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Summary

Since the introduction of the iPhone in 2007, smartphones have become an inte-

grated part of human life. Smartphones are excellent tools that help us access

information, coordinate journeys, connect with friends and family, and much, much

more. However, in parallel with the proliferation of smartphones, more and more

concerns about adverse effects on human life have been raised. Research has shown

that smartphones can be addictive, affect cognitive abilities, negatively influence

social and intimate relationships, reduce academic performance, and correlate with

depression and low well-being.

In this Ph.D. dissertation, I analyze how smartphones affect human life through

three separate chapters. Though examining different domains of human life, the

chapters have several things in common. First, they all relate to how smartphones

affect human attention. Second, they all use data collected from smartphones to

examine the influence of smartphones. Third, in all three chapters, analyzes are

made based on advanced data structuring and the use of econometric models seeking

to establish causal claims when possible.

How constant internet access affects human behavior - the

case of free roaming

The first chapter is called ”How constant internet access affects human behavior -

the case of free roaming”. I am the first-author of this chapter, which is written

together with Sigga Svala Jonasdottir. We use smartphone data from more than

20,000 Europeans collected over two years to causally assess how mobile internet

affects human behavior. Specifically, we examine daily smartphone screen use, app

use, and mobility patterns when traveling in another EU country before and after

the implementation of the Roam-Like-at-Home initiative, which removed roaming

(using your phone in another country) tariffs within the EU.

After accounting for individual and place-specific factors, we show that there

was a sharp increase in smartphone use when traveling between EU countries after

June 15th, 2017, when tariffs were removed. We see this as causal evidence that

the Roam-Like-at-Home initiative increased smartphone use, with an average daily

increase in screentime of 6 percent. This increase is primarily driven by social media

apps, browser and search apps, and map apps. Further, we investigate the effect on

mobility patterns and find that while travelers due to free roaming visit 6% more

locations a day, they spent 5% less time on transportation like cars and trains. This

suggests that mobile internet access help travelers visit more places and travel more

efficient.
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Nature unplugged or interrupted?

The second chapter is called ”Nature unplugged or interrupted? A two-year panel

study of smartphone use and digital impulse inhibition in natural and urban en-

vironments”. I am the first-author, together with Kelton Minor, on this chapter,

which we co-wrote with Aaron J. Schwartz, Christopher Danforth, Sune Lehmann,

and Andreas Bjerre-Nielsen.

An extensive literature has studied how natural areas affects human well-being

positively. Natural areas can, for example, be recreational areas, like parks and

recreational grounds, or nature areas, like forests and nature reserves. We examine

both the effect of natural areas overall (both recreational and nature areas) and

recreational and nature areas separately. Time spent in natural areas have been

shown to correlate with improved mental health, reduced stress, and improved cog-

nitive outcome, among other things. In recent generations time spent in natural

areas have fallen, leading some researchers to fear an ”extinction of experience”.

However, how smartphones might mediate or mitigate the positive effect of natu-

ral areas on individuals, has not been adequately studied, as we show in our system-

atic literature review. We use data from the Copenhagen Network Study, to follow

701 young adults’ phone use for two years and use fixed effects models to account

for individual-specific and time-specific effects. We show that exposure to natural

areas in general (including nature areas and recreational areas) only slightly affects

smartphone use, relative to being in urban areas. However, we find that these ef-

fects differ substantially over the type of natural areas. While being in nature (e.g.,

forests or nature reserves) reduces smartphone screentime, texting, and calling by

4%, 6%, and 7%, respectively, being in recreational areas (e.g., parks or recreational

grounds) has no effect on smartphone screentime, but increases texting and calling

by 11% and 17% respectively. Further, we show that the effect of being in a specific

environment changes depending on how long time you have been in the specific envi-

ronment and that nature reduces smartphone use more when users are staying still

in nature, compared to moving through nature. Finally, we find that the users who

spent the most time in nature also lowers their phone use the most when being in

nature. In contrast, infrequent nature visitors increase their screentime when being

in nature.

This chapter highlights that smartphone use should be accounted for when as-

sessing the role of natural spaces on well-being, and that this requires detailed data.

Smartphone use is socially contagious

The third chapter is called ”Smartphone use is socially contagious.” I am the first-

author on this chapter, which I have written together with co-authors Asger An-

dersen and Andreas Bjerre-Nielsen. In this chapter, we show that smartphone use
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spread between individuals that are near each other. The spread of smartphone use

only occurs between individuals who have a social relation. We, therefore, conclude

that smartphone use spreads through social mechanisms. We show this by using

data from a large-scale field study running for more than two years, which has the

unique feature that it includes detailed information about nearby individuals. To

causally identify the effect of one individual’s screentime on nearby individuals, we

use the arrival of text messages (SMS) as quasi-random natural experiments and

track phone use for all co-present individuals before and after the arrival of the text

message. We, further, compare these to similar situations where the same people

are present but where no text messages are received. This matching setup enables

us to causally assess whether smartphone use is contagion.

Showing that smartphone use is contagious has the potential to change the way

we think about smartphone use. Because it is contagious, individuals’ smartphone

use goes from exclusively affecting the individual to also affecting nearby peers.

Since there are indications that additional smartphone use is harmful to the indi-

vidual, smartphone use arguably exhibits a negative externality, which would be

an argument for regulation. This can be compared to second-hand smoking, where

evidence of adverse effects on co-present individuals has led to heavy regulation.

Since it is unclear how smartphone use would be taxed, the regulation that would

be easiest to implement would prohibit smartphone use in specific settings. This

regulation could be enforced either by formal regulation (e.g., banning smartphones

in a school class) or by social norms (e.g., by making smartphone use in social

settings frowned upon). Since we show that smartphone use is socially contagious,

I find no argument that these regulations should include public settings like public

transport or waiting areas. Possible regulation should focus on settings that contain

social interactions and where interruptions and inattention are adverse. Examples

could be educational settings or intimate relationships.

Other work and dissemination

In addition to the chapters in this dissertation, I also produced other work during

my Ph.D.

I have written the commentary ”Big data and ethnography”, together with An-

dreas Bjerre-Nielsen, which is currently revise and resubmit at the journal Big Data

and Society. This chapter explores similarities and differences between ”big data”

and ethnographic data, and the methods used to examine them. Further, we make

recommendations on how big data and ethnographic data can be combined and

discuss why this may benefit research. Thereby, we contribute the methodology

in the field that seeks to combine quantitative big data methods with qualitative

ethnographic methods, sometimes called ”machine anthropology.”

In the midst of the lockdown caused by the Covid-19 pandemic, I analyzed
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the mood of the public opinion on Twitter, together with several colleagues from

SODAS. Among other things, we found that the mood of tweets concerning Covid-

19 improved significantly after the lockdown measures were announced, suggesting

that Twitter users felt more secure after the Prime Minister announced the lockdown

measures. The results were published on the SODAS Covid-19 blog.

To fulfill my dissemination requirements, I have written an article to the medical

magazine ”BestPractice” together with Sune Lehmann Jørgensen, about how to

optimally vaccinate from a theoretical point of view, and how social media data and

telecom data might help. Further, I have appeared as an expert in an article on

DR.dk, in the podcast Adapter, and on the radio show Go’morgen P3.
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How Constant Internet Access Affects Human Behavior

- the Case of free Roaming

Kristoffer Lind Glavind Sigga Svala Jonasdottir

June 29, 2021

Abstract

The proliferation of smartphones and mobile internet has made people all over the world
Permanently Online and Permanently Connected. This unprecedented change has been
hypothesized to have both adverse and beneficial effects on human life. However, since
the proliferation of mobile internet has been gradual, it is confounded with other simul-
taneous societal changes, making the causal effects difficult to examine. We follow 21,489
Europeans over two years and exploit a major policy change that overnight removed fees
on phone use when traveling inside the EU. This enabled us to identify the causal effects
of having access to mobile internet. We find that travelers’ average screentime increased
by 6% and that the change was driven by increased use of social media, browsers, and
maps. Further, the number of locations visited each day increased by 6%, while time spent
in transport decreased by 5%, suggesting that mobile internet access increases mobility
while making it more efficient.

Abstract

I takt udbredelsen at smartphones og mobilt internet er størstedelen af den vestlige ver-
dens befolkning blevet Permanent Online og Permanent Forbundne. Det har medført
sp̊adomme om b̊ade store positive og negative konsekvenser. Men fordi udbredelsen af
mobilt internet har været gradvis og er sket samtidig med andre samfundsudviklinger, er
effekten svær at isolere. Vi følger 21.489 europæere i to år, og udnytter en stor reform der
betød, at gebyrer p̊a mobiltelefonbrug i andre EU lande, blev afskaffet fra den ene dag
til den anden. Vi finder at rejsendes gennemsnitlige skræmtid steg med 6 procent, og at
stigningen var drevet af højere brug af sociale medier, browsere og kort. Endvidere finder
vi, at antallet af steder rejsende besøgte hver dag steg med 6 procent, samtidig med at
den daglige transporttid faldt med 5 procent. Det indikerer, at adgang til mobilt internet
øger den individueller mobilitet, og samtidig gør den mere effektiv.
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Introduction

With the proliferation of smartphones and mobile internet access, a large part of the world’s

population is now permanently online and permanently connected (POPC). How the ”always-

on” state affects human life has led to fear and controversy, and extensive media coverage

(Twenge, 2017; Bhattacharjee, 2019; Lusinski, 2018). While some emphasize that smartphones

with access to mobile internet ease coordination and access to information (Bezerra et al., 2015;

WorldBank, 2016), others fear that humans will turn into never-present smartphone zombies

(”Smombies”) (Duke and Montag, 2017; Tom Chatfield, 2016). However, since the proliferation

of smartphones and mobile internet has happened gradually over the course of the last 15 years

and has been simultaneous with the development of other societal phenomenons (e.g., social

media), the effect on human life is difficult to assess. In the present study, we use a global, large-

scale smartphone dataset, together with a policy intervention which changed mobile internet

access for most Europeans overnight. This way, we are able to causally identify how mobile

internet access affects behavior.

With the European Union’s Roam-Like-at-Home (RLaH) initiative, fees on roaming (using

your mobile phone in another EU country) were abolished on June 15 20171. The RLaH initia-

tive was praised by EU-leaders as ”one of the greatest and most tangible successes of the EU”

(EU, 2017), and following the implementation roaming data usage rose sharply (Blackman and

Forge, 2018). However, it has not been studied how this intervention, which made it possible for

millions of individuals to be permanently online and permanently connected, affected behavior.

We examine this by looking at changes in individual smartphone use and mobility pattern.

Permanently Online and Permanently Connected

Smartphones enable users to access the internet anywhere. Vorderer et al. (2017) divides the

effect of constantly having access to mobile internet into ”permanently online” - and being

”permanently connected”. ”Permanently online” refers to the constant ability to retrieve in-

formation from the internet (e.g., looking up routes or accessing news), while ”permanently

connected” refers to the constant ability to access online communication (e.g., social media and

messaging apps).

Since the introduction of the mobile phone, the guiding principle of virtual communication

has gradually changed from geographic addressability to individual addressability Ling (2017).

1The initiative affected all countries in the European Economic Area (EEA). All EEA countries are included
in the analysis, however, we will refer to the affected area as EU to ease interpretability.
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Whereas communication was previously linked to geographically fixed locations (e.g. landline

and phone booths), the mobile phone allows for one-to-one communications using text or mobile

voice, and the smartphone further adds multisided interactions on messaging apps and social

media (Ling, 2017).

Constant individual addressability does not only entail possibilities but also commitments

in the form of social expectations. By now, abstaining from communication is an action that

requires planning and justification (Klimmt et al., 2017; Bayer et al., 2016). Likewise, we are

drawn to our smartphones by both endogenous cues (inner desires to use the smartphone) and

exogenous cues (e.g., sound or vibration from notifications) (Wilmer et al., 2017). Further,

using mobile social network sites can lead to the feeling of information overload (Matthes et al.,

2020), and smartphone addiction seems to be increasing across the world (Olson et al., 2020).

Though a lot has been written about the ”always-on” technologies, real-world causal evi-

dence is scarce (Schneider et al., 2017). The present study seeks to contribute by assessing how

access to mobile internet 1) affects overall smartphone use, 2) affects use of individual apps and

3) whether it influences individual mobility patterns. We find that access to mobile internet,

on average, increases daily smartphone use by around 6% and that this increment is primarily

driven by higher use of social media (5%), browser (9%), and maps (15%). Further, we find

that access to mobile internet leads to an increase in the daily number of unique places visited

(6%), while time spent on transport decreases (5%).

Results

We structure the analysis into three parts. Part one examines whether the Roam-Like-at-Home

initiative affected how much time people spent actively using their smartphones (screentime)

when traveling. Part two decomposes this effect into the usage of specific apps and app cate-

gories. Part three explores the effect on the daily mobility patterns of individuals by studying

the time spent in transport, spatial entropy and the number of places visited.

We use a large-scale smartphone dataset collected conditionally on user consent, containing

data on mobility, overall phone use and use of individual apps aggregated on the daily level.

We limit the sample to only include EU residents, who traveled to another EU country both

before and after the introduction of the RLaH initiative. To limit the number of users who had

free roaming subscriptions before the RLaH initiative, we further exclude users who spent more

than 6 weeks in another EU country, during the two years surrounding the implementation of

RLaH. Further, the first and last two weeks of the year are excluded, due to the changes in
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travel behavior related to the Christmas and Epiphany holidays. In the final sample, we have

21,489 users from 30 different countries, with a total of 4,512,602 days of observations, of which

92.4% are observed in the home country, 6.1% in another EU country and 1.4% in a country

outside the EU (See data section).

Since phone use and mobility are very person- and place-dependent aggregated raw data

can hide causal patterns. Therefore, we use a fully dynamic fixed effects model (Angrist and

Pischke, 2008) following the development in screentime over time, while controlling for stable

individual factors such as demographic characteristics and area-specific mobility patterns (see

methods section for further details).

To isolate the effect of mobile internet access, we compare affected observations with non-

affected. While observations are only affected when users travel to another EU country, unaf-

fected observations can either occur when the user is at home or when the user is traveling to

a non-EU country. We, therefore, compare affected users to the two counterfactuals separately.

If the RLaH initiative is driving a change in mobile use and behavior, we expect the affected

users to develop differently to both counterfactuals.

How mobile internet access affects screentime

In this subsection, we examine how individuals’ screentime was affected by RLaH. Figure 1

plots the results of the fully dynamic fixed effects model with data aggregated on a biweekly

level. The figure shows the development in screentime for EU residents in each of the three

contexts: in home country, in another EU country and in a non-EU country.

Figure 1a plots the development relative to the two-week period before the implementation

of RLaH. We see that while the development in screentime over all three contexts is quite stable

before RLaH, it increases sharply at the time of implementation and reaches a new level around

10 minutes higher a day. We do not observe a similar pattern for screentime at home or in

non-EU countries, which seems to be stable or mildly decreasing.

Figure 1b and 1c show respectively the difference in screentime development between EU

travel and home, and between EU travel and non-EU travel. Similarly to Figure 1a we see a

sharp increase at the time of implementation and stabilization at a higher level around 8 and

11 minutes a day higher than the reference for 1b and 1c respectively. To estimate the average

causal change, we use a difference-in-difference fixed effects model and find an increase of 6.9

minutes (s.e. 0.62) comparing EU travel to home and an increase of 9.1 minutes (s.e. 1.9)

when comparing EU travel to non-EU travel. Both estimates are statistically significant from
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Figure 1: Development in screentime over context. Panel a) shows the development in mean
screentime when being in the home country, traveling to another EU country and traveling
to a non-EU country. Panel b) and c) illustrate the development in the difference between
screentime when traveling in an EU country and screentime when being at home and traveling
in a non-EU country, respectively. All estimates are outputs from a two-way fixed effects linear
model. The vertical red line shows the timing of implementation of RLaH. Dashed lines show
the mean before and after. Blue areas indicate 95% confidence intervals. Standard errors are
clustered on the level of individuals.

zero, but not from each other. With average screentime when traveling in another EU country

before RLaH being 1 hour and 54 minutes, this corresponds to a relative increase of 6 and 8

percent respectively.

We interpret these results as causal evidence that the RLaH initiative increased smartphone

use for EU residents traveling in another EU country.

App specific changes

In this part, we decompose the change in screentime at the app level. We start by exploring the

app categories in the Google Play store. Figure 2 shows the relative changes for categories where

the change is significant at the 10 percent level both when comparing to being at home and

outside the EU. We see that there are significant changes in the categories ”Communication”,

”Social” and ”Travel Local”. Compared to being at home, daily usage increased by around 5

percent both in the ”Communication” and ”Social” category, while screentime in the ”Travel

Local” category increased by 18 percent. Compared to being in a non-EU country, the relative

effect is 15 percent on ”Communication”, 8 percent on ”Social” and 10 percent on ”Travel

Local”. This indicates that the increased screentime is driven by social activities and travel

planning, and, potentially, exploration in unfamiliar environments.

As illustrated in Table 1, the Google Play categories are rather broad and diverse. For
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Play Category Examples
Communication Google Chrome, WhatsApp, Facebook Messenger, Gmail
Social Facebook, Instagram, Twitter, Snapchat, Grindr, Tumblr
Travel & Local Google Maps, Foursquare, Booking.com, Tripadvisor

Custom Category Examples
Browsers and Search Google Chrome, Firefox, Opera, Google Search Box, Wikipedia
Social Media Facebook, Instagram, Twitter, Snapchat, Pinterest, LinkedIn, Jodle
Maps Google Maps, Waze, WeGo-CityMaps, Sygic GPS Navigator
Messaging apps Whatsapp, Facebook Messenger, Telegram, WeChat

Table 1: Example of apps in Google Play Categories and Custom categories

example, ”Communication” contains browser apps such as Google Chrome as well as messaging

apps like WhatsApp, while the ”Travel Local” category contains both maps and booking apps.

To get a deeper understanding of which types of apps are driving the observed increase, we

make custom categories based on the 1000 most used apps in our data. Figure 3 shows the

relative effects for these custom categories. Comparing EU travel to home country, we see that

the change is significant in social media apps (5%), apps related to browsers and search (9%)

and map apps (15%), however, there is no change relating to messaging apps. The estimates

comparing EU travels with non-EU travels are generally not significantly different from the

estimates reported above. The only exception is messaging apps for which the estimate is

statistically significant when comparing to non-EU travels.

We conclude that this is evidence that the RLaH initiative increased the use of apps in

the ”Social Media”, ”Browser and Search” and ”Map” categories, but that the evidence is

insufficient to conclude an increase in the messaging app category. Looking at the absolute

effect sizes in Figure ??, this corresponds to an average increase of around 1.5 minutes/day for

both social media apps, browser apps and map apps.

We interpret this as consistent evidence that these three categories account for most of the

observed increase in screentime. This implicates that RLaH has made users both more Per-

manently Online, searching for information, using browsers and maps, and more Permanently

Connected virtually staying in touch with peers on social media.

Changes in mobility patterns

We now turn to the effect on mobility patterns. We examine three measures: Unique locations

visited, day level entropy and time spent in transport. Unique locations visited count all

locations visited during a day, only counting locations visited several times once. Spatial

entropy tells us about the predictability of a person’s movement and can be interpreted as

12
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Figure 2: Effect estimates of relative change in use for the Play Store categories. Blue and
orange columns represent difference-in-difference estimates when comparing EU travels to being
at home and traveling outside the EU, respectively. Error bars show 95% confidence intervals,
with standard errors clustered on the individual level.
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Figure 3: Effect estimates of relative change in use for custom app categories. Blue and orange
columns represent difference-in-difference estimates when comparing EU travels to being at
home and traveling outside the EU, respectively. Error bars show 95% confidence intervals,
with standard errors clustered on the individual level.
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Figure 4: Effect estimates of relative change in variables relating to phone use and mobility
patterns. Blue and orange columns represent difference-in-difference estimates when comparing
EU travels to being at home and traveling outside the EU, respectively. Error bars show 95%
confidence intervals, with standard errors clustered on the individual level.

the number of yes/no questions a person needs to ask to be at least 50% certain about where

another person is if he/she knows all the possible places the other person could be that day.

Time in transport represents the time spent in transportation like cars and trains.

Figure 4 summarizes the overall results of our primary variables of interest. As previously

described screentime increases by 6% (7 minutes/day). Further, we see that the number of

daily phone sessions, which count the number of times a user activates an app, increases by 4%

(2.5 sessions/day).

Unique locations visited increase by 6% (0.15 locations a day), indicating that travelers

explore more locations when they have mobile internet access. Spatial entropy increases by

7.5% (0.04 units), indicating that individual mobility patterns become less predictable.

Interestingly, even though more unique places are visited, less time is spent in transport

like cars and trains. Daily time spent in transport falls by 5% (5.5 minutes). Thus, even

though more places are visited, the time spent moving between those places decreases. This

indicates that transport becomes more efficient, which is consistent with the hypothesis that

mobile internet access can make travel more efficient.
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In home country Another EU-country Non-EU country
Before RLaH 124.3 114.4 132.8
After RLaH 124.1 122.6 137.3
Difference -0.27 8.2 4.5
Difference (%) -0.22 6.7 3.3

Table 2: Mean daily minutes of screenuse before and after implementation of the RLaH initia-
tive.

Discussion

We have shown that access to mobile internet changes human behavior, both in terms of overall

phone use, app usage (specifically Social Media, Browsers and maps) and mobility patterns.

This shows that the RLaH initiative implemented by the European Union had substantial

implications.

The analysis shows the effect of getting free access to mobile internet during travels in

another EU country. Looking at the raw total screentime across contexts, we find indications

that after the RLaH initiative was implemented, phone use during travel between EU countries

became more similar to phone use at home. As Table 2 conveys, average screentime in the

home country showed no difference before and after RLaH, being constant at 2 hours and 4

minutes. Conversely, average screentime when traveling to another EU country increased 8.2

minutes a day, from 1 hour and 54 minutes to 2 hours and 3 minutes, almost the same as

average screentime at home. When traveling to non-EU countries, users, on average, used their

phone more than when being in their home country or traveling in EU countries. Before the

implementation of the RLaH initiative average screentime when traveling in non-EU countries

was 2 hours and 13 minutes, increasing by 4.5 minutes to 2 hours and 17 minutes after RLaH

was implemented.

Although the overall means in Table 2 are informative differences can be driven by changes

in sample competition (e.g., due to change in individual travel patterns). Therefore, we use

fixed effects models to control for individual and destination-specific behavior in the analysis.

That screentime in the home country and another EU country are at the same level after

the implementation of RLaH, can be interpreted as an indication that smartphone use in these

two contexts does not differ when the user has access to mobile internet. This would implicate

that the effects reported in this study would be similar for users who gain access to mobile

internet in their home country.

However, although screentime at home and during within-EU traveling became similar after
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RLaH was implemented, there are reasons why the effect of gaining free internet access at home

and while traveling may differ. First, users are likely to have less information about their travel

locations than they have about locations in their home country, which will make the gain

from seeking information online - like looking up routes, restaurants or attractions - higher.

Second, travelers’ urge to share experiences with peers might be different. On the one hand,

the urge might be higher because users have exciting experiences or because they are physically

separated from peers. On the other hand, users may feel less drawn to social media because the

exciting travel experiences reduce their need to socialize. However, even if our results should

only generalize to the realm of travel, the implications would still be significant.

Vacation is a highly valued and demanded good all over the world. In 2019 tourism employed

over 300 million people globally and accounted for more than 10 percent of GDP and 7 percent

of global trade. Further, 1.5 billion international tourists spent $1.6 trillion (Nations, 2020;

Goretti et al., 2021). Vacations have been found to positively affect family life, social life,

cultural life, job performance, perceived health and wellness and overall life satisfaction and

well-being (Uysal et al., 2016; Durko and Petrick, 2013; Chen and Petrick, 2013). The positive

effects on well-being are strongest during the vacation but already starts before the vacation, and

can last several weeks after returning home (Gilbert and Abdullah, 2004; Nawijn et al., 2010;

Nawijn, 2011b). Vacations only affect well-being positively if the stress levels on the vacation

was low. Smartphones can potentially influence vacation stress levels in several ways. For

example, commuting and figuring out logistics during vacation adds substantially to vacation

stress (Zehrer and Crotts, 2012). Another crucial factor in determining vacation happiness

is the attitude of fellow travelers toward each other Nawijn (2011a), where smartphones can

both reduce and increase conflict levels Yu et al. (2018). Our study suggests that access to

mobile internet can help travel planning and shorten commutes, which will likely reduce travel

stress. It also shows that social media use increases, which might in some situations lead to

conflicts in families. Overall, it seems that the constant opportunity to access information

online (Permanently Online) has clear benefits in terms of reducing inefficient transport time.

In contrast, the effect of constantly being able to connect with non-present peers (Permanently

Connected) seems more ambiguous.

Some users might already have had data subscription packages that included roaming in

some or all EU countries before the implementation of free roaming. We partly account for this

by excluding users who spent more than six weeks of in another EU country in the two years

surrounding the implementation of RLaH, since they would have benefited more from data

packages including roaming. However, it is possible that some users in the analysis already had
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EU roaming packages before RLaH, which would lead us to underestimate the effects.

The effect of gaining access to mobile internet might differ across users. We have studied the

average daily effect of the RLaH initiative on smartphone users. However, since smartphone use

varies by age, gender and country of residence (Van Deursen et al., 2015; Andone et al., 2016;

Blackman and Forge, 2018), it would be interesting to analyze how the effects are heterogeneous

by these demographic indicators. Likewise, it would be interesting to examine if the RLaH

initiative has changed travel patterns, for example, by making travelers more likely to travel to

another country or more likely to choose destinations within the EU. We leave these explorations

to future research.

Methods

Data

The analysis was based on a dataset provided by a global smartphone and electronics company

extracted through a smartphone app. The dataset includes data on GPS, overall screen usage

and usage of individual apps. We use data from November 3rd, 2016, to November 28th,

2018. All data analysis was carried out in accordance with the European Union’s General Data

Protection Regulation 2016/679 (GDPR) and the Danish Data Protection Act.

Day locations were identified applying the algorithm ”infostop” to GPS trajectories (Alessan-

dretti et al., 2020; Aslak and Alessandretti, 2020). Daily country and subregion were defined

by the location in which most time was spent during each day. Countries and subregions were

categorised using GADM 3.6 administrative boundaries for countries (level 0) and subregions

(level 2) (Hijmans et al., 2018). Home country was defined as the country where most days

were spent. Daily entropy was calculated following the temporal-uncorrelated entropy in Song

et al. (2010). Time spent in transport is provided from the data supplier and were calculated

using sensor data and methods resembling those described in Martin et al. (2017) and Shafique

and Hato (2015). Time spent in transport covers time in transportation vehicles like trains and

cars.

When calculating daily screentime, apps were limited to the most used apps within each

category, only keeping the apps accounting for 75% of the total usage within each category.

Apps that could potentially expose sensitive information were excluded. Further, when cal-

culating use on individual app categories, apps not identified in the Google Play store and

others maintenance apps (running in the background) were filtered out. In the sample used
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in the analysis, each year’s first and final two-week period were excluded, because of irregular

mobility and screentime patterns relating to the Christmas and Epiphany holidays. Likewise,

only subregions with more than 200 days of travel observations were included, and only users

having at least one day of data in both their home country and in another EU country both

before and after implementation of RLaH were included.

The final sample used for analysis contained 4.512.602 daily observations and 21.489 indi-

vidual users. 38% of users identified as female, and self-reported age, which half of the users

reported, had a median of 40 years. The dataset contained information from 103 countries and

1,247 subregions.

Fixed effects models

Three fixed effects models were used for the analysis. In the first part of the analysis two fully

dynamic fixed effects models (Models 1 and 2) were used (Angrist and Pischke, 2008; Borusyak

et al., 2021). In the rest of the analysis a difference-in-difference fixed effect model was used

(Model 3) (Angrist and Pischke, 2008; Imbens and Wooldridge, 2007).

Fully dynamic fixed effects models are used to follow trajectories of causal effects over time

while accounting for recurring patterns (in our case within individuals, subregions and week-

days). For each context, the model contains an indicator variable for every time period (except

for the reference period). These estimates are plotted to show the trajectory for screentime in

each context (see Figure 1).

Yi,d =
tmax∑

t=t0
t6=tref

∑

c∈C
τt,c1(Ti,d = t) ∗ 1(ci,d = c) + γi + ωw(d)

+
∑

r∈R

∑

c∈C
ρr,c1(ri,d = r) ∗ 1(ci,d = c) + εi,d

(1)

Model 1 describes the fully dynamic fixed effects model used to produce Figure 1. In Model

1, Y represents user’s daily screentime, i indexes users, d indexes day user is observed, c indexes

contexts (C = {in home country, in another EU country, in non-EU country}), t indexes unique

14-days bins centered around implementation of RLaH, with the excluded reference (tref ) being

the two-week period before implementation. tmax represents the last two-week interval in the

sample. 1(Ti,d = t) and 1(ci,d = c) are binary indicators showing whether the observation

belong to period t and context c respectively. γi represents fixed effects for individuals allowing
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for person-specific factors that may affect behavior, including individual time-invariant factors

such as average screen use, mobility patterns, demographic characteristics and other unknown

factors. ρ represents fixed effects for each context for every subregion. Separate indicators

for context-specific indicators for each subregion were included to allow the subregion effect

to differ between users for which the specific subregion is their home country and users for

which the subregion is not in their home country. ωw(d) indexes fixed effects for each day of the

week, taking out recurring weekly patterns. ε represents the error term. Standard errors were

clustered on user-level.

To explicitly examine the difference between being in another EU country and being in

one’s home country simultaneously with the difference between being in another EU country

and being in a non-EU country (see Figure 1b and 1c), model 1 was modified by adding a

general time fixed effect, and limiting the interaction terms between time and context to C− =

{in home country, in non-EU country}. This was done in model 2.

Yi,d =
tmax∑

t=t0
t6=tref

β1(T = ti,t) +
tmax∑

t=t0
t6=tref

∑

c∈C−

τt,c1(Ti,d = t) ∗ 1(ci,d = c) + γi + ωw(d)

+
∑

r∈R

∑

c∈C
ρr,c1(ri,d = r) ∗ 1(ci,d = c) + εi,d

(2)

In the remaining analysis, the average daily effect of the RLaH initiative was examined

using a two-period difference-in-difference fixed effects model - model 3. This model compares

levels in the variable of interest before and after the implementation of RLaH for each context

while accounting for individual, subregional and weekday fixed effects. Thereby estimating the

average causal effect of having access to mobile internet when traveling in another EU country

relative to being at home (δ), and relative to traveling in a non-EU country (η).

Yi,d = αpost+ βnonEU + δ(home ∗ post) + η(nonEU ∗ post)

+γi + ωw(d) +
∑

r∈R

∑

c∈C
ρr,c1(ri,d = r) ∗ 1(ci,d = c) + εi,d

(3)

Like the previous models, model 3 has fixed effects for users, day of the week and separate

region fixed effects for home country and foreign country. Y is the dependent variable of

interest. Further, to obtain difference-in-difference estimates, model 3 has indicator variables

for the period after implementation of RLaH (post), being in another EU country (nonEU),
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and interactions between being in the post period and being in the home country (home∗post)
and being in a non-EU country (nonEU ∗ post). Note that there was not included an indicator

for being at home since this is controlled by the regional fixed effects. This model gives the

difference-in-difference model with the difference-in-difference estimates of interest being δ and

η.

Identifying assumptions and fixed effects

In this section, we briefly discuss assumptions required for the causal estimates in our models

to be well identified. Then we briefly discuss the recent criticism of fixed effects models in event

studies and why it is not relevant for this study case.

The two main assumptions of the models used are ”parallel trends” and ”no anticipation

effects”, and Figure 1 can help us assess both2. The parallel trend assumption states that

development in pre-treatment periods (in this case before the introduction of RLaH) should

not systematically differ across contexts. The assumption of no anticipation effects implicates

no selection into treatment and that pre-treatment behavior does not change because of the

anticipation of treatment. Figure 1 shows no indication of behavioral change in the periods

before implementation of RLaH.

In the analysis, we use fully dynamic fixed effects models. Recently, there has been much

discussion concerning models similar to these. Some parts of this criticism is irrelevant to our

case, while the other parts highlight implicit assumptions and interpretation of estimates. Here,

we briefly address two points from recent literature.

The first concern relates to the use of two-way fixed effects (TWFE) models in datasets

with staggered adoption, where treated individuals stay treated and individuals are treated

at different times (also called panel event studies). In this setting, it is common to include

fixed effects for individuals and for time periods (therefore two-way), and further having either

dynamic treatment effects (including indicators for relevant lead and lags in treatment) or

static treatments effects (in which a single treatment indicator is included, thereby assuming

treatment effects are constant over time). As shown e.g., in De Chaisemartin and d’Haultfoeuille

(2020) estimating this in a standard way (OLS) might lead to negative weights because it

makes ”forbidden” comparisons. This may lead to bias estimates unless strong homogeneity

assumptions are satisfied (Borusyak et al., 2021).

2A further assumption is that there is no unit root auto-correlation in the error term. That is, errors from
one period can carry over to the next period but decay within a finite number of periods. If this assumption is
violated, we would expect the graphs in figure 1 to exhibit random walk behavior, which we do no
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However, since treatment occurs at the same time for all individuals, we do not use TWFE

models. Instead, we have a fully dynamic individual fixed effects model. Therefore, in the case

considered in this study, the model will (to the best of our knowledge) not generate negative

weights.

The second concern relates to heterogeneous treatment effects across individuals and treat-

ment timing. When we have an unbalanced panel and heterogeneous treatment effects across

users, the (unweighted) estimated coefficient will not, in general, be the average treatment ef-

fect on the treated (ATT). This is important to have in mind in our case, where the reported

estimates should be interpreted as the average effect on travel days across all users since users

with more travel days implicitly weighing higher. Further, much effort has been put into in-

vestigating heterogeneous treatment effects across treatment time, which might lead to biased

treatment estimates if not addressed. However, since the RLaH initiative was implemented at

the same time for all individuals, this is not relevant in our case.
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Jay A Olson, Dasha Sandra, Élissa S Colucci, Alain Al Bikaii, Johnny Nahas, Denis Chmoule-

vitch, Amir Raz, and Samuel PL Veissière. Smartphone addiction is increasing across the

world: A meta-analysis of 24 countries. 2020.

Frank M Schneider, Sabine Reich, and Leonard Reinecke. Methodological challenges of popc

for communication research. Permanently online, permanently connected. Living and com-

municating in a POPC world, pages 29–39, 2017.

Muhammad Awais Shafique and Eiji Hato. Use of acceleration data for transportation mode

prediction. Transportation, 42(1):163–188, 2015.

Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits of predictabil-
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Appendices

A The Roam-Like-at-Home Initiative

Background

The Roam-Like-at-Home initiative was the culmination of the EU’s effort to fix the market

failures in the EU roaming market (EU, 2017). As we will see in this section, the regulatory

process leading up to the effectuating of the initiative on June 15th, 2017, was long and difficult

(see e.g., (Blackman and Forge, 2018)).

As the market for mobile communication (primarily voice calls) grew throughout the 90s

and early 2000s, various regulatory policies were introduced. The ”Normal Network Tariffs”

regulation scheme, which capped wholesale prices to foreign providers at the domestic ”normal

retail tariff” plus a 15% markup, was gradually replaced by the ”Inter-Operator Tariff” (IOT)

scheme from May 1998 to April 1999. Under the IOT scheme, tariffs were to be negotiated

bilaterally by mobile network operators and did not have to reflect actual wholesale costs.

It was hoped that the prices would be reduced when going from cost-based prices (including

markup) to competition-based prices.

However, the change did not lower prices or promote competition as hoped. On the contrary,

the link between wholesale prices and market share disappeared, so that the volume of roaming

services sold by domestic Mobile Network Operators (MNO) to foreign MNOs became solely

determined by the domestic MNO’s market share (and not the offered wholesale roaming prices)

(Blackman and Forge, 2018). The inelastic demand led the MNO’s to raise wholesale roaming

prices. As a working group launched by the European Commission summarized it: ”Over the

period in review [1997-2000] the wholesale tariffs have clearly converged towards a higher overall

level that does not appear to bear any relation to cost.” (Competition, 2000).

The IOT was the primary regulation until Spring 2007, when the first of several regulation

packages that would eventually become the Roam-Like-at-Home initiative was passed in the

European Parliament. Since regulators had found that regulation based primarily on costs and

competition had not worked satisfactorily, they now turned to price caps as the primary tool.

From 2007 to 2012 regulation was passed, which gradually lowered the prices on roaming calls

and text messages (SMS), and from 2012 also including data roaming. Price caps on data

roaming were introduced at 45 cent/MB in July 2013, lowered to 20 cent/MB in July 2014 and
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5 cent/MB in April 2016, before the fees were abolished at June 15th, 2017 3.

Fair use policy

Following the Roam Like at Home initiative, domestic subscription terms also apply when

traveling in the European Union. For example, if a subscriber has a data package with 10

GB of free data, it does not matter whether the data is used in the home country or in

another EU country. However, MNO’s may limit roaming services to prevent ”abusive” or

”anomalous” roaming behavior. For example, if over a 4-month period, a subscriber has used

more time abroad than at home, and roaming usage exceeds domestic usage, the MNO may

apply a (capped) surcharge to the customer (not exceeding wholesale price) on future roaming.

However, MNO’s only seem to have applied these restrictions to a very limited degree (Blackman

and Forge, 2018).

Figure 5: Awareness about the Roam Like at Home initiative.

Awareness of the Roam-Like-at-Home Initiative

As shown in figure 5 the awareness of the Roam Like at Home initiative was generally imme-

diately following the implementation. Two months after implementation, in August 2017, 71%

3The initially planned price cap glide path and Roam Like timetable was adjusted in 2016. The regulation
is due to expire June 30th, 2022, however, in February 2021, the European Commission introduced a proposal
to extend the regulation another ten years (and expand it in terms of speed and quality requirements)
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of EU citizens and 86% of people who had traveled to another country in the EU were aware

of the change. Curiously, a little less than a year after implementation, in May 2018, overall

awareness had fallen to 62% and awareness for travelers to 81%.

Effect of data traffic

To get a picture of the the RLaH initiative’s overall effect on data usage, we examine the

development in data roaming traffic within the EU. In figure 6 and 7 we see that data roaming

volumes have been increasing steadily, roughly doubling every year since 2011. We see a

tendency that years when price caps were introduced saw an extra increase. For example, in

the year starting July 1st, 2014, when caps were lowered to 0,2 cent/MB, data volumes increased

by 193 %, relative to the year before. However, when the fees on roaming were abolished in

the middle of June 2017, the data roaming traffic in the EU increased dramatically, growing by

323% comparing the year starting 1st 2017, with one year earlier.

Figure 6: Development in quarterly roaming traffic in the European Economics Area. Red line
indicate the implementation of the Roam-Like-at-Home initiative.
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Figure 7: Year-on-year change in roaming fees with year starting in the third quarter. Calcu-
lated by the authors using data from the BEREC 2020 report. Bars show relative change from
a year earlier, numbers on top indicating precise rise in percent. Orange line shows maximum
allowed tariff on roaming data in €-cent per megabyte. Before 2013 no price cap was in place.

B Representativeness

To understand how representative the data is for the population in Europe, we 1) compare user

share to population and 2) compare travel days in our data set to nights spent at accommoda-

tions by foreign travelers.

Figure 8 shows how the users in the sample are distributed over countries relative to the

population distribution. The figure shows that users are broadly distributed across Europe.

There is a tendency that the Nordic and Baltic countries have a larger share of users in the

sample, than in the population. On the contrary, certain Southern European countries (e.g.,

Italy and Spain) have a lower share of the sample than the population size would suggest.

However, it is important to note that most of the major countries in Europe still have a

substantial number of users (e.g., there are 531 users from Italy and 659 users from Spain).

The correlation between the two series is 0.74.
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Figure 9 shows the distribution of travel observations in the sample and the number of nights

spent in accommodations by foreigners. This is included to provide an illustration of the extent

to which the travel patterns in the sample corresponds to the actual travel patterns. Nights

spent in accommodations by foreigners is a crude proxy because it contains non-EU travelers,

so we would not expect a 1:1 overlap. However, we still find the comparison helpful. The

figure shows that travel observations in the sample are broadly distributed across all European

countries. Some countries have a lower proportion of observations than overnight stays (e.g.,

Italy, Spain and the UK), while others have higher (e.g., Germany, Poland and Sweden). We

notice that the number of observations for most countries is still substantial, with the mean

(median) being 9,893 (5,997). The correlation between the two data series is 0.83.

Figure 8: Share of users in sample relative (orange bars) to population size (blue bars).
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Figure 9: Share of travel day observations in sample by country (blue bars), and share of all
travel days in within the EU by country.
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Abstract:

Extensive evidence links exposure to natural environments with restorative benefits to human
cognition and well-being, yet nature contact is reportedly declining for younger demographics.
Although Attention Restoration Theory (ART) posits that natural environments can free
attentional resources by eliciting soft fascination, it remains unknown whether exposure to
natural settings is disrupted by smartphone-directed attention. Here, we monitored minute-level
smartphone screen use, communication and environmental exposures for 701 Danish young
adults over two years. On average, participants spent over twice as much time on their
smartphones per week than in natural environments. Relative to urban environments, exposure to
natural settings decreased smartphone screen use slightly, while texting and calling did not
significantly change. However, these relationships differed by the type and dose of natural
environment exposure: smartphone social activities increased during short visits to recreational
areas while smartphone use declined markedly over the first three hours in nature areas,
suggesting that natural areas may support digital impulse inhibition in-situ. Paradoxically,
increased daily smartphone use was associated with marginally reduced time in natural
environments overall but an elevated probability of visiting them.

Abstract:
Omfattende forskning viser, at ophold i grønne områder kan have positive effekter for
menneskelig kognition og velbefindende. På trods af dette bruger nutidens unge mindre tid i
grønne områder end tidligere generationer. Selv om ophold i grønne områder, ifølge Attention
Restoration Theory, kan frigøre kognitive ressourcer til opmærksomhed gennem ”blød
fascination”, er det stadig uvist om denne proces bliver afbrudt, hvis opmærksomheden er rettet
mod en smartphone. I dette studie følger vi på minutniveau 701 unge danskeres skærmtid,
kommunikation og hvilke områder, de opholder sig i, i løbet af to år. Deltagerne bruger i
gennemsnit dobbelt så meget tid på deres telefon hver uge, som de bruger i grønne områder. I
forhold til ophold i byområder sænker ophold i grønne områder skræmtid en smule, mens
SMS’er og opkald ikke bliver påvirket signifikant. Effekterne afhænger dog både af typen af
grønne områder og længden af opholdet i et område. Kommunikation via smartphones stiger i
løbet af korte besøg i rekreative områder (som parker og kirkegårde), mens den falder betydeligt
i løbet af de første tre timer, de er i et naturområde (som skove eller nationalparker). Det tyder
på, at naturområder – men ikke rekreative områder – hjælper med at undertrykke impulser til at
bruge digitale teknologier. Paradoksalt nok er højere dagligt smartphoneforbrug forbundet med
marginalt mindre tid i grønne områder, men højere sandsynlighed for at besøge dem.
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Introduction:

“The enjoyment of scenery employs the mind without fatigue and yet exercises it; tranquilizes it
and yet enlivens it; and thus, through the influence of the mind over the body gives the effect of
refreshing rest and reinvigoration to the whole system.” – Frederick Law Olmsted (1865)

The belief that nature in general - and green spaces specifically - can support health and

well-being is deep-seated in many cultures, far preceding the recent emergence of a vast

empirical research program exploring the socioecological, psychosocial, and public health effects

of natural settings1–8. In particular, the theory that time spent immersed in natural spaces can

restore cognitive attentional resources has motivated extensive research, seeded landscape and

planning interventions, informed policy recommendations, inspired preventive medicine

programs and has been featured extensively in the media6,9,10. Yet, unlike when Kaplan and

Kaplan first developed their influential Attention Restoration Theory (ART)11, today information

technologies are no longer limited to indoor use. Now, smartphones regularly accompany their

owners’ every action and respite, shadowing them into nature. Indeed, smartphones and digital

media have been engineered to engage focal attention and hold it12, possibly challenging

attention restoration in natural areas and urban green spaces13. Conversely, the recent rise of

nature-based digital detox recommendations, regimens and retreats is indicative of an

increasingly popular view that certain settings in the biosphere may permit an escape from the

“always-on” social and informational demands of the cybersphere14,15. Yet evidence in this

setting is extremely sparse. Does nature exposure influence device-directed attention and

relatedly, does increased daily smartphone use relate to changes in time spent in natural

environments?

Modern urban lifestyles have led to what some researchers have described as an ''extinction of

experience’’ for younger generations, a lack of interaction with the natural environment on which

life in the biosphere depends, with potential consequences for human well-being and

environmental stewardship16–20. Indeed, evidence from cross-sectional surveys and retrospective

cohort analyses indicate that in recent years nature exposure has fallen precipitously, with the

greatest declines observed for youth and young adults relative to prior generations21–23. This

deficit in nature exposure has been attributed to a variety of factors including accelerating
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urbanization and increased immersion in digital media from television24, the internet25, and more

recently mobile devices26,27. Several psychological, public health and sustainability scholars have

deemed these trends to be disconcerting because of the myriad documented anthropocentric and

ecocentric benefits linked to time spent in natural environments17,28,29. With over half of the

world’s population now residing in cities, most human experiences of nature increasingly

transpire within or near highly connected urban settings, with potential implications for planetary

health and human well-being30,31.

Evidence spanning multiple disciplines has shown that nature contact is associated with

improved mental health32–35, positive affective states2, reduced stress36–40, reduced risk of preterm

birth32, lower risk of premature mortality41, increased physical activity8,42 and improved cognitive

outcomes4,43, including self-discipline44. A Danish registry-analysis of public health records for

nearly 1 million people found that low levels of nearby green space (natural vegetation) in

childhood - controlling for socioeconomic status - was strongly associated with developing

mental illness and several psychiatric disorders in later life45. Beyond correlational evidence

suggesting cumulative positive psychological effects of nearby nature41,46–48, there is accruing

experimental and longitudinal evidence that time in nature can impart acute cognitive and mood

benefits, even during short exposures49. Several field experiments have shown that compared to

individuals randomly assigned to spend time in urban settings, those assigned to natural settings

demonstrate near-immediate improvements in affect and cognition50–52, as well as reductions in

rumination53 and physiological stress54. Such work has drawn renewed attention to understanding

the specific qualities of natural settings that are restorative55, as well as the underlying processes

involved6,13,33,41,56–58.

Although investigation of the mechanisms underlying the psychological benefits of nature

contact is ongoing, at least three primary pathways have been widely supported by the extant

literature59: 1) natural settings may restore mental and physiological capacities via rejuvenated

attentional resources and stress recovery, 2) they may reduce harm by diminishing exposure to

environmental stressors and 3) they may build physical and social capacity by affording exercise

and social cohesion. Of the theoretical and conceptual frameworks that have gained currency for

characterizing this first pathway, Attention Restoration Theory (ART) and Stress Recovery
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Theory (SRT) are among the most established. According to ART, people have finite cognitive

resources to engage in directed attention and inhibit other distracting impulses, resulting in

mental fatigue11,60. A core premise of ART suggests that nature contact allows a person to engage

with softly fascinating natural stimuli that effortlessly hold one’s attention while providing

mental bandwidth for reflection, facilitating the restoration of cognitive resources exhausted by

effortful fixation60,61. Similarly, SRT and the biophilia hypothesis draw on psycho-evolutionary

theory to suggest that people have ‘the innate tendency to focus on life and lifelike processes’

and therefore have a low-level affective preference for safe environments reminiscent of those

our species developed among, promoting stress recovery2,16,36. In their original theoretical and

conceptual development, the Kaplans, Ulrich and Wilson variously cited lifestyle changes driven

by urbanization and media technologies as potential challenges to human attention and nature

contact11,16,18. Yet when these scholars first proposed their complementary theoretical frameworks

in the mid-to-late 80s, virtually connected information technologies had reached the living room

but were still far afield from the outdoor natural areas, parks and green spaces that they theorized

about62.

In the intervening years, the advent of mobile computing devices has allowed virtual stimuli

from the cybersphere to cross over into daily activities63, and social relationships64–66, largely

irrespective of one’s spatiotemporal context in the biosphere67. Today, a growing proportion of

humanity spends an increasing fraction of their waking life attending to screen-based stimuli,

modulating individual and collective attention dynamics68–72. For instance, people tend to attend

to new mobile phone notifications within seconds to minutes, regardless of whether their phone

is silenced or not73. In an increasing number of countries, adults and adolescents now rarely leave

the house without their smartphones, with around 94% of young adults in the EU accessing the

internet on the move from their mobile devices74. Despite the communicational and functional

capabilities enabled by these technologies, a recent multinational consumer survey found that

nearly half of young adults in nordic countries also report negative, distractive side effects of

smartphone use, in-line with a rapidly growing body of research linking excessive smartphone

use with adverse behavioral, mental and cognitive outcomes70,75–80. However, deriving directional

inferences from this literature - most of which has relied on cross-sectional designs and

inaccurate self-report measures - is made difficult by likely confounding and measurement error
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due to omitted variable and recall biases81–86, with scholars emphasizing the need for objectively

logged, high resolution and longitudinal behavioral measurements of device use to provide a

more robust evidence base to guide both policy and design87–90.

Similarly, research on the attentional and behavioral correlates of environmental exposures has

long relied on self-reported or indirect measures of nature exposure and task-based cognitive

tests that may lack ecological validity6,13,34,41,91. Interestingly, outside of studies that continuously

measured physiological responses to nature, little is known about how physically spending time

in natural and urban environments influences attention and impulse inhibition during the course

of exposure. In this regard, the proliferation of ubiquitous mobile devices and connectivity have

created new opportunities to study dynamic person-environment interactions across overlapping

physical and virtual settings67,82,92–94. For instance, recent large-scale studies leveraging social

media data and time-series mobile GPS data have uncovered consistent associations between

improved mood and recent exposure to urban greenspace, but have yet to research the

relationship between natural settings and smartphone use in situ95–98. Indeed, increasing digital

connectivity may alter opportunities for restoration in natural settings in several key ways,

leading some to conclude that videophilia - human affinity for digital media - may be supplanting

biophilic interactions24,25,99. Specifically, we hypothesize that electronic device use may modify

in-person nature exposures indirectly by displacing time available for encounters with natural

areas. Separately, mobile device use may interrupt nature contact directly by emplacing

distracting digital stimuli inside natural settings during visits, engaging attentional resources

away from restorative environmental features. Lastly, device use may substitute for nature

interaction by replacing physical nature encounters with same-day virtual activities outside of

natural environments.

To review prior investigations of the relationship between greenspace exposure and electronic

device use across these hypothesized pathways, we conducted a systematic review of recent

research published in the journals Environment and Behavior, Journal of Environmental

Psychology, Psychological Science, Frontiers in Psychology, and Health & Place (Fig. 1A). We

used each journal’s online search index to query articles with the keyword phrase "attention

restoration." A total of 394 articles meeting this search criteria were returned. We then further
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filtered these articles to only include those that explicitly investigated attention restoration in

natural environments as indicated by the inclusion of any of the following nature indicator key

words in the abstract: "nature” OR “green space” OR “greenspace” OR “park” OR “forest” OR

“natural space” OR “natural environment.” 238 articles meeting these criteria were then parsed

for occurences of terms containing the root word(s) “phone” OR “device” using the full texts

(see Supplementary File 1). Excluding experimenter phone use (i.e. to conduct telephone

interviews), only 35 of these articles mentioned at least one mobile device term. Of these, only 5

explicitly addressed the potential confounding influence of device use by telling participants to

refrain from using their mobile devices during the study, only 3 articles operationalized device

use as a variable of interest, and no studies included objective measures of smartphone use (Fig

1A). One cross-sectional survey study of 546 US adolescents found negative relationships

between self-reported media use (a single measure item for all screen use, including computers

and television) and both recalled outdoor time spent in nature and perceived nature connection,

consistent with the replacement hypothesis26. In a separate experimental study, participants

randomly assigned to spend a break in green space without a laptop showed significantly higher

improvement on cognitive tests than participants in all other device and setting conditions,

supporting the idea that digital stimuli may disrupt the restorative attentional and cognitive

benefits derived from green space, in line with the emplacement hypothesis100.

However, unlike laptops, smartphones are designed to be accessed while mobile and may be a

more salient source of digital stimuli for young adults -- particularly in natural environments -- a

concern voiced by several authors14,101,102, but as of yet uninvestigated with objective measures of

coinciding smartphone and environmental exposures during daily living. A relevant experimental

study found that exposing students to a stressful initial condition and then assigning them to play

a game of their choosing on their phone in either an outdoor school courtyard or indoor

windowless setting reduced concentration recovery and diminished positive affect in both

settings, but that time spent outside improved concentration - overall - compared to the indoor

setting, even when gaming outside. This analysis featured only 20 participants in the outdoor

mobile phone condition for a short 20 minute exposure, and did not control for individual

baseline measures of concentration, mood, or objective smartphone use that would be needed to

rule out regression to the mean, as noted by the authors. Indeed, if the restorative benefits of
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nature contact - as currently theorized - depend on connecting with natural elements16,

specifically through soft fascination and low-level involuntary attention to environmental

features11, the lure of smartphone use may distract focal attention in natural spaces and plausibly

prevent recovery of the inhibitory mechanism needed for directed-attention6,103. Further, recent

evidence suggests that smartphones may limit the mental bandwidth for reflection and dissolve

the sense of being away61, potentially disrupting core tenets of restorative environments

described by ART60. However, it remains unclear how automatically logged smartphone use

compares and relates to nature visitation for highly connected young adults, and moreover,

whether natural settings differentially influence within-person smartphone use and inhibition in

these settings compared to in urban environments. Nevertheless, nature experiences are

increasingly prescribed as part of so-called digital detoxes14,15, even though evidence largely lags

practice.

To investigate these emerging relationships we pose two primary and four exploratory research

questions. First, how do objective measures of smartphone use in a highly-connected student

community of young adults compare to time spent in natural settings? Second, does exposure to

natural environments influence smartphone use, impulse inhibition and outgoing phone-based

communication compared to urban settings? To explore whether environmental or behavioral

factors may moderate the relationship between natural environment exposure and smartphone

behaviors, we further inquire whether the relationship between environmental exposure and

smartphone behavior varies with the type of natural environment visited, the dose of exposure

experienced (short vs. long visits) or the state of mobility used (moving vs. staying) during

human environment interactions. We further assess whether the relationship between nature

exposure and mobile device use varies according to one’s baseline level of smartphone use and

typical nature use, respectively. Lastly, we investigate whether within-person fluctuations in

daily smartphone use are associated with changes in visiting natural environments. Due to the

sparsity of existing behavioral and socioecological evidence in this domain, we refrain from

formulating directional hypotheses about the expected patterns of association and instead adopt a

data-driven socioecological approach to inspect the relationships of within-person changes in

device use during free living routines when participants were exposed to natural environments

compared to when they were exposed to urban settings (Methods). Specifically, we logged
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student location, smartphone screen use, outgoing texting and calling continuously using a

mobile app for a large cohort of n=701 Danish university students over a two year period from

September 1st, 2013 to August 31st, 2015 as a part of the Copenhagen Networks Study (CNS)104.

Methods

Participating students in the Copenhagen Networks Study received a smartphone with an

onboard data-logging app that continuously recorded several behavioral measures over the

duration of the study, including location-based mobility from geolocation data, smartphone

screen use and phone-based social interactions via texting and calling. The study was approved

by the Danish Data Supervision Authority in 2013 and featured dynamic informed consent

whereby students who agreed to participate were able to view and download their own logged

data, and could withdraw from the study and delete their data at any point. This data set has

previously been used to study several dimensions of human behavior including dynamics in

social networks105,106, human mobility107,108, epidemic tracing109, and academic

performance82,110,111. All observations located within the national borders of Denmark were

included and data collection concluded after 2 years due to the costs of maintaining data

collection and replacing broken or lost phones. Participants were included in the final analyses

who logged a minimum of 672 15-minute-level observations (>= 168 hours of total data), and a

minimum of 7 days with at least 12 hours of data per day. After filtering on these inclusion

criteria, a total of 701 participants (n_female = 151) were included in the final analyses, with a

median period of observation of 507 days (Q1: 343, Q3: 629).

Environmental Exposures

In the current study, we investigated the relationship between environmental exposures and

smartphone-directed attention by linking timestamped individual mobile screen activity and

geolocation data - aggregated to the 15 minute level - with contextual location information (Fig.

1B). Geolocation data included automatically-registered spatial points retrieved through the

Google Location API which utilizes a combination of GPS, Wi-Fi traces and nearby cell phone

towers to interpolate latitude and longitude coordinates104. To link location data with

environmental context information, we used geo-referenced contextual categories from Open

Street Map (OSM). OSM provides a global land use - land cover map. We categorized these land
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cover types into two primary contexts (natural vs. urban environments), with natural

environments consisting of the two nested subcontexts of nature areas (meadows, forests, nature

reserves, heath or scrub land cover) and recreational areas (parks, grasses, recreation grounds or

cemeteries) (Table 1). For each fifteen minute interval, we labelled a user’s geometric median

location with the corresponding environmental context and sub-context. We further registered

whether participants were moving or staying during each 15-minute interval using the

unsupervised machine-learning DBSCAN algorithm utilized in previous studies on human

mobility112.

Table 2 | Environmental Context Categories
Natural Environments Urban Environments

Nature Areas Recreational Areas Urban Areas

Meadow Park Commercial

Forest Grass Residential

Nature Reserve Recreation Ground Industrial

Heath or Scrub Cemetery Military

Smartphone Use

Within each 15 minute time interval, we logged three measures of smartphone use. First, we

recorded the fractional amount of screen use when the participant’s smartphone screen was

activated, a proxy for smartphone-directed attention82. We interpreted within-person decreases in

smartphone-directed attention relative to their use in urban settings as behavioral evidence of

impulse inhibition - the capacity to reduce “execution of an over learned or prepotent

response”33, and conversely, increases in smartphone use were viewed as evidence of digital

impulse promotion. Second, we recorded whether the participant sent out a text message within

each 15-minute interval and additionally registered whether the participant made a phone call

within each interval (Table 2). To investigate whether environmental exposures were linked with

changes in participant-initiated digital behaviors, we focused on outgoing communication

activities rather than incoming calls or messages, although such use was included in our general

measure of screen use which integrated over all smartphone activities.
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Investigating Displacement

Our analysis consisted of multiple stages, moving from data-driven description of virtual and

physical exposures in our sample, to statistical inference concerning our theoretical relationships

of interest using statistical methods for analyzing panel data. First, to investigate the

displacement hypothesis that time allocation to virtual smartphone stimuli may limit time

available, we sought to descriptively compare weekly exposures to natural environments versus

smartphone screens, employing automatically logged measures of spatial and virtual interactions.

Thus for each participant, we computed average measures of smartphone screen time and time

spent in natural environments respectively, extrapolating these measures to the week-level (Fig.

1G). Further, we computed the percent of total 15 minute observation windows during which

participants spent at least some time on their smartphones, in natural areas, in recreational areas

or in urban settings, and plotted these distributions for comparison (Fig. 1H).

Investigating Emplacement

In the second phase, we aimed to assess the emplacement hypothesis: whether exposure to

natural environments influenced within-person smartphone use in these settings relative to use in

urban contexts. We excluded observations originating from participants’ home and university

(Technical University of Denmark) locations, to compare device use in natural environments to

baseline use in urban settings that were also outside of home and school. We further constrained

our analysis to the universe of all observed environmental exposures lasting between 0-12 hours

in duration when participants were completely situated in a single context at the level of analysis,

excluding observations at the boundaries of separate, but overlapping, context categories. Thus,

for our primary analysis comparing the relationship between smartphone screen use in natural

environments to screentime in urban settings (Eq. 1), natural environment observations located

jointly within the sub-contexts of nature areas and recreational areas were included (Fig. 2A),

whereas for our sub-context analyses (Eq. 2 - 5) such joint observations were excluded to

evaluate whether setting-screen use relationships differ between nature areas and recreational

areas (Fig. 2B). In order to examine the relationship between daily environmental exposures and

smartphone use, we specified a type of time-series model known as a two-way fixed effects

panel regression model, due to its capacity to provide consistent estimation of model parameters
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while controlling the association between exposure and use for all stable personal and temporal

characteristics, even when these potentially confounding factors were unobserved82,113,114.

Person-level fixed effects linear panel regression model - natural context vs. urban context
𝑆

𝑖𝑡ℎ𝑑
 =   β𝐶

𝑖𝑡ℎ𝑑
 + µ

𝑖ℎ
 +  ν

𝑑
 +  ϵ

𝑖𝑡ℎ𝑑
 (1)

Equation 1 describes the linear fixed effects model employed for modelling the effect of

environmental exposure on each smartphone outcome, . In this model, i indexes individuals, tβ

indexes unique 15-minute time bin of the day, h indexes unique hour of the week, and d indexes

unique date of the study period. Our independent variable of interest was natural environment

exposure , an indicator variable for being located inside of a natural environment with urban𝐶
𝑖𝑡ℎ𝑑

context exposure omitted as the baseline category. Unobservable person-specific and temporal

factors may also impact smartphone use. Since mobile device use and media consumption have

been shown to vary idiosyncratically across days of the week based on individual schedules and

routines115, we included representing person-by-hour-of-the-week fixed effects, resulting inµ
𝑖ℎ

168 fixed effects for each individual (one for each hour of the day by day of the week). These

fixed effects controlled for both stable and time-varying psychological characteristics that may

influence individual smartphone use and also coincidentally correlate with greenspace exposure,

including individual baseline attention characteristics, cognitive abilities, weekly behavioral

routines (e.g., fixed schedules, recurring in-person and virtual social obligations, scheduled

exercise, repeating practices), regular media use, and other unmeasured time-varying background

factors. Additionally, they controlled for other demographic factors, including age, gender,

individual socioeconomic status, latent environmental preferences and residential location, the

latter of which previous research has shown to be highly associated with proximity to natural

environments, especially in urban regions116–118.

Further, unobserved daily factors, such as specific days of the week (weekends vs. weekdays),

days of the year (holidays and vacation days), seasonal changes in daylight and daily fluctuations

in weather may influence outdoor natural environmental behaviors in a way that also spuriously

correlates with mobile device use. To control for these temporal confounds, we include ,ν
𝑑

representing unique date of study fixed effects over the two year period of observation. We
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interpreted the estimated model coefficients from as the effect of natural environmental𝐶
𝑖𝑡ℎ𝑑 

exposure on individual smartphone use, relative to their smartphone use in urban settings outside

of home and work. We estimated Eq. 1 using ordinary least squares and adjusted for possible

serial correlation in by employing heteroskedasticity-robust standard errors clustered at theϵ
𝑖𝑡ℎ𝑑

 

individual level. We omitted non-contextual control variables in Eq. 1 due to our inclusion of a

comprehensive set of fixed effects that control for all stable individual-level demographic and

hour-of-week temporal controls as well as date-specific factors, and to avoid generating bias in

our parameters of interest. Separate models were run with different dependent variables for𝑆
𝑖𝑡ℎ𝑑

each smartphone use outcome (screen use, outgoing texting, outgoing calling)

Table 3 | Primary Smartphone Activity Outcome Measures
Outcome Variable Metric

Screen use The fraction of time within each 15 minute interval that the
participant’s smartphone screen was active

Outgoing SMS 1 if the participant sent a text message within the interval; else 0

Outgoing call 1 if the participant made a phone-call within the interval; else 0

To provide scale for the estimated effect of exposure to specific types of environments on device

use, we plotted the relative magnitude of the within-person effect of natural environment

exposure compared to the urban exposure baseline (% of average individual urban smartphone

use) computed by dividing the model coefficients by the mean of the urban reference condition

and multiplying by 100 to convert to a percent value.

Person-level fixed effects linear panel regression model - natural subcontexts vs. urban context

𝑆
𝑖𝑡ℎ𝑑

 =  β𝑛𝑎𝑡𝐶
𝑖𝑡ℎ𝑑
𝑛𝑎𝑡 + β𝑟𝑒𝑐𝐶

𝑖𝑡ℎ𝑑
𝑟𝑒𝑐  + µ

𝑖ℎ
 +  ν

𝑑
 +  ϵ

𝑖𝑡ℎ𝑑
 (2)

Equation 2 substituted the single overarching natural environmental context variable used in Eq.

1 with natural environment sub-context indicator variables representing nature areas and𝐶
𝑖𝑡ℎ𝑑
𝑛𝑎𝑡

representing recreational areas. Thus, Eq. 2 estimated the effects of natural environment𝐶
𝑖𝑡ℎ𝑑
𝑟𝑒𝑐

exposure type (nature area or recreational area), relative to the omitted urban baseline.
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Person-level fixed effects linear panel regression - dose response model
𝑆

𝑖𝑡ℎ𝑑
 =  𝑓𝑛𝑎𝑡(𝑇

𝑖𝑡ℎ𝑑
𝑛𝑎𝑡 ) +  𝑓𝑟𝑒𝑐(𝑇

𝑖𝑡ℎ𝑑
𝑟𝑒𝑐 ) + 𝑓𝑢𝑟𝑏(𝑇

𝑖𝑡ℎ𝑑
𝑢𝑟𝑏 ) + µ

𝑖ℎ
 +  ν

𝑑
 +  ϵ

𝑖𝑡ℎ𝑑
 (3)

We complemented our primary linear specification with a secondary flexible specification

exploring whether the duration of time spent in different types of natural environments was

related to smartphone use in a dose-dependent manner. Equation 3 mirrored Eq. 2, but included

the function consisting of flexible interaction terms, represented by a set of dummies for the𝑓𝑘

total time, , spent in a specific environmental context, . Consistent with prior literature𝑇
𝑖𝑡ℎ𝑑
𝑘 𝑘

investigating natural environment dose response relationships, we employed 1 hour binned

exposure increments119. We interpreted the resulting estimates from in as the marginal effects𝑓𝑘

of T hours of environmental exposure on mobile device use, relative to the baseline category of

less than 1 hour of urban exposure (Fig. 3A-C). The inclusion of these semi-parametric bins

permitted estimation of a non-linear relationship between dose of exposure and smartphone use.

Person-level fixed effects linear panel regression - mobility state interaction model
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Similarly, the effect of exposure to natural settings on smartphone use may depend on other

contextual characteristics, including one’s state of mobility. Equation 4 substituted one’s

mobility state - an indicator variable denoting whether the participant was moving or𝑀
𝑖ℎ𝑡𝑑

staying in place in context , with moving as the omitted baseline.𝑘

Person-level fixed effects linear panel regression - stratified subgroup models by quartiles of
typical natural environment use and smartphone use

𝑆
𝑖𝑡ℎ𝑑

 =   β𝑛𝑎𝑡,𝑞𝐶
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𝑖𝑡ℎ𝑑
𝑟𝑒𝑐 + µ

𝑖ℎ
 +  ν

𝑑
 +  ϵ

𝑖𝑡ℎ𝑑
,    (5)

Since the relationship between natural environment exposure and smartphone use may vary by

the amount of typical screen time or green time, we performed subgroup analyses comparing
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participants across the distribution of each of these measures. Specifically, we delineated

subgroups by quartiles of typical environmental and smartphone engagement respectively (each

participant was assigned to one quartile group based on their average use over the study period),

and then ran stratified models for each quartile group in the sample. We interpret and 𝐶𝑛
𝑖𝑡ℎ𝑑

in Equation 5 as the marginal effect of the type of natural environmental exposure on𝐶𝑟
𝑖𝑡ℎ𝑑

smartphone screen use for the stratified quartile q, relative to the estimated baseline smartphone

response in urban settings within the same quartile group.

Investigating Replacement

In the final phase we investigated the replacement hypothesis: whether within-person

fluctuations in daily total smartphone use -- summing over all daily observations including those

made while participants were at home and at school -- were associated with changes in daily

nature visitation and exposure duration, after controlling for other unobserved individual and

daily temporal environmental factors.

Person-level linear probability fixed effects model - daily natural context visitation

𝐶
𝑖𝑑𝑤
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Equation 6 describes the fixed effects linear probability panel model for estimating the

association between daily individual smartphone use and natural environment visitation. In this

equation, i indexes individuals and d indexes the unique date spanning the two year period of

observation. We included a binary environmental context indicator variable as the𝐶
𝑖𝑑𝑤

dependent variable, representing whether an individual visited a natural environmental setting (

= 1) on a given date. Our independent variable of interest was captured by the log of𝐶
𝑖𝑑𝑤

individual daily smartphone screen time . Since unobserved individual factors may exist𝑙𝑛(𝑆
𝑖𝑑

)

that confound the relationship between daily smartphone use and natural context visitation, we

included person weekday fixed effects for each day of the week for each participant trackedµ
𝑖𝑤

in the study. These indicators controlled for all stable unobserved psychological, physiological,

behavioral and demographic individual factors, including socioeconomic status, primary
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residential location and environmental preferences, as well as weekly person-specific routine

behaviors. Moreover, there may have been unobserved daily factors or seasonal time trends that

influenced individual smartphone use and also spuriously correlated with nature exposure. For

instance, both smartphone use and natural environment visitation may have been elevated on

weekends and holidays for reasons unrelated to the theoretical relationships of interest in this

study. To address this concern, we include a vector of date indicators for every day over theν
𝑑

two year period of observation. Further, since both the probability of visiting a natural

environment and total daily screen time may be associated with the duration that an individual’s

phone battery retained power on a given day, we included participant-level data coverage

coefficients, for the total daily count of 15-minute observations, (where is anϴ
𝑖𝑡

, #
𝑖𝑑

1
𝑡
(·)

indicator variable for whether the input equals ). We define the log by adding 1 to daily screen𝑡

time to account for rare days when participants did not use their smartphones at all. Thus the

screen time coefficient of this linear probability specification represents the estimated percentage

point change in the probability of daily nature visitation given a doubling in daily screen time.

Person-level fixed effects panel linear regression - daily natural context visit duration
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Equation 7 details the linear fixed effects model used to estimate the relationship between total

daily screen time and total daily green time, the total duration spent in natural environments on a

given date. This specification substitutes in the total daily time spent in natural environments

for the previous binary context visitation outcome in Eq. 6, while including the log of daily𝑇
𝑖𝑑𝑤

screen time as our independent variable of interest. We define the log of screen time by𝑙𝑛( 𝑆
𝑖𝑑

)

adding 1 as in Eq. 6.

Results

Drawing on 2,454,420 automatically logged observations spanning the two year study period, we

found that all student participants visited natural environments at least once during the course of

the study, consistent with a recent nationally representative Danish survey that found that only
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0.9% never visit green space120. Summing up participant-level weekly natural environmental and

smartphone exposures, participants spent a median of 4.67 hours (Q1: 1.54, Q3: 14.04) in natural

settings and registered a median 10.88 hours (Q1: 6.43, Q3: 16.93) of smartphone use per week

(Fig. 1G). On average, 92.3% (Q1: 88.0%, Q3: 94.7%) of participant observations were

registered in urban environments, 4.4% (Q1: 2.6%, Q3: 7.4%) were recorded in nature areas,

3.6% (Q1: 2.2%, Q3: 5.9%) were logged in natural recreational areas and 38.8% (Q1: 31.7%,

Q3: 45.8%) of observations contained smartphone use (Fig. 1H).
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Fig. 1 | Measuring natural environmental and smartphone-based virtual exposures. (A)
Visualization of the proportion of systematically reviewed articles investigating attention
restoration theory in natural settings while mentioning, controlling for and lastly measuring
mobile device use. (B) Mobile sensing framework deploying smartphones as socioecological
sensors to track overlapping biospheric and cyber-spheric interactions. (C-F) Maps of natural,
recreational and urban exposures and functional mobility among the sample of 701 young adults
for the month of September 2014. (G) Distributions of participant natural environmental
exposures (cyan) and smartphone use (purple) over the study period, extrapolated to the weekly
level. Colored lines indicate the median exposure value for each distribution. (H) Distributions of
the % of total participant-level observations spent in nature areas (dark green), recreational areas
(yellow-green), urban settings (grey), and containing smartphone use (purple). Colored lines
depict median values.

The results from the primary fixed effects panel model specification (Methods, Eq. 1) showed

that within-person smartphone use in natural environments was estimated to decrease by -2.35%

(95% CI: -4.47% – -0.22%) relative to use in urban settings, controlling for all stable individual

characteristics and fixed temporal factors (Fig. 2A). By contrast, smartphone-based social

activities did not significantly change within-participants when they were situated in natural

environments, with the estimate for outgoing text messaging being 1.02% (-1.84% – 3.89%) and

outgoing calls increasing by 3.43% (-0.75% – 7.60%) relative to being in urban settings.

A fixed effects panel model with the overarching context category of natural environments

broken out into the constituent sub-contexts of nature areas and recreation areas (Methods, Eq. 2)

showed that smartphone use, outgoing texting and outgoing calling significantly declined in

nature areas by -4.39% (-7.21% – -1.57%), -5.74% (-9.21% – 2.27%) and -7.17%(-12.97% –

-1.37%), while outgoing texting and calling increased in recreational areas by 10.96% (5.88% –

16.04%) and 16.63% (9.61% – 23.65%) respectively, relative to the corresponding smartphone

behavior baselines in urban environments (Fig. 2B). Smartphone use slightly increased by 0.91%

(-2.36% – 4.18%) in recreational areas relative to use in urban environments but this increase

was not significantly different with the confidence interval containing the estimated average

urban screen use response.
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Fig. 2 | Within-Person Effects of Natural Environment Exposures on Smartphone Use and
Communication. (A) The cyan bars show the estimated within-individual change (%) in
smartphone use during general natural environmental exposure compared to the person-specific
urban setting baseline. From left to right, bars represent the response for total screen use,
outgoing text messages sent, and outgoing phone calls made. Error bars represent 95%
confidence intervals. (B) Estimated within-person change (%) in smartphone use by type of
natural environmental exposure, relative to the urban baseline (grey line). Colored bars show the
marginal individual smartphone use responses for each smartphone activity measure in natural
recreational environments (yellow green) and nature areas (dark green), relative to the urban
baseline (grey line).

As can be seen in Fig. 3, the estimated relationships between environmental exposures and

smartphone activity (screen use, texting and calling) varied by the type of environment and

duration of environmental exposure. Across all environments and smartphone behaviors, long

environmental exposures greater than 3 hours were marginally associated with reduced

Whsmartphone activity within-individuals compared to short 0-1 hour exposures in urban

settings. Smartphone use and outgoing communication activities significantly declined with the

dose of exposure to nature areas over the first three hours, plateauing beyond 3 hours. Compared

to an exposure of equivalent duration in urban settings, exposure to nature areas was associated

with reduced screen use across all doses, with no evident overlap in the corresponding

confidence intervals bounding the nature area and urban environment smartphone use response

estimates (Fig. 3A). 2-3 hour exposures to nature areas were associated with the largest marginal
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reductions in smartphone activity within individuals from the previous dose bin. Screen use

decreased within-person from -20.04% (-26.17% – -13.91%) during 1-2 hour nature exposures to

-41.89% (-48.85% – -34.93%) during 2-3 hour nature exposures, outgoing texting decreased

from -24.89% (-32.51% – -17.27%) to -43.86% (-53.13% – -34.59%), and outgoing calling

declined from -20.78% (-33.27% – 8.29%) to -43.61% (-57.27% – -29.95%), relative to

individual baseline use during short (0 - 1 hour) exposures in urban areas.

Model estimates indicated that only recreational area exposure durations greater than an hour

were significantly associated with reductions in smartphone screen use compared to urban

exposures of similar lengths. By contrast, outgoing texting slightly increased by 2.94% (1.00% –

4.88%) during moderate 1-2 hour recreational area exposures, before significantly declining

during longer exposures relative to the 0-1 hour urban baseline, although the outgoing texting

response in recreational areas was similar in magnitude and functional form to urban

environmental exposures of equivalent duration, with overlapping confidence intervals evident

(Fig. 3B). Similarly, outgoing calls were estimated to significantly increase by 40.8% (25.75% –

55.85%) in recreational areas during moderate exposures of 1-2 hours relative to the urban

baseline of 0-1 hours, before substantially declining during longer exposures. Estimates of

outgoing calling activity in recreational environments were also elevated relative to urban

exposures of equivalent duration during exposures less than 3 hours, with exposures of 1-2 hours

in urban settings associated with an increase of 18.84% (15.76% – 21.92%), and exposures of

2-3 hours associated with a relative decrease of -21.82% (-25.47% – -18.17%) in urban areas,

and a non-significant change of -2.4% (-20.08% – 15.28%) in recreational areas.

Mobility state moderated the relationship between environmental exposure and smartphone use

(Fig. 3D-F). Compared to the baseline mobility state of moving in urban contexts, staying in

place was associated with within-person reductions in smartphone screen use across all contexts.

Although staying in place was associated with significant reductions in smartphone use and

outgoing communication activities for both urban settings and nature areas, staying in nature was

associated with the largest reductions in smartphone screen use (-20.90%, -25.33% – 16.47%),

outgoing texting (-20.40%, -26.14% – -14.66%) and calling (-18.55%, -27.82% – -9.28%)

compared to the mobile urban baseline. By contrast, smartphone screen use was estimated to

only slightly and non-significantly deviate from the urban baseline while moving in natural areas
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(-3.15%, -8.60% – 2.30%), and recreational areas (3.8%, -2.67% – 10.27%). Conversely, staying

in place in recreational areas was associated with a small increase in outgoing texting (6.74%,

-0.51% – 13.99%) within participants as well as a significant and substantive increase in calling

(21.49%, 11.28% – 31.70%) relative to corresponding individual smartphone activity in urban

settings.

Fig. 3 | Setting Exposure Dose and Smartphone Use Response Relationships. (A-C) Colored
lines depict the estimated smartphone use response by environmental exposure type and dose in
1 hour bins, compared to the <1hr urban exposure baseline. The relative smartphone response is
shown for urban settings (dark grey line), recreational natural environments (yellow-green line)
and natural areas (dark green line). Shaded intervals represent 95% CIs. (D-F) Lines show the
estimated relative effect of environmental exposures on smartphone use by mobility state
(actively moving vs. staying in place) in urban settings (grey), natural recreational environments
(yellow-green) and natural areas (dark green) compared to the mobile urban baseline. Shaded
intervals show 95% CIs.
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Stratified model estimates indicated that while participants at all levels of typical smartphone

screen time reduced their mobile device use in nature areas, those in the quartile with the highest

average smartphone screen time over the study period were the only group found to significantly

reduce their smartphone activity in nature areas (-7.05%, -11.64% – -2.46%) compared to in

urban settings (Fig. 4A). By comparison, smartphone use in recreational areas did not

significantly differ from use in urban settings irrespective of level of typical screen time,

although the smartphone use response in the lowest quartile of average screen time indicated that

smartphone activity marginally increased (6.92%, -2.68% – 16.52%) during recreational area

exposures.

Similarly, stratified model estimates suggested that people with higher typical exposure to

natural environments over the study period experienced larger marginal reductions in smartphone

screen use while in nature areas (Fig. 4B). Those in the third and fourth quartiles of natural

environment visitation over the study period were found to significantly reduce their smartphone

screen use in nature areas by -4.92% (-9.21% – -0.63%) and -9.60% (-14.83% – -4.37%)

respectively relative to in urban settings. By comparison, participants in the lowest quartile of

typical natural environment visitation over the study period were found to marginally increase

their smartphone use in nature areas by 5.96% (-0.27% – 12.19%) relative to use in urban

settings within this same quartile. No significant differences in smartphone use were observed in

recreational areas relative to the urban baseline across all study period quartiles of green time.
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Fig. 4 | Subgroup plots of the estimated effects of natural environmental exposures on
smartphone use by quartiles of average mobile device usage and typical natural
environmental visitation. A) Colored bars depict the estimated relative within-person
smartphone use response to being in recreational natural environments (lime-green) and natural
areas (dark green) compared to the urban setting baseline (grey), by quartiles of smartphone
usage, ranging from participants with light to heavy typical device usage over the study period.
Error bars represent 95% confidence intervals. B) The estimated average within-person
smartphone use response to environmental exposures, relative to the urban baseline, across
quartiles of natural environment visitation over the course of the study.

Table 1 | Results from linear probability and linear fixed effects regression models investigating
daily replacement

Outcome Predictor Estimate Std. Error t-statistic p-value

Natural
Environment
Visitation
(Yes | No)

Log(Daily
screen time)

0.0637 0.0061 10.370 <2e-16

Minutes
Spent in
Natural
Environment

Log(Daily
screen time)

-5.441 2.806 -1.939 .0529

The estimates from the linear probability fixed effects model indicated that increased smartphone

use above the individual baseline was significantly positively associated with increased

probability of visiting natural environments. Doubling daily smartphone screen use from the
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average level of observed use was associated with a 6.37 (5.17 – 7.57) percentage point increase

in the probability of visiting natural environments on the same day. Conversely, a fixed effects

model assessing the relationship between screen time and time spent in natural settings found

that elevated smartphone usage was marginally negatively associated with natural environmental

exposure duration. A doubling in daily smartphone usage was associated with a reduction of

-5.44 minutes of daily natural environment exposure (-10.94 – 0.06 minutes).

Discussion

Over the last half-century, humanity’s virtual surroundings have become increasingly salient in

our physical environments, presenting complex adaptive challenges for people and the planet28,63.

Although time spent in nature is increasingly prescribed as a form of digital detox from

screen-based technologies, it has remained an open question whether exposure to natural settings

is associated with altered patterns of smartphone use in situ, or conversely, whether daily virtual

demands may interrupt in person human-nature connection14. Differing from most prior research

reliant on self-report methods or brief interventions, the present study continuously registered

objective measures of minute-by-minute screen use and natural environmental exposures for 701

young adults over two years, using smartphones as socioecological sensors. Drawing on over 2

million unobtrusive observations of coupled physical and virtual activity, we found behavioral

evidence that participants spent over twice as much time per week on their smartphones than in

natural environments. Controlling for unobserved stable individual characteristics and behavioral

routines, as well as time-varying social and environmental factors, we uncovered evidence that

levels of smartphone screen use in natural environments were slightly lower compared to screen

use in urban environments within individuals. In contrast, social communication activities were

not found to significantly change in natural settings. These findings provide some behavioral

evidence for the emplacement of digital stimuli into young adult encounters with natural

environments, and indicate that social attentional demands of mobile devices may spill over into

certain natural contexts.

Critically, however, participants’ capacity to disconnect from their mobile devices varied in sign

and magnitude according to the type and dose of environmental exposure. All observed

smartphone activities declined substantially within-individuals in nature areas over the first three

54



hours whereas outgoing smartphone communication increased in recreational green spaces - such

as parks and grass areas - during visits shorter than two hours, with calling significantly

amplified. By contrast, smartphone screen use increased during 1-2 hour exposures to urban

environments. ART conveys that exposure to settings and situations that do not demand directed

attention can permit mentally fatigued individuals to rest and restore the inhibitory mechanism

required for focused attention11,60. Thus our results suggest that certain natural environments -

specifically nature areas - may contribute to digital impulse inhibition in-situ, with exposure to

these settings tending to coincide with within-person reductions in smartphone use, relative to

the urban individual baseline.

This pattern is in agreement with both theory and accruing evidence indicating that more

vegetated, and possibly more biodiverse, natural areas may provide enhanced restorative benefits

compared to more programmed urban recreational green spaces60,95,121–123. For instance, visual

and sensory characteristics of natural elements in these settings, such as fractal patterns in

vegetation, may invite involuntary attention and promote soft fascination11,61. Our finding that

smartphone usage significantly declined the most in both nature areas and recreational green

spaces during visits exceeding two hours, is in line with growing evidence showing larger

salutary effects from longer exposures to natural environments119,124,125. However, since longer

environmental exposures were associated with reductions in mobile device use irrespective of

environment, exposures to nature areas lasting 1-3 hours were estimated to provide the greatest

marginal reductions in smartphone screen use compared to equivalent exposure doses in urban

environments. Thus even nature visits of short to moderate duration may enable meaningful

improvements in digital impulse inhibition compared to urban environments. Further, the

magnitude of the associated reduction in smartphone screen use in natural environments was

larger when staying in place compared to being on the move, consistent with a prior multi-study

analysis that found mobility in green spaces was associated with truncated mental health

benefits126.

Why did some social smartphone activities increase in certain natural environments, relative to

urban settings? It has long been apparent that natural landscapes can support in-person social

interactions with both close contacts and loose ties, and thus facilitate social cohesion127–130.

However, the possible use of natural settings for virtual communication has been largely ignored
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by prior research. Our findings suggest that urban virtual interactions may spill over into

recreational areas such as parks and grass areas, with these settings serving as a semi-private

space to engage in remote social interaction. Thus, certain environmental qualities that promote

restoration in natural settings - such as being physically removed from the sites of daily

obligations - may also increase the salience of smartphone-accessible remote social contacts.

Hence, these findings dovetail with recent experimental evidence to raise questions about

whether merely being in green space for short exposures is sufficient to achieve meaningful

connection with nature in the digital age, particularly if attention is directed elsewhere100. Our

results hint at a potential tradeoff: spending time in common urban recreational green spaces may

support the maintenance of remote social ties but interrupt individual contact with restorative

natural elements. This tradeoff parallels prior evidence indicating that in-person social

interactions in natural settings may reduce their restorative potential130,131.

Those with different baseline levels of screen time or green time may respond to natural

exposures differently. For instance, people with high-levels of screen time may be especially

prone to directed attention fatigue, and thus may both plausibly stand to benefit more from time

spent in nature but also be more inclined to use their devices there. Our finding that reductions in

smartphone screen use in nature were significantly pronounced among participants in the highest

quartile of smartphone screen time over the study period indicates that time in nature may indeed

provide an acute marginal improvement in digital impulse inhibition for those that use their

mobile devices the most. Separately, previous studies have shown that the benefits conferred

from time in nature may be greater for people who engage with these settings more. This

converges with our results showing that only those with higher than average green time over the

study period experienced statistically significant reductions in smartphone screen use in nature

areas, while those in the lowest quartile of green time marginally increased device use in nature

areas (Fig. 4B). Although future research is warranted to investigate the causal relationship of

prescribed nature exposures on smartphone use, the present within-person field study provides

strong initial behavioral evidence that people who use their phone relatively more or spend more

time in natural environments may experience improved digital impulse inhibition in nature areas,

but not necessarily in recreational green spaces. Thus, prescribing more time in the natural

biosphere to provide a reprieve from the cybersphere may be a relevant intervention for young

adults in need of a digital break.
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While we primarily interpreted our results through the theoretical lens of Attention Restoration

Theory (ART), our findings appear relevant for other perspectives. For instance, perceptual

contact with nature is a critical part of the salutary cognitive and affective channels theorized by

ART, SRT and biophilia16, yet such direct contact can be interrupted when attending to

smartphone stimuli. Thus an alternative interpretation of our results is that more wild and less

urban natural environments may draw people away from the synthetic stimuli of their devices via

deeply encoded psycho-evolutionary cues. Such an explanation is congruent with our finding

that nature areas - more than recreational areas - were associated with a greater decline in

smartphone use, although other explanations were equally plausible. For instance, it has been

hypothesized that natural settings may confer benefits by buffering individuals from ambient

environmental stressors1. Indeed urban life has long been characterized by a high density of

stimuli, including noise, air pollution, traffic, and crowding, contributing to overload and

potentially overwhelming the human capacity to engage in directed attention132. Our study

implies that urban settings and recreational green spaces may also be sites of amplified digital

demands and connectivity, adding a virtual dimension to the classic information-overload

framework67,133,134. Consistent with this framework, mobile information demands may have been

muted in more remote natural settings due to reduced cellular service or data coverage. However,

the spatial distributions of nature and recreational area exposures in our sample were highly

interspersed (Fig. C-E), challenging such an interpretation. Nevertheless, future research should

strive to directly identify the extent to which digital impulse inhibition in nature may be driven

by reduced connectivity alone versus restorative environmental characteristics that drive

involuntary attention. Since cell and mobile internet coverage is projected to continue to expand,

such a question has relevance for both planning and the future of human environment

relationships.

Several lines of evidence suggest that human-nature interactions may be in decline, with younger

generations visiting natural spaces more infrequently than previous generations17. Although we

found that participants regularly visited natural environments, the percentage of observations

containing screen time was approximately an order of magnitude larger than those containing

exposures to nature or recreational areas (Fig. 1H). Thus, despite the historically recent advent of

smartphone screen stimuli in the human social environment, our descriptive results provide
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initial behavioral evidence that smartphone screens alone may now occupy more time and

attention for highly connected young adults than in-person experiences of nature (Fig. 1G).

These estimates - derived from digital trace data - are consistent with a recent survey-based study

that found self-reports of general category media use was greater than self-reported time in

nature26, and with cohort evidence from time diaries that showed the proportion of time spent on

media activities increased while time outdoors declined in recent decades23. However, prior

studies have been unable to rigorously investigate whether these diverging trends in screen time

and green time are related or instead linked to other unobserved technological, social or

economic developments that transpired over the same period, weakening inference about

whether the observed displacements are indicative of actual substitution. Drawing on extensive

longitudinal individual-level panel data, we uncovered mixed evidence for the replacement

hypothesis: increased daily smartphone use was marginally associated with reduced same-day

time in natural environments, but paradoxically, was also significantly associated with an

elevated probability of same-day nature visitation.

How should we interpret the diverging associations between daily smartphone use and,

respectively, daily nature visitation and daily time spent in natural environments? Given the

small negative association between daily smartphone use and time spent in nature, our

longitudinal findings suggest that smartphone use alone may not be a predominant competing

leisure activity with nature-based visitation. Further, and counter to the popular perspective that

digital media use directly substitutes for time in natural settings14,26,27, we find within-person

evidence that increased smartphone use from the individual baseline may be positively

associated with same-day nature visits. This finding adds nuance to the complexity of human

nature relations in the digital age, and is consistent with frameworks that emphasize precursors to

nature contact as deeply situated in sociocultural and sociotechnical systems28,63,135,136. As Kaplan

and Kaplan noted, people may be motivated to connect to nature by a desire to escape from the

modern demands of urban life11. Seen through this lens, young adults may engage in device use

to plan, navigate or accompany their journeys and then reduce usage upon entering into

restorative nature areas, a pattern consistent with the estimated relationships observed in this

study. Taken together, these patterns may have implications for the benefits conferred from time

in natural settings. Longer visits to nature are associated with lower rates of high blood pressure

and depression, while more frequent visits have been linked to greater levels of social

58



cohesion124. Thus, increased smartphone use may stand to strengthen social connections while

slightly curtailing salutogenic exposures to natural environments, although future research is

warranted.

Several considerations should be weighed when interpreting the results of the present study.

Recognizing that personal and sociocultural factors can color experiences of nature, the current

investigation measured person-level variation in exposure to multiple categories of nature.

Nevertheless, we acknowledge that the diversity of natural contexts far exceeds the Northern

European natural settings encountered by the participants. Further, although we found that time

spent in nature areas was associated with a reduction in smartphone use, smartphones may still

occupy individual attention even when not in use. Thus, a decline in the behavioral salience of

smartphones in the presence of natural areas does not invariably imply a similar decline in the

cognitive salience of smartphones71,137,138. Although the present study improves over studies that

relied on self-reported green space use and/or screen time, the use of only three dimensions of

smartphone activity only enabled an initial exploration of possible heterogeneity in the

relationship between natural environmental exposures and on-screen behaviors. For instance, it

would be valuable to know the extent to which smartphone use in urban greenspaces is

composed of time spent on goal-directed vs. involuntary smartphone use, and how time varies

across email, social media, games or other digital activities that center attention away from one’s

setting, versus environmentally responsive activities such as taking or sharing photos of natural

elements. Indeed, some evidence suggests that nature-based mobile app guides139,140, or games

like Pokemon Go can increase physical activity and encounters with certain natural settings141–143,

although their influence on attention restoration remains unclear.

Further, we assumed that smartphones closely shadowed their owners, but it is possible that we

may have undersampled time spent in nature if people selectively left their phones behind when

entering natural settings. In such a case, the estimated magnitude of the negative association

between nature exposure and in situ smartphone use may underestimate the magnitude of the

actual relationship. Additionally, although we draw upon longitudinal observations to identify

the relationship between within-person changes in natural environment exposure and registered

changes in device use, controlling for all stable individual characteristics, recurring routines and

date-specific temporal factors, the choice to visit natural contexts was not random, preventing a
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causal interpretation. For instance, it is possible that emergent goal-directed behaviors or specific

unobserved activities transpiring in natural environments may underlie the relationships

uncovered. However, our results were robust, even when controlling for individual mobility (Fig.

3D-F). Lastly, the relationships we identify between daily within-person variations in

smartphone use and natural environment visitation have a weaker identification strategy than the

one used to investigate emplacement, where we exploit the arrival timing into the environment.

Thus this component of the analysis is more likely to be spurious and driven by confounders. For

instance, idiosyncratic person-specific leisure time that deviates from their baseline weekly

schedule may be associated with both daily increases in smartphone use and nature visitation,

rather than a mechanistic relationship between smartphone use and nature encounters per se.

Over the past few decades researchers from environmental psychology, environmental health and

the environmental social sciences have marshalled evidence about numerous salutary effects

linked to natural settings1,3,29,31,144. However, past studies largely omit a now pervasive digital

layer of the social environment. Such engagement with virtual environments in urban and natural

settings, as documented by the current study, may constitute a confounding variable for research

on restorative environments. Our findings suggest that objective measures of mobile device use,

almost entirely absent from previous studies on the restorative effects of nature (Fig. 1A), should

be included or explicitly accounted for in future observational and experimental investigations.

Moreover, even the act of restricting participant smartphone use may lead to illusory restorative

benefits of nature exposures. Since self-reported behavioral measures may poorly recover actual

exposures, and since unobserved individual characteristics may jointly influence both

smartphone use and nature exposure, we recommend that researchers studying the restorative

effects of nature employ objective measurements of both device use and environmental

exposures over prolonged time horizons. We conclude that links between human biospheric and

cyber-spheric interactions may be both more pervasive and complex than previously

hypothesized. Urban areas and recreational green spaces may be characterized by not only a

higher density of stimuli in the physical environment but also in the digital environment. By

contrast, nature areas may provide respite from digital demands.
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Abstract

Over the past decades digital devices have become an integral part of modern human
life. But in spite of growing concerns of their adverse effects on human life, little is known
about what causes smartphone use. We focus on the social aspects of smartphone use and
ask whether such usage is contagious even in physical space. We leverage a unique, large
field study with 779 participants covering social interactions over the course of 2 years.
To establish causal measures of contagion effects in smartphone screentime we exploit the
randomness in the arrival of text messages. We find that when an individual receives
a text message, other physically nearby related individuals’ smartphone use increase in
the following 2 minutes. Since we do not find evidence of spread to nearby non-related
individuals, we conclude that smartphone contagion works through social mechanisms.
Further, we find exploratory evidence that the magnitude of social contagion depends on
gender composition, relative social status, and relative conscientiousness within the dyad,
but find no evidence that it depends on differences in other personality traits. Finally,
we argue that the aggregated effects of social smartphone contagion have big societal
consequences, and discuss possible consequences for policy interventions.

Abstract

I løbet af de sidste årtier er smartphones blevet en central del af moderne menneskers liv.
P̊a trods af stigende bekymring for, at smartphonebrug kan have negative konsekvenser,
ved vi kun lidt om, hvordan smartphonebrug opst̊ar. I dette studie fokuserer vi p̊a de social
aspekter af smartphonebrug, og undersøger om smartphonebrug smitter mellem personer,
der er fysisk tæt p̊a hinanden. Vi bruger et unikt storskala feltstudie, der fulgte 779
deltagere i to år. Vi udnytter den tilfældige timing af SMS’er til at m̊ale smartphonesmitte
kausalt. Vi viser, at n̊ar én person modtager en SMS, s̊a stiger smartphoneforbruget for
personer, der er fysisk tæt p̊a de næste to minutter. Da vi ikke finder nogen indikationer
p̊a, at smartphonebrug spredes mellem personer, der ikke kender hinanden, konkluderer
vi, at smartphonesmitte sker gennem sociale mekanismer. Vi finder endvidere indikationer
p̊a, at styrken af den sociale smitte afhænger af kønssammensætning, relativ social status
og relativ samvittighedsfuldhed (conscientiousness) i situation, men ingen indikationer p̊a,
at smitten afhænger af forskel i andre personlighedstræk. Afslutningsvis argumenterer
vi for, at social smartphonesmitte kan have store samfundsmæssige konsekvenser, og vi
diskuterer, hvordan smartphonebrug bedst reguleres.
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Introduction

The increasing ubiquity of smartphones and digital devices allow people to connect across time

and space and access a wealth of information and services. However, the growing adoption has

been met with increased worry and scrutiny over how these digital devices affect human life.

Recent evidence documents how smartphone use impairs cognitive ability [60] and is associated

with lower academic performance [8] as well as personal well-being [17, 40]. However, we still

have limited knowledge about long term effects and the mechanisms through which smartphones

affect human lives, which have lead to calls for research using better data [35].

One of the mechanisms that we lack understanding of is if, and how, smartphone use

spreads between individuals who are physically close to each other (co-present). Establish-

ing that smartphones are contagious in the physical world, can potentially have far-reaching

consequences on how we think about smartphone use. If smartphones are contagious then

using a smartphone will go from being a choice only affecting the individual, to being a choice

affecting nearby individuals potentially imposing a negative externality. Like in the case of

second-hand smoking, evidence that smartphone use affects nearby individuals could justify

tougher smartphone regulation.

To examine whether smartphone use is contagious between individuals who are co-present,

we use the Copenhagen Network Study (CNS) dataset and utilize its unique depth, precision

and scope. CNS was a large-scale field study running for more than two years. All students

of a university freshmen cohort (N∼1,000) were offered a high-end smartphone. The phones

collected precise measures for a range of features including individual screentime, phone com-

munication (calls and texts), location and (using Bluetooth) on co-present individuals and

distance to them. Further, surveys about participant characteristics and personality traits

were conducted, and social media accounts were followed to obtain participants’ social net-

works. The reliance on sensor data allows us to overcome limitations of using self-reported

measures on social interactions and screentime, which have been shown to exhibit systematic

biases [12, 39]. Having access to accurate, high resolution data on where people were, who

they were together with, their phone use, and their social network, allows to overcome previous

limitations and assess whether, and how, smartphone use is contagious in real-life settings.

We study 56,219 situations where only two people were present, and one of the participants

received a text message (SMS). We look at how screentime develops 10 minutes before and after

the arrival of the text for both the individual receiving the text message (”recipient”) and the

co-present individual (”peer”). Further, we compare this to 145,230 similar situations where the
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same users were present but we did not condition on the arrival of a text. By comparing these

two groups of observations, we can causally identify how phone use spread from recipients

to peers. We find that smartphone use is contagious. We conclude that this mechanism

works through disturbances in social interactions (i.e., social contagion) since we find no effect

when co-present peers have no social connection. Therefore, we rule out alternative spreading

mechanisms, e.g., through direct visual or audible sensory exposure to others’ notifications or

observing non-related others react to incoming text messages.

We find that a text to a recipient, on average, increases screentime of the co-present related

peer by 3.2 percent over the following four minutes, corresponding to 2/3 of a second. We find

that when recipient’s screentime increases screentime of the co-present related peer increases

by 7.24 percent of recipients’ increase in screentime. Further, since our analysis most likely

includes situations with no social interaction, we believe that the estimates constitute a lower

bound and that the actual effects are probably higher.

Our estimated effect from each specific text message on screentime is modest. However, the

direct and indirect aggregated contagion effect of smartphone use has vast consequences. Due

to the omnipresence of smartphones, we estimate that the aggregated effect of notifications on

nearby peers corresponds to at least an additional eight and a half years of human life used

on smartphones every day in the United States alone. In addition, many other factors lead

individuals to increase their smartphone use, both external sources and sources internal to the

individual [28, 60], which substantially increases the number of situations where smartphone

contagious is relevant. Finally, the increased smartphone use due to social contagion is likely

to persist over time through habit formation in usage [4] and in turn spiral out and affect other

peers.

According to classic consumption theory, one could argue that since smartphone use is an

individual choice, the chosen amount of smartphone use is most likely optimal. Nevertheless,

this ignores crucial differences between smartphones and other standard consumption goods.

[48] argues that, due to evolutionary mismatch, smartphone notifications trigger deep evolu-

tionary tendencies that make individuals use smartphones more than would be optimal. [4] find

that people have self-control problems leading to smartphone use that is over 30 percent higher

than desired by the individual. Combined with the adverse personal effects of smartphone use

and the fact that smartphones can erode a social relations [11, 20], this calls into question

whether and how smartphone use should be regulated or banned in certain environments.

A pioneering study on the causal peer effects of devices use is [46]. They show causally

that individual laptop use can impair nearby peer’s learning. Although their data is obtained
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in an experimental setting, they cannot measure the learning outcome (test results) or others’

device use in real-time and thus cannot examine the mechanisms in the micro development.

Our study provides evidence that one plausible mechanism through which classmates’ device

use affects peers’ learning is through increased device use by the peers themselves, as opposed

to merely grabbing their attention.

Our study further contributes to an extensive literature concerning smartphones’ impact on

individuals and social relations. [60] review the literature on smartphone and cognition, pro-

viding evidence that smartphones affect human attention, memory, and patience. [38, 40] find

that smartphone use in adolescence negatively correlates with well-being for some individuals,

and [13] links smartphone use to depression. Although the found average effects tend to be

small, there is a worry that adverse effects of smartphone use may target already vulnerable

individuals, thereby exacerbating existing inequalities [37]. Regarding smartphones’ effects on

social relations, it has been shown that lower perceived responsiveness due to smartphone inter-

ruptions negatively affects close and intimate relationships [48]. Likewise, higher smartphone

use within relationships can lead to lower relationship satisfaction [20, 45].

Few studies have looked at smartphone contagion in real life. [22] use ethnographic methods

to look at how cell phone use affects nearby individuals initiating a kind of dance between call

recipient and co-present peers, and [14] finds a positive correlation in smartphone use between

peers eating lunch. Neither provided causal evidence.

Further, our work also relates to the literature on social contagion in networks science

[26, 56], which examines how social phenomenons propagate through networks. In the context

of the network science literature, we focus on the dynamics between two nodes only.

For a more comprehensive review of the literature, see appendix D.

Approach

We use data from Copenhagen Networks Study [47, 51] that continuously collected behavioral

data from the smartphones of 779 university students over two years. The data allows us to

detect whether the smartphones’ screens are turned on or off at any time, register all incoming

and outgoing text messages, and calls and measure the distance between the phones when they

are within range of each others’ Bluetooth scanners. We define two individuals as co-present

peers when they are estimated to be within 3m using the Bluetooth sensor data.

Causally measuring behavioral contagion is tricky since co-movements in smartphone use

between two people might be a result of a common influence, like the bell ringing or a movie
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being boring [32]. Therefore we need external variation, which only directly affects one of the

individuals in the dyad. We use situations where one of the members receives an incoming

text message, which we call a cue. To qualify as a peer for the cue, the other person must be

co-present both in the 10 minutes before and after the text message was received and there

must be at least 3 minutes between the measurements before and after cue. We aggregate

screentime at the 30 seconds level, which results in 40 bins of 30 seconds for each cue. For

further details on data collection and structuring, see the Data section.

For each cue, we analyze the screentime of the recipient and the co-present peer. To reduce

the complexities of measuring social spillovers, we limit our study to situations with only two

people together for the 10 minutes before and after cues. See Appendix A for results where

screentime is aggregated at the 5-second level.

We regard the timing of the cue as quasi-random, and therefore we view the cue as an

external shock. This enables us to compute causal measures of how the cue affects the co-

present peer by simply measuring the change in screentime. To address potential confounding

of the exogenous variation, such as the cue being caused by a text message that the recipient

had sent briefly before, we restrict that recipient has not communicated with the person sending

the text message in the 5 minutes before the cue. Further, to ensure that the co-present peer is

not directly affected by the cue, we condition that the peer does not receive a text from the same

person 15 seconds before or after the cue. The conditions on communications ensure exogeneity

but can have implications for the counterfactual screentime trajectories in the absence of cues,

which may bias our estimates. To address this concern, we construct control situations without

the arrival of text messages to act as measures of counterfactual behavior. We refer to situations

without cues as controls while those with cues we refer to as treated. The key assumption for

causal identification is that the development in treated and controls, would, on average, have

been the same in the absence of the cue.

To compute the treatment effects, we employ matching estimation by matching treatment

situations to control situations that are close in time and consist of the same people (see

Methods for precise conditions). In the matched observations, we keep the roles in terms of cue

recipient and its peer the same.

We estimate a fully dynamic two-way fixed effects model with intercepts for each cue and

its associated matches. We compute the standard errors of coefficients by clustering at match

level, which includes all observations in the 10 minutes before and after the arrival of the text

message for both treated observations and its controls.

As a reference point for smartphone use, we use the time-bin 0-30 seconds before cue for
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the recipient and 30-60 seconds before cue for the peer. The latter corresponds to adjusting for

the temporal displacement in the smartphone clocks, which leads to a lack of synchronization

between phones leading to underestimation of the results. For details about the adjustment,

see Appendix B. The level of smartphone use is centered at the level of the reference period

before the cue. See the Method section for details.

Results

To test our hypothesis that smartphone use is contagious, we first focus on screentime use in

the time surrounding the arrival of a cue. Figure 1 plots the mean screentime for both the

recipients and the peers in the 10 minutes before and after the cue.

Figure 1a shows raw mean screentime for recipients when they receive a cue and when they

do not. Examining this figure allows us to examine the exogeneity of the cue arrival and its

effect on the recipient. The figure shows that screentime before the cue arrival is not entirely flat

due to the condition of no communication with the cue sender 300 seconds before the arrival

of the cue. Although this development may seem inconsistent with the parallel pre-trends

assumption, two factors make this point irrelevant: 1) compared with the discontinuous jump

in screentime after the arrival of the cue, the movement before the cue is an order of magnitude

smaller; 2) the level of screentime is constant in the 30 seconds before the cue arrival when

measured at a resolution of 5 seconds, see Appendix A for details.

Figure 1b plots the difference between treated and controls, estimated in a fixed effects

model (see Methods). It shows that the arrival of a text message more than doubles the

recipient’s screentime in the next 30 second period, increasing 13%-points. We see that this

effect gradually dies out (in a fashion that resembles exponential decay), falling to around half

60-90 seconds after the cue and stabilizing around pre-condition levels after around 500 seconds

(∼8 minutes). The median time it takes for the effect of the cue to die out is around 90 seconds.

Figure 1c shows mean raw screentime measures for the co-present peers when a cue arrives

and when it does not, which are respectively the treated observations and their matched con-

trols. We note that the screentime of the treated co-moves with their matched controls before

the arrival of the cue.

Figure 1d shows the difference between the treated and controls and the estimated confidence

intervals. The stable pre-trend shows no significant difference in development between the

treated and controls before the cue arrival. We see that mean screen time for peers increases

after the cue, topping at an increase of 0.4%-point, before gradually falling and disappearing
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Figure 1: Mean screentime for the recipients and the peers 10 minutes before and after cue
arrival in treated (blue) and control (orange) situations. Panels a and c show raw mean screen-
time. Panels b and d show the effect estimates. The effect is measured as the difference between
treatment and matched control computed using a fixed effect model where the intercepts and
standard errors clusters are at the match level. The green lines show the timing of conditioning
on no communication between the sender and recipient in the time before cue, and the red
line shows the average screentime of the recipient before this condition. The dashed black lines
show the timing of reference. Note that the reference period for the peer is adjusted to account
for clock displacement between the phones.

after around 200 seconds. Note that due to the displacement effect in the smartphone clocks,

for peers, we use the 30-60 seconds before the arrival of the cue as reference.

We see this as evidence that smartphones are contagious. In the following section, we

examine the mechanisms of this contagion.

Social or non-social contagion

The word ”contagion” originates from the Latin word ”contagio” which means to ”touch” or

”influence” [58]. We define social contagion as ”the spread of affect, attitude or behavior from

one person (in our case the ”recipient”) to another (the ”peer”), where the receiver did not

display any intention of getting the peer to do as he/she did”. This, to a large extent, follows

the definitions of [29] and [31]. We define non-social contagion as contagion that is not social.

For example, reacting to cues, like sounds, in the nearby environment or seeing someone you

are not having a social interaction with using their phone.
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Figure 2: Estimated effects on screentime for recipient and peer. The effect is measured as the
difference between treatment and matched control computed using a fixed effect model where
the intercepts and standard errors clusters are at the match level. The estimates were split
according to whether or not the peer is related - panels a,c show estimates when the peer is
related and b,d when the peer is not related. The green lines show the timing of conditioning
on no communication between the sender and recipient in the time before cue, and the red
line shows the average screentime of the recipient before this condition. The dashed black lines
show the timing of reference. Note that the reference period for the peer is adjusted to account
for clock displacement between the phones.

To disentangle social and non-social contagion, we split the analysis on whether or not

dyads are related defined as having had previous phone contact (text or call) or being friends

on Facebook. If contagion is purely social, we expect an effect for related dyads and no effect

for unrelated dyads. If contagion is purely non-social, we expect the same effect for related and

unrelated dyads. If contagion is both social and non-social we expect an effect for both related

and unrelated dyads, with the strongest effect being within related dyads.

Panel a and b in Figure 2 show similar effect of the arrival of a cue on the recipient’s

screentime for related or non-related dyads. However, panel c and d show that the cue only

affects peer’s smartphone use if the individuals in the dyad are related. This leads us to conclude

that smartphones are only socially contagious and, thus, not non-socially contagious.

Relative and cumulative effects Table 1 contains the effect estimates in the first 4 minutes

after the reference period when the recipients and the peers are socially related. The absolute
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0-29 30-59 60-89 90-119 120-149 150-179 180-209 210-239 Mean
Recipient absolute change (%-point) 13.00 10.93 7.29 5.67 4.71 3.75 3.31 2.73 6.42
Recipient relative change (%) 107.8 90.66 60.49 46.99 39.07 31.13 27.49 22.63 53.28
Peer absolute change (%-point) 0.07 0.26 0.52 0.47 0.31 0.26 0.16 0.11 0.27
Peer relative change (%) 0.88 3.05 6.11 5.50 3.67 3.07 1.93 1.27 3.19
Relative change ratio (%) 0.82 3.37 10.09 11.71 9.39 9.88 7.04 5.63 7.24

Table 1: Point estimates for relative and absolute change for receiver and peer in 30 seconds
intervals over the first 4 minutes after reference - only related users. The relative effects are
calculated using screentime in the reference period being 12.06 for the recipients (reference 0-30
seconds before cue) and 8.5 for the peers (reference 30-60 seconds before cue). Relative change
ratio shows peers’ relative change divided by receivers relative change in percent.

effects are identical to the effect estimates shown in Figure 2a and 2c. The mean absolute effect

in the first 4 minutes is 6.4 percentage points for the recipients and 0.27 percentage points for the

peers corresponding to a total increase in screentime over the following 4 minutes by 15.4 seconds

for the recipients and 0.65 seconds for the peers. Looking at the relative change in screentime,

by comparing to pre-cue screentime levels, we see that a cue on average increases recipients’

screentime by 53% in the 4 minutes following the cue, while peers’ screentime increases by

3.2%.

To estimate the marginal effect on the peer when the recipient takes up the smartphone,

we calculate the relative change ratio by dividing relative change in peers’ screentime with

the relative change in recipients’ screentime. This way, we account for the fact that not all

recipients react to the cue. Thus, the relative change ratio is our preferred estimate of how

much the recipient’s screentime directly affects the peer. We see that the relative change ratio

reaches its maximum value after 1½-2 minutes at 11.7% and that the average relative change

ratio over the first four minutes is 7.24%.

Text messaging around the cues

To examine the dynamics of contact with external users in relation to the cue situation, we

analyze the rate of incoming and outgoing text messages. This examination provides a check

of the core assumptions of quasi-randomness in whether the peers also experience a spike in

text messages around the cue since this could pose a problem for our identification strategy.

Figure 3 shows the rate of incoming and outgoing texts for recipients and peers. In panel a

we see that all treated recipients (by construction) receive a text in the 30 second period starting

with the arrival of the cue. In the periods before the cue, the share receiving an incoming text

is stable and at the same level as controls, showing no difference in pre-trends. In the periods

after the cue, incoming texts are consistently higher than pre-cue levels, persisting until the end

of the observed period. This is consistent with the fact that the probability of an outgoing text
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Figure 3: Share who receives or sends at least one text message 10 minutes before and after
cue arrival in treated (blue) and control (orange) situations. Panels a,b show measures for
recipients while panels c,d contain measures for the peers. The dashed blue and orange lines
show the average likelihood before and after the reference. The green lines show the onset of
imposing the conditioning of no communication between the sender and recipient of the cue.
Note that the scale of the vertical axis of panels a and b are respectively 100 and 10 times
larger than that of panels c and d.

for the recipients (panel b) is higher in the post-period, which suggests that the first text raises

the probability of back and forward communication. Further, we notice that the distribution

of outgoing texts in the post-period seems to exhibit exponential decay, resembling recipients’

screentime distribution.

Turning to incoming texts for peer (panel c), we see that the development is relatively stable

over the period and does not show indications of a spike around treatment. We see the same

pattern for outgoing texts, though there might be a slight tendency of a spike in the period

before treatment of the recipients. As discussed earlier, this is within the treatment period of

the peers since phones are not perfectly synchronized. Had this spike been more substantial,

it would have been an indicator that the initial text, through social contagion, triggers a new

text from the peer to a person outside the social situation. However, we do not find sufficient

evidence for such an effect, though we cannot entirely reject it.
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Heterogeneous effects

We proceed with an exploration of whether certain kinds of social ties conduct social contagion

better than others. We maintain the focus on individuals who know each other in addition to

being physically co-present. We analyze how the magnitude of the cues’ effect on the recipient’s

and peer’s screentime depends on the individual characteristics of the two people present with

respect to similarities and differences in their gender, network centrality, and personality traits.

When analyzing heterogeneous effects, we follow [7] in looking at relative difference in the

composition of the dyad. Thus, we look at same-sex dyads vs. difference-sex dyads and the

relative level within the dyad of centrality and personality traits, respectively.

400 200 0 200 400
Time relative to cue (seconds)

2

0

2

4

6

8

10

12

14

Ch
an

ge
 in

 sc
re

en
tim

e 
(%

-p
oi

nt
)

aa

Recipient - diffrence treated and controls
gender composition - only related

Different gender
Same gender

400 200 0 200 400
Time relative to cue (seconds)

2

0

2

4

6

8

10

12
Ch

an
ge

 in
 sc

re
en

tim
e 

(%
-p

oi
nt

)
bb

Recipient - Screentime - difference treated and controls
relative centrality - only related

Peer more central
Recipient more central

400 200 0 200 400
Time relative to cue (seconds)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Ch
an

ge
 in

 sc
re

en
tim

e 
(%

-p
oi

nt
)

c

Peer - diffrence treated and controls
gender composition - only related

Different gender
Same gender

400 200 0 200 400
Time relative to cue (seconds)

0.2

0.0

0.2

0.4

0.6

Ch
an

ge
 in

 sc
re

en
tim

e 
(%

-p
oi

nt
)

d

Peer - Screentime - difference treated and controls
relative centrality - only related

Peer more central
Recipient more central

Figure 4: Screentime split on gender composition (Panel a and c) and relative eigenvector
centrality (Panel b and d). Shows difference between matches and controls centered in the
reference period. Green lines show timing of conditioning on no communication between texter
and recipient in time before cue. Dashed black lines indicate the reference.

Gender We explore how smartphone contagion depends on the gender composition of the

dyad, motivated by gender sociologists who argue that gender is the primary cultural frame

for coordinating social behavior and that gender inequality is continuously reproduced in face-

to-face social interactions [43, 44]. Further, men and women have been found to have different

phone etiquette [16]. Figure 4a and 4c shows that whereas the cue’s effect on the recipient’s

screentime is stronger for same-sex dyads, its effect on the peer’s screentime is stronger for
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different-sex dyads.

Centrality In sociology, network centrality has long been seen as an indication of an indi-

vidual’s social status or influence [23]. We look at how relative eigenvector centrality within

the dyad affects our results. Eigenvector centrality measures how many well-connected individ-

uals an individual is connected to and has often been interpreted as an individual’s influence

or prestige within a network [36]. Figure 4b and 4d show that whereas the cue’s effect on

the recipient’s screentime does not depend on whether the recipient or the peer has the high-

est eigenvector centrality, social contagion is only present when the recipient has the highest

centrality measure.

Personality traits Figure 5 explore heterogeneity depending on the big five personal traits,

which are central indicators within the field of psychology [21]. Figure 5 shows the differences

in development in screentime depending on whether recipient or peer has a higher value of the

given personal trait. Looking at the left side of Figure 5, it does not seem that the relative

composition of the different personal traits matter much in terms of recipients reaction.

However, there are indications that the peer’s reaction is stronger when the peer has the

highest conscientiousness. High conscientiousness is associated with having high self-discipline

and being less impulsive. It might seem counter-intuitive that the peers with higher conscien-

tiousness react more strongly. However, it could indicate that less impulsive people, who have

control over endogenous cues, react stronger to exogenous cues. However, this result is only

exploratory and requires further research. Looking at the other personal traits, we do not find

substantial differences.

Conclusive discussion

We have shown that smartphone use is socially contagious. This shows that smartphone use is

not just an individual choice but also a collective choice. As previously mentioned, smartphone

use can possibly have negative consequences for mental health and for social relations. This

implies that individuals have a moral obligation to consider how their smartphone use affects

others. Further, our results can point to the need for smartphone regulation (either through

rules or social norms) in certain settings, where interruptions might be especially harmful to

productivity or social relations, such as schools, workplaces, or social and intimate relations.

However, since we find no evidence of environmental contagion, we find no support for general
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Figure 5: Development in screentime split on who has the highest score in each of the big
5 personality traits (if same score peer is counted has highest). Only related dyads. Shows
difference between matches and controls centered in the reference period. Green lines show
timing of conditioning on no communication between texter and recipient in time before cue.
Dashed black lines indicate the reference.
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regulation of smartphones in public spheres such as public transport, parks, or cafes.

As shown in Table 1 we find an average increase for related peers screentime of 0.27 per-

centage points over the 4 minutes following the reference, which corresponds to an average of

2/3 seconds of additional screentime for each received text message. There are several reasons

to believe that this estimate underestimate the actual effect substantially.

First, the estimates reported so far, can be described as ”intention to treat”-estimates, since

it covers the average effect of all cues. Since only roughly 1 in 8 (13 percent on average) of

receivers start looking at their phone when the cue arrives, only a subset of the peers in this

analysis is actually exposed to the behavioral effects stemming from the cue. Therefore, we

believe the actual peer effect to be substantially higher. When we condition on situations where

the recipient switches to start using the phone, our effect estimate on the screentime is three

times larger, see Appendix C.

Second, though related peers are co-present, they might not be engaged in social interaction.

For example, they might sit together studying on separate assignments or at separate tables

in the campus canteen. It is also possible that phones are not a part of the social situation

but put in separate back bags in a corner. Both examples will lead to an underestimation of

the effect. Our data do not allow us to control for examples like these. Further, since not all

students at the campus are included in the study, we cannot exclude that in some situations,

the dyad is not the only people present, which might also lower the effect.

Though some interruptions might be brief, they can still have extended consequences. As

discussed in the introduction, even small interruptions or moments of inattention might have

consequences. For example, [34] shows that small interruptions increase the risk of errors when

returning to the present task (”resumption errors”). Further, the feeling of being phubbed or

that your conversation partner is less responsive can have substantial negative consequences

for the development of close social relations and intimacy [48].

Aggregated effect

Interruptions from notifications have become a big part of modern life. In 2018 the average

American smartphone user received 46 push messages every day [2]. A separate report finds

that on average 7% of notifications are reacted to - this corresponds to a little more than half

of the reaction effect we find (13%) [1]. According to Pew Research Center, 85% of adults in

the USA own a smartphone [3], which corresponds to 175 million people. Suppose we assume

an average peer effect on notifications on half of our findings from SMS (2/3 seconds), and that
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1/10 notifications are received in social settings, the accumulated peer effects correspond to 8.5

years of human life (3,100 days) every day in the US alone. We believe that these back of the

envelope calculations illustrate how small average effects can have massive consequences on a

societal scale.

Is phone use always optimal?

From an evolutionist or a rationalistic point of view, it is possible to argue that if an individual

decides to look at his/her phone, it is probably optimal. However, this is not necessarily the case.

[48] argue that there is an ”evolutionary mismatch” between attending to the smartphone and

maintaining high-quality close relationships. An evolutionary mismatch can happen because

humans have begun living in environments that diverge vastly from those in which they evolved,

and therefore critical aspects of psychological mechanisms may no longer be linked to the

environment in the same way [30].

A classic and oft-cited example of an evolutionary mismatch is humans’ desire for sweet-

tasting food, which signaled nutritional value in ancestral environments. In most industrialized

societies, these signals are now used to sell sugar-enhanced foods, which leads to adverse health

outcomes. Similarly, directing attention to cues like sounds and vibrations might have been

optimal in ancestral environments, even during deep social interactions. However, in present

days, attention-grabbing devices can take advantage of the evolved tendencies by artificially

cueing our subconsciousness. [57] call these cues ”supernormal”. In short: Reacting to cues

similar to smartphone cues was beneficial in the past but can be adverse today.

A rationalistic argument why reacting to a match phone cue might be adverse in social

settings is to view collective attention as a common good that can only be sustained if all

individuals’ attention is directed to the social situation. When receiving a text, it might be

optimal for the individual to break the collective attention by looking at the phone, but sub-

optimal for the group as a whole. In this view, some kind of restriction on phone use would

be optimal. This could either be in the form of banning phones from certain situations (e.g.

school) or social norms disapproving asocial phone behavior.
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Materials and Methods

Data

The data for this study was collected data from September 2013 until September 2015 as part

of the Copenhagen Networks Study (CNS) [51]. The participants in CNS were students from

the Technical University of Denmark who volunteered to receive a smartphone that continually

monitored a broad range of behavioral measures. These measures included timestamps for each

time the phone screen was turned on or off and the distance to nearby participants, as measured

by the strength of the Bluetooth signal between the participants’ phones. The participants

consented to take part in the study, had access to their own data and could withdraw, and have

the data deleted at any time (for more details, see [51]). CNS was approved by the Danish

Data Supervision Authority in 2013. Before the start of the study, the data collection period

was planned to terminate after two years.

Our dataset is constructed from aggregating smartphone usage at the 5-second level, from

which we construct 5.33 billion screentime observations. Each observation measures the per-

centage of time the screen of the phone was turned on during the 5 seconds. See [8] for details

about how the measure was computed from the raw data, including how the raw data was

cleaned by removing data points where the phone sensors were not functioning properly.

We observe the participants receive 2.01 million text messages over the study period. After

filtering out observations with any missing data 10 minutes before or after receiving a text

message, there are 1,768,352 text messages. This corresponds to 424 million screentime obser-

vations in the 20-minute window around the time the text message is received. We further limit

the sample to situations containing two individuals (dyads), where the text is not between the

recipient and the peer, the peer and the texter (the user sending cue) have not communicated

(by call or text) 5 minutes before the cue, and no text is sent between the peer and the texter

15 seconds before and after cue. After filtering in this way, we end up with a treated dataset

consisting of 56,219 cues, each monitored on 5-second intervals 10 minutes and after giving a

total of 13,492,560 observations. The dataset consists of 779 individuals forming 10,745 unique

dyads.

To observe a counterfactual setting, we constructed a control data set, which does not

condition on recipients receiving at a cue at time 0. However, both recipients and peers could

still receive and send texts over the 20 minute period. To find these counterfactuals for each

cue, we found observations where only the same dyad was present, maximum four weeks from
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the cue. We further conditioned the control observations to not be on the same day, but at

the same time of day +-1 hour, and we matched weekends with weekends, and the same for

weekdays, and observations attending or not attending class. For each cue, a maximum of

5 observations we kept. The final control dataset consisted of 34,855,200 5 seconds intervals

distributed on 145,230 unique situations. 40 percent of the treated situations had at least 5

matches, 4.2 percent had 4 matches, 5.5 percent had 2 matches, 8.9 percent had 1 match, while

no match was found for 34.1 percent of treated observations. Thus, we have an unbalanced

matching dataset, which is partly due to that non-related dyads have fewer interactions. We

control for this, by doing the analysis separately on related and non-related dyads, and by

having fixed effects on the match-level and cluster standard errors on the match-level.

The exact definition of co-present peers is participants who scan each other using the Blue-

tooth sensors and where the associated signal strength (=RSSI) exceeds -83, which corresponds

to 3m distance between phones [49]. When further removing observations where there are no

social peers or there is missing screentime data for peers, we are left with 180,493 text messages.

Method

Our primary analysis uses a fully dynamic fixed effects model implemented on the match level

using the equation below. The equation is based on matching situations where a cue arrived

with situations were no cue arrived.

Ss,m,t =
t∑

h=t0
h6=−1

β1h(Ts,t) +
t∑

h=t0

τ1h(Ts,t)11(cs) + ρm + εs,m,t (1)

Equation 1 shows a fully dynamic fixed effects matching model [5, 9], where the outcome

Ss,m,t represents the share of the period where the user’s smartphone screen was activated. β

and τ are vectors of coefficients, with τ containing the effect estimates for treated situations,

which are our primary coefficients of interest. s indexes the social situation containing 10

minutes before and after the cue, t indexes the 40 30-seconds intervals within each 20-minute

social situation, with the period before the cue as reference. m represents the match level, e.i.,

the treated observations, and all the observations matched to it. cs indicates whether or not a

cue arrived in the situation or not.

The function 1a(·) is an indicator function that equals 1 if the input is equal to a and

otherwise 0. The variable Ts,t indicates the difference in the index of the time intervals for

the observation and the index of the time interval of the cue. ρm represents a fixed effect
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on match level m (treated observation and observation matched to it). ε represents the error

term. The equation is estimated separately for recipients and peers. We use robust standard

errors clustered on the match level [61], allowing correlation in the error term within matched

situations. Further, standard errors are allowed to be correlated over time, as long as the is no

unit root, which corresponds to the effect dying out over time [61], which our data support.

Matching models are often used to construct counterfactual situations in setups where all

individuals are treated at some point [24]. Model 1 uses such a matching setup, by matching

each treated situation, with up to 5 similar untreated situations. The fundamental identifying

assumption is that treated situations, on average, have developed as matches situations, had

the recipient no received a text message. We find this plausible, since trends develop in parallel

before the cue. This way, we can identify the causal effect on both recipients and peers when

a text message is received.
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Appendices

A Raw screentime 5 seconds level

Figure 6 shows development in screentime on a 5 seconds level for treated and control observa-

tions, respectively. The data used to constructed Figure 6a and 6b is the same used to construct

Figure 1a and 1c, the difference being, that Figure 6 in only aggregated on the 5-second level.

In accordance, we see that the figures are very similar, though graphs on the 5-second level are

noisier.

Note how there is no increase in recipients screentime in the 30 seconds before the cue

is received. We see this as evidence that recipients do not anticipate the arrival of the text

message.
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Figure 6: Average of mean raw screentime for each 5-seconds interval for recipients (left side)
and peers (right side). Top, middle and bottom row show all observations, only related obser-
vations, and only non-related observations, respectively. Blue lines show treated observations,
while orange lines show control observations. Dashed horizontal lines show show average before
and after cue for treated (blue) and controls (orange).

B Displacement and timing of cue

Our effect measures rely on the exact timing for the arrival of a text message, i.e., the cue

timestamp. However, each phone often tends to only approximately synchronize their clock,

which in turn leads to temporal displacement in the cue timestamp.

We measure the distribution of temporal displacement between phones by matching calls

and text messages recorded to be within the same 10-minute window. As we cannot inspect the

content of the message and conversations, we assert that the calls and text messages recorded

at the senders’ and recipients’ phones match by requiring that within the 10 minutes window,
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there is only a single match. This leaves us with 70,788 observations. From each of the

temporal displacement measures, we subtract the median difference, which corresponds to the

most common time to either connect in phone calls or for the text message to arrive. Figure 7

plots the estimated displacement. The plot shows that it is common for phones to have some

displacement. 16% of the observations have more than 30 seconds displacement, and 9% of the

observations have more than 60 seconds displacement.

Figure 7: Distribution of temporal displacement between smartphones

To understand how these temporal measurement errors alter our effect estimates, we sim-

ulate what the screentime development would have been if the time to cue would be shifted

according to the measured displacement. We compute the alternative screentime for the recip-

ient under each of the shift measures and then take the mean at each point in time over these

measures.

To isolate how the displacement affects the estimate, we begin under the assumptions that

the pre-cue level is constant and equal to the level 10 minutes before. We estimate a fully

dynamic fixed effects model [5, 9] in the form below:

Ss,h =
t∑

h=t0
h6=−1

β1(Ti,t = h) + µs + εst (2)

Equation 2 is estimated separately for recipients and peers. The variables uses the same

notation and conceptual framework as Equation 1. However, the model does not rely on

matching and thus one crucial difference is that fixed effects are at the situation level. Therefore,

µs is an intercept for each social situation, which accounts for situation-specific characteristics

that might affect smartphone use. We use robust standard errors clustered on the situation

level [61].
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Figure 8a demonstrates how displacement affects the estimates when the pre-cue screentime

is held constant. The plot shows that after adjusting for displacement, a substantial part of the

cue effect sets in on the recipient screentime use even before the arrival of the cue. Moreover,

the effect in screentime use is lower in the immediate aftermath of the cue arrival, meaning

that estimates are biased downwards.

Figure 8: Estimated treatment effects of cue on recipient when correcting for displacement.
The effects are obtained by simulating the development in screentime when displacement is
sampled from the distribution of estimated displacement. Panel a) shows the screentime of the
recipient around the cue when it’s assumed that screentime prior to the cue was constant and
equal to the initial level 600 seconds before. Panel b) shows the screentime of the recipient
around the cue when using raw data on screentime prior to the cue.

We proceed with relaxing the assumption of constant pre-cue screentime use. Figure 8b

shows the screentime use after adjusting for temporal displacement. Again, screentime before

the cue arrival increases substantially. In particular, it is seen that the screentime after adjusting

for displacement in the period 30-60 seconds before the cue arrival corresponds to the level 0-

30 seconds before without displacement adjustment. This illustrates that the reference period
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should be 30-60 seconds prior to cue arrival as this corresponds to the unadjusted level of

screentime use. Again, the smartphone use immediately after the cue is also substantially

lower after adjusting for displacement.

C Treatment conditional on reaction

As previously stated, we might underestimate the effect of the recipient’s screentime on the

peer’s screentime since the recipient will not always choose to look at the phone. To examine

if this is actually the case, we limit the sample to only consist of situations where the recipient

used the phone less than 15% (9 seconds) in the minute before cue and at least 80% (48 seconds)

in the minute after cue.

We see in figure 9 d that the social contagion effect after the cue tops at around 1.5% points,

which is three times the effect estimated in the unrestricted case. We see this as an indication

that stronger treatment means a higher peer effect. However, the causality of this effect should

be treated with care since we condition on screenuse after treatment.

The difference in peer’s average screentime the first four minutes after treatment is 0.56%-

points, corresponding to an average peer effect of 1.4 seconds.

Figure 9: Restrictions: Average screentime 1 min before less than 15% (both treated and
matched), average screentime after more than 80% (only for treated)
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D The literature of smartphones impacts on humans

Smartphone’s impact on individuals

This section summarizes the current literature on how smartphones impact individuals, and

then in the next section how it impacts relations.

[60] review the literature on how smartphones affect cognition and outline evidence that

smartphones affect our attention, memory, and patience. Central results regarding attention

are [52] who shows that smartphone notifications can be distracting, even when the user does

not respond to it, and [53] who show that the mere visibility lowers the performance in de-

manding cognitive tasks. Further, [34] have shown that the risk of making ”resumption errors”

- errors that arise in tasks that are resumed after an interruption - increases steeply when the

interruption lasts more than 15 seconds, which is often the case in interruptions from exogenous

smartphone cues.

Regarding memory, [50] show the ”Google effect” on memory (sometimes called digital

amnesia or transactive memory) which describes that we remember less because we can easily

access information on our smartphone.

Finally, in regards to patience, there is evidence that smartphone use inhibits our ability to

delay rewards. [59] shows that people who use their smartphone more have more preferences

myopic in a waiting game and that this can be contributed to higher impulsivity. Further,

[19] study a group of non-smartphone users, randomly hands out smartphones to a subgroup,

and shows that this subgroup becomes more myopic in a waiting game, after receiving the

smartphone.

Smartphone’s impact on adolescents and young adults

The study of smartphone use in adolescents and young adults has received much attention -

both from researchers and the media. Fears that smartphones are harmful to the youth have

gotten significant media coverage [10, 54]. Further, research does indicate that smartphone use

is correlated to adverse outcomes for young people. However, as we will discuss, these findings

have to be interpreted carefully and with questions of causality and heterogeneous effect in

mind.

[40] finds that smartphone use correlates negatively with mental well-being, but that marginal

decrease is substantially higher with higher levels of screen use (more than 2 hours a week for

weekdays) and that at lower levels (less than two hours for weekdays) marginal increase in

98



smartphone use might actually be associated with positive effects on mental well-being. They

label the idea that there is an optimal sweet spot for smartphone use (where both higher and

lower use of digital devices decrease mental health) the digital Goldilocks hypothesis. [38]

find significant, but a small, negative association between smartphones and well-being, simi-

larly [13] finds only a weak association between excessive screen use and depression. [17] raise

questions about course and effect by showing that threats to social development and cognitive

performance in the online world are being mirrored in the offline world.

Though smartphone use might not be harmful to all individuals, there are worries in the

literature that psychologically vulnerable individuals, and individuals from weaker social back-

grounds, are at higher risk of developing problematic smartphone use, which can exacerbate

existing inequalities [37].

On the other side of the spectrum, there is also substantial evidence that smartphones can

be used actively to improve mental health interventions targeted at reducing anxiety [15].

All in all, the literature on smartphones’ effect on the youth has not yet reached a consensus.

Within the field, there are calls for more large-scale social data sets and quasi-experimental

studies that can access issues of causality [13, 17, 35, 38, 48].

Intimacy, close social relations, and trust

We now turn to look at the literature on how smartphones might affect our social relations.

When developing close and intimate social relations, two of the primary components are

self-disclosure and (perceived) responsiveness [48]. Both require attention in social interactions.

Self-disclosure is disclosing thoughts and feelings to another person, thereby deepening the

relationship and strengthening trust. However, for a deeper social connection to happen, self-

disclosure needs to be accompanied by responsiveness from the receiver. The person self-

disclosing needs to feel that the listener conveys understanding, validation, and warmth [41].

Responsiveness is important in a wide range of relationship types such as romantic couples

[11], leaders and subordinates [25], and physicians and patients [42]. Further, these processes

facilitating closer relationship leads to better health and well-being [48].

Smartphones can be disruptive to social interactions. So much so that it has gotten it own

term: Techonoference, which refers to how smartphone use may interfere with or intrude into

everyday social interactions. (Related terms are phubbing - snubbing/ignoring other people

by looking at your phones - and pphubbing - phubbing your partner) For example, [20] shows

that a greater self-reported frequency of texting predicts lower relationship quality a year later,
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whereas low relationship quality does not predict future texting. Likewise, [45] finds that

Pphubbing leads to relationship conflicts, which impact relationship satisfaction negatively

and ultimately can lead to lower life satisfaction and depression.

Socially contagious mobile phones

[22] examines how mobile phones change the way we interact. He uses ethnographic methods

to describe the social processes that start when someone in a social interaction receives a phone

call and describe them as an (often subconscious) choreographed ”dance.” When the call is

received, ”[T]he non-using partner has to engage in symbolic behaviors that suggest valuable

activity.” When the phone user gets ready to end the conversation, ”the non-participating

partner mysteriously is able to resume focus on the mobile phone user, and begin engaging

the user visually.” Further, he describes how ”the co-present partner, who had not been using

his/her mobile phone, will often be prompted to begin using his/her own phone.”, and that

”Mobile phone use in public therefore seems to beget yet more public mobile phone use.”

Further, he points out that although mirroring in social situations is usually associated with

companionship, it is not the case for mobile phones because people go from being present in

the social interaction to being absent-present (as [18] calls it). Though Katz’s study focuses

on received calls, we believe that it illustrates that the social processes occurring, when social

interactions are interrupted by a mobile phone, are both complex and latent.

Apart from [22] contagion in mobile phones has (to our knowledge) only been studied by [14].

In the observational study, they find evidence that smartphone use correlates between peers

having lunch. However, smartphone contagion has not been studied in a large field experiment

or and no causal evidence has been provided.

More broadly, social contagion has been shown by [6] who use weather conditions to causally

show how peers across the US positively affect each other’s exercise patterns. [33] shows

how cashiers are more productive when they can be observed by high-productivity colleagues,

compared to when they can be observed by low-productivity colleagues (though [55] have

problems reproducing this finding in the lab).

Social contagion in network science

Social contagion is intensely studied within the field of network science. Models of social

contagion study how phenomenons as news, gossip, and diseases spread through a social network

(see [56] and [26] for a recent reviews). In the context of this literature, we zoom in on the
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dynamics of contagion from one node to another. Extending this to looking at propagation

through the network would be interesting, but we leave this to further research. However, we do

believe our results can be useful to network scientists, as it helps to understand the mechanisms

of social contagion, which, e.g., [27] have called for.
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