
rg

e
ite

m
s

(f
ra

ct
io

n
of

sp
en

di
ng

)

(b) Size-based index
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(c) Unit price-based index
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(d) Brand-based index
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Figure B.2. Households’ weekly purchases of large products versus spending and quality of purchases

Notes. Binned scatter plots in which each point is the mean value within bins. y-axes display the fraction
of weekly spending on products in the top 40 percent of the product size distribution within product
modules. All variables have been residualized with household and week fixed effects.
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(a) Income and private-label products
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(b) Spending and private-label products

5,000 10,000 15,000 20,000 25,000

0.10

0.15

0.20

Spending

P
riv

at
e-

la
be

lp
ro

du
ct

s
(f

ra
ct

io
n

of
sp

en
di

ng
)

Figure B.3. Households’ purchases of private-label products (fraction of spending)

Notes. Panel (a) plots the average expenditure share of private-label products within the midpoint of
income bins. Panel (b) is a binned scatter plot of annual spending against the expenditure share of private
label products.
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Figure B.4. Spending covered by the quality indices across the income distribution

Notes. The figure shows the average household-level share of annual purchases covered by the quality
indices within each income bin. 95 % confidence bands based on heteroskedasticity-robust standard errors
are indicated by error bars.
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Figure B.5. Weekly purchasing patterns by income tertile

Notes. The figure shows the distribution of households by the number of weeks in 2008 that we observe
purchases for each household within three income groups (households with annual income below $35,000,
households with annual income between $35,000 and $70,000, and households with annual income above
$70,000).

Table B.1. Robustness: Balancing the sample around ESP receipt

Spending Size-based quality Unit price-based
quality

Brand-based quality

1 month before ESP 2.81*** 0.60** 0.51 0.34
(0.97) (0.29) (0.32) (0.28)

Contemporaneous month 11.0*** 1.15*** 1.19*** 0.73**
(1.05) (0.32) (0.34) (0.30)

2 months after ESP 4.87*** 0.85** 1.03*** 0.34
(1.11) (0.34) (0.37) (0.33)

3 months after ESP 4.31*** 0.42 0.82** 0.36
(1.14) (0.35) (0.38) (0.34)

Week × household obs. 827,175 662,386 651,663 651,549
Households 20,175 20,160 20,158 20,158

Notes. The table shows the estimates of β̃ from equation (11) when balancing the sample around the ESP
receipt. Households are included 16 weeks prior to ESP receipt until 23 weeks after. The lead coefficients
16 weeks and 5 weeks prior to ESP receipt are normalized to zero. Estimates from regressions with a
quality measure as the dependent variable have been scaled by 100. Standard errors are clustered at the
household level and reported in parentheses. *, ** and *** denote significance at the 0.1, 0.05 and 0.01
level respectively.



108

Table B.2. Robustness: ESP estimates from non-constrained regression

Weeks relative to ESP receipt Spending Size-based quality

-15 -1.10 0.06
(1.49) (0.41)

-14 -1.82 -0.03
(1.49) (0.41)

-13 -2.16 0.10
(1.51) (0.42)

-12 0.29 -0.11
(1.45) (0.43)

-11 2.48* -0.21
(1.48) (0.41)

-10 0.77 -0.49
(1.39) (0.40)

-9 -0.74 -0.09
(1.39) (0.39)

-8 -0.58 -0.01
(1.37) (0.39)

-7 1.53 -0.06
(1.35) (0.39)

-6 -0.76 0.59
(1.33) (0.40)

-5 -1.18 -0.16
(1.34) (0.41)

-4 -0.65 0.44
(1.38) (0.39)

-3 2.64* 0.87**
(1.43) (0.39)

-2 0.76 0.05
(1.48) (0.39)

0 10.2*** 0.63
(1.62) (0.44)

+1 10.0*** 1.02**
(1.66) (0.46)

+2 4.93*** 1.01**
(1.69) (0.48)

+3 6.31*** 0.40
(1.76) (0.51)

+4 1.76 -0.09
(1.85) (0.53)

+5 1.10 0.76
(1.93) (0.56)

+6 0.29 0.49
(2.06) (0.60)

+7 -0.05 0.29
(2.16) (0.63)

+8 -1.53 0.14
(2.28) (0.66)

+9 -1.28 -0.23
(2.40) (0.70)

+10 -0.06 -0.47
(2.56) (0.72)

+11 0.045 0.02
(2.65) (0.76)

+12 -0.60 -0.53
(2.77) (0.80)

+13 -0.57 0.36
(2.90) (0.83)

+14 -0.17 -0.25
(3.03) (0.87)

+15 -1.99 0.28
(3.14) (0.90)

+16 -2.68 -0.49
(3.27) (0.94)

+17 -1.29 -0.32
(3.42) (0.97)

+18 -3.38 -0.53
(3.54) (1.01)

+19 -3.76 -0.07
(3.67) (1.05)

+20 -6.98* 0.02
(3.78) (1.09)

+21 -3.79 -0.29
(3.93) (1.12)

+22 -6.37 0.02
(4.06) (1.16)

+23 -4.62 -0.11
(4.24) (1.20)

+24 -7.81* -0.01
(4.40) (0.01)

p-value for test on leads 0.100 0.484

Week × household obs. 827,175 661,803
Households 20,175 20,162

Notes. The table shows the estimates of β̃ from equation (11) when the coefficients are not constrained.
The 1 and 16 weeks lead coefficients are normalized to zero. The sample is balanced around ESP receipt.
Estimates from regressions with a quality measures as the dependent variable have been scaled by 100.
The p-values reported are p-values for an F -test of the hypothesis that all lead coefficients equal zero.
Standard errors are clustered at the household level and reported in parentheses. *, ** and *** denote
significance at the 0.1, 0.05 and 0.01 level respectively.
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(a) Spending estimates
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Figure B.6. Robustness: Choice of leads and lags in regression

Notes. Figures plot the estimates from equation (11) with different sets of leads and lags. Estimates from
the same regression are joined by dashed lines. A blue dot indicates that the point estimate is significantly
different from zero at the 5 % level. Panel (a) plots the estimates from the regression with spending as
the dependent variable, while panel (b) plots the estimates from the regression with size-based quality
variable as the dependent variable. Estimates in panel (b) are scaled by 100. Standard errors are clustered
at the household level
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Table B.3. Robustness: Heterogeneity of ESP response by alternative income groups

Baseline grouping Grouping on future income Adjust for age and size
Spending Quality Spending Quality Spending Quality

Bottom tertile
1 month before ESP 6.46** 0.26 5.75* 0.19 7.83*** -0.57

(3.12) (1.05) (3.24) (1.08) (2.87) (0.86)
Contemporaneous month 17.1*** 1.13 14.4*** 1.03 16.9*** 0.81

(3.40) (1.09) (3.46) (1.12) (3.07) (0.89)
2 months after ESP 8.86*** 0.26 7.40** 0.36 7.39** 0.20

(3.30) (1.11) (3.36) (1.14) (2.99) (0.90)
3 months after ESP 7.21** 0.15 5.94* -0.23 7.56*** -0.48

(3.06) (1.06) (3.09) (1.09) (2.77) (0.87)

Week × households obs. 241,097 198,841 237,864 196,130 241,574 199,892
Households 4,549 4,547 4,488 4,485 4,558 4,554

Middle tertile
1 month before ESP 2.63 1.00* 3.96* 1.37** 0.58 1.72***

(2.15) (0.60) (2.16) (0.62) (2.19) (0.61)
Contemporaneous month 9.98*** 1.47** 10.6*** 1.61** 7.62*** 1.46**

(2.18) (0.63) (2.20) (0.64) (2.24) (0.64)
2 months after ESP 3.17 1.64*** 4.28** 1.63** 4.77** 1.75***

(2.13) (0.63) (2.16) (0.65) (2.20) (0.65)
3 months after ESP 1.48 1.04* 2.46 0.86 2.13 1.16*

(2.12) (0.62) (2.17) (0.63) (2.14) (0.63)

Week × households obs. 265,477 219,822 261,926 217,712 243,270 202,184
Households 5,009 5,007 4,942 4,941 4,590 4,590

Top tertile
1 month before ESP 0.73 0.56 0.10 0.32 0.88 0.61

(2.33) (0.57) (2.29) (0.54) (2.41) (0.64)
Contemporaneous month 4.47* 0.28 5.83** 0.32 5.87** 0.59

(2.42) (0.59) (2.39) (0.57) (2.49) (0.66)
2 months after ESP 1.72 -0.044 1.81 -0.0092 0.67 0.075

(2.39) (0.59) (2.34) (0.57) (2.44) (0.67)
3 months after ESP 1.08 -0.61 1.16 -0.085 -0.66 -0.11

(2.27) (0.55) (2.21) (0.53) (2.37) (0.63)

Week × households obs. 206,859 170,012 213,643 174,833 228,589 186,599
Households 3,903 3,903 4,031 4,031 4,313 4,313

Notes. The table shows the estimates of β̃ from equation (12). Regressions only include households that
enter the data in at least 2008, 2009, and 2010. Columns (1) and (2) use the same income groups as in
table 4, columns (3) and (4) base income groups on the modal income group in subsequent years, and
columns (5) and (6) base income groups on the modal age and size-adjusted income tertile in subsequent
years. Standard errors are clustered at the household level and reported in parentheses. *, ** and ***
denote significance at the 0.1, 0.05 and 0.01 level respectively.

C Ranking of products in different years

To assess if products are ranked similarly in other years by the size-based index, we have
constructed the same quality index but using the prices of 2007 and 2009. The correlation
coefficients between the original index and the indices for 2007 and 2009 are 0.74 in both years
at the product-CBSA pair level. Note that there is substantial entry and exit of products in
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Table B.4. Robustness: ESP estimates at department, group and module level

Spending Size-based qual-
ity

Unit price-based
quality

Brand-based
quality

Product category: Department level
1 month before ESP 2.44*** 0.51* 0.43 0.32

(0.73) (0.26) (0.28) (0.24)
Contemporaneous month 6.76*** 0.96*** 0.95*** 0.65**

(0.76) (0.27) (0.30) (0.25)
2 months after ESP 2.78*** 0.68** 0.72** 0.32

(0.73) (0.27) (0.30) (0.26)
3 months after ESP 2.70*** 0.32 0.44 0.30

(0.71) (0.26) (0.29) (0.25)

Household × week × department obs. 9,812,791 3,169,578 2,959,971 2,958,773
Households 20,175 20,159 20,160 20,160

Product category: Group level
1 month before ESP 1.03*** 0.14 0.033 0.19

(0.33) (0.19) (0.17) (0.20)
Contemporaneous month 2.69*** 0.40** 0.34* 0.48**

(0.34) (0.20) (0.18) (0.21)
2 months after ESP 1.01*** 0.22 0.14 0.33

(0.33) (0.20) (0.18) (0.21)
3 months after ESP 0.95*** 0.06 0.01 0.09

(0.32) (0.20) (0.18) (0.21)

Household × week × group obs. 67,165,893 6,836,181 6,562,980 6,568,743
Households 20,175 20,146 20,145 20,145

Product category: Module level
1 month before ESP 0.55*** 0.43** 0.32* 0.16

(0.19) (0.18) (0.18) (0.14)
Contemporaneous month 1.44*** 0.56*** 0.55*** 0.36**

(0.20) (0.18) (0.18) (0.14)
2 months after ESP 0.48** 0.24 0.37** 0.28*

(0.19) (0.19) (0.18) (0.14)
3 months after ESP 0.44** 0.25 0.18 0.12

(0.19) (0.18) (0.18) (0.14)

Household × week × module obs. 156,318,253 7,179,775 6,908,330 6,903,046
Households 20,175 20,139 20,136 20,136

Notes. The table shows the estimates of β̃ from equation (11) at the product department (upper panel),
product group (middle panel), and product module (lower panel) level. Estimates from regressions with
a quality measures as the dependent variable have been scaled by 100. Regressions include household
× product category and week × product category fixed effects. Standard errors are clustered at the
household level and reported in parentheses. *, ** and *** denote significance at the 0.1, 0.05 and 0.01
level respectively.

the Nielsen data. Hence, we should not expect to find the exact same quality ranking between
products in different years.

We have also calculated the normalized rank of the quality index for each product within the
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Table B.5. Robustness: ESP estimates with disbursement method fixed effects

Spending Size-based quality Unit price-based
quality

Brand-based quality

1 month before ESP 1.55 0.87* 0.85 0.81*
(1.79) (0.50) (0.54) (0.48)

Contemporaneous month 8.63*** 1.26** 1.07* 0.98*
(1.85) (0.52) (0.56) (0.51)

2 months after ESP 3.28* 0.82 1.08* 0.68
(1.81) (0.52) (0.56) (0.51)

3 months after ESP 1.35 0.58 1.20** 0.67
(1.74) (0.50) (0.55) (0.50)

Week × household obs. 1,069,275 835,470 831,244 831,107
Households 20,175 20,165 20,166 20,166

Notes. The table shows the estimates of β̃ from equation (11) when week fixed effects are replaced with
disbursement method × week fixed effects. Estimates from regressions with a quality measures as the
dependent variable have been scaled by 100. Standard errors are clustered at the household level and
reported in parentheses. *, ** and *** denote significance at the 0.1, 0.05 and 0.01 level respectively.

group of products of the same size in the same module sold in the same CBSA:

ranki,m,s,c − 1
Nm,s,c − 1 (C.1)

where ranki,m,s,c is the rank of product-CBSA pair (i, c)’s quality index relative to the other
products of the same size s in the same module m sold in CBSA c. Nm,s,c is the number of
product-CBSA pairs in the CBSA-size-module group.

This normalized rank is calculated separately for the years 2007, 2008 and 2009. We then
construct binned scatter plots for the normalized rank in 2008 against the two other years in
the following way. First, we sort all product-CBSA pairs by their normalized rank in 2008 and
divide them into 100 equal-sized bins. Second, we calculate the median normalized rank within
these bins for 2007 through 2009 and use these medians to create two scatter plots.

Figure C.1 shows these two binned scatter plots. The median normalized ranks in 2008 is
plotted against the corresponding medians in 2007 in panel (a), while panel (b) plots the median
normalized ranks in 2008 against the medians for 2009. All points are very close to the 45 degree
line. Hence, along with the high cross-year correlation coefficients for the quality indices, these
scatter plots show that the quality rank is approximately the same in different years across the
entire quality index distribution.
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(a) 2008 versus 2007
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(b) 2008 versus 2009
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Figure C.1. Product-CBSA pairs’ quality rank in 2008 versus 2007 and 2009

Notes. Binned scatter plots with 100 equal-sized bins based on the normalized rank of product-CBSA
pairs’ size-based quality index in 2008. Each point is the median value of the normalized rank within
bins. Dashed lines are 45 degree lines.

D Heterogeneity of response to ESP by liquidity

Liquidity constraints are important for shaping households’ consumption behavior since liquidity
constrained households display larger propensities to consume out of transitory income shocks.
Many studies on ESPs also find that liquidity constrained households have a larger propensity to
consume out of the ESP relative to non-constrained households (Broda and Parker, 2014; Misra
and Surico, 2014; Parker, 2017). Similarly, Kaplan and Violante (2014) estimate that between
17.5 percent and 35 percent of US households are hand-to-mouth consumers due to liquidity
constraints and that many of these households are wealthy but still hand-to-mouth consumers
since they hold the lion’s share of their wealth in illiquid assets. Since liquidity constraints have
received considerable attention in the literature on MPCs, we also report estimates of how the
quality differ by households’ access to liquid wealth.

The ESP survey contains a question asking households if they had access to liquid wealth to
buffer against unexpected declines in income or increases in expenses.48 35 percent of the
households in our sample report that they do not have access to liquid wealth. We now look at
how households’ quality response differ by their access to liquidity. Regression (12) is estimated
according to this split, and the results are presented in table D.1.

48 The survey question was "In case of an unexpected decline in income or increase in expenses, do you have at
least two months of income available in cash, bank accounts, or easily accessible funds?" to which the households
could answer "Yes" or "No".
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Table D.1. Heterogeneity of ESP response by access to liquidity

Weekly spending Size-based quality Unit price-based
quality

Brand-based quality

Liquidity constrained
1 month before ESP 6.30*** -0.12 0.082 0.44

(2.31) (0.58) (0.61) (0.55)
Contemporaneous month 19.0*** 1.22** 1.79*** 1.37**

(2.40) (0.59) (0.64) (0.57)
2 months after ESP 7.05*** 0.51 0.92 0.27

(2.31) (0.60) (0.64) (0.58)
3 months after ESP 6.31*** 0.24 0.66 0.034

(2.19) (0.58) (0.63) (0.57)

Week × household obs. 375,770 285,342 284,195 284,147
Households 7,090 7,085 7,085 7,085

Not constrained
1 month before ESP 2.34* 0.89** 0.81* 0.88**

(1.41) (0.42) (0.46) (0.41)
Contemporaneous month 7.41*** 0.96** 0.78* 0.81*

(1.46) (0.44) (0.47) (0.42)
2 months after ESP 3.78*** 0.84* 0.87* 0.67

(1.45) (0.44) (0.48) (0.43)
3 months after ESP 2.58* 0.34 0.56 0.72*

Week × household obs. 693,505 550,128 547,049 546,960
Households 13,085 13,080 13,081 13,081

Notes. The table shows the estimates of β̃ from equation (12) with the sample split by being liquidity
constrained or not. Estimates from regressions with a quality measures as the dependent variable have
been scaled by 100. Standard errors are clustered at the household level and reported in parentheses. *,
** and *** denote significance at the 0.1, 0.05 and 0.01 level respectively.

Over three months, the propensity to consume out of the ESP for the liquidity constrained is
almost two and a half times as large as for the non-constrained (14.6 percent versus 6.2 percent).
These estimates are in line with those of Broda and Parker (2014). Both groups increase the
quality of spending although the effect is most significant for the constrained households.

E The f() function with alternative parameter values

The Gompertz function has the general functional form

f(ξt, Pt) = κe−ιe−δ·ξtPt
. (E.1)

For ι > 0 and δ > 0, f() will be S-shaped. Letting either ι or δ be negative, the shape becomes
hyperbolic on its support R+. We showcase the two scenarios below. Note that in the case where
both ι and δ are negative, f() is exploding. We do not show that here.

Case 1: ι < 0 and δ > 0
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In this scenario, the asymptotic level is a lower bound with value κ. In the zero-income event,
the maximum value of f() is reached at κe−ι > κ.
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Figure E.1. f() function with ι < 0, δ > 0. Varying ι.

Notes. The black line shows the calibrated f() function used in the solution of the model.

Case 2: ι > 0 and δ < 0

In this scenario, the asymptotic level is a lower bound with value 0. In the zero-income event,
the maximum value of f() is reached at κe−ι.
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Figure E.2. f() function with ι > 0, δ < 0. Varying δ.

Notes. The black line shows the calibrated f() function. For the purpose of exposition, we changed the
values of ι to 0.1 in the δ < 0 scenarios.
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F Computational appendix

In this section we provide an explanation of how the fast multi-linear interpolation algorithm
from Druedahl, 2021 is implemented in the solution of the dynamic programming problem in
section 5.1.

F.1 EGM with a fast, multi-linear interpolation algorithm

The Bellman equation is given by

Vt(Mt, Pt, ξt) = max
Xt

(Xt · f(ξt, Pt))1−ρ

1 − ρ
+ βEt[Vt+1(Mt+1, Pt+1, ξt+1)], (F.1)

To solve the problem, we employ the Endogenous Grid Method (EGM) combined with an
upper envelope as in Druedahl and Jørgensen, 2017.49 However, implementing the EGM in a
multi-dimensional setting like ours is costly due to the need for multi-linear interpolation. In the
following, we describe how to alleviate this issue by exploiting some structure of our problem.
As we show, we end up only doing a two-dimensional interpolation.

Following Druedahl, 2021, we define two auxiliary variables, wt and qt, which we refer to as
post-decision variables. Common to these is that they can be computed when the so-called
post-decision states are known. In particular, in the present problem, only two of the post-decision
states, namely end-of-period assets, At, and permanent income, Pt, are needed to compute wt
and qt.50

Post-decision value function. wt is defined as

βEt[Vt+1(Mt+1, Pt+1, ξt+1)] = βEt[Vt+1(RAt + Yt+1, Pt+1, ξt+1)]

= βEt[Vt+1(RAt + ξt+1ψt+1GPt, ψt+1GPt, ξt+1)]

≡ w(At, Pt), (F.2)

and we refer to wt as the post-decision value function. From equation (F.2), we see that after
knowing At and Pt, we can compute wt for given values of ξt+1 and ψt+1. To compute the
expectation, we can use an appropriate weighting for each of the shocks.51

Post-decision marginal value of cash. From the Euler equation of the problem, we have

49 The upper envelope is needed to rule out scenarios, where the Euler equation is not sufficient for generating
points on the consumption curve.

50 In this terminology, also transitory income shocks, ξt, is a post-decision state.
51 In particular, we use the Gauss-Hermite quadrature to compute the expectation.
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that

X−ρ
t f(ξt, Pt)1−ρ = βREt[X−ρ

t+1f(ξt+1, Pt+1)1−ρ]. (F.3)

Defining qt as the right-hand side of this expression, we have that

βREt[X−ρ
t+1f(ξt+1, Pt+1)1−ρ] = Et

[
βR

(
X⋆
t+1(Mt+1, ξt+1, Pt+1)

)−ρ (f(ξt+1, Pt+1))1−ρ
]

= Et
[
βR

(
X⋆
t+1(RAt + Yt+1, ξt+1, Pt+1)

)−ρ (f(ξt+1, Pt+1))1−ρ
]

= Et
[
βR

(
X⋆
t+1(RAt + ξt+1ψt+1GPt, ξt+1, ψt+1GPt)

)−ρ (f(ξt+1, ψt+1GPt))1−ρ
]

≡ qt(At, Pt), (F.4)

and we refer to qt as the post-decision marginal value of cash. As for wt, we also see that after
knowing At and Pt along with some optimal expenditure choice X⋆

t+1, we can compute qt for
given values of ξt+1 and ψt+1. Computing the expectation can also be done in the same way as
for wt, using an appropriate weighting for the shocks.

Endogenous grid method. After having solved for qt, we see that knowing the last post-
decision state, ξt, we can fully determine the time t expenditure choice, Xt. Specifically, we have
that

X−ρ
t f(ξt, Pt)1−ρ = qt(At, Pt) ⇔

Xt =
(
qt(At, Pt)
f(ξt, Pt)1−ρ

)− 1
ρ

= F (At, ξt, Pt; ξt+1, ψt+1). (F.5)

We thus see that, given that the Euler equation is a necessary condition for utility maximization,
we can calculate all the points on the expenditure function and beginning-of-period cash-on-hand
from

Xt = F (At, ξt, Pt; ξt+1, ψt+1), (F.6)

Mt = At +Xt. (F.7)

Additionally, we also see that after having calculated Xt, the value function in equation (F.1)
readily available.
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(a) Standard model
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Figure G.1. Asset distributions in the standard and non-homothetic model

G Asset distributions in the two models

H Quality in the theoretical model

H.1 Requirement for f() to be increasing in quality

From Section 2, we have that that f(ξ, P ) ≡ K(P )/P(ξ, P ) = K(P )/
∏
m Pm(ξ, P )αm(P )

where

Pm(ξ, P ) =

 ∑
i∈Gm

P1−σ
mi φmi(ξ, P )σ−1

 1
1−σ

.

Take the partial derivative of ln f(ξ, P ) w.r.t. ξ:

∂ ln
(

K(P )∏
m

Pm(ξ,P )αm(P )

)
∂ξ

= ∂ lnK(P )
∂ξ

− ∂
∑
m αm(P ) ln Pm(ξ, P )

∂ξ

= −∂
∑
m αm(P ) ln Pm(ξ, P )

∂ξ
(I)
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Consider some module, m, and look at the partial derivative:

∂αm(P ) ln P(ξ, P )
∂ξ

=
∂αm(P ) 1

1−σ ln
[∑

i∈Gm P1−σ
mi φmi(ξ, P )σ−1

]
∂ξ

= − αm(P ) 1∑
i∈Gm P1−σ

mi φmi(ξ, P )σ−1 ·
∑
i∈Gm

Pmi(ξ, P )1−σφmi(ξ, P )σ−2∂φmi(ξ, P )
∂ξ

= − αm(P ) 1
Pm(ξ, P )1−σ ·

∑
i∈Gm

Pmi(ξ, P )1−σφmi(ξ, P )σ−2∂φmi(ξ, P )
∂ξ

(II)

Now, the requirement is that ∂f(ξ,P )
∂P > 0. Using this, equation (I) gives us

∑
m

αm(P ) 1
Pm(ξ, P )1−σ ·

∑
i∈Gm

Pmi(ξ, P )1−σφmi(ξ, P )σ−2∂φmi(ξ, P )
∂ξ

> 0

=
∑
m

∑
i∈Gm

AmBmi
∂φmi(ξ, P )

∂ξ
> 0,

where

Am ≡ αm(P ) 1
Pm(ξ, P )1−σ ≥ 0, and Bmi ≡ Pmi(ξ, P )1−σφmi(ξ, P )σ−2 > 0.

H.2 MQC with alternative parameter values
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(a) MQC.
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Figure H.1. MQC and f() function with κ = 50, ι = 4 and δ = 4.

Notes. The dashed, vertical lines in panel H.1a represent the cut-off between the low-middle income
and middle-high income, respectively. Average MQC is 15.6, 1.4 and 0.1 for the low-income group,
middle-income group and high-income group, respectively.
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Abstract

We derive a data-driven rule for when to choose local projection, vector autoregression
or a mix of these two methods’ estimates of impulse responses in finite samples. We
show that local projections and VARs are linked in finite samples: local projections
can be derived from a first-step estimate of the VAR impulse responses and a
second-step linear correction of the forecast errors of the VAR. The sum of these two
estimates yields the local projection estimate and the second-step estimate therefore
captures the difference between local projections and VARs. We coin the difference
between local projections and VARs the local projections contribution to VARs and
since this difference is estimated we can perform inference on it. The selection rule is
based on this inference and depends on a simple key statistic for the local projection
contribution: the coefficient of variation. When the coefficient of variation is large,
the local projection contribution is imprecisely estimated and more weight is put on
the VAR estimate. When the coefficient of variation is small more weight is put on
the local projection estimate. We show that the selection rule performs well in a host
of Monte Carlo studies.
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1 Introduction

Vector autoregressions and local projections are the two primary methods used for estimating
impulse responses in empirical macroeconomics. Plagborg-Møller and Wolf (2021) show that the
two methods are asymptotically equivalent but often, however, different - and sometimes even
opposing - impulse responses are estimated in finite sample settings. Examples of pronounced
differences reach all the way into studies of core macroeconomic questions (Ramey, 2016) and Li,
Plagborg-Møller and Wolf (2021) furthermore show that a general feature of U.S. macroeconomic
time series is that local projections and vector autoregressions disagree on the impulse responses
they estimate. As the finite sample setting is the ballgame for most practitioners, knowing how
to choose between vector autoregression and local projection estimates is crucial when these
differ.

The difference between vector autoregression and local projection estimates arise because the
two methods have different finite sample properties: they trade off bias and variance differently.
It is, however, hard in practise to choose between vector autoregressions and local projections
because it requires knowledge on how bias and variance influence the two methods in the specific
analysis at hand. A key take-away from ample Monte Carlo studies is that no method is superior
in general and supple changes in the data generating process alters the preferred estimator at
different horizons (Meier, 2005; Marcellino, Stock and Watson, 2006; Kilian and Kim, 2011;
Brugnolini, 2018; Li, Plagborg-Møller and Wolf, 2021).

We make two novel contributions. First, we show that local projection estimates can be
decomposed into a term that is equal to the vector autoregression estimate and a term which we
coin the local projection contribution. An important property of this decomposition is that both
terms are identified and can be estimated by standard procedures. Since we identify both these
terms, this enables us to make our second contribution: We provide a data-driven selection rule
that determines when to choose vector autoregressions, local projections or a mix.

The decomposition of the local projection estimates arise from a two-step estimation procedure.
In step 1 we estimate a vector autoregression. In step 2 we estimate the local projection
contribution as the parameter estimate from a projection of the vector autoregression forecast
error onto the same set of explanatory variables used in step 1. We then show that adding the
estimates from step 1 and 2 exactly gives the local projection estimate. This shows that the
local projection estimate can be decomposed into a vector autoregression estimate and our local
projection contribution estimate. This decomposition, while simple, has a number of implication
of interest to practitioners.

First off, it provides a link between local projections and vector autoregressions. In the way
we formulate it local projection estimates can be thought of as a correction of the predictable
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forecast errors the vector autoregression makes at longer horizons. Second, while we focus on the
local projection contribution, the two-step estimation procedure opens up for a much broader
perspective on impulse response estimation: local projections are only one way we can think of
correcting the vector autoregression estimates. As the local projection correction is linear we can
think of it as a ’simple’ correction but the opportunities to gain from exploring more sophisticated
corrections are interesting to pursue. We focus on the the local projection corrections as a
showcase and because it allows us to highlight a third implication of the two-step procedure: We
can derive a data-driven selection rule for how to choose between vector autoregressions and
local projections.

We derive the data-driven selection rule by first multiplying the local projection contribution
with a parameter, α. We coin the impulse response estimate obtained from the sum of the
vector autoregression and α times the local projection contribution the local projection corrected
vector autoregression estimate. The local projection corrected vector autoregression estimate
then nests three important cases: i) there is no local projection contribution (i.e. the vector
autoregression estimate is obtained) when α = 0, ii) the full local projection contribution is
added (i.e. the local projection estimate is obtained) when α = 1 and iii) a mix between the
vector autoregression estimate and the local projection estimate is obtained when α ∈ (0, 1).
We then show that minimizing the mean squared error of the local projection corrected vector
autoregression estimate w.r.t. α depends on a key statistic: the coefficient of variation of the
local projection contribution. The selection rule states: when the coefficient of variation of the
local projection contribution is large, more weight should be put on the vector autoregression
estimate. When the coefficient of variation is low, more weight should be put on the local
projection estimate.

The performance of the selection rule is analyzed in the last part of the paper. We use several
Monte Carlo studies intended to represent the main challenges practitioners face: the sample
size of each dataset is finite and the true data generating process is unknown. The finite sample
size implies that variance plays a crucial role. The unknown data generating process implies
that also bias is important. The importance of bias and variance in the mean squared error
of the different impulse response estimates differ across the Monte Carlo studies and over the
forecast horizons considered in each study. Common to all Monte Carlo studies is that neither
local projections nor vector autoregressions estimate impulse responses that are preferred over
all forecast horizons. The Monte Carlo studies demonstrate one main result: the mean squared
error of the local projection corrected vector autoregression estimate always mix the vector
autoregression and local projection estimates such that when the mean squared error of one is
large the other is picked. Thus the local projection corrected vector autoregression estimates are
always the safest choice.

The contributions made in this paper are related to several strands of literature. The seminal
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paper by Jordà (2005) showed how to estimate local projections and compared them with vector
autoregression impulse responses proposed in Sims (1980). We show that local projections can
be estimated from vector autoregressions. Relative to Jordà (2005), we use this to cast new
light on what local projections are and to bridge two seemingly different approaches that seek to
estimate the same object. Plagborg-Møller and Wolf (2021) prove that local projections and
vector autoregressions indeed do estimate the same impulse responses in population and provide
a lot of insights on how, why and when these two estimators differ. Plagborg-Møller and Wolf
(2021) briefly consider the difference between the two estimators in finite samples and the link
between the two estimators that we derive bears resemblance to what they find. But whereas
their focus is on the asymptotic properties of the difference between the two estimators, we use
the link we derive to propose a selection rule that combats the bias-variance trade-off in finite
samples.

The two-step estimation procedure we propose in this paper relates to similar procedures used
in other professions than economics. Judd and Small (2000) proposed the use of a procedure
to improve forecast errors of iterative models in physics and related papers are referenced in
that paper. Taieb and Hyndman (2012) also propose the use of a similar procedure to generally
improve forecasts of iterative models. Relative to both these papers we focus on impulse responses
and discuss the link between VARs and LPs using this approach.

Our selection rule emerges from a minimization of the mean squared error of the impulse
response estimates. As mentioned, it is meant to address the bias-variance trade-off in impulse
response estimation with vector autoregressions and local projections. The same issue has been
addressed by notably two other papers. Barnichon and Brownlees (2019) propose to shrink
local projection estimates using regularization tools to minimize the variance loss. Relative to
Barnichon and Brownlees (2019) we "shrink" the local projection estimate towards the vector
autoregression estimate and our selection rule does not depend on tuning parameters set by the
practitioner. Our selection rule is instead entirely data-driven. Miranda-Agrippino and Ricco
(2021) similarly propose to shrink the local projection estimates but, as in our case, towards the
vector autoregression estimates. Our paper contrasts with Miranda-Agrippino and Ricco (2021)
in two important ways. First, we formally show that shrinking the local projection estimates
towards the vector autoregression estimates is indeed sensible. Second, Miranda-Agrippino
and Ricco (2021) propose a Bayesian approach where local projections are estimated with
conjugate priors centred around vector autoregression estimates from a pre-sample. Their
Bayesian approach is fundamentally different from our classical approach.

In our Monte Carlo studies we find support for the notion that the best impulse response
estimates are found by using a mix of vector autoregressions and local projections - not choosing
one over the other. This conclusion is reminiscent of the literature on forecast combinations
(for a review see for example Timmermann, 2006). We show that the insights carry through to
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impulse response estimation.

The Monte Carlo studies we use to analyse the performance of vector autoregressions, local
projections and local projection corrected vector autoregressions are related to a large literature.
A vast amount of papers have looked at the performance of vector autoregressions versus local
projections in Monte Carlo studies. An extensive but not exhausting list includes Jordà (2005),
Meier (2005), Kilian and Kim (2011), Brugnolini (2018), Choi and Chudik (2019), Jordà, Singh
and Taylor (2020), and Li, Plagborg-Møller and Wolf (2021). Relative to these papers we add
new Monte Carlo studies and the analyses of the performance of our local projection corrected
vector autoregression. Our Monte Carlo studies furthermore demonstrates the key take-away
from this paper: We do not only cast light on specific scenarios where practitioners could expect
one method to be better than the other, but we also give a tool that ensures the best performing
method is followed.

2 Local Projection Corrected Vector Autoregressions

Consider the time series y1, ...,yN , where yt, t ∈ {1, . . . , N}, is a (1 × k) matrix of variables. Let
Pt ≡ [yt−1,yt−2, . . . ,yt−p] be a (1 × kp) matrix of past observations.

Assume that the economy is hit by a shock at time t such that the variables move by s on impact
of the shock. Let ỹt denote the time t outcome after the shock such that ỹt = yt + s. The shock
is specified in this generic way to keep things simple. It may be thought of as any identified
immediate response of the variables in yt to a shock.1

The usual LP definition of the time t+ h impulse response to the shock is

ˆIRLP (h, s;Pt) ≡ sĈLP
h,1 , (1)

where CLP
h+1,1 is the upper (k× k) block of the coefficient matrix CLP

h+1 from the projection

yt+h = PtC
LP
h+1 + vt, (2)

and vt are projection errors. We use a hat to indicate that an object is estimated.

Equation (1) highlights the well-known nature of LP impulse responses: for each h-step ahead
impulse response, the LP impulse responses are based on new coefficient matrices, CLP

h . In

1 Think e.g. of a row of a Cholesky decomposition of the covariance matrix familiar from the identification
from short-run restrictions.
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contrast, the h-step ahead VAR impulse responses are given by

ˆIRV AR(h, s; Pt) = sB̂h
V AR,1, (3)

where Bh
V AR,i denotes the i’th upper (k × k) block of Bh

V AR, with

BV AR ≡



B1 Ik 0k · · · 0k

B2 0k Ik · · · 0k
...

...
... . . . ...

Bp−1 0k 0k · · · Ik

Bp 0k 0k · · · 0k


,

0k and Ik denoting the (k × k) zero and identity matrices, respectively, B0
V AR,1 ≡ Ik and

[B1, . . . ,Bp] = CLP
1 since the LP projection in Equation (2) coincides with the VAR projection

for h = 0.

Equation (3) shows how the VAR, in contrast to LP, relies completely on CLP
1 to update the

coefficient matrix Bh
V AR,1.

Equations (1) and (3) show that VARs and LPs are different approaches that can be used to
obtain the same object: the impulse response to the time t shock. The reuse of CLP

1 vis-á-vis the
new CLP

h is the fundamental difference between the two approaches and it is the explanation for
why practitioners sometimes find that the two methods yield different results for their impulse
response estimates.

The reuse of CLP
1 implies that the VAR does not require any new information to form h-step

ahead predictions. This makes the VAR estimator highly efficient and this feature is typically
praised by proponents of VARs. To visualize this efficiency, consult e.g. panel (b) of Figure 7 in
the simulation studies of Section 4. The VAR justifies the reuse of CLP

1 under the assumption
that the data generating process (DGP) follows Equation (2) for h = 0 and instead of making
new projections for each new h, the VAR instead iterates forward on the equation to obtain the
h-step ahead predictions. If, however, the DGP does not follow Equation (2), the VAR model
is misspecified and the reuse of CLP

1 may result in biased predictions. To visualize such bias,
consult e.g. panel (a) of Figure 7. The LP approach tries to alleviate on this bias cost by forming
the new coefficient matrices CLP

h . Proponents of LP typically highlight the (perceived) smaller
bias in justification of the method vis-á-vis VAR. Such improvement on bias is for example also
illustrated in panel (a) of Figure 7. LP users, however, have to give up some of the efficiency of
the VAR. Panel (b) of Figure 7 e.g. illustrates this efficiency loss. Ultimately, all practitioners
face a classical statistical challenge when they have to decide between using VARs or LPs: how
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should bias and variance be traded off?

The bias-variance trade-off is inherently difficult to solve and practitioners need to have specific
knowledge about how severe the bias and variance costs are in the specific analysis they
are conducting. Practitioners, however, do not typically hold such valuable knowledge and
furthermore, formal guidelines to aid them are scarce. As a result, practitioners are most often
left to make their own, subjective judgements.

The reason why there are no formal guidelines available to practitioners to help judge whether
VAR or LP impulse responses should be used, is because the two methods build on different
approaches that are difficult to compare. In other words, the way the two methods work opens a
gap between them and ultimately the impulse responses they yield.

The first theoretical contribution this paper makes is to bridge the gap between the two
methods and show that VARs and LPs are linked through an additive decomposition of the LP.
Proposition 4 shows this results.

Proposition 4 (Additive LP decomposition). The h-step ahead LP (p) impulse response
can be decomposed into the sum of an h-step ahead V AR(p) impulse response and a local
projection correction (LPC) to the VAR:

ˆIRLP (h, s;Pt) = sB̂h
V AR,1 + sĈLPC

h,1 , (4)

where CLPC
h+1,1 is the upper (k × k) block of the coefficient matrix CLPC

h+1 from the projection

rt+h = PtC
LPC
h+1 + uht, (5)

and rht is the h-step ahead prediction error of yt+h of the V AR(p) model.

Sketch proof (full proof in Section A). Fit a V AR(p) model using the projection in Equation (2)
with h = 0 and set

[
B̂1, . . . , B̂p

]
= ĈLP

1 . Iterate forward on the V AR(p) model to make h-step
ahead predictions for yt+h. The h-step ahead in-sample prediction error the V AR(p) model
makes of yt+h is given by rt+h = yt+h − ŷV ARt+h . Fit the local projection of the VAR prediction
errors in Equation (5) to obtain the local projection corrected VAR (LPCVAR) predictions
ŷLPCV ARt+h = ŷV ARt+h + PtĈ

LPC
h+1 and impulse responses ˆIRLPCV AR(h, s;Pt) = sB̂h

V AR,1 + sĈLPC
h,1 .

To show that the h-step ahead LPCVAR impulse response is equal to the Jordà, 2005 local
projections, write the LPCVAR on "projection form", i.e. projection matrix, PPt , times object to
be projected, rt+h, and use that projection matrices are idempotent and that a once projected



129

object is unchanged by another projection with the same projection matrix.

Proposition 4 provides an important link between the VAR and LP h-step ahead impulse
responses as it shows that we can obtain LP from VAR. Moreover, Proposition 4 shows that LP
can be thought of as a correction of the VAR model and in particular, LP corrects the prediction
errors the VAR model makes. As we shall study in the next section, predictions may be efficient
in using the data for the 1-step ahead projection to extrapolate into the future. However, exactly
due to this efficient use of data where one prediction is used to form the next, it may introduce a
bias cost. This bias cost can be reduced by correcting the prediction error that the VAR makes
by a projection back onto the set of explanatory variables. The correction, however, may be
poorly estimated (the variances of the coefficients in ĈLPC

h are large) and if this is the case, we
might not be interested in the bias reduction after all. Due to the additive decomposition of the
LP estimator in Proposition 4 and the fact that we estimate the LP correction, we can assess
whether we want to correct the VAR estimate or not and in the coming section we show that we
can also allow only for partial correction of the VAR estimate.

2.1 Bias vs. variance

To assess the performance of the LP and VAR estimators we use the mean squared error
(henceforth MSE) as the metric. The MSE is a popular choice of metric which is typically used
in the literature to compare different methods and an appealing property of this metric is that
it can be decomposed into two terms: bias and variance. Our second theoretical contribution,
outlined in Corollary 2, utilizes the insights from Proposition 4 to show how the MSE of the LP
estimator compares to the VAR.2

Corollary 2 (Local Projection Mean Squared Error Decompostion). Let βX,h denote the
h-step ahead response of any given variable k obtained by method X ∈ {V AR,LP,LPC}.
The Mean Squared Error of the local projection impulse response estimate is given by

MSELP,h =MSEV AR,h + V[βLPC,h] − (bias2
V AR,h − bias2

LP,h)

+ 2Cov[βV AR,h, βLPC,h], (6)

where V is the variance operator and Cov is the covariance operator.

Proof. Using the decomposition of the LP impulse response estimates in Proposition 4, we have

2 To ease notation we suppress the denotation of the response and shock variables such that βX,h denotes the
h-step ahead response of any given variable k to the time t shock obtained by method X ∈ {V AR, LP, LP C}.
Thus, βV AR,h refers to the k’th element of sB̂h

V AR,1, βLP,h refers to the k’th element of sĈLP
h,1 and βLPC,h refers

to the k’th element of sĈLPC
h,1 .
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that the MSE is given by

MSELP,h =E
[
(βLP,h − βTRUE,h)2

]
=E

[
(βV AR,h + βLPC,h − βTRUE,h)2

]
. (7)

Using the standard MSE bias-variance decomposition (provided for convenience in Section B.1),
we can also write the h-step ahead LP MSE as

MSELP,h =V[βV AR,h] + V[βLPC,h] + bias2
LP,h + 2Cov[βV AR,h, βLPC,h], (8)

where we realize that the MSE of the LP impulse response consists of the usual contribution
from the variance of our estimates and the squared bias plus an additional contribution from the
covariance between the VAR and LPC estimates.

In the VAR case, we have that

MSEV AR,h = V[βV AR,h] + bias2
V AR,h, (9)

from which it easily follows that we can write the MSE of the local projection impulse response
estimate as in Equation (6) of Corollary 2.

Equation (6) yields important insights and formalizes some of the typical claims made in the
literature regarding the comparison of VARs and LPs. First, we see that the LPC adds variance
to the MSE on top of that in the VAR model, something that is often emphasized by proponents
of VARs (for example Kilian and Kim, 2011). Second, we see that given the LP has a smaller
bias than the VAR (typically this is the case, and at least in the simulation studies shown
below), this contributes to a reduction in the MSE of the LP relative to VARs. These benefits of
accuracy from lower bias is typically highlighted by researchers who prefer LPs (for example
Jordà, Singh and Taylor, 2020). Finally, the MSE of the LP model is affected by a covariance
term between the VAR estimate and the LP contribution. This term is a novelty of our setup, in
the sense that this is not discussed explicitly in the literature comparing VARs and LPs. Since
the LPC is the linear mapping of past information to the forecast errors of the VAR model we
should, on average, expect to see a smaller βLPC,h the closer the value of βV AR,h is to βTRUE,h.
On the other hand, the further away the estimate of the VAR is from the true value, the more
need for a correction from the LPC there is. Thus, we expect the covariance term to be negative
and hence lower the MSE of the LP relative to the VAR. In conclusion, Equation (6) formally
states that whether the LP or the VAR is the preferred model (i.e. has the lowest MSE) depends
on the magnitude of the additional variance introduced by the LP balanced off against the gains
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made from bias reduction. Naturally, this will depend on the particular dataset at hand.

Now, let us use the framework in the above to consider an alternative to choosing between either
the VAR or the LP. We propose a simple approach which lets the impulse responses be given by
what we call the local projection corrected vector autoregression (LPCVAR):

βLPCV AR,h = βV AR,h + αhβLPC,h. (10)

The LPCVAR attempts to balance off the forces that are at play in the VAR and LP estimators:
We acknowledge that LP may be correcting the bias of the VAR but we want to dampen the
correction if this bias correction is associated with a non-negligible statistical uncertainty. We use
the parameter αh to control the degree of correction that the LP is allowed to add to the VAR.
LPCVAR coincides with the VAR if αh = 0. LPCVAR coincides with LP if αh = 1. Whenever
0 < αh < 1 LPCVAR reflects a weighting of VAR and LP.

With Equation (10) at hand we are ready to present our last theoretical contribution, presented
in Corollary 3, which shows the optimal weighting of VAR and LP and the terms which it
depends on.

Corollary 3 (Optimal weighting of VAR and LP). The weighting of the h-step ahead VAR
and LP impulse responses that yields the smallest mean squared error is given by

α∗
h = E[βLPC,h]2 − biasLP,hE[βLPC,h] − Cov(βV AR,h, βLPC,h)

V[βLPC,h] + E[βLPC,h]2 . (11)

Proof. Using a similar MSE decomposition as before, we get that3

MSELPCV AR,h =V(βV AR,h) + α2
hV(βLPC,h) + bias2

LP,h + (1 − αh)2E[βLPC,h]2−

2biasLP,h(1 − αh)E[βLPC,h] + 2αhCov(βV AR,h, βLPC,h). (12)

Since MSELPCV AR is convex in αh, the value that minimizes it, α∗
h ≡ arg min

αh
MSELPCV AR,h,

is given by Equation (11).

Equation (12) tells us how the mean squared error is affected by allowing for some correction of
the VAR estimate. Equation (11) in Corollary 3 tells us what the optimal correction is. To see
clearly that the optimal weight relates to the precision of the LP contribution, we will neglect

3 See Section B.2 for a detailed derivation of Equation (12).
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the (potential) bias of the LP as well as the covariance term. In this case we can write the
optimal weight as

α∗
h = E[βLPC,h]2

V[βLPC,h] + E[βLPC,h]2 = 1
1 + CV2

LPC,h

, (13)

where CVLPCh is the coefficient of variation of the LPC estimate and thus measures the precision
of the LPC estimate.

Equation (13) tells us that when the LPC parameter is precisely estimated (α∗ close to 1), the
LP estimate is preferred. On the other hand, when the LPC estimate is imprecisely estimated
(α∗ close to 0), the VAR estimate is preferred. As can be seen from Equation (13), whenever
the squared coefficient of variation on the LPC estimate is different from zero but finite, the
optimal weight α∗ will lie between 0 and 1 and we suspect that this will be the case in many
empirical applications. If we think of LP (complete utilization of all information, as the LPC
and VAR estimates are orthogonal to each other) and VAR (optimal variance reduction) as lying
on opposite ends of the bias-variance spectrum, Equation (13) suggests that impulse response
functions should instead be estimated by utilizing the possibility to trade off the opposing factors
instead of choosing one estimate over the other a priori.

In the following, we will base our approach on Equation (13) rather than Equation (11), as
our emphasis is to provide a practical selection tool for empirical analyses: While the bias of
the LP and the covariance term are unknown to the practitioner, the coefficient of variation is
easily calculated and features as standard output of many statistical software programs. Further,
we find both terms to be of small magnitude in our simulations. In the next two sections,
we compare this approach to both VARs and LPs using two different simulation studies and
demonstrate that this approach works well.

3 Example I: A univariate moving average DGP

3.1 Monte Carlo study

The DGP we use in our first MC study follows a MA(25) model, i.e.

yt =
(

1 +
25∑
j=1

θjB
j
)
εt, (14)

where the error terms are standard Gaussian, i.e. εt
i.i.d.∼ N (0, 1), and B is the backshift operator:

Bkxt = xt−k. The cumulative impulse responses are given by the following set of coefficients,
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generated by the Gaussian basis function

θh,cum = a exp
(

− h− b

c

)
for h = 1, ...25, (15)

with parameters a = −0.5, b = 12 and c = 6. The impulse responses from the DGP are depicted
with a solid black line in panel (a) of Fig. 1.

We simulate 2,000 datasets with 500 observations for estimation (we use 500 observations as
burn in). In Section 3.3 we look at datasets with 100, 250 and 750 observations to analyze
the implications of smaller and larger datasets. We choose this range as the smallest datasets
typically found in empirical macroeconomics have around 100 observations see e.g. Herbst and
Johannsen, 2020 and the largest datasets have around 750 e.g. that used in Jordà, Singh and
Taylor, 2020. We follow Jordà, Singh and Taylor, 2020 and estimate AR and LP models with
respectively 2, 3, 9 and 12 lags on each dataset. We start out by looking at the AR(9) and
LP (9) models to build intuition and keep things simple. In Section 3.2 we look at the other lag
lengths.

Panel (a) of Fig. 1 shows the mean impulse responses for the AR(9) and LP (9) models over the
2,000 simulated datasets. The LP impulse responses are on average closer to the true impulse
responses, resulting in a lower bias than the AR impulse responses. Panel (b) of Fig. 1 however
shows that the lower bias comes at a higher variance cost and we see that for some datasets, the
LP impulse responses are terribly off. Panel (a) and (b) of Fig. 1 together show the bias-variance
trade-off the econometrician faces: the LP model is favorable in a pure bias sense but for a
particular dataset the higher variance can result in very bad impulse responses.
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(a) Mean impulse responses.
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(b) All 2,000 estimated impulse responses.

Figure 1. Estimated impulse responses from 2,000 datasets for LP and AR models with 9 lags. 500
observations.
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How costly is the bias and variance in a mean squared error sense? In Figure 2 we decompose
the MSE into its bias and variance terms. We clearly see what was alluded to in Figure 1: the
AR model has lower variance and the LP has lower bias. In a MSE sense we also see that the
LP model outperforms the AR model and that this happens due to the high bias cost. The
right-most panel of Figure 2 shows the MSE error of the LPCAR(9) model.

AR(9) LP(9) LPCAR(9)

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0.0

0.2

0.4

0.6

Forecast horizon

Bias
Variance

Figure 2. Bias-variance decomposition of cumulative mean squared error of AR, LP and LPCAR
models with 9 lags. 500 observations.

For each estimated AR model we estimate the local projection corrected AR (LPCAR) impulse
responses using the selection rule in Equation (13). From Figure 2 we see that the selection rule
effectively deals with the bias-variance trade-off between the AR and LP model. In summary,
the LPCAR model has a lower bias than the AR model and a lower variance than the LP model.
On the cost side, the LPCAR model has a higher bias than the LP model and a higher variance
than the LP model, but the overall MSE is lowest for the LPCAR model.

Are these results impressive? In the next two subsections we will show and discuss a particular
appealing feature of the LPCAR model that we believe to ratify its worth: while the AR and
LP models alternate between being the worst performing estimator the LPCAR model always
follows the best of the two. We finish this section by looking at how the LPCAR model mixes
between the AR and LP models.

To discuss the LPCAR method in action, we consider how much LP correction our selection
rule imply for the AR models. Figure 3 depicts the mean α∗

h for each estimated model over
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the 2,000 simulated datasets. The results confirm the visual findings from Figure 1. First, the
α∗
hs increase immediately at the point where h > p, i.e. where the forecast horizon exceeds the

lag length of the AR models. This is the point where the mean impulse response of the AR
model starts diverting from the true impulse responses (i.e. where the misspecification due to
truncation bias is most severe). Second, the α∗

hs follow a wave shape which mimics the bias
gap between the AR and LP models shown in panel (a) of Figure 1. Since we look at the mean
α∗
hs this is natural. We also see that α∗

h tends to decrease at longer horizons, reflecting the fact
that the variance in the LP starts weighing heavily. The shaded area in Figure 3 marks the are
between the 10th and 90th α∗

h percentile.4 The shaded areas first and foremost reveals that the
selection rule is able to pick up the peculiarities of each dataset and almost not LP correct the
VAR impulse response or almost correct it entirely. In conclusion, this indicates that the simple
approach suggested in Section 2.1 works as intended, including the ability to add dataset- and
horizon-specific information to the impulse responses when the data warrants it.
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Figure 3. Mean α∗
h for the LPCAR model with 9 lags. 500 observations.

Notes. The shaded area marks the area between the 10th and 90th percentile of all α∗
hs across the 2,000

datasets. The minimum α∗
h is close to zero at all forecast horizons whereas the maximum hovers around

0.50 when h ≤ p and around 0.95 after.

3.2 Different lag lengths

What does the lag length imply for the performance of the estimators? In this section we
compare the performance of the AR, LP and LPCAR models with respectively 2, 3, 9 and 12
lags. We keep the other details of the Monte Carlo study in the previous section fixed.

4 The minimum α∗
h across all datasets hovers around zero at all forecast horizons whereas the maximum α∗

h

hovers around 0.5 when the lag length is less than or equal to the forecast horizon and around 0.95 after.
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Figure 4 shows the bias-variance decomposition of the MSE for all the models considered. We
see that the AR models suffer a great bias cost relative to the LP models when the lag length is
2 and 3. The LPCAR models in this case follow the LP models and do not obtain the big MSE
of the AR but instead gets a low MSE as the LP. Second, we see that as the lag length increases
the AR model start outperforming the LP model. When the AR model starts outperforming the
LP model, we see that the LPCAR model moves from lying close to the LP model to lying closer
to the AR model (this is also clear from Figure 5). As we shall demonstrate throughout the
following sections, the LPCVAR estimator consistently chooses the best performing estimator
among VAR and LP and follows it up until the point where it no longer is better. We take this
result as a strong indication of our selection rule working as intended. In panel (c) of Figure 5 we
show the mean α∗

hs for the different LPCAR models. The figure shows that for low lag lengths (2
and 3) the LPCAR model corrects the AR model by 70 pct. at its peak whereas the maximum
correction for lag length 12 is around 45 pct. This thus clarifies that for low lag lengths, the
LPCAR model is closer to the LP model and for higher lag lengths the LPCAR model is closer
to the AR model. We also see the same feature as discussed above: the α∗

hs jump at the point
where h > p.
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Figure 4. Bias-variance decomposition of the cumulative mean squared error for AR, LP and LPCAR
models with 2, 3, 9 and 12 lags. 500 observations.
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3.3 Different number of observations

How much does the number of observations matter? In this section we look at the performance
of the estimators when there are 100, 250, 500 and 750 observations available for estimation. As
we have seen above the bias of the AR models with few lags is very exaggerated and the variance
cost of the LP model when 500 observations are available becomes negligible next to this. We
also saw that the LPCAR models followed the LP model in this case. With fewer observations
we should expect the variance cost to be greater and we shall now demonstrate that the LPCAR
model will tend to the AR models instead.

We start by looking at the α∗
hs. Panel (a) of Figure 5 shows that the maximum correction of

the AR estimates when there are only 100 observations is 46 pct. for the AR(2) and AR(3)
models. In panel (d) we see that with 750 observations the AR estimates are instead corrected
with 75 pct. Another feature Figure 5 highlights is that when the forecast horizon exceeds
the lag length, the LPCAR corrects the AR impulse responses by more or less the same factor
and as the forecast horizon increases the correction factor seems to converge. This happens for
two reasons. First off, because the bias of the AR impulse responses start kicking in when the
forecast horizon exceeds the lag length. Secondly, because the variance cost of the AR does not
increase excessively when the lag length increases. That the bias cost kicks in and the variance
cost does not increase excessively holds across scenarios with different number of observations
and is evident from both Figures 2 and 4.

In Figure 6 we look at the bias-variance decomposition of the cumulative mean squared error at
forecast horizon 25. In the upper-left corner we see the performance of the AR, LP and LPCAR
models estimated with 2 lags on datasets with 100 observations. We see that the bias cost of
the AR model is high enough to make it it the worst performing estimator. We also see that
the variance cost of the LP model is the highest among the three estimators. The LPCAR
model mixes the bias and variance cost, as also shown previously, to make it the best performing
estimator in the case with 2 and 3 lags and 100 observations.

Moving from left to right in Figure 6 we see that the bias of all models decrease and is replaced
with a higher variance cost. This implies that the AR model starts performing better and the
LP model performs worst. As also highlighted in Figure 5, the LPCAR model lies closer to the
AR model in this case and hence disregards the LP due to its high variance.

Moving from top to bottom in Figure 6 we see that the variance of all models decrease. The low
variance makes the LP perform very good and the LPCAR model therefore lies closer to the
LP.

Finishing off at the lower-right corner we see that all models perform very well but we still see
that the AR and LP trade off bias and variance very differently: the AR model has the highest
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(b) 250 observations.
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(c) 500 observations.
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(d) 750 observations.

Figure 5. Mean α∗
h of AR, LP and LPCAR models with 2, 3, 9 and 12 lags in cases with 100, 250,

500 and 750 observations across 2,000 simulated datasets.

Notes. The dashed vertical lines indicate the lag lengths used in the different models and hence shows the
point where the forecast horizon equals the lag length.

MSE due to its bias being high. The LP model has the second highest MSE due to its variance
being high. The LPCAR model mixes bias and variance and performs best when the models are
estimated with 12 lags on 750 observations.

What can we take away from these exercises? First we see that the LPCAR always outperforms
either the LP or AR model. Second, when it is not the best performing estimator it still closely
follows the estimator that performs best. In 9 out of the 16 cases considered in Figure 6, however,
the LPCAR model is the best performing estimator. For practitioners this is a particular strong
quality of the LPCAR model because it is always difficult to assess whether bias or variance
plays the largest role in the specific analysis at hand. The LPCAR model with the simple
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Figure 6. Bias-variance decomposition of the cumulative mean squared error at H = 25 of AR, LP
and LPCAR models with 2, 3, 9 and 12 lags and 100, 250, 500 and 750 observations across
2,000 simulated datasets.

selection rule in Equation (13) will make sure to provide a data-driven approach that resolves
the bias-variance trade-off in an easy and strong performing way.

4 Example II: Approximating the infinite-order VAR represen-
tation of a DSGE model

How does the selection rule perform in more complex environments? In this section we revisit
Ravenna (2007) and simulate data from a DSGE model. Subsequently, we estimate impulse
responses using vector autoregressions, local projections and local projection corrected vector
autoregressions in a multivariate setting.

We consider the setup in this section for two reasons. First, we use the DSGE model as a
(stylized) representation of an economy that practitioners could be interested in estimating
impulse responses of. Second, the parametrization of structural models are increasingly being
carried out by moment matching instead of full information maximum likelihood (see for example
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Christiano, Eichenbaum and Trabandt, 2016). Impulse responses of central variables to the
shocks of interest naturally suggest themselves as relevant moments in this regard, thus raising
the question of which impulse response estimator to use. Third, the setup lies at the heart of
the discussion on whether vector autoregressions or local projections should be used to estimate
impulse responses. In a nutshell, the use of vector autoregressions implies an assumption that the
DGP follows a VAR process. This assumptions is typically justified when working with DSGE
models since Structural VAR models will often contain enough information to retrieve one or
several (if not all) shocks from the underlying DSGE model (Forni and Gambetti, 2014). However,
as has been known at least since Ravenna (2007) and Fernández-Villaverde, Rubio-Ramírez,
Sargent and Watson (2007), when a subset of the endogenous state variables in DSGE models is
unobservable to the econometrician, the true representation of the DSGE may be instead be a
VARMA model. Given that the invertibility conditions are satisfied, this in turn implies that
the DSGE model can be represented by an infinite-order VAR model - and that a finite-order
VAR model may or may not be a good representation of the true DGP (i.e. depending on the
extent of the resulting truncation bias). Jordà (2005) raises the same point, referring to studies
by Cooley and Dwyer (1998) who also highlight the VARMA representation of RBC models, and
argues that when using finite-order VAR models to estimate impulse responses, these impulse
response estimates will suffer from misspecification biases.

4.1 Monte Carlo study

We estimate impulse responses based on the RBC model with indivisible labor developed in
Hansen, 1985. The model characterizes an economy where hours worked, the gross real interest
rate, consumption and output are endogenous control variables, capital stock is an endogenous
state variable and technology and labor supply shocks are exogenous control variables. We
assume that an econometrician lives in an economy characterized by the DSGE model and that
she wants to estimate the response of hours worked to technology shocks.

The true impulse response of hours worked to the technology shock is shown in panel (a) of
Figure 7. The entire economy has a finite-order VAR representation, which makes the choice of
using a VAR to estimate the impulse response adequate. The econometrician, however, only has
data on hours worked and output. This is sufficient to investigate the link that she is interested in
but as Ravenna, 2007 points out, when the capital stock is unobserved by the econometrician, the
DGP instead has an infinite-order VAR representation. With the limitation of a finite sample of
400 observations, the econometrician however has to estimate a finite-order VAR. As in Ravenna,
2007 we assume that the econometrician uses a V AR(2) model. We furthermore assume that
the contemporaneous responses of hours worked and output to any shock is correctly identified.
The econometrician thus investigates the structural impulse responses. We add capital "S" to
any model name abbreviation whenever needed for clarity.
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Using the V AR(2) model leads to a considerable bias in the impulse response estimates, as shown
in panel (a) of Figure 7. The figure clearly shows that the mean estimated impulse responses
of the V AR(2) models across the 2,000 simulated datasets do not accurately capture the true
impulse responses of the model except for at the shortest horizons (in panel (a) of figure Figure 8
we compute and show the bias over all horizons of the impulse responses).
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(a) Mean impulse responses.
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Figure 7. V AR(2) and LP (2) impulse responses of hours to a technology shock in the Hansen, 1985
model. 400 observations. 2,000 simulations.

Notes. The solid black line is the true impulse response function. Capital "S" in front of the model names
is short for "Structural" and denotes that the econometrician correctly identifies the contemporaneous
responses of hours worked and output and thus estimates structural impulse responses.

On the contrary, the mean estimate of the LP (2) model does quite well across all horizons. Does
this mean that the LP (2) is to be preferred over the V AR(2) model in this specific application?
Not necessarily: While the mean estimates across many simulations are close to the true impulse
responses, what also becomes clear, however, is that a higher variance cost has to be payed at the
dispense of the smaller bias. This is not visible from the plot of the mean impulse responses in
panel (a) of Figure 7, but in panel (b) we depict all the estimated impulse responses. From panel
(b) of Figure 7 it is clear that the LP (2) model has a much larger variance than the V AR(2)
model. Combining the insights from both panels in Figure 7 we get an idea of the bias-variance
trade-off when using VARs and LPs.

Next, we assess the bias and variance cost in a MSE sense. Panel (a) of Figure 8 shows the
size of the bias and variance terms across different horizons. From the figure it is clear that the
LP (2) model does much better than the V AR(2) in terms of bias.

Panel (b) of Figure 8 shows the cumulative MSEs. The figure shows that in the short and
medium run the bias in the VAR is costlier than the larger variance in the LP. In the longer
run, however, the bias of the VAR reduces and so does the MSE. The cumulative MSE therefore
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(a) Bias and variance decomposition.
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Figure 8. Mean squared error and bias-variance decomposition of estimated hours response to a
technology shock. 400 observations. 2,000 simulations.

Notes. Capital "S" in front of the model names is short for "Structural" and denotes that the econometrician
correctly identifies the contemporaneous responses of hours worked and output and thus estimates
structural impulse responses.

settles in the long run. In the long run the VAR is outperforming the LP in a MSE sense. The
shift in how the two estimators perform relative to each other tells that one could gain from a
mixed estimate where, the LP is picked in the short and medium run but as the LP variance
starts weighing heavier than the VAR bias, the mixed estimate should shift from the LP (2) to
the V AR(2) model. This is exactly what the LPCV AR(2) model does.

Panel (b) of Figure 8 shows that the LPCV AR(2) model is able to balance off the bias-variance
trade-off better than both the V AR(2) and LP (2) models. In Figure 9 we show the mean α∗

h

across the 2,000 simulations. First we once again see that for h ≤ p, the LPCV AR(2) model
picks the V AR(2) and from Figure 8 it is clear why: neither the V AR(2) nor the LP (2) model
suffer from bias and their variance losses are almost indistinguishable. Hence, the econometrician
will not gain from LP correcting the VAR impulse responses. When h = p + 1, α∗

h jumps up
because the bias of the VAR starts kicking in and the LP becomes a better alternative. We then
see that the α∗s increase to the point where the bias of the VAR is at its peak. At this point the
LPCVAR corrects the VAR estimate with almost 70 pct. of the LP estimate. Lastly, as the bias
of VAR starts decreasing but the variance of the LP prevails, the α∗

hs starts decreasing and the
LPCVAR starts reverting back to the VAR estimates. In Panel (b) of Figure 8 we see that the
mixing of the VAR and LP results in a cumulative MSE that is better than the two extremes in
both the short, medium and long run.
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Figure 9. Mean α∗
hs. 400 observations. 2,000 simulations.

Notes. The shaded area marks the area between the 10th and 90th percentile of all α∗
hs across the 2,000

datasets. The minimum α∗
h is close to zero at all forecast horizons whereas the maximum hovers around

0.15 when h ≤ p and around 0.95 after.

5 Conclusion

We provide a solution to an inherent problem researchers face when estimating impulse responses
in practise: local projections and vector autoregressions trade off bias and variance differently
and this implies that the two methods often times yield different impulse response estimates.
The problem is to answer "What impulse response do we rely on?" We introduce a data-driven
selection rule that navigates the bias-variance trade-off and yields an appropriate mix of the
local projection and vector autoregression impulse responses.

One of the main benefits of using our suggested selection rule is that it allows the researcher
to choose a mix of LPs and VARs when estimating impulse responses instead of choosing one
estimator a priori. Since the weight put on the LP contribution is based on the squared coefficient
of variation, the optimal weight will typically lie strictly between 0 and 1 - and we suspect that
this will be the case in many empirical applications as well.

An important, and perhaps surprising, detail is that mixing the local projection and vector
autoregression impulse responses is not an ad hoc solution. We show instead that this follows
naturally from a new insight provided in the paper: local projection impulse responses can be
derived from VARs and the local projection impulse response may be viewed as a correction to
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the VARs’. This insight reduces the question of which impulse response to rely on to "How much
correction of the VAR should we allow for?"

Our solution to the problem is to introduce a simple and easily implementable data-driven
selection rule that exactly answers how much one should local projection correct the VAR impulse
response. The performance of the selection rule that we introduce relies on two terms not being
too large: the bias of the local projection estimator and the covariance between the VAR impulse
response and the correction of the LP. Proponents of LPs typically highlight the low bias of the
estimator and in the Monte Carlo studies conducted in this paper we do not find it to be large
either. We furthermore only find a negligible size of the covariance term and in general we find
that the selection rule works well across all Monte Carlo studies.

As the LP Contribution is orthogonal to the VAR estimates of the IRF, one can think of LPs
(emphasis on using all available information) and VARs (emphasis on variance reduction) as
lying on opposite ends of a bias-variance spectrum. The message of this paper is thus that
impulse response functions should be estimated by optimally navigating the trade-off on this
bias-variance spectrum instead of using only one type of estimator and our selection rule is a
simple and easily implementable tool that researchers can take up to do so.
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A Proof of Proposition 4

Proof. Write the V AR(p) projection as

yt = PtB + vt, (A.1)

where B ≡ [B1,B2, . . . ,Bp]′ is a (kp× k) dimensional coefficient matrix and vt is a vector of
residuals.

By stacking the last n = N −p observations in the matrix Y such that it is a (n×k) dimensional
matrix with variables in the columns and time observations in rows and stacking the corresponding
n observations of Pt in the matrix P such that it is a (n× kp) dimensional matrix, we have that

Y = PB + V , (A.2)

where V is a (n× k) dimensional matrix of residuals.

The fitted VAR model can be obtained from the projected values of Y onto P , given by

projPY = P (P⊤P )−1P⊤Y = PPY = PB̂ ≡ Ŷ V AR. (A.3)

Note that PP ≡ P (P⊤P )−1P⊤ is the VAR projection matrix, B̂ ≡ (P⊤P )−1P⊤Y is the
projection coefficient matrix (which coincides with the OLS estimates) and P is the projector.5

A.1 h-step ahead predictions and impulse-responses

The VAR model assumes that the relationship in Equation (A.1) holds and the h-step ahead
predicted values are

ŷV ARt+h = Pt+hB̂, Pt+h =



[
ŷV ARt ,yt−1, . . . ,yt−p+1

]
if h = 1,[

ŷV ARt+h−1, . . . , ŷ
V AR
t ,yt−1, . . . ,yt−p+h

]
if 1 < h < p,[

ŷV ARt+h−1, . . . , ŷ
V AR
t+h−p

]
if h ≥ p.

(A.4)

As in the main text, assume that the economy is hit by a shock at time t such that the variables
move by s on impact of the shock. Let ỹt denote the time t response of the shock such that

5 When we think of Ŷ V AR as the predicted values of Y from a regression, P can be thought of as the predictor.
Since B̂ = (P⊤P )−1P⊤Y is equal to the OLS estimate of B, the last equality, Ŷ V AR = PB̂, defines P as a
predictor in a regression sense.
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ỹt = yt + s. Define the time t+ h response of the economy to the time t shock as

IR(h, s) ≡ ỹt+h − yt+h, (A.5)

from which the usual V AR(p) impulse-response follows:

ˆIRV AR(h, s; Pt) = sB̂h
V AR,1. (A.6)

where Bh
V AR,i is as in the main text.

Since the VAR does not update the coefficient matrix, the VAR IRF relies completely on the fitted
model in Equation (A.3). If, however, the VAR model in Equation (A.1) is a misspecification of
the true DGP, there is a reason to believe that the h-step ahead predicted values will be off and
due to the re-use of fitted values in next-period predictions (see Equation (A.4) again) far-ahead
predictions will be even worse off.6 Nothing, however, prevents us from evaluating whether the
VAR h-step predictions are off.

A.2 Local projection corrected vector autoregressions

Suppose we want to evaluate the first H predicted values of the VAR model and correct them if
there is a systematic in-sample error in the prediction values.

Define the two H × k matrices Zt ≡ (ŷV ARt+1 , . . . , ŷV ARt+H )⊤ and Ft ≡ (yt+1, ...,yt+H)⊤ containing
the H predicted and realized future values of yt, respectively. Further, we define the matrix
Rt ≡ Ft − Zt and let rht denote the h’th row of Rt.

Consider the linear projection of the VAR h-step ahead prediction errors onto the subspace Pt

rht = PtCLPC
t+h + uht. (A.7)

Make the same stacking of observations as before and introduce the following notation to keep
track of things: Yh denotes the h-step ahead values of Y , Ph−1 denotes the h-step ahead
predictor, Ch denotes the h-step ahead projection coefficients.

The h-step ahead projected forecast errors the VAR model will make is given by

R̂h = P0(P⊤
0 P0)−1P⊤

0 Rh = PP0Rh = P0C
LPC
h+1 (A.8)

6 Notice how the lag length plays an important role in how many predicted vs. actual values that are being
used for h-step predictions.
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The second last equality tells us that the LPC uses the same projection matrix as in the VAR
projection in Equation (A.3) but projects the VAR forecast errors, Rh, rather than Y1. The
last equality tells us that the LPC, equivalently, uses the same predictor, P0, as in the VAR
proejction but a) uses it to predict the forecast errors of the VAR model with the projection
coefficients in CLPC

h+1 and b) maintains the predictor at all horizons rather than changing it as
the VAR does.

Notice that the VAR h-step ahead predictions can be written on a form akin to a projection by
letting Ph−1 be a (n× kp) matrix with row values as in Equation (A.4):

Ŷ V AR
h = Ph−1B̂, (A.9)

and write the h-step ahead VAR prediction in Equation (A.9) as

Ŷ V AR
h = Ph−1(P⊤

0 P0)−1P⊤
0 Y1 ≡ P V ARPh

Y1, (A.10)

where P V ARPh
≡ Ph−1(P⊤

0 P0)−1P⊤
0 denotes the "pseudo" VAR projection matrix. We use this

for brevity but note that P V ARh is not a projection matrix.7

Use this and the second equality in Equation (A.8) to write the h-step ahead local projection
corrected VAR prediction as

Ŷ LPCV AR
h =P V ARPh

Y1 + PP0Rh

=P V ARPh
Y1 + PP0(Yh − Ŷ V AR

h )

=P V ARPh
Y1 + PP0Yh − PP0P

V AR
Ph

Y1. (A.11)

We will now use that PP0 is a projection matrix and therefore is idempotent and furthermore
that a once projected matrix is equal to itself if projected once more with the same projection
matrix:

PP0Ŷ
LPCV AR
h = PP0PP0Yh = PP0Yh = Ŷ LPCV AR

h . (A.12)

It now follows from Equation (A.11), the idempotent property of PP0 and Equation (A.12) that
the h-step ahead local projection corrected VAR prediction is equal to the h-step ahead LP

7 PV AR
Ph

is not idempotent.
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projection:

Ŷ LPCV AR
h =PP0Ŷ

LPCV AR
h (by (A.12))

=PP0P
V AR
Ph

Y1 + PP0PP0Yh − PP0PP0P
V AR
Ph

Y1.

=PP0P
V AR
Ph

Y1 + PP0Yh − PP0P
V AR
Ph

Y1 (by idempotency)

=PP0Yh

=Ŷ LP
h . (A.13)

To derive the h-step ahead local projection corrected VAR impulse-responses, write Equa-
tion (A.11) on "prediction" form instead:

Ŷ LPCV AR
h =Ph−1B̂ + P0Ĉ

LP
h (A.14)

It then also follows that the h-step ahead LP impulse response is equal to the h-step ahead Local
Projection Corrected VAR impulse response:

ˆIRLPC(h, s;P ) = sB̂h
V AR,1 + sĈLPC

h = sĈLP
h = ˆIRLP (h, s;P ) (A.15)

B Mean squared error decompositions

B.1 LP MSE decomposition

This appendix section derives the decomposition of the MSE of the h-step ahead LP impulse
response. The MSE of the h-step ahead impulse response is given by Equation (7) in the main
text and re-iterated here:

MSELP,h =E
[
(βLP,h − βTRUE,h)2

]
=E

[
(βV AR,h + βLPC,h − βTRUE,h)2

]
. (Equation (7) in main text)

For ease of notation, suppress the h subscipt.
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Add and substract E[βV AR] and E[βLPC ] in Equation (7) to get

MSELP = E
[
(βV AR − E[βV AR] + E[βV AR] + βLPC − E[βLPC ] + E[βLPC ] − βTRUE)2

]
.

Define the following variables

A ≡ βV AR − E[βV AR], B ≡ βLPC − E[βLPC ], C ≡ E[βV AR] + E[βLPC ] − βTRUE ,

and notice that

MSELP =E
[
(A+B + C)2

]
= E[A2] + E[B2] + E[C2] + 2E[AB] + 2E[AC] + 2E[BC].

Looking at each term separately, we have that

E[A2] =E[(βV AR − E[βV AR])2] = V(βV AR),

E[B2] =E[(βLPC − E[βLPC ])2] = V(βLPC),

E[C2] =E[(E[βV AR] + E[βLPC ] − βTRUE)2] = bias2
LP ,

E[AB] =E[(βV AR − E[βV AR])(βLPC − E[βLPC ])] = Cov(βV AR, βLPC),

E[AC] =E[(βV AR − E[βV AR])(E[βV AR] + E[βLPC ] − βTRUE)]

=E
[
βV ARE[βV AR]

]
+ E

[
βV ARE[βLPC ]

]
− E

[
βV ARβTRUE

]
−

E
[
E[βV AR]E[βV AR]

]
− E

[
E[βV AR]E[βLPC ]

]
+ E

[
E[βV AR]βTRUE

]
= 0,

E[BC] =E[(βLPC − E[βLPC ])(E[βV AR] + E[βLPC ] − βTRUE)]

=E
[
βLPCE[βV AR]

]
+ E

[
βLPCE[βLPC ]

]
− E

[
βLPCβTRUE

]
−

E
[
E[βLPC ]E[βV AR]

]
− E

[
E[βLPC ]E[βLPC ]

]
+ E

[
E[βLPC ]βTRUE

]
= 0,

and the standard MSE decomposition of the LP impulse response estimate given in Equation (8)
in the main text follows directly:

MSELP =V[βV AR] + V[βLPC ] + bias2
LP + 2Cov[βV AR, βLPC ].
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B.2 LPCVAR MSE decomposition

The MSE of the h-step ahead LPCVAR impulse response is given by

MSELPCV AR,h =E
[
(βLPC,h − βTRUE,h)2

]
=E

[
(βV AR,h + αhβLPC,h − βTRUE,h)2

]
. (B.1)

For ease of notation, suppress the h subscript.

Add and substract E[βV AR] and αE[βLPC ] to get

MSELPCV AR = E
[
(βV AR − E[βV AR] + E[βV AR] + αβLPC − αE[βLPC ] + αE[βLPC ] − βTRUE)2

]

Define the following variables

A ≡ βV AR − E[βV AR], B ≡ α(βLPC − E[βLPC ]), C ≡ E[βV AR] + αE[βLPC ] − βTRUE ,

and notice that

MSELPCV AR =E
[
(A+B + C)2

]
= E[A2] + E[B2] + E[C2] + 2E[AB] + 2E[AC] + 2E[BC].

Looking at each term separately, we have that

E[A2] =E[(βV AR − E[βV AR])2] = V(βV AR),

E[B2] =α2E[(βLPC − E[βLPC ])2] = α2V(βLPC),

E[C2] =E[(E[βV AR] + αE[βLPC ] − βTRUE)2] = bias2
LPCV AR,

E[AB] =αE[(βV AR − E[βV AR])(βLPC − E[βLPC ])] = αCov(βV AR, βLPC),

E[AC] =E[(βV AR − E[βV AR])(E[βV AR] + αE[βLPC ] − βTRUE)]

=E
[
βV ARE[βV AR]

]
+ E

[
βV ARαE[βLPC ]

]
− E

[
βV ARβTRUE

]
−

E
[
E[βV AR]E[βV AR]

]
− E

[
E[βV AR]αE[βLPC ]

]
+ E

[
E[βV AR]βTRUE

]
= 0,

E[BC] =E[α(βLPC − E[βLPC ])(E[βV AR] + αE[βLPC ] − βTRUE)]

=E
[
αβLPCE[βV AR]

]
+ E

[
α2βLPCE[βLPC ]

]
− E

[
αβLPCβTRUE

]
−

E
[
αE[βLPC ]E[βV AR]

]
− E

[
α2E[βLPC ]E[βLPC ]

]
+ E

[
αE[βLPC ]βTRUE

]
= 0
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It then follows that

MSELPCV AR =V(βV AR) + α2V(βLPC) + bias2
LPCV AR + 2αCov(βV AR, βLPC). (B.2)

Finally realise that

biasLPCV AR =E[βV AR] + αE[βLPC ] − βTRUE

=E[βV AR] + E[βLPC ] − βTRUE − (1 − α)E[βLPC ]

=biasLP − (1 − α)E[βLPC ],

and substitute this into Equation (B.2) to get the expression for the decomposition of the MSE
of the LPCVAR impulse response estimate in Equation (12) in the main text:

MSELPCV AR =V(βV AR) + α2V(βLPC) + bias2
LP + (1 − α)2E[βLPC ]2−

2biasLP (1 − α)E[βLPC ] + 2αCov(βV AR, βLPC).
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