
Khaw, Mel Win; Li, Ziang; Woodford, Michael

Working Paper

Cognitive Imprecision and Stake-Dependent Risk
Attitudes

CESifo Working Paper, No. 9923

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Khaw, Mel Win; Li, Ziang; Woodford, Michael (2022) : Cognitive Imprecision
and Stake-Dependent Risk Attitudes, CESifo Working Paper, No. 9923, Center for Economic
Studies and ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/265958

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/265958
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

9923 
2022 

September 2022 
 

Cognitive Imprecision and 
Stake-Dependent Risk 
Attitudes 
Mel Win Khaw, Ziang Li, Michael Woodford 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 9923 
 
 
 

Cognitive Imprecision and Stake-Dependent Risk 
Attitudes 

 
 

Abstract 
 
In an experiment that elicits subjects’ willingness to pay (WTP) for the outcome of a lottery, we 
confirm the fourfold pattern of risk attitudes described by Kahneman and Tversky. In addition, 
we document a systematic effect of stake sizes on the magnitude and sign of the relative risk 
premium, holding fixed both the probability that a lottery pays off and the sign of its payoff (gain 
vs. loss). We further show that in our data, there is a log-linear relationship between the monetary 
payoff of the lottery and WTP, conditional on the probability of the payoff and its sign. We 
account quantitatively for this relationship, and the way in which it varies with both the probability 
and sign of the lottery payoff, in a model in which all departures from risk-neutral bidding are 
attributed to an optimal adaptation of bidding behaviour to the presence of cognitive noise. 
Moreover, the cognitive noise required by our hypothesis is consistent with patterns of bias and 
variability in judgments about numerical magnitudes and probabilities that have been observed in 
other contexts. 
JEL-Codes: C910, D030, D810, D870. 
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One of the more puzzling features of decision making under risk in the laboratory is
the fact that the same experimental subjects can display either risk-averse or risk-seeking
behavior, depending on the nature of the choices presented to them. In particular, the
celebrated “fourfold pattern” of risk attitudes documented by Kahneman and Tversky (1979;
also Tversky and Kahneman, 1992) asserts that people tend to be risk-averse when evaluating
simple gambles involving gains when the probability of the larger gain is large, or when
evaluating one involving losses when the probability of the larger loss is small, but that the
same people tend to risk-seeking when evaluating random gains when when the probability
of the larger gain is small, or random losses when the probability of the larger loss is large.

Prospect theory interprets this fourfold pattern as resulting from the inverse-S shape of
the probability weighting function. Standard expositions (following Tversky and Kahneman,
1992) suppose that the shape of the probability weighting function can be inferred by
observing how the ratio of a lottery’s certainty-equivalent value CE to its expected value
EV varies with the probability p of the larger payoff. Thus Tversky and Kahneman (1992)
plot the median value of CE/EV for a variety of lotteries corresponding to different values of
p, with separate plots for lotteries involving random gains and random losses respectively.1

While they plot separate values of these ratios for lotteries involving larger and smaller
(hypothetical) monetary amounts, Tversky and Kahneman conclude that the ratio CE/EV
for a given value of p does not depend much on the stake size, justifying their emphasis on
how the relative risk premium varies with p, and their intepretation of the plots as showing
the shape of the probability weighting function.

However, a considerable body of evidence suggests that there are systematic effects
of stake size on apparent risk attitudes. It has often been remarked that relative risk
aversion appears to be greater when stakes are larger — at least when the payoffs are
real (as opposed to hypothetical), and large enough to matter to the subjects (Holt and
Laury, 2002, 2005). This finding generally relates to the evaluation of random gains with
a relatively large probability of the larger possible gain (only one of the cells of Kahneman
and Tversky’s fourfold pattern). Another branch of the literature (Hershey and Schoemaker,
1980; Scholten and Read, 2014), however, considers gambles in which there is only a small
probability of a non-zero gain, and finds that while choices are risk-seeking in the case of
small enough potential gains (in accordance with Kahneman and Tversky’s fourfold pattern),
they are instead risk-averse for the same subjects when the potential gains are large enough.
Similarly, when there is only a small probability of a non-zero loss, these papers find that
choices are risk-averse in the case of small enough potential losses, but become risk-seeking
when potential losses are large enough.2 The latter finding indicates that stake effects cannot
simply be attributed to greater caution when more is at stake.

Fehr-Duda et al. (2010) study the effects of stake size more systematically, eliciting
certainty equivalents for a range of lotteries in both the gain and loss domains, and for a
wide range of values of p, as well as several different stake sizes for each value of p. Their
results regarding the sign of the relative risk premium (i.e., whether CE/EV is greater or less

1See their Figures 1 and 2.
2Scholten and Read (2014) call this an alternative (“forgotten”) fourfold pattern, one that depends on

the size of the stakes as opposed to the size of the probability of a non-zero payoff, and note that it had been
conjectured as early as in the work of Markowitz (1952).
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than 1) conform to Kahneman and Tversky’s fourfold pattern;3 however, they find nontrivial
stake effects on the size of the relative risk premium, especially in the gain domain. In the
case of random gains, the pattern is clear: for any value of p, the median ratio CE/EV
is smaller when stakes are larger.4 (For large p, this means greater risk aversion, while in
the case of small p, it means less extreme risk-seeking.) While the qualitative effect is the
same for all values of p, it is largest when p is small; this may explain why particularly large
stake-size effects have been found in other experiments involving very small probabilities of
a non-zero payoff.5 A similar effect of stake size on the median ratio CE/EV is found in the
loss domain, though less consistently.

None of these stake-size effects are consistent with prospect theory, at least if (as is
common in quantitative tests of the theory), one assumes an isoelastic value function.
Generalizations of prospect theory have been proposed to allow for stake-size effects, but
these often have other unappealing implications,6 and one may wonder why preferences over
even very simple lotteries should be so complex. Here we propose a novel explanation for
the pattern of stake-size effects just summarized, that does not depend on assuming that the
objective served by subjects’ decision rules is complex at all.

In previous work (Khaw et al., 2021), we propose that apparent departures from risk-
neutrality, at least in laboratory experiments involving stakes that are small relative to a
subject’s overall budget, actually reflect an efficient adaptation of subjects’ decision rules to
the presence of cognitive noise; the decision rules are posited to be optimal in the sense of
maximizing the expected financial wealth of the decision maker (DM).7 In the earlier paper,
this idea was illustrated in the context of an incentivized experiment in which subjects chose
between a small random gain and a small certain amount; because the probability p of the
non-zero gain was the same on all trials, the cognitive noise that was emphasized in that
paper was noise in the internal representations of the two monetary payoffs that defined
the decision problem on a given trial: the potential gain from the risky lottery and the
alternative certain gain.8

Here we apply the same idea to an experiment of the kind in Tversky and Kahneman
(1992), or in Fehr-Duda et al. (2010), in which certainty-equivalent values are solicited for
simple lotteries, that involve either random gains or random losses, and a wide range of

3Here it should be noted that the range of variation in stake sizes that they consider is much smaller than
those in the experiments of Hershey and Schoemaker (1980) or Scholten and Read (2014). Thus the results
of these authors are not inconsistent with those obtained by Fehr-Duda et al. (2010) for small values of p.

4See in particular the upper right panel of their Figure 2.
5Kachelmeier and Shehata (1992), one of the earliest studies to report a stake-size effect, also found

greater stake-sensitivity in the case of small probabilities.
6Thus Scholten and Read (2014) conclude that “stake dependence emerges as a major challenge to

prospect theory, and to other theories of choice under risk” (p. 82).
7Our argument is not that people are risk-neutral even in the case of large gambles, but rather that there

should be little change in their marginal utility of additional money income in the case of different outcomes
of a small-stakes laboratory experiment. See further discussion in our earlier paper.

8Frydman and Jin (2022) and Garcia et al. (2022) provide additional support for this model. The
proposal of Khaw et al. (2021) is consistent with an emerging literature in which behavioral anomalies
that have often been treated as reflecting non-standard preferences or sub-optimal heuristics are instead
attributed to optimal adaptation of decision rules to the presence of cognitive noise. See, for example,
Bhui and Xiang (2022), Enke and Graeber (2021, 2022), Frydman and Nunnari (2022), Gabaix and Laibson
(2017), Natenzon (2019), Steiner and Stewart (2016), Thaler (2021), and Woodford (2012, 2020).
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different values of p on different trials.9 Because p varies from trial to trial in the experiment
considered here (in addition to variation in the monetary payoff offered by the lottery), it is
reasonable to expect that this information will also be encoded and/or retrieved with noise,
and the introduction of a noisy internal representation of p is an important innovation in the
model presented here. We also now allow the precision with which the potential monetary
payoff is encoded to vary depending on the probability of its being received; this feature
of the model presented here is also one that did not arise in the simpler decision problem
considered in our earlier paper. (We allow for variable precision, without a proliferation of
additional free parameters, by supposing that the precision of encoding for each perceived
probability of the non-zero outcome is optimized given a linear cost of greater precision;
the unit cost of precision is then the single free parameter determining the precision of
encoding of monetary amounts.) Finally, because subjects must supply an estimate of
the certainty equivalent in the current experiment, from among a continuum of possible
responses rather than simply making a binary choice, the current problem also requires us
to model imprecision in response selection. Since the response is expressed in monetary
units, our model of imprecision in response selection embodies the same logarithmic model
of imprecision in mental manipulations of numerical magnitudes as is assumed in our model
of the encoding of the lottery payoff (introduced and motivated in Khaw et al., 2021).

While the application to the current experiment involves several new complications,
the model remains a fairly parsimonious one. Apart from the specification of the prior
distribution over lotteries for which the DM’s decision rule is assumed to be optimized
(parameters determined by the range of lotteries used in the experiment), there are only
three free parameters that determine the model’s quantitative predictions: one specifying the
imprecision with which probabilities are encoded, another specifying the imprecision of the
encoding of the monetary payoffs, and a third specifying the imprecision of response selection.
This is no more free parameters than even the most parsimonious empirical implementations
of prospect theory require;10 moreover, our three parameters are conceptually related, as all
of them simply specify the degree of noise in cognitive operations involved in the DM’s task.
The model nonetheless does a fairly good job of simultaneously explaining both the average
valuations of a given lottery and the degree of variability of the valuations, as a function
of the lottery characteristics, in both the gain and loss domains, for a range of sizes of the
probability p of the non-zero payoff, and for a range of stake sizes.

In particular, our model successfully explains stake-size effects of the kind discussed above
(and that we document in our data). The model predicts that in both the gain and loss
domains, and regardless of the size of p, the median value of CE/EV should be a decreasing
function of the stake size. It further makes a much more specific prediction: that for each
value of p, log(CE/EV ) should be an affine function of the logarithm of the absolute value

9Enke and Graeber (2022) also attribute biases in the valuations elicited in experiments of this kind to
cognitive imprecision, though modeled somewhat differently than we do here. Their slightly different concept
of cognitive imprecision is discussed further in section 5.1 below. Unlike the current study, Enke and Graeber
(2022) do not measure or seek to explain stake-size effects.

10At a minimum, empirical versions of prospect theory involve parameters specifying the degree of
curvature of the value function, the degree of curvature of the probability-weighting function, and the degree
of noisiness of the DM’s choices (Stott, 2006). Often, the number of parameters is larger; for example,
separate parameters are fit to choices involving random losses rather than random gains.
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of the monetary payoff, with a slope between - 1 and 0 (that can depend on p); and we
show that this prediction is fairly well satisfied in our data. It implies that the relationship
between median CE/EV and the stake size should be identical in the gain and loss domains,
and this is also nearly true in our data. Finally, it implies that the degree of stake-sensitivity
should be greater the lower the precision of the encoding of the monetary payoff, and that this
should be lower the lower p is perceived to be. Hence the model predicts both that valuations
should be noisier (in percentage terms) and that stake-sensitivity should be greater, when
the probability p is smaller; and both predictions are verified in our data.

In section 1, we present the results of our new experiment, emphasizing the pattern of
stake-dependence of risk attitudes that we observe. Section 2 then presents and motivates the
elements of our theoretical model, with particular attention to the novel elements relative
to the model presented in Khaw et al. (2021). Section 3 derives and tests a first set of
predictions of the model, that are independent of the precise way in which we model the
noisy encoding of probabilities or the endogenous variation in the precision of the encoding of
monetary payoffs. This section explains both why the relative risk premium is predicted to
be stake-dependent, and why the degree of stake-sensitivity should covary with the degree of
imprecision of encoding of monetary payoffs. Section 4 then derives the further predictions
of our model of noisy internal representation of probabilities and endogenous imprecision,
and compares the complete predictions of our three-parameter model to our dataset. Section
5 discusses how the model can be further extended to address the findings of certain related
experiments, and section 6 concludes.

1 Stake-Dependent Risk Attitudes: New Experimental

Evidence

Here we provide additional evidence regarding the stake-dependence of risk attitudes through
a new experimental study. As in the previous studies of Tversky and Kahneman (1992) and
Fehr-Duda et al. (2010), we elicit certainty-equivalent values for lotteries that are described
to experimental subjects, and map out out the complete fourfold pattern of risk attitudes
by presenting lotteries involving both gains and losses, and both large and small values of p.
We do more than simply replicate the results of these authors, however, in several respects.
First, we consider a larger number of stake sizes for each value of p, in order to more precisely
map the way in which the relative risk premium (the percentage difference between CE and
EV ) varies with stake size. Second, we present each decision problem to the same subject
many times (though not in sequence, so that subjects are unlikely to remember their previous
response to the same question), because of our interest in measuring the degree of random
variation in the subject’s responses from trial to trial. And third, we use a different method
for eliciting subjects’ valuations than in the earlier studies, also in order to make the degree
of random trial-by-trial variation more visible.11

11Unlike classic early studies such as those of Hershey and Schoemaker (1980) or Tversky and Kahneman
(1992), we also take care to incentivize subjects’ choices, as discussed below. The importance of presenting
choices involving real as opposed to merely hypothetical payoffs is demonstrated by Holt and Laury (2002,
2005).
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Figure 1: Example of the screen seen by an experimental subject.

1.1 Experimental Design

A total of 24 subjects12 participated in an experiment in which they were required to bid
dollar amounts that they were willing to pay to obtain the outcome of a lottery which would
pay an amount X with a probability p, and otherwise zero. The screen interface is shown
in Figure 1. On each trial, the lottery offered is visually represented by a two-color vertical
bar, the two segments of which represent the two possible outcomes. The probability of
each outcome is indicated by a two-digit number inside that segment of the bar (showing
the probability of that outcome in percent); the relative probabilities of the two outcomes
are also indicated visually by the relative lengths of the two differently-colored segments.
The monetary payoffs associated with each outcome (X and 0 respectively) are indicated
by numbers at the two ends of the bar. (Note that the probabilities of both outcomes are
displayed to the subject, with each given equal prominence, though to simplify notation we
refer to the probabilities in any given decision problem by specifying only the probability of
the non-zero payoff.)

A wide range of values of the probability p were used on different trials, corresponding
to the different columns in Figures 2 and 3.13 Five different values of the non-zero payoff

12These were student subjects recruited at Columbia University, following procedures approved by the
Columbia Institutional Review Board under protocol IRB-AAAQ2255. Four other subjects also performed
the experiment, but their data have been excluded on the ground that these subjects appeared not sufficiently
engaged with the experimental task. The grounds for exclusion, and some ways in which the data of the
excluded subjects compare with those of the other subjects, are discussed in the Appendix, section D.2.

13The full set of 11 different probabilities were not used with any of the subjects. Instead, 12 of the
subjects completed 400 trials each, in which five values of p were used; the other 12 subjects completed 640
trials each, in which eight different values of p were used. This allowed us to have multiple repetitions of the
same problem for each of the subjects, in order to obtain a clear measure of trial-to-trial variability in the
subject’s response to each problem, without requiring excessively long experimental sessions. The particular
values of p used with different groups of subjects are explained in the Appendix, section D.1.
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were used: $5.55, $7.85, $11.10, $15.70, and $22.20. (These values were chosen to be roughly
equal distances apart along a logarithmic scale; we did not use integer numbers of dollars,
so as not to encourage subjects to treat the problem as a test of arithmetic ability.) Each of
these payoffs could be either positive (a possible gain) or negative (a possible loss); thus on
a given trial, X could be either $22.20 or -$22.20 (as in the case shown in Figure 1). Each of
the possible values of p was paired with all ten of the possible values of X (both positive and
negative), and the same decision problem (p,X) was presented to any given subject 8 times
over the course of the experimental session, but with the problems randomly interleaved.

On each trial, after presentation of the lottery, the subject was required to indicate the
amount that they were willing to pay for the outcome of the lottery, by moving a slider in
a horizontal bar using the computer mouse. In the case of a lottery involving losses, the
subject had to indicate the amount that they were willing to pay to avoid having to pay the
outcome of the lottery. Thus in our discussion below, we refer to the subject’s bid as WTP,
their declared willingness-to-pay.14 As shown in Figure 1, the dollar bid implied by a given
slider position was shown on the screen. We used this method of elicitation of subjects’
valuations, rather than the commonly used multiple-price-list procedure, because it allowed
subjects to give a precise response rather than only indicating an interval. The fact that
subjects’ responses were not exactly the same on multiple repetitions of the same decision
problem is not a disadvantage of the procedure in our case; the variability of trial-by-trial
responses is actually one of the things that we wish to measure, rather than being regarded
as a nuisance. Subjects’ choices were incentivized by selecting one of their trials at random
at the end of the experiment to be the one that mattered, and then conducting a BDM
auction (Becker, DeGroot, and Marschak, 1964) in which the subject’s bid on that trial was
compared with a random bid chosen by the computer (independent of the subject’s bid).15

On some trials, subjects submit a bid of zero (the leftmost position of the slider).16

Since a subject should never be genuinely indifferent between the lottery offered and zero
for sure (the lottery either clearly dominates zero, in the case of a random gain, or is clearly
dominated by zero, in the case of a random loss), we interpret these responses as a subject
declining to bid, rather than a considered bid that happens to be equal to zero. The trials on
which the subject declines to bid are discarded in the analysis below of subjects’ willingness-
to-pay. (We discuss our theoretical interpretation of the zero-bid trials further in section 2.6
below.)

1.2 Results

Figures 2 and 3 present statistics regarding subjects’ reported willingness-to-pay (WTP ) for
each of 110 different lotteries: 11 different values of p (the eleven columns), and 5 different
values of |X| (the horizontal axis of each panel), in both the case of random gains (the top
panel of each column) and the case of random losses (the lower panel of each column). For
each lottery, subjects’ bids are described in terms of the implied value of log(WTP/EV ),

14In the case of a lottery involving losses, we define WTP as the negative of the amount indicated by the
subject’s slider, so that in all cases WTP represents an elicited certainty-equivalent value of the lottery.

15The incentives created by this procedure are discussed further below, in section 2.4.
16This occurs about 1.4 percent of the time overall, though more frequently when the EV of the lottery

is small. See the Appendix, section D.3, for more information about these bids.
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Figure 2: The distribution of values for WTP as a multiple of EV , for lotteries with different
values of p (the different columns) and |X| (the horizontal axis within each panel). The top
panel in each column refers to lotteries involving random gains (X > 0), and the bottom
panel to lotteries involving random losses (X < 0).

where the expected value of the lottery is given by EV = pX. This can be interpreted
as a measure of the relative risk premium in the case of lotteries involving random losses;
the negative of this quantity measures the relative risk premium in the case of lotteries
involving gains. Risk-neutral valuations (or perfectly accurate bidding, given the reward
function explained in equation (2.7) below) would correspond to a value of zero on every
trial, for each lottery (p,X). Thus the statistics presented in the figures measure the degree
of discrepancy with respect to this benchmark, for those trials on which the subject submits
a (non-zero) bid.17

In the case of each lottery, the dot indicates the mean value of log(WTP/EV ), pooling all
subjects. The vertical whiskers mark an interval±s around the mean, where s is the standard
deviation of log(WTP ) for an “average” subject, computed as the mean of s.d.[logWTP ]
across the subjects who evaluate that lottery.18 The horizontal line in each panel indicates
the prediction of an OLS regression model (with separate coefficients for each panel). Figure
2 shows the distributions of bids in the case of lotteries with relatively low values of p
(between 0.05 and 0.40), while Figure 3 shows the corresponding distributions in the case of

17Of course, the fact that subjects sometimes decline to bid is also a departure from risk-neutral optimizing
behavior, but one that we do not model in this paper.

18We indicate the mean value of log(WTP/EV ), rather than the median, because this is the quantity for
which we derive a theoretical prediction below, which we wish to compare to the data moments plotted here
(see Figures 4 and 5). We indicate the standard deviation for an average subject, rather than a measure of
the overall variability of the pooled responses, because we wish to obtain a measure of the degree to which
subjects’ responses are noisy, rather than of the degree to which subjects’ valuation rules may differ. The
computation of the data moments for the “average subject” are discussed further in the Appendix, section
C.
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Figure 3: The same information as in Figure 2 (and using the same format), but now for
probabilities p ≥ 0.50.

larger values of p (between 0.50 and 0.95).
Several features of our data are immediately evident from these figures. First, we see

that our experiment confirms the fourfold pattern of risk attitudes documented by Tversky
and Kahneman (1992): subjects’ bids are for the most part risk-averse in the case of risky
gains when p is 0.30 or larger (0 < WTP < EV ), and in the case of risky losses when p is
0.10 or less (WTP < EV < 0), but are instead mostly risk-seeking in the case of risky gains
when p is 0.10 or less (0 < EV < WTP ), and in the case of risky losses when p is 0.30 or
larger (EV < WTP < 0).

Yet in addition, we also see a consistent stake-size effect: in each of the 22 panels,
the geometric mean value of WTP/EV becomes smaller the larger the value of |X|. In the
transitional case (with respect to the Tversky-Kahneman pattern) where p = 0.2, this means
that for small stake sizes we observe risk-seeking bidding in the gain domain but risk-averse
bidding in the loss domain, while for larger stake sizes we instead observe risk-averse bidding
in the gain domain and risk-seeking bidding in the loss domain (the alternative fourfold
pattern of Scholten and Read, 2014).19 But the sign of the stake-size effect is the same (in
both the gain and the loss domains) for all of the other values of p as well, though stake-size
effects are most dramatic in the case of the smallest values of p (as is consistent with the
previous findings summarized in the introduction).

We also observe that the stake-size effects in each panel are approximately log-linear: the
mean value of log(WTP/EV ) for each lottery comes close to falling on the regression line for
that panel, meaning that (fixing p and the sign of X) mean log(WTP/EV ) is a decreasing
linear function of log |X|. Moreover, not only is the slope of this linear relationship negative
(or at least non-positive), it is never more negative than -1, so that increasing the stake size

19The same alternative fourfold pattern is observed, though in a less pronounced way, when p = 0.4, since
in this case the mean relative risk premium changes sign for the smallest value of |X|.
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(for given p) increases the mean log |WTP |, as one might expect.
Finally, we observe not only that subjects do not bid in accordance with risk-neutral

valuations on average; their bids for the same lottery vary from trial to trial. This within-
subject variability of responses is non-trivial in the case of all of the lotteries (at least for the
“average subject”), but it is especially notable when the probability p of the non-zero payoff
is small. This is worth noting, because stake-size effects are also largest when p is small; and
under the theory that we propose, it is not an accident that these two phenomena are most
visible in the same cases.20

2 AModel of Endogenously Imprecise Lottery Valuation

We now show that the features of our data summarized above can be explained by a model
according to which subjects’ responses (on those trials in which they choose to bid) are
the ones that maximize the mathematical expectation of their financial wealth, under the
constraint that these responses must be based on an imprecise mental representation of the
properties of the lottery that they face on a given trial, rather than upon its actual (exact)
characteristics.21 We begin by explaining our assumptions about the nature of the imprecise
mental representation of the possible outcomes associated with a given lottery, and then
analyze the response rule that would be optimal under the constraint that it be based on a
representation of this kind.

2.1 Imprecise Coding of Monetary Amounts

In our experiment, the decision problem presented on a given trial is specified by two
numbers, the non-zero monetary outcome X and the probability p with which it will be
received. We assume that each of these two quantities has a separate mental representation;
the decision problem is mentally represented by two real numbers, rx and rp respectively,
with rx depending only on the value of X and rp depending only on the value of p. We
discuss first the encoding of the monetary amount, as this makes use of the same hypothesis
that is explored (and tested) in our previous paper.

In Khaw et al. (2021), we model only the noisy coding of the monetary amount X, as the
probability p is the same on all trials, and we treat the constant parameter p as understood
precisely. We assume also that no mistake is made about the sign of X — that is, that
the sign of X is encoded with perfect precision — but that the unsigned monetary amount
|X| is encoded probabilistically.22 Here we again make the same assumption, and as in the

20It is perhaps also no accident that declining to bid at all is most common in the case of those lotteries
where cognitive uncertainty is greatest, if (as our theory below assumes) greater within-subject trial-to-trial
variation in bids is a sign of greater uncertainty about the value of those lotteries. However, we do not here
model the decision to decline to bid.

21The decision on some trials not to bid plainly does maximize expected financial wealth, regardless of
the imprecision of the perception of the situation on which such a decision is based. But this decision might
nonetheless be an optimal adaptation if one supposes that cognitive effort can be avoided by declining to
bid. See further discussion in section 2.6 below.

22In the experiment presented in Khaw et al. (2021), the monetary amounts that can be obtained are
always positive. However, the paper also offers an informal discussion of how the theory can be extended to
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previous paper, we assume that on each trial, the mental representation rx is an independent
draw from a Gaussian distribution

rx ∼ N(log |X|, ν2
x(rp)), (2.1)

where the variance ν2
x may depend on rp, the perception of how likely it is that the monetary

amount will be received (and thus, how much the monetary amount matters), but is assumed
to be independent of the magnitude |X|. In our previous paper, ν2

x is treated simply as a
parameter (possibly differing across subjects); but it should be recalled that in our previous
experiment, the probability p was the same on all trials. Since the probability varies (over a
considerable range) in the current experiment, we allow for the possibility that the precision
of encoding of the monetary amount may depend on it. (We make a specific hypothesis
about the nature of this dependence, discussed below.)

The assumption that the mean of the distribution (2.1) grows in proportion to the
logarithm of |X|, while the variance is independent of |X|, implies that the degree to which
different monetary amounts can be accurately distinguished on the basis of this subjective
representation satisfies “Weber’s Law”: the probability that a (positive) quantity X2 would
be judged larger than a quantity X1 (also positive), on the basis of a comparison between the
noisy subjective representations of the two quantities, is an increasing function of their ratio
X2/X1, but independent of the absolute size of the two amounts.23 There is reason to believe
that the discriminability between nearby numbers decreases in approximately this way as
numbers become larger; the regularity is well-documented for numerosity perception in the
case of visual or auditory stimuli (for example, judgments as to whether one field of dots
contains more dots than another),24 and there is also evidence for a similar pattern in the
case of quick judgments about symbolically presented numbers, or symbolically presented
numbers that must be recalled after a time delay.25 The same hypothesis about the noisy
internal representation of numerical magnitudes is also consistent with observed biases in
estimates of the numerosity of presented stimuli, as discussed in some detail in Khaw et al.
(2021).

2.2 Imprecise Coding of Probabilities

In our experiment, the probability p also varies from trial to trial, and must be monitored
in order to decide how much to bid for a particular lottery. Hence it is natural to assume an
imprecise internal representation of this information as well. We suppose that on each trial,

also predict choices between random and certain losses; and in that discussion it is assumed (as here) that
the sign of X is encoded with perfect precision, while |X| is encoded in the same way regardless of the sign
of X. In the present context, this assumption is motivated by the observation in the previous section that
the distribution of values for WTP/EV depends on p and |X|, but is (at least to a first approximation)
independent of the sign of X.

23Note that (2.1) implies that the probability that rx2 > rx1 is an increasing function of logX2 − logX1.
This is essentially the interpretation of Weber’s Law (in other sensory domains) proposed by Fechner ([1860]
1966).

24See Krueger (1984), and other references cited in Khaw et al. (2021).
25See Moyer and Landauer (1967), and other references discussed in Dehaene (2011).
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the mental representation rp is an independent draw from a Gaussian distribution

rp ∼ N
(
log

p

1− p
, ν2

z

)
, (2.2)

where ν2
z is independent of p. The assumption that the mean of this distribution is given

by the log odds of the non-zero monetary outcome means that the mean might in principle
take any value on the entire real line, as in the case of our hypothesis (2.1), despite the fact
that p must belong to the interval [0, 1].26

There are a variety of reasons for choosing the specification (2.2) for the form of the
encoding noise.27 In the case of a lottery with two possible outcomes, what matters is the
relative probability of the two outcomes occurring, not just the probability of one of them;
and it would make sense for the relative odds to be represented in such a way that the
precision of representation of the relative odds is the same in the case of two outcomes with
probabilities (1− p, p) as in the case of probabilities (p, 1− p). In the case of small positive
probabilities p of the larger outcome, the specification (2.2) is consistent with the idea that
“Weber’s Law” should hold for the discrimination of numerical magnitudes: it implies that
people should more accurately distinguish a 2 percent probability from a 3 percent probability
than they distinguish a 10 percent probability from an 11 percent probability (even though
there is a difference of 1 percent in each case). But the specification (2.2) also implies, and to
the same extent, that they should more accurately distinguish a 98 percent probability from
a 97 percent probability than they distinguish a 90 percent probability from an 89 percent
probability — which would not be implied if we were to assume simply that the quantity p
were encoded logarithmically (as with the encoding of |X|).

Our specification is also consistent with the findings of Enke and Graeber (2022), who
show that subjective uncertainty about the certainty-equivalent value of lotteries like the
ones in our experiment varies as an inverse-U-shaped function of the value of p (that is,
higher for intermediate values of p than for either very small or very large values). If we
interpret the subjective uncertainty about lottery values in their experiment as a consequence
of uncertainty about the value of p implied by a given noisy internal representation rp,

28 then
this result suggests that the way in which the conditional distribution of rp varies with p
makes nearby values of p more difficult to distinguish in the case of intermediate values of
p. This is in fact implied by (2.2), given the nature of the log odds transformation.29

Studies of bias in the estimation of probabilities, relative frequencies, and proportions,
when these are presented visually or through a sample of instances (rather than with number

26In addition, Zhang and Maloney (2012) argue that it is plausible to suppose that probability is
represented in the brain in terms of log odds.

27Note that this model of noise in the encoding of probabilities was first proposed in Khaw et al. (2021).
28See the explanation in the Appendix, section A, of how our model can be used to explain the results

of Enke and Graeber. At least through the lens of the model of their subjects’ behavior offered there,
uncertainty about the certainty equivalent should be purely a reflection of the posterior uncertainty about p
conditional on rp. See also further discussion in section 5.1 below of the interpretation of elicited reports of
subjective uncertainty.

29For example, if we use the Fisher information as a local measure of the discriminability of nearby
probabilities on the basis of noisy internal evidence of this kind, the specification (2.2) implies a Fisher
information I ∼ [p(1− p)]−2. The reciprocal of this (a local measure of uncertainty rather than of precision)
is then proportional to [p(1 − p)]2, an inverse-U-shaped function of p, symmetric around a maximum at
p = 0.5
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symbols as in our experiment), support the view that (at least in these cases) the imprecision
in people’s recognition of probabilities or proportions have a similar property: their estimates
are most accurate for probabilities near 0 or 1, but much less accurate for intermediate
probabilities (Hollands and Dyre, 2000; Zhang and Maloney, 2012). Moreover, at least
in cases where there are only two possible outcomes, and the distribution of values for
the probability of the first outcome is symmetric around 0.5, the degree of estimation
error is typically found to be symmetric around 0.5, as the specification (2.2) together
with a hypothesis of Bayesian decoding would imply.30 Our hypothesis here is that the
pattern of imprecision in the internal representation of probabilities is the same when the
probabilities are revealed to an experimental subject with number symbols, as when they
must be discerned visually or by estimating the relative numbers of different elements in
an array. This idea is parallel to our hypothesis above about the encoding of numerical
magnitudes: that the imprecision in the internal representation of numbers is the same
when numbers are presented symbolically (as in our experiment) as in the better-studied
case of judgments about numbers presented visually (numbers represented by the length of
a bar, or the number of items in an array).

Indeed, our specific model (2.2) of the imprecise representation of probability information
is closely related to the way in which we model the imprecise representation of numbers.
Suppose that the relative probability of the two possible outcomes is displayed to a subject
by the relative size of two magnitudes, X1 and X2, proportional to the probabilities of the
two outcomes. (In the case of our experiment, X1 and X2 could be the lengths of the two bars
corresponding to the probabilities of the two outcomes, as shown in Figure 1.) And suppose
that each of these magnitudes is independently encoded by a noisy internal representation,
where

rj ∼ N(logXj, ν
2
p), j = 1, 2,

as specified for the monetary amounts in (2.1). (Note that this would also be a common
model of imprecision in visual perception of length.) Finally, suppose that judgments about
the relative probability of the two outcomes are based purely on the difference between
these two internal representations, rp ≡ r1 − r2. In this case, the conditional distribution
of the internal representation rp of the relative odds will be of the form (2.2), where p in
this expression means the probability of outcome 1, and ν2

z = 2ν2
p . Our conclusions below,

however, depend only on assuming (2.2), and not on this particular interpretation of how
the internal representation of the relative odds may be constructed.

2.3 Imprecise Response Selection

Our model allows for a further type of cognitive noise: in addition to assuming that the DM’s
response must be based on noisy internal representations (rp, rx) rather than on the precise
quantities p and X, we assume that, rather than the DM being able to choose a bid C that
is a perfectly precise function of those internal representations, the response also involves

30In the Appendix, section A, we show how the model (2.2) of noisy encoding of probability, together with
a Bayesian model of how the noisy representation is “decoded” to produce an estimate, can give rise to a
linear-in-log-odds pattern of estimation bias, of the kind shown by Zhang and Maloney (2012) to characterize
many data sets.
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inevitable imprecision. Specifically, we assume that on any given trial, the DM’s response C
is a monetary amount with the same sign as X (we assume no imprecision in either the DM’s
recognition of the sign of X, or in their recognition of the sign of an appropriate response),
but a magnitude that is an independent draw from a log-normal distribution,

log |C| ∼ N(f(r), ν2
c ), (2.3)

where the mean can depend on the DM’s internal representation of the decision situation
r ≡ (rp, rx, sign(X)), and the parameter νc measures the degree of unavoidable imprecision
in the DM’s response.

The randomness in (2.3) can be interpreted as resulting from random error in assessing the
degree to which a contemplated symbolic response C accurately matches the DM’s subjective
sense of the value that should be assigned to a particular lottery. The quantity f(r) might
be taken to represent this subjective sense, which we assume to be optimally calibrated,
but not to have a direct symbolic expression; the additional random error arises when the
DM must decide which number symbol corresponds to this degree of value.31 Because the
additional noise relates to assessing the value of a monetary amount C proposed by the DM,
it is assumed to be independent of the representation of the lottery to which the amount C
is to be compared. The assumption that this noise results in a log-normal distribution for
the monetary bid C is motivated in the same way as our specification (2.1) for the internal
representation of the monetary amount offered by a given lottery. The distribution (2.3)
implies that the probability distributions of different possible subjective valuations f that
can be equated with each of two different monetary amounts C1 and C2 overlap to an extent
that depends on the difference between logC2 and logC1, and hence on the ratio C2/C1,
but not on the absolute magnitude of either monetary amount. This means that once again,
we assume a “Weber’s Law” relation for the degree of discriminability of different monetary
amounts when the DM’s intuitive sense of their magnitudes is consulted.

Note that our model nests the case in which νc = 0; in this case, our hypothesis would
simply be that the bid C on any trial is the optimal one for the DM, conditional on the
internal representation r, as often assumed in Bayesian “ideal observer” models of perceptual
estimates (e.g., Petzschner et al., 2015; Wei and Stocker, 2015, 2017). On the other hand, the
hypothesis of random error in the selection of responses is common in models of perceptual
judgments, and even more common in models of experimental data involving higher-level
cognitive processing, like our lottery-valuation task. In the context of our theoretical model,
the three different types of noise — noise in the representation of monetary payoffs, noise
in the representation of probabilities, and noise in response selection — have empirically
distinguishable effects, and we can estimate the magnitudes of separate noise parameters to
determine the importance of each type of noise in explaining our subjects’ behavior.32

Finally, note that we do not, as in some models of response noise, assume that the DM
chooses an intended response f(r) that would be optimal in the absence of such noise, though

31Similarly, in Khaw et al. (2021), when a DM chooses whether she would prefer a certain amount C to a
lottery (p,X), there is assumed to be random error in the internal representation of the quantity C, as well
as in the internal representation of what the lottery offers, and both types of randomness contribute to the
stochasticity of observed choices.

32On the distinguishability of these different sources of error, in the case of both perceptual and cognitive
judgments, see the review by Findling and Wyart (2021).
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the actual response differs from the intended one owing to a noise term. We instead assume
that the function f(r) is optimized for the particular degree of cognitive noise to which the
DM is subject — taking into account both the encoding noise in the internal representations
and the fact that the DM’s bid will involve response noise (if νc > 0).

2.4 A Bayesian Decision Problem

We hypothesize that the function f(r) is optimally adapted to the DM’s situation. But a
claim of optimality is necessarily relative to a particular objective, and to a particular class
of possible decision situations. Here we further specify the DM’s assumed objective, and
the prior distribution over possible decision problems for which we assume that the DM’s
decision rule is optimized.

As stated in the introduction, our hypothesis is that the DM’s decision rule is optimized
to maximize the mathematical expectation of the DM’s wealth, integrating over the set of
possible decision situations that the DM might expect to encounter. Thus we must consider
how a DM’s stated willingness to pay should be expected to affect her financial wealth. Our
subjects are incentivized by conducting a BDM auction at the end of the experiment, for
the lottery offered in one randomly selected trial; if the subject wins this auction (bids an
amount greater than the random bid generated for their automated opponent), he receives
the outcome of the lottery (but has his endowment reduced by the amount of the opponent’s
bid), while if not (because the opponent bids more), he keeps his endowment.

Let W0 be the subject’s initial wealth (inclusive of the endowment received in the
experiment), N the number of trials in the experiment (each of which has a probability
1/N of being selected as the basis for the subject’s payment), Ci the amount that the
subject bids for the lottery on trial i, and (pi, Xi) are the characteristics of the lottery
offered on that trial. In the case that trial i is selected for payment, the random bid Bi

of the automated opponent is an independent draw from a distribution with continuous
density function g(B). The mathematical expectation of the subject’s wealth at the end of
the experiment, conditional on their sequence of bids {Ci}, is then equal to

W0 +
1

N

∑
i

E[I(Bi < Ci) · (piXi −Bi)]

= W0 +
1

N

∑
i

E[I(Bi < piXi) · (piXi −Bi)] − 1

N

∑
i

L(Ci; piXi), (2.4)

where

L(C; V ) ≡ −
∫ C

V

(V −B) · g(B)dB. (2.5)

Here I(·) is an indicator function, taking the value 1 if the statement inside the parentheses
is true, and 0 otherwise; and the symbol E[·] refers to the mathematical expectation over
possible realizations of the random variables pi, Xi, Ci, and Bi.

The first two terms in (2.4) are independent of the subject’s bid. Hence a bidding rule
maximizes the expectation of the subject’s wealth if and only if it minimizes the final term
in (2.4). Since this final term is a sum of additively separable terms for the different trials,
we can consider separately the optimal bidding rule to use in a single trial. Thus an optimal

14



bidding rule is one that chooses a bid C (or a probability distribution for such bids), given
an internal representation of the decision situation r, so as to minimize the expected loss

E[L(C; pX) |r]. (2.6)

If we suppose that the distribution g(B) is approximately uniform33 — that g(B) ≈ g̃
over the relevant range,34 where g̃ > 0 is a constant — then we can approximate (2.5) as

L(C; pX) ≈ L̃(C; pX) ≡ g̃ ·
∫ C

pX

(pX −B) dB =
g̃

2
(C − pX)2. (2.7)

We use this approximation in our calculation of the numerical predictions of our model; that
is, we assume that the DM’s bidding rule minimizes the mean squared error that results
from using C as an estimate of pX, the true expected value of the lottery.

If C could be chosen with precision, given an internal representation r, the solution to
this problem would be to choose

C = E[pX |r]. (2.8)

That is, the optimal bid would simply be the mean of the Bayesian posterior distribution for
the true expected value of the lottery, conditional on the imprecise internal representation
of the problem. However, because of the presence of unavoidable response error, it is only
the mean of the distribution (2.3) that can be chosen as a function of r, and not the value
of C that will be bid on any given trial. If response error were assumed to be additive, a
“certainty equivalence” result would obtain: (2.8) would still be the optimal value for the
intended bid, though the actual bid would equal this plus a mean-zero noise term. But
because we have (more accurately, in our view) specified a multiplicative response error in
(2.3), the optimal solution is more complex, as we discuss below.

The posterior in the objective (2.6) depends on the prior distribution from which the
parameters (p,X) specifying the decision problem are expected to be drawn. In our numerical
work here, we assume that regardless of the sign of X, the prior distribution for possible
values of |X| is of the form

log |X| ∼ N(µx, σ
2
x), (2.9)

for some parameters µx, σx. Apart from being mathematically convenient and parsimoniously
parameterized, a prior of this form is found to fit the behavior of most subjects fairly well
in Khaw et al. (2021).

The prior distribution for p is assumed instead to be of the form

log
p

1− p
∼ Uniform [µz −

√
3σz, µz +

√
3σz], (2.10)

for some parameters µz, σz, which again indicate the mean and standard deviation of the
prior.35 Also, under the prior p and |X| are distributed independently of one another (as is

33This is an assumption about the prior beliefs of the DM, for which the DM’s bidding rule are assumed
to be optimized. Note that the BDM auction in our experiment involves a uniform distribution g(B).

34We mean, for 0 < B < B̄, where B̄ is large enough so that pX < B̄ with high probability, under the
prior used to evaluate (2.5).

35A truncated uniform distribution better fits the set of values for the odds ratio used in our experiment
than a Gaussian distribution would. Note, however, that we do not literally sample the values used from a
uniform distribution; only a discrete set of values of p are used, as shown in Figures 2 and 3.
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true in our experiment); and the joint distribution of (p, |X|) is the same regardless of the
sign of X (as is also true in our experiment).36

2.5 Endogenous Precision

In (2.1), we allow the precision ν−2
x of the internal representation of the monetary amount |X|

on a given trial to depend on rp, the internal representation of the probability of occurrence
of that nonzero outcome. The idea is that when the nonzero outcome is regarded as less
likely to occur (on the basis of what can be inferred about this likelihood from the internal
representation rp), there should be less reason to exert mental resources in representing the
nonzero outcome very precisely. We now specify more precisely the nature of this dependence.

We assume that greater precision of the internal representation is possible at a cost;
specifically, we assume a psychic cost of representation of this amount that can be expressed
in equivalent monetary units as

κ(νx) = Ã · ν−2
x , (2.11)

where Ã > 0 is a parameter indexing the cost of greater precision in the representation of
monetary amounts. The assumption of a cost that is linear in the precision has a simple
interpretation. Suppose that the magnitude |X| is internally represented by a random
quantity that evolves according to a Brownian motion, with a drift equal to log |X|37 and
an instantaneous variance σ2 > 0 that is independent of |X|. This process yt is allowed to
evolve for some length of time τ > 0, starting from an initial value y0 = 0; the final value
yτ constitutes the internal representation.38 Equivalently, we may treat the value rx ≡ yτ/τ
as the internal representation, as this variable contains the same information as yτ . Under
this assumption, the internal representation has the distribution specified in (2.1), where
ν2
x = σ2/τ.
Note that the precision of such a representation can be varied by varying τ, the length

of time for which the process yt is allowed to evolve. Moreover, successive increments of
the Brownian motion are independent random variables (with a common distribution that
depends on the magnitude |X|); these can be thought of as repeated noisy “readings” of the
value of |X|.39 If we suppose that each repeated “reading” has a separate (and identical)
psychic cost, then the total cost should be linear in τ (and so proportional to the total
number of independent “readings”). This implies a cost of precision of the form (2.11).

Our complete hypothesis, then, is that a precision parameter νx(rp) is chosen for each
possible probability representation rp, and a subjective valuation f(r) is chosen for each

36We need not specify a prior probability of encountering one sign of X or the other, since this variable is
assumed to be known with perfect precision, and no issue of Bayesian decoding of an imprecise representation
arises.

37It suffices for our argument that the drift be an affine function of log |X|, but the calculations are
simplified by assuming that the drift is simply equal to log |X|. The assumption that y0 = 0 is also purely
to simplify the algebra.

38Diffusion processes of this kind are often used to model the randomness in sensory perception and
memory retrieval; see Gold and Heekeren (2014) for a review. Heng et al. (2022) use a process of this
kind to model the internal representation of positive numbers presented as arrays of dots, and show that
the assumption of precision increasing linearly with time fits well the way that the distribution of errors in
numerosity estimation varies with viewing time.

39Gold and Heekeren (2014) discuss the neural mechanisms that could implement such a process.
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complete representation r of the presented lottery, so as to minimize total expected losses

E[L̃(C; pX) + κ(νx(rp))], (2.12)

where C is an independent draw from the distribution (2.3), and the expectation is over the
joint distribution of p,X, rp, rx, and C, under the specified prior distributions.40

The model provides a complete specification of the predicted joint distribution of these
variables, as a function of four parameters (µz, σz, µx, σx) that specify the distribution of
possible lotteries, and three additional free parameters (Ã, νz, νc) that specify the degree of
imprecision in internal representations. (The latter three parameters specify the degree of
imprecision in the representation of the quantities |X|, p, and |C| respectively.) Since the
former set of parameters are required to fit the distribution of values of p and X used in the
experiment, only the latter three parameters are “free” parameters with which to explain
subjects’ responses, in the sense that we have no independent information about their values
apart from what we need to assume to rationalize subjects’ responses.

2.6 Declining to Bid

As already noted, on some trials subjects submit bids of $0, which we interpret as declining
to bid on that lottery. We suppose that the DM’s decision actually has two stages: a first
decision whether to bid at all, followed by a second decision about which (non-zero) bid to
make, only in the case that the first decision was to bid. We further suppose that the decision
in each stage is optimized to serve the DM’s overall objective, subject to the constraint that
each decision must be made on the basis of an imprecise awareness of the precise decision
problem that is faced on that trial. In such a two-stage analysis, one of the benefits of
deciding in the first stage not to bid will be avoidance of the cognitive costs associated with
having to decide what bid to make in the second stage.41 The cognitive costs associated with
undertaking a second-stage decision should include the cost κ(νx) of encoding (or retrieving)
the magnitude of the monetary payoff with a certain degree of precision, but they could
include other costs as well, that have not been specified above because they do not affect
our calculation of the optimal second-stage bidding rule.

In this paper, we model only the “second-stage” problem, i.e., how the subjects bid
on those trials where they choose to make a non-zero bid. This is done taking as given
the probability that the DM will find themselves having to choose a non-zero bid in the
case of a particular lottery (p,X), as a consequence of the first-stage decision rule.42 The
prior distribution that is relevant for the “second-stage” problem modeled above (specified

40The problem can be separately defined for each of the possible values of sign(X). Under an optimal
solution, as discussed further below, the functions νx(rp) and f(rp, rx) are both independent of sign(X); for
this reason, we have suppressed sign(X) as an argument of the function νx(rp) in the text.

41A two-stage decision of this kind is completely modeled in Khaw et al. (2017); in that application,
subjects are modeled as first deciding on each trial whether to adjust their existing response variable or not,
and then (only if the outcome of the first decision was to adjust) deciding exactly what size of adjustment to
make. Both decisions are modeled as made optimally subject to an information constraint; it is optimal not
to adjust on all trials, because the cognitive costs associated with the second-stage decision can be avoided
by opting in the first stage not to adjust.

42See the Appendix, section D.3, for further discussion.
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mathematically by (2.2) and (2.1)) is not the frequency distribution with which the experimenters
present different lotteries (p,X), but rather the frequency distribution with which the different
lotteries become the object of a second-stage decision. This depends both on the distribution
of lotteries chosen by the experimenter and on the first-stage decision rule. However, in our
quantitative evaluation of the model below, we fit the parameters of the assumed prior
distribution to the empirical frequency with which non-zero bids are made on different
lotteries (p,X), and not to the frequency distribution of lotteries chosen by the experimenters.
Given this, it is not necessary for us to model the DM’s first-stage decision in order to derive
quantitative predictions from our model of the second-stage decision.

3 Optimal Bidding and Stake-Size Effects

Here we derive the predictions of the model in section 2 for the data moments displayed in
Figures 2 and 3. Note that we are interested simultaneously in explaining the observed biases
(systematic differences between average WTP and the actual EV of the lottery) and the
variability of the valuations of a given lottery. According to our theory, these two aspects of
the data should be intimately connected; in the absence of random noise (the case in which
A = νz = νc = 0), our model predicts that we should observe WTP = EV on each trial.
Hence the same small set of parameters must explain both features of the data.

3.1 Implications of the Logarithmic Model of Cognitive Noise

We begin with a set of predictions that follow from the specification (2.1) for the noisy
internal representation of monetary payoffs, the specification (2.3) for the errors in response
selection, and the specification (2.9) for the distribution of payoff values under the prior for
which the DM’s bidding rule f(r) is optimized. These predictions are independent of what
we assume about the internal representation of probabilities, the prior over probabilities, or
the way in which the precision with which monetary payoffs are encoded may depend on
rp. They do, however, depend on our also assuming that the bidding rule is optimized to
minimize mean squared error under the prior.

Under these assumptions, the posterior distribution for |X| conditional on the internal
representation r will be log-normal, and the joint distribution of (log |X|, log |C|) conditional
on r will be bivariate normal. The algebra of log-normal distributions allows us to show that
the Bayesian posterior mean estimate of the magnitude |X| will be of the form

E[|X| |r] = exp((1− γx(rp)µ̄x + γx(rp) · rx), (3.1)

where

γx(rp) ≡ σ2
x

σ2
x + ν2

x(rp)
(3.2)

is a quantity satisfying 0 < γx(rp) < 1, that depends on the degree of precision with which
|X| is encoded in the case of that value of rp, and

µ̄x ≡ µx +
1

2
σ2
x
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is the logarithm of the prior mean of |X|. In the case of perfectly precise encoding, γx = 1,
and the mean estimate of |X| is exactly the true value of |X|; in the limit of extremely
imprecise encoding (ν2

x → ∞), γx → 0, and the mean estimate approaches the the prior
mean exp(µ̄x), regardless of the noisy internal representation rx.

The optimal bidding rule can then be shown to be43

f(r) = log E[p |rp] + (1− γx(rp))µ̄x + γx(rp)rx − 3

2
ν2
c . (3.3)

This has a fairly simple interpretation. In the absence of response noise, the optimal Bayesian
decision rule would be f = log E[pX |r], and the latter quantity can be written as the sum
of the logarithm of the posterior mean estimate of p (given rp) and the logarithm of the
posterior mean estimate of |X|, given by (3.1). In the case of response noise, the median bid
is shaded downward (in absolute size) by a constant percentage that depends on the value
of ν2

c , to take account of the multiplicative error in the bidding.
This rule, together with (B.1), and the encoding rules that specify the distribution of

r for a given lottery, can then be used to predict the distribution of values for the ratio
WTP/EV for each lottery. Note in particular that regardless of what we assume about the
internal representation of the probability p, and about the way in which ν2

x depends on rp,
the model implies that

E[log(WTP/EV ) |p,X] = αp + βp log |X|, (3.4)

for some coefficients αp, βp that can depend on p. These coefficients should be the same
regardless of the sign of |X|, so that the plots in the upper and lower rows of Figures 2 and
3 should look the same, as to a large extent they do.44

The model also implies that the mean value of log(WTP/EV ) should be an affine function
of log |X|, with a negative slope, satisfying the bounds −1 < βp < 0. Specifically, the
predicted slope is given by

βp = −(1− γp), (3.5)

where γp is the mean value of γx(rp), averaging over the distribution of internal representations
rp associated with a particular true probability p.) This negative (but boundedly negative)
slope is also what we observe in Figures 2 and 3, for all values of p.

Finally, the model implies that the log-linear relationship (3.7) should hold no matter
how large the variations in log |X| may be. In our experiment, |X| varies only by a factor
of 4 between the smallest and largest values used in the experiment; as a result, the sign of
the mean relative risk premium is independent of |X|, in each of the panels of Figures 2 and
3. However, our theoretical model implies that if a wider range of values of |X| were used,
the sign of the relative risk premium should be different for very small |X| and very large
|X|. This should be true in principle for all values of p, but it should be particularly easy
to observe the sign change in the case of small p (since these are the cases in which βp is
most negative, for reasons discussed below). Thus our model also predicts that in the case
of lotteries in which the probability of a non-zero outcome is small, if X is varied over a wide

43See the Appendix, section B.1, for details of the calculation.
44It is not only the coefficients αp and βp that should be the same; the model implies that the entire

distribution of WTP/EV should be the same function of p and |X|, regardless of the sign of X.
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enough range, one should observe a positive relative risk premium (risk-averse valuations) in
the case of a large enough potential gain, or a small enough potential loss, but should observe
a negative relative risk premium (risk-seeking valuations) in the case of a small enough gain
or a large enough loss. Thus our model predicts the alternative fourfold pattern documented
by Hershey and Schoemaker (1980) and Scholten and Read (2014).

3.2 Conformity of Our Data with the Model’s Predictions

We now turn to quantitative tests of the degree to which our data conform to these predictions.
We distinguish between a series of progressively more restrictive statistical models of our
subjects’ behavior. In the most general (purely atheoretical) characterization of the data,
we suppose that for each lottery (p,X) there is a distribution of values for the willingness-
to-pay of the form

log
WTP

EV
∼ N(m(p,X), v(p,X)). (3.6)

In what we call our “unrestricted model,” there are thus two parameters, m(p,X) and
v(p,X), to be estimated for each lottery, with no restrictions linking the parameters for any
given lottery to those for any other lotteries.

Our “symmetric model” instead imposes the restrictions

m(p,X) = m(p,−X), v(p,X) = v(p,−X),

so that the distribution of values for WTP/EV depends only on p and |X|: it is the same
for random losses as for random gains. Alternatively, we can restrict the general model by
assuming that for any p and any sign of X, m(p,X) be an affine function of log |X|. Our
“general affine model” assumes that

m(p,X) = α+
p + β+

p log |X| if X > 0,

m(p,X) = α−
p + β−

p log |X| if X < 0.

This is the characterization of the data assumed in fitting the regression lines shown in each
of the panels of Figures 2 and 3.

Our “symmetric affine model” imposes all of the restrictions of both the symmetric model
and the general affine model, so that

m(p,X) = αp + βp log |X|, (3.7)

regardless of the sign of |X|, for some coefficients (αp, βp) that depend only on the value of
p. This model also imposes the restriction that v(p,X) depends only on p and |X|, as it is
a special case of the symmetric model. The “bounded symmetric affine model” imposes all
of these restrictions, plus the further restriction that

0 ≤ βp ≤ 1

for all p
Finally, we consider a family of models that impose even tighter restrictions on the

values of the {βp}. For each possible threshold p∗, we consider a model that imposes all of
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Model LL BIC K
Pooled Data

unrestricted model -45579.8 92188.4 1
symmetric model -45733.9 92067.9 1.47× 1026

general affine model -45606.0 92008.7 1.05× 1039

symmetric affine model -45746.1 91953.3 1.13× 1051

bounded symm. affine -45746.1 91947.3 2.26× 1052

βp = 0 for p ≥ 0.9 -45751.8 91944.1 1.12× 1053

no stake effects -45880.0 92145.3 2.29× 109

“Average Subject” Data
unrestricted model -1639.6 3602.7 1
symmetric model -1654.6 3553.5 4.83× 1010

general affine model -1642.2 3585.4 5.71× 103

symmetric affine model -1655.8 3521.6 4.08× 1017

bounded symm. affine -1655.8 3518.8 1.65× 1018

βp = 0 for p ≥ 0.3 -1662.0 3505.0 1.64× 1021

no stake effects -1671.0 3511.3 7.03× 1019

optimal bidding model -1683.2 3397.6 3.44× 1044

Table 1: Measures of the goodness of fit of alternative statistical models of our subjects’
responses. The first set of measures fit moments of the pooled data, while the second set
fit moments of the “average subject’s” responses. For each model, the log likelihood (LL)
and Bayes Information Criterion (BIC) are reported, as well as the Bayes factor K by which
each model is preferred to the unrestricted model.

the restrictions of the bounded symmetric affine model, and in addition requires that βp = 0
for all p ≥ p∗. The most restrictive case is the “no stake effects” model that requires that
βp = 0 for all p. Note that our model of optimal bidding implies that all of the restrictions
of the bounded symmetric affine model should hold. We consider other models, however, in
which some but not all of these restrictions are imposed, in order to study the particular
ways in which our data do or do not conform to the predictions of our theoretical model.
And we also consider more restrictive models in which βp is required to equal zero for all
large enough p, in order to provide quantitative measures of the importance of allowing for
stake effects in order to match our data.

Table 1 reports measures of the goodness of fit of each of these models to the data on
the responses of our subjects. The upper section of the table uses the pooled data from all
24 subjects to estimate the parameters of each of the model. Given that each of the models
assumes a log-normal distribution of responses (3.6), the likelihood of the data under any
specification of the model parameters is a function of 220 data moments: the quantities
(m̂j, v̂j) for each of the 110 possible lotteries (pj, Xj). Here for each lottery j, m̂j is the mean
and v̂j the variance of the sample distribution of values for logWTP. The likelihood also
depends on Nj, the number of trials on which lottery j is evaluated. (See the Appendix,
section C, for further details.) The parameters of each model are chosen to maximize the
likelihood of these data moments, subject to the restrictions specified above.
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The first column of the table reports the maximized value of the log likelihood (LL)
for each model.45 As one would expect, each successive additional restriction on the model
reduces the optimized value of LL. The second column instead reports the value of the Bayes
Information Criterion (BIC) for each model, defined as BIC ≡ −2LL+

∑
k logNk, where for

each free parameter k of the model, Nk is the number of observations for which parameter k
is relevant.46 This is a measure of goodness of fit which (unlike LL alone) penalizes the use
of additional free parameters, making it possible for a more restrictive model to be judged
better (as indicated by a lower BIC). The final column provides an interpretation of the BIC
differences between the different models, by reporting the implied Bayes factor K by which
the model in question should be preferred to the unrestricted model (used as the baseline).47

While the log likelihood is lower for more restrictive versions of the model, the BIC is
lower — the greater parsimony more than outweighs the closeness of fit to the individual data
moments — and as a result the more restrictive models have Bayes factors much greater than
1. In particular, the bounded symmetric affine model, imposing all of the general restrictions
implied by our model of logarithmic coding, has a larger Bayes factor than any of the less-
restrictive models; thus the data are more consistent with a characterization of this form.

When we consider additional restrictions on the βp coefficients, we find that the BIC can
be further reduced (and the Bayes factor corresponding increased) by imposing the restriction
for all large enough values of p; the largest Bayes factor is obtained if we set βp = 0 for all
p ≥ 0.9. These are not restrictions implied by our model, which implies that βp < 0 for all p.
However, the fact that our data do not indicate values of βp much lower than zero for high
values of p (so that the greater parsimony of a model in which the zero coefficient is imposed
for these values of p results in a lower BIC) does not disconfirm our model; for the model is
consistent with these coefficients being only slightly negative, as we show below. The more
important observation is that the data are not consistent with an assumption that βp = 0
for all values of p, so that there are no stake-size effects at all. The best-fitting atheoretical
model is one in which βp is negative at least for low values of p.

The lower section of Table 1 reports similar measures of model fit for the same set of
atheoretical characterizations of the data, but when instead of using the pooled data, we
fit the models to the data for the “average subject.” This means that for each lottery j,
the value of m̂j used to compute the likelihood of the data is the mean across subjects of
each subject’s mean logWTP for that lottery; the value of (v̂j)1/2 used is the mean across
subjects of each subject’s standard deviation; and the value of Nj used is 8 (the number
of times that each subject values a given lottery). We reach similar conclusions about the

45In all of the numerical results reported, “logarithm” means the natural logarithm. The value of LL
reported here takes account not only of the likelihood of subjects’ responses given the lottery (pi, Xi) with
which they are presented on each trial i, but also of the likelihood (under the estimated priors) of being
presented with the sequence of lotteries {(pi, Xi)}. The reason for including the likelihood of the lottery
data under the estimated priors is to allow comparability of these LL measures with the one reported in
the case of the optimal bidding model (discussed further below). This definition simply adds a constant to
the reported value of LL for each of the atheoretical models, so it does not affect our maximum-likelihood
parameter estimates or any of the model-comparison statistics for choosing between the different possible
atheoretical models.

46See, for example, Burnham and Anderson (2002), p. 271.
47The Bayes factor in favor of model M2 over model M1 is given by logK = (1/2)[BIC(M1)− BIC(M2)].

See Burnham and Anderson (2002), p. 303.
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Figure 4: The coefficients {αp, βp} of the best-fitting symmetric affine model, estimated
separately for each of our 24 subjects, and plotted as a function of p for each subject. The
heavy curves indicate the median coefficients for each of two groups of subjects: the 12 who
each completed 400 trials, and the 12 who each completed 640 trials.

relative goodness of fit of the different models using the “average subject” data, except that
in this case the best-fitting atheoretical model is the bounded symmetric affine model in
which βp = 0 for all p ≥ 0.3.48

Thus our experimental data support the general restrictions implied by our model, though
we find that stake-size effects are notable only in the case of small values of p. The reason
for the magnitude of the stake-size effects to depend on p is taken up in the next section.

3.3 Heterogeneity of Subject Responses

The atheoretical models just considered all assume either that a single set of coefficients
{mj, vj} should describe the valuations of all of our subjects, or that we are only interested
in modeling the behavior of an “average subject.” Yet there is also a fair amount of variation
across subjects in the distribution of values elicited for a given lottery. For example, if we fit a
symmetric affine model to the data for all subjects, but allowing the coefficients {αp, βp} and
the residual variance vj for each lottery to differ for each subject, the estimated coefficients
for the different subjects vary considerably, as shown in Figure 4.

Some of the variation in these estimated coefficients may reflect over-fitting, given the
small number of observations for each subject-lottery pair. However, even if we pool the 12
subjects who evaluated 400 lotteries in their session in one group, and the 12 subjects who
evaluated 640 lotteries in another group,49 and only allow the coefficients to differ between

48The bottom line of the table also reports measures of the goodness of fit for a model that imposes the
further restrictions implied by our complete model of optimal bidding, discussed further below.

49As explained in the Appendix, section D.1, the two groups do not differ only in the number of questions
that they were required to answer (which might have resulted in differences in the degree of fatigue or
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the two groups, we find evidence of heterogeneity in the behavior of the two groups.
While there is clearly variation in lottery valuations across subjects, we note that the

general patterns of behavior identified in the pooled data (and in the data for the “average
subject”) hold also at the individual level, in most cases. In particular, we find stake-size
effects (βp ̸= 0) in the case of the majority of our subjects, and in most cases the theoretical
prediction that −1 < βp < 0 holds (or is not clearly rejected) for all p. This is especially
true in the case of the subjects who undertook 640 trials over the session; in this group βp

remains well below zero for the majority of subjects over the entire range of values for p.
We also observe a fairly consistent pattern across subjects in how both coefficients vary

with p: αp is larger (meaning a greater tendency toward risk-seeking in the gain domain and
risk-aversion in the loss domain) for smaller values of p, and βp is more negative (meaning
more pronounced stake-size effects) for smaller values of p. In the next section, we discuss
what our theoretical model predicts about the way in which these coefficients should vary
with p.

Finally, we also note a consistent pattern in the difference between the responses of
subjects in the two groups: for all values of p, αp tends to be larger, and βp more negative,
in the case of the subjects who undertook more trials. As we discuss below, this difference
can be explained by our theoretical model, if we suppose that the longer session resulted in
noisier internal representations in the case of the latter subjects.

4 Quantitative Implications of Endogenous Precision

We now discuss the further implications of our model, in the case of our specific assumptions
about noisy encoding of information about the relative probabilities of the two outcomes,
and about the way in which the precision of magnitude encoding depends on the perceived
probabilities.

4.1 The Optimal Precision of Magnitude Encoding

We have derived above the optimal log-normal distribution of bids C in the case of internal
representations (rp, rx), in the case of any given assumption about the precision of encoding
of information about both p and |X|, including an arbitrary assumption about how ν2

x may
depend on rp. We now consider how an efficient coding system, subject to a linear cost
of precision of the kind proposed above, would actually require the precision of magnitude
encoding to vary with rp. This allows us to determine how the coefficients (αp, βp) in (3.7)
should depend on p.

Under any assumption about the function ν2
x(rp), we can compute the Bayesian posterior

over possible decision problems (p,X) conditional on a given internal representation (rp, rx).
Given this together with the distribution of bids implied by (3.3), we obtain a joint distribution
for (p,X,C) conditional on the internal representation, and hence a conditional distribution
for the value of the loss measure L defined in (2.7). This allows us to compute the conditional
expectation E[L̃ |r]

concentration). The groups also differ in the values of p used in the lotteries that they evaluated, though
both groups faced both small and large values of p.
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Integrating this over possible realizations of rx (for a given value of rp), we obtain an
expression of the form50

E[L̃ |rp] = Z(rp) − Γφ(rp) · exp(γx(rp)σ2
x), (4.1)

where Γ > 0 is a constant; the functions Z(rp), φ(rp) are each positive-valued, and defined
independently of the choice of ν2

x(rp); and the function γx(rp) depends on ν2
x(rp) in the way

indicated in (3.2). Thus equation (4.1) makes explicit the way in which the expected loss
conditional on a given value of rp depends on the choice of ν2

x(rp). We see that the expected
loss is a decreasing function of γx(rp), and hence an increasing function of the choice of
ν2
x(rp). If there were no cost of precision, it would be optimal to choose ν2

x(rp) as small as
possible, for each value of rp.

Taking into account the cost of precision (2.11), we instead want to choose ν2
x(rp) to

minimize the total loss
E[L̃ |rp] + κ(νx(rp)) (4.2)

associated with the internal representation rp. (The objective (2.12) stated above is just the
expectation of this over all possible values of rp.) Since γx(rp) is a monotonic function of
ν2
x(rp), we can alternatively write the objective (4.2) as a function of γx(rp); let this function
be denoted F (γx(rp); rp).We can then express our problem as the choice of γx(rp) to minimize
F (γx(rp); rp).

We show in the Appendix, section B.2, that under the assumption that σ2
x ≤ 2,51 the

solution to this optimization problem can be simply characterized. If

φ(rp) ≤ A ≡ 2Ã

g̃σ4
x

exp(ν2
c ),

then the solution is γx(rp) = 0,meaning zero-precision representation of the payoff magnitudes.
(In this case the optimal decision rule is based on the prior distribution from which |X| is
expected to be drawn, but no information about the value of |X| on an individual trial.) If
instead φ(rp) > A, the optimal γx is given by the unique solution to the first-order condition

A

(1− γx)2
= φ(rp) exp(γxσ

2
x). (4.3)

Equation (4.3) has a unique solution 0 < γx(rp) < 1 for any rp such that φ(rp) > A; and
this solution depends only on the value of φ(rp). We further show that γx(rp) is an increasing
function of φ(rp), so that the implied value of ν2

x(rp) is a monotonically decreasing function
of φ(rp), with ν2

x(rp) → 0 as φ(rp) is made unboundedly large, and ν2
x(rp) → ∞ as φ(rp) → A

from above.
These results make use of a specific assumption (2.11) about the cost of precision in

magnitude encoding, but are independent of any special assumption about the way in which
information about relative probabilities is encoded. Let us further suppose that the prior over

50See the Appendix, section B.2, for details of the derivation.
51This is the case of interest in our application. In our experiment, the variance of log |X| is approximately

0.26; thus a prior roughly consistent with the actual distribution of magnitudes used in the experiment would
have to have a value of σ2

x much less than 2.
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relative probabilities and the conditional distributions rp|p satisfy the following conditions:
(i) the median of the distribution rp|p is an increasing function of p; and (ii) the posterior
mean E[p |rp] is an increasing function of rp. Then since φ(rp) ≡ E[p |rp]2, the median value
of φ(rp) will be an increasing function of p. It then follows from our results above that the
median value of γx(rp) will be a non-decreasing function of p, and strictly increasing for p in
the range for which the median value of rp satisfies E[p |rp] >

√
A.

This in turn means that the median value of ν2
x(rp) will be a decreasing function of p,

for all p large enough for the median optimal ν2
x(rp) to remain finite.52 Thus the model

predicts that the precision of encoding of the monetary payoff magnitude should be less, on
average, the smaller the probability p that the lottery’s non-zero payoff would be received.
Essentially, the increasing cost of greater precision implies that it is not worthwhile to encode
(or retrieve) the value of |X| with the same degree of precision when the probability of that
outcome being the relevant one is smaller.

This dependence of the precision of magnitude encoding on the value of p has implications
for the predicted degree of trial-to-trial variability in subjects’ bids for different values of p;
but it also has implications for the degree of bias in their mean or median valuations of a
given lottery. It follows from (3.5) that if γx is lower on average for smaller values of p, then
βp should be more negative the smaller is p. Hence stake-size effects should be strongest in
the case of the smallest values of p, as found in our experiment and the other studies cited
in the introduction.

The model also makes quantitative predictions about the way in which the intercepts of
the regression lines shown in the various panels of Figures 2 and 3 should vary with p. If we
measure the intercept by the predicted height of the regression line at a value of |X| equal
to its prior mean, we obtain

αp + βp log E[|X|] = E
[
log E[p |rp]− log p |p

]
− 3

2
ν2
c . (4.4)

In general, this will vary with p, though the way in which the intercept depends on p depends
only on the joint distribution of (p, rp) — thus on the prior over p and the conditional
distributions rp|p — and not on any aspects of the way in which |X| is encoded. In the
absence of any noise in the encoding of p (though an arbitrary degree of imprecision in the
internal representation of |X|), (4.4) implies that the intercept will be a constant, the same
for all p.53 When p is instead encoded with noise, the posterior mean estimate E[p |rp] will
be subject to “regression bias,” as a result of which the posterior mean estimate will mostly
be larger than the true p when p is low, and smaller than the true p when p is high.54 It then
follows that when |X| = E[|X|], the sign of the intercept (4.4) should vary with p in the way
required for the “fourfold pattern” of risk attitudes of Tversky and Kahneman (1992).

Our model therefore explains the existence of Tversky and Kahneman’s fourfold pattern,
if we vary p and the sign of X while maintaining a value of |X| equal to the prior mean.
At the same time, our model also predicts the existence of stake-size effects (βp < 0). This
means that for any value of p and either sign of X, varying |X| over a sufficiently large range

52In the estimated numerical model discussed below, this is true for all of the values p ≥ 0.05 used in our
experiment.

53This constant would furthermore be zero in the absence of response noise.
54See the Appendix, section A, for further discussion of these predicted biases in probability estimation.
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Figure 5: The same data as in Figure 2, but now compared with the predictions of the
optimal bidding model with maximum-likelihood parameter estimates. (Blue: data for the
“average subject.” Red: theoretical predictions.)

should allow one to flip the sign of the DM’s relative risk premium, in a way consistent with
the alternative fourfold pattern of Scholten and Read (2014). (This should be most easily
visible when p is small.) Thus our model is consistent with both of the patterns documented
in the previous literature.

4.2 Conformity of Our Data with the Model’s Predictions

We test the conformity of our “average subject” data with the quantitative predictions of
our model, by finding the values of the three free parameters A, νz, and νc that maximize the
likelihood of the data moments. As in our atheoretical modeling of the data in section 3.2,
we write the likelihood as a function of the moments {m̂j, v̂j} for the various lotteries j, and
the number of trials Nj on which each lottery j is evaluated. This amounts to approximating
the predicted distribution of bids for any lottery, as a function of the model parameters, by
a log-normal distribution.55

The theoretical moments {mj, vj} predicted by our model depend not only on the parameters
(A, νz, νc) specifying the degree of cognitive imprecision on the part of the DM,56 but also on
the parameters (µz, σz, µx, σx) specifying the prior distribution over possible lotteries. Thus

55Recall that we assumed such a log-normal distribution (3.6) in the case of our atheoretical data
characterizations. This is only an approximation in the case of our Bayesian model of optimal bidding on the
basis of noisy internal representations. While the optimal bidding model implies a log-normal distribution
of bids corresponding to each possible internal representation r, there is a probability distribution over
representations r for any lottery j, so that the overall distribution of bids will not be exactly log-normal.
Our log-normal approximation is discussed further in the Appendix, section C.

56Note that the composite parameter A, rather than the quantity Ã appearing in (2.11), is the measure of
the cost of precision in the encoding of numerical magnitudes that can be inferred from our behavioral data.
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Figure 6: Continuation of Figure 5 for probabilities p ≥ 0.50.

we estimate values for all seven parameters, so as to maximize a complete likelihood function
of the data, taking into account both the likelihood of the lottery characteristics presented
on the different trials (under a given parameterization of the prior) and the likelihood of the
subjects’ bids on those trials (given our model of noisy encoding and optimal bidding).

Figures 5 and 6 (presented using the same format as in Figures 2 and 3) show to what
extent the predicted moments match the “average subject” moments when the parameters
are chosen to maximize the (approximate) likelihood function.57 The fit is not as good as
that of the best-fitting affine model, shown in Figures 2 and 3; the maximized log-likelihood
is a good deal lower, as shown on the bottom line of Table 1. However, the optimizing model
has many fewer free parameters than the atheoretical affine model, and the BIC associated
with the optimizing model is much lower than that of the affine model, as is also shown on
the bottom line of Table 1. In fact, the BIC of the optimizing model is well below that of
the best-fitting of the atheoretical models discussed above, namely the restricted version of
the bounded symmetric affine model (with βp = 0 for all p ≥ 0.3). The Bayes factor for the
optimizing model is correspondingly larger (indeed, larger by a factor greater than 1023).

Here we have fit the model parameters to the data moments for an “average subject,”
but as noted above, there is clearly heterogeneity in subjects’ bidding behavior. Such
heterogeneity is not necessarily inconsistent with the hypothesis of an optimal bidding rule,
however, if we suppose that the cognitive noise parameters need not be identical for all
subjects. As an illustration of this, we estimate the model parameters separately for two
different “average subjects,” one based on the 12 subjects who each evaluated 400 lotteries,
and the other based on the 12 subjects who each evaluated 640 lotteries. (We have already
shown in Figure 4 that there is a systematic difference in the bidding by subjects in these
two groups.)

57The maximum-likelihood parameter estimates for the cognitive noise parameters are shown on the
bottom line of the upper part of Table 2.
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Alternative Parameter Estimates
data A ν2

z ν2
c LL LL/N

400-trial avg. subject 0.001 1.21 0.17 -1273.8 -3.195
640-trial avg. subject 0.015 2.54 0.16 -1773.5 -2.830
both average subjects 0.006 2.07 0.16 -3072.3 -2.996
single average subject 0.006 1.98 0.14 -1683.2 -3.283

Alternative Models of Both Average Subjects
model LL BIC K
common parameters -3072.3 6179.3 1
separate parameters -3047.3 6156.8 76,900

Table 2: Alternative estimates of the cognitive noise parameters for the optimal bidding
model, depending which average subjects’ bidding behavior the model is required to explain.
The upper part of the table presents the parameter estimates and a measure of the model’s
ability to fit each set of behavioral moments. The bottom part of the table compares two
alternative uses of the model to explain the joint behavior of the 400-trial and 640-trial
average subjects: one in which separate parameters are estimated for each average subject,
and another in which the parameters are constrained to be the same for both.

The upper part of Table 2 shows how the estimated cognitive noise parameters differ
across four possible versions of our model: a model fit only to the data of the 400-trial
“average subject”; a model fit only to the data of the 640-trial “average subject”; a model
fit to the data moments of the two “average subjects” together, but with a single set of
parameters required to explain the behavior of both; and a model fit to the data moments of
a single overall “average subject” (the model considered on the bottom line of Table 1). For
each of these estimation exercises, the maximized LL of the data moments is reported. The
final entry in each row reports the value of LL divided by N , the number of observations in
that dataset. This allows us a measure of the degree to which the optimizing model is able
to fit the average subjects’ behavior that is comparable across the different cases, despite
the differing number of observations that are used to compute LL in the different cases.

We observe that the parameter values that best fit the behavior of the 640-trial average
subject are fairly different from those that best fit the behavior of the 400-trial average
subject: the 640-trial average subject has a much larger cost of precision in magnitude
representation (and hence less precise representations of the monetary payoffs), and noisier
internal representations of the probabilities as well, though the degree of response noise is
similar for both. Moreover, the best-fitting parameters for either of the two groups are fairly
different from those estimated when we require a single set of parameters to fit both average
subjects (third line of the table), or when we fit the model to an average subject that pools
the data from both groups of subjects (the bottom line). However, despite the differences
in the bidding behavior of the two groups, the optimal bidding model does fairly well at
explaining the behavior of each group; the value of LL/N is higher for both of the individual
average subjects than in the fit to the data of a single overall average subject shown in
Figures 5 and 6. The model fits best (in the sense of achieving a high value of LL/N) in
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the case of the 640-trial average subject. This may reflect a greater degree of heterogeneity
within the 400-trial group, which could be due to the fact that they do not all face the same
distribution of values of p.58

The bottom part of Table 2 demonstrates the value of allowing for heterogeneity in the
parameters of the two groups through a formal model comparison. We consider two possible
quantitative models of the 260 data moments consisting of the 100 data moments of the 400-
trial average subject and the 160 moments of the 640-trial average subject. In one model
(the “separate parameters” model), we fit the model separately to the moments of each of
the two average subjects; the best-fitting parameter values for each subject are the ones
shown on the first two lines of the upper part of the table. The LL for this model is just the
sum of the LLs shown on those two lines. In the other model (the “common parameters”
model), we instead require the values of the parameters to be the same for both average
subjects; the best-fitting parameter values for this exercise are shown on the third line of
the upper part of the table. The LL for this model is also taken from the third line in the
upper part of the table.

Since the two models involve different numbers of free parameters, we compare their
degree of fit using the BIC rather than the LL alone. Because the “common parameters”
model is more parsimonious, the difference in the BICs of the two models is not as great
as twice the difference in their LLs. Nonetheless, the “separate parameters” model fits the
data better, even using the BICs as the basis for our judgment. The implied Bayes factor in
favor of the “separate parameters” model (here treated as the baseline) is over 75,000.

Thus we can improve the fit of the model, relative to what is indicated by the fits shown
in Figures 5 and 6, by allowing separate parameters for the two groups of subjects. Moreover,
the nature of the difference in the parameter values for these two groups of subjects makes
a certain amount of sense, given the greater mental fatigue or loss of concentration that
one might expect in the case of the subjects who were required to complete a substantially
longer series of trials. Requiring more trials appears to reduce the precision of the internal
representation of both the probabilities and the monetary payoffs, but with a more dramatic
effect on the representation of the monetary payoffs. Heterogeneity of this kind in our
dataset is quite consistent with our interpretation of departures from risk-neutral bidding as
a response to cognitive noise.

5 Extensions of the Basic Model

Here we briefly discuss how the theoretical model set out in section 2, and analyzed above,
can be extended in straightforward ways that would allow our theory to be compared with
other types of data.

5.1 Subjective Uncertainty and Risk Attitudes

Like us, Enke and Graeber (2022) propose that the fourfold pattern of risk attitudes of
Tversky and Kahneman (1992) can be explained as an efficient response to cognitive noise

58See the Appendix, section D.1, for details. It might be appropriate to model different members of the
400-trial group as optimizing their decision rules for different priors; but we leave this for future investigation.
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that leaves the DM uncertain about the correct valuation of a given lottery. A striking piece
of evidence that Enke and Graeber offer in support of this view is a demonstration that
experimentally elicited estimates of subjects’ degree of uncertainty about how much to bid
correlate with the degree to which their bids deviate from risk-neutral bids — in the direction
predicted by prospect theory, and in each of the four quadrants of Tversky and Kahneman’s
“fourfold pattern.” (That is, greater reported subjective uncertainty is associated with a
larger positive relative risk premium in the gain domain, for all large enough values of p;
with a larger negative relative risk premium in the gain domain, for all small enough values of
p; and so on.) Even more strikingly, they show that the relationship is causal: an exogenous
manipulation that should reduce the precision of subjects’ awareness of the value of p is
shown both to increase reported uncertainty about the value of the lottery and to result in
larger deviations from risk-neutral valuations, again in all four quadrants.

Prospect theory predicts deviations from risk-neutral valuations with these respective
signs, but it doesn’t explain why the size of the deviations should be connected to uncertainty,
or should be changed by Enke and Graeber’s exogenous manipulation of uncertainty. Instead,
our theory implies that observed deviations from risk-neutral valuations should all be attributed
to the way in which it is optimal for subjects to shade their bids owing to the existence of
cognitive noise, so that the predicted deviations should be larger when the cognitive noise
is greater. If we suppose that subjects’ reported subjective uncertainty about their bids
is a monotonic function of the degree to which their bids will vary randomly from trial
to trial on repeated considerations of the same lottery, then our model implies that an
exogenous increase in the imprecision of internal representation of the value of p (an increase
in the parameter ν2

z ) should both increase reported uncertainty and increase the degree
to which the posterior mean estimate E[p |rp] differs on average from the true value of p
— both when the bias is positive and when it is negative.59 This means that exogenous
variation in cognitive noise (especially, noise in the internal representation of probabilities),
whether due to continuing differences in individuals’ cognitive capacities or to differences
across experimental treatments, should result in systematic co-variation between subjective
uncertainty and the strength of measured risk attitudes of the kind that Enke and Graeber
document.

However, this interpretation of the results of Enke and Graeber (2022) depends on
assuming that subjects’ reported degree of subjective uncertainty should be connected to how
unpredictable their behavior is according to our model. Enke and Graeber present evidence
that it is, show that their subjects exhibit greater trial-to-trial variation in their valuations in
the cases where they express greater subjective uncertainty about the right bid on any given
trial (though they examine the issue of trial-to-trial variation in less detail than we do here).
But is such a relationship consistent with our model? The model expounded in section 2
actually says nothing about what subjects’ expressed degree of subjective uncertainty should
be. It assumes that on any single trial, the DM’s decision is based on a single draw of the
internal representation r from a probability distribution of possible representations; this
internal representation is random, according to our model, but not necessarily known to be
random by the DM.60 Our model implies that the decision process will result in different

59See the Appendix, section A, for further analysis of the way in which our theory can explain the findings
of Enke and Graeber (2022).

60It should be recalled that we do not assume that the DM actually consciously carries out the Bayesian
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outcomes upon repeated consideration of the same lottery valuation problem, but that need
not be evident to the DM on any one of those occasions, since we do not assume any ability
to recognize that the same lottery has already been assigned a value previously.

The results of Enke and Graeber indicate that subjects are capable of estimating their
degree of uncertainty in a way that is at least somewhat correlated with the actual degree
of variability of their cognitive process; in addition, it seems that when a change in the
experimental design increases the degree of their cognitive imprecision, they are able both
to recognize this (reporting a greater degree of subjective uncertainty) and to adapt their
decision rule appropriately (changing their measured risk attitude). This requires that
we assume a cognitive process with access to more information than is contained in the
representation (rp, rx) discussed in section 2. One possibility is that in addition to an internal
state parameterized by the two numbers (rp, rx), the DM’s thought processes have access to
other cues about the nature of the decision problem. For example, when the value of p is
revealed in a more complex way (that requires an arithmetic calculation to determine the
value of p), rather than by simply showing a number on the screen, the DM is aware of this
difference — and thus, in addition to being aware of the value of the summary statistic rp,
they are also aware that the parameter ν2

z should be larger. We might then suppose that
they are able to learn how to bid taking into account the cues about the current value of
σ2
z as well as the elements of r, and also able to learn how to answer questions about their

subjective degree of uncertainty using this information.
Alternatively, we might suppose that the elements of the internal representation r are

themselves higher-dimensional. We have justified the cost function (2.11) by supposing that
|X| is actually encoded by a series of independent noisy readings of log |X|, with a cost
proportional to the number of such readings. Our analysis in section 2 assumes that only
the cumulative sum (or average) of these noisy readings is used as an input to the decision
process, so that the information about |X| can be summarized by a single real number,
as assumed in (2.11). But if we assume that the decision process actually has access to
the entire sequence of independent noisy readings, then it should be possible to extract an
estimate of the variability of these readings from one to another, in addition to their average,
and so to have access to an estimate of ν2

x. One might assume the same about the internal
representation of probability information; the normal distribution posited in (2.2) might
represent the distribution of the average of a long sequence of independent noisy readings of
the log odds, and thus one might assume that the decision process should have access to an
estimate of ν2

z in addition to the value of the summary statistic rp.
The interpretation of the results of Enke and Graeber (2022) that we propose here is

similar to their own interpretation of the connection between cognitive uncertainty and
valuation biases. One notable difference, however, is that Enke and Graeber interpret their
elicited estimates of subjects’ uncertainty about lottery values as reflecting metacognitive
awareness of noise in the process by which they combine information about p and X to
produce an estimate of EV (for example, noise in a process of mental multiplication),
that need not be connected to any uncertainty about the values of p and X themselves.

calculations that we explain above; the DM need not be aware of entertaining a particular prior, and
having particular posterior beliefs after conditioning on a noisy internal representation of the current decision
problem, and so on.
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We have instead modeled the sources of cognitive noise as noise in the retrieved internal
representations of p and |X|,61 that are then inputs to the DM’s valuation rule, rather than
any noise in the valuation rule itself (apart from the response noise parameterized by σ2

c ).
We have shown that we can explain the results of Enke and Graeber (at least qualitatively)

on the basis of only the kinds of cognitive noise that we consider. We have also shown, in the
case of our own experiment, that we can identify the separate signatures of the different types
of cognitive noise that we allow for, and estimate the quantitative significance of each one in
an estimated model of our subjects’ behavior. But this does not answer the question whether
computation noise of the kind proposed by Enke and Graeber might not also be important
in explaining the behavior of our subjects. Our model is more parsimonious because of our
neglect of this possibility, but we believe that the question of the extent to which alternative
possible types of cognitive noise can be empirically distinguished deserves further study.

5.2 Choices Between Lotteries

We have presented a theory of how a Bayesian decision maker subject to cognitive noise
should choose the amount that they are willing to pay for a lottery (p,X), when allowed to
freely choose a bid, as in our experiment. Another common experimental design, however,
involves the experimenter presenting the DM with a specific amount of money C that they
can have with certainty, as an alternative to the risky lottery (p,X).

This method has been used in a number of the classic demonstrations of stake-size
effects. One can compare decision problems in which both p and the ratio X/C remain fixed
across problems, but the absolute size of C and X change, and ask whether the probability
of choosing the risky lottery is affected by the change in stake size. Both Hershey and
Schoemaker (1980) and Scholten and Read (2014) use this method, and find that increasing
stake size reduces the probability of choosing a risky gain, but increases the probability of
choosing a risky loss. We wish to consider whether our theory can also explain results of
this kind.

Let us suppose that the features of the risky lottery (p,X) are encoded with noise in the
way specified above; and let us correspondingly suppose that the magnitude of the certain
amount |C| is internally represented by a quantity rc drawn from a distribution of the form

rc ∼ N(log |C|, ν2
c ), (5.1)

by analogy with (2.1). As above, we simplify our analysis by assuming that the quantities
rp, rx, rc are all distributed independently of one another, conditional on the true data
(p,X,C). And we suppose that the DM’s decision can be based on perfect awareness that the
probability of receiving the amount C will be 1, if that option is chosen, just as we assume

61Note that we interpret the random representations (rp, rx) as noisy retrieved values that are accessed
as inputs to the valuation process. Our model does not require that subjects fail to correctly perceive the
numbers that are presented to them on the screen, or even that they must be unable to subsequently answer
questions correctly about the numbers that had been presented. It simply requires that the decision process
not have access to any more precise internal representations of these quantities that might have existed at
an earlier stage of mental processing, or in a part of their brain that is used for symbol-processing.

33



that there are no mistakes about whether gains or losses are at stake.62 Since there is no
variation across trials in the probability associated with the outcome C, or in its internal
representation, the encoding noise parameter ν2

c is assumed to be the same on all trials.
Let us further suppose that the DM must choose between the risky lottery and the certain

amount on the basis of these internal representations (rp, rx, rc) and the common sign of X
and C. The optimal decision rule will depend on the prior distribution over possible decision
problems for which it is optimized. We assume a log-normal prior

log |C| ∼ N(µc, σ
2
c ),

by analogy with (2.9), and as above we simplify by assuming that p, X and C are distributed
independently of one another. The optimal decision rule (that is, one that maximizes the
expected value of the DM’s financial wealth) will then be one that chooses the risky lottery
if and only if

E[p |rp] · E[X |rp, rx] > E[C |rc],

as in Khaw et al. (2021).
Let us consider the case in which X and C are positive (though our results can be directly

extended to the case of losses as well). Then the methods used above allow us to express
the optimal decision rule in the form

log E[p |rp] + (1− γx(rp))µ̄x + γx(rp) · rx > (1− γc)µ̄c + γc · rc, (5.2)

where we define

γc ≡ σ2
c

σ2
c + ν2

c

, µ̄c ≡ µc +
1

2
σ2
c ,

by analogy with the definitions of γx and µ̄x. The probability of choosing the risky lottery,
in the case of a given problem (p,X,C), can then be derived as the probability that inequality
(5.2) will hold when the random variables (rp, rx, rc) are drawn from the conditional distributions
specified in (2.2), (2.1), and (5.1).

As a special case, suppose that the same value of p is used on all trials (as in the
experiment of Khaw et al., 2021), and that the decision rule is optimally adapted to this
prior. In such a case, the posterior mean E[p |rp] is always equal simply to p, the value
used on all trials; and there will be a single value for ν2

x (and hence for γ2
x) on all trials. In

this case, the probability that (5.2) will be satisfied can be computed from the properties
of normal distributions. The predicted probability of choosing the risky lottery in a given
problem is then

Prob[risky] = Φ
(γx logX − γc logC − q

[γ2
xν

2
x + γ2

cν
2
c ]

1/2

)
, (5.3)

where
q ≡ (1− γc)µ̄c − (1− γx)µ̄x − log p

62This assumption is consistent with the model of imprecise internal representation of probability
information (2.2) proposed above. In that model, the case of a certain outcome lies at an infinitely distant
point on the log-odds scale, so that adding a finite-variance Gaussian error term to the true log odds should
yield an internal representation that does not have a positive likelihood under any probability p < 1. Bayesian
inference from such an internal representation would then be equivalent to knowing that p = 1.
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and Φ(z) is the CDF of a standard normal random variable.
If we further assume, as in Khaw et al. (2021), that the degree of imprecision with which

both monetary payoffs X and C are encoded is the same (ν2
c = ν2

x), and also that the degree
of prior uncertainty about both quantities is the same (σ2

c = σ2
x), then γc = γx, and (5.3)

reduces to

Prob[risky] = Φ
( log(X/C)− (q/γ)√

2ν

)
.

In this case, the model implies that there should be no stake-size effects: choice frequencies
should depend only on the ratio X/C, as indeed is true to a good degree of approximation
in the binary choice data of Khaw et al. (2021).

However, it need not always be the case that γc = γx. This assumption makes sense in
the setting of Khaw et al. (2021), since if it is expected that the range of values offered
as certain payoffs C is similar to the range of variation in the expected values pX of the
risky lotteries, then one should expect the variance of logC to be similar to the variance
of log(pX), which is just the variance of logX when (as in their experiment) p is always
the same. But in an experiment in which p varies widely across trials, the same reasoning
should lead one to assume that the variance of logC should be substantially greater than
the variance of logX, and hence that σ2

c > σ2
x.

Then if we continue to assume (purely to simplify discussion) that ν2
x should be independent

of rp, and that ν2
c = ν2

x, we should expect γx < γc < 1. It follows that if we increase stake sizes
for any fixed ratio X/C, then for any internal representation rp, the probability of satisfying
(5.2) will be smaller the larger are the stakes. Then integrating over the distribution of
representations rp that may result from a given true probability p, we find that the probability
of choosing the risky lottery will be smaller the larger are the stakes, for given values of p
and X/C. (Using the same reasoning, but assuming that X and C are both negative, we find
that the probability of choosing the risky lottery should be larger the larger are the stakes.)
Thus the model can (at least qualitatively) explain the existence of stake-size effects of the
kind reported by Hershey and Schoemaker (1980) and Scholten and Read (2014).

If we consider the limiting case in which σc is made unboundedly large (corresponding,
essentially, to a prior under which any value of logC is considered equally likely), then
γc → 1, (1− γc)σ

2
c → (1/2)ν2

c , and (5.2) reduces to

log E[p |rp] + (1− γx(rp))µ̄x + γx(rp) · rx > rc +
1

2
ν2
c ,

or equivalently to
rc < f(rp, rx) + ν2

c ,

where f(rp, rx) is the optimal bidding rule (3.3).
Thus conditional on any noisy internal representation (rp, rx) of the risky lottery, there

is a close connection between the value of C required for the DM to be equally likely to
choose the risky lottery or to decline it, in the binary-choice problem, and the value of C
that will be the DM’s median bid in the lottery-valuation problem.63 It follows that the
stake-size effects observed in our analysis of the lottery-valuation problem are precisely the
ones that should also be observed in binary choices between a risky lottery and a particular

63For all values of (rp, rx), these two values of C differ by a constant multiplicative factor, exp(ν2c ).
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certain amount, in the particular case of extreme agnosticism about the likely value of the
certain amount that will be offered as an alternative. The scale-invariance of choice behavior
observed in the experiment of Khaw et al. (2021) should be expected only in an environment
that makes a different special kind of prior regarding the possible values of C likely, namely,
the case in which prior uncertainty about logC on each trial should be essentially the same
as prior uncertainty about logX.

6 Conclusion

We have shown that a model in which subjects’ bids are hypothesized to be optimal — in
the sense of maximizing the DM’s expected financial wealth, rather than any objective that
involves true preferences with regard to risk, and without introducing any free parameters
representing such DM preferences — can account well for both the systematic biases and the
degree of trial-to-trial variability in our subjects’ data, once we introduce the hypothesis of
unavoidable cognitive noise in their decision process. The model can simultaneously account
for the fourfold pattern of risk attitudes predicted by prospect theory, relating to the effects
of varying payoff probabilities and the sign of the payoffs, and the alternative fourfold pattern
of Hershey and Schoemaker (1980) and Scholten and Read (2014), relating to the effects of
varying payoff magnitudes and the sign of the payoffs. The effects on the sign of the relative
risk premium of varying the terms of a simple lottery along each of these three dimensions
can be explained by a single theory, which attributes departures from risk neutrality in either
direction to the way in which bids should be shaded in order to take account of cognitive
noise. Thus stake-size effects are shown not only to be consistent with the classic effects
emphasized by prospect theory, but even to have the same underlying explanation.

The prediction of stake-size effects is not the only respect in which our theory extends
the predictions of prospect theory. Models in the spirit of prospect theory provide no reason
for either the degree of stake-sensitivity or risk attitudes more generally to co-vary with the
degree of variability of subjects’ responses. Our model, which implies that departures from
risk-neutral valuations should occur only as an adaptation to the presence of cognitive noise,
instead implies that they should be closely connected. The results of our experiment provide
support for this view, since the cases in which one observes the strongest departures from
risk-neutrality (both the kind predicted by prospect theory and stake-size effects) are also
the ones in which trial-to-trial responses are noisiest, namely the low-p lotteries (in both the
gain and loss domains). We believe that future work should pay greater attention to the
way in which apparent preferences co-vary with measures of cognitive imprecision.64

64In addition to the variability of responses across trials in the case of a given decision problem, that we
emphasize in this study, such measures could include the subjective estimates of uncertainty elicited by Enke
and Graeber (2022), or response times as in Alós-Ferrer et al. (2021).
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ONLINE APPENDIX

Khaw, Li, and Woodford,
“Endogenous Cognitive Imprecision and
the Fourfold Pattern of Risk Attitudes”

A A Bayesian Model of the Estimation of Probabilities

or Relative Frequencies

We have remarked in the main text that one justification for our interest in the model (2.2)
for the noisy internal representation of the relative probabilities of the two outcomes derives
from the consistency of such a model with the facts summarized in Zhang and Maloney (2012)
regarding characteristic biases in people’s estimates of probabilities or relative frequencies.

Zhang and Maloney review a wide range of previous experiments requiring subjects
to judge the relative frequency with which two outcomes occur — either when presented
simultaneously (say, a visual image containing many randomly arranged dots of two different
colors) or in sequence (say, a succession of letters that are either of one type or the other).
They show that characteristically, the median estimate p̄ is a function of the true probability
(or relative frequency) p of the form

log
p̄

1− p̄
= γ log

p

1− p
+ (1− γ) log

p0
1− p0

, (A.1)

for some “anchor” or reference probability p0 and an adjustment coefficient that in most
cases satisfies 0 < γ < 1. This implies a “conservative” bias in the estimates: probabilities
are over-estimated when they are smaller than the reference probability and under-estimated
when they are larger; thus in either case they are estimated to be closer to the reference
probability than is actually the case. The reference probability p0 is different in different
experiments, but Zhang and Maloney note that it is typically close to the average of the true
values p used in the experimental trials.

Here we show that the model of Bayesian inference from a noisy internal representation
of relative probabilities of the form (2.2) can explain not only the existence of a conservative
bias, but the existence of a relationship (A.1) that is linear in the log odds, and variation in
the reference probability p0 depending on the range of probabilities p used in the experiment.65

Suppose, as proposed in the main text, that the relative probability (or relative frequency)
of the two outcomes is represented internally in a way that can be summarized by a real
number rp, that on any given trial will be a draw from a probability distribution of the form

rp ∼ N
(
log

p

1− p
, ν2

z

)
,

where p is the true probability or frequency, as indicated by the evidence presented to the
subject.

65Zhang et al. (2020) propose a related model, and fit it to a variety of experimental datasets, though
their model of the noisy coding of probability information is more complex, and their model of estimation
on the basis of the noisy internal representation is not fully Bayesian.

40



Bayesian decoding of this internal representation can only be defined relative to a prior
distribution of true values of p for which the subject’s decision rule has been optimized. A
hypothesis that is convenient for such calculations (and that delivers a linear-in-log-odds
relationship, at least approximately) is to assume a logit-normal prior,

z ∼ N(µz, σ
2
z), (A.2)

where we introduce the notation z ≡ log(p/1 − p) for the log odds. In the case of such a
prior, the posterior distribution for the log odds, conditional on the representation rp, will
be a Gaussian distribution

z ∼ N(µ̂z(rp), σ̂
2
z), (A.3)

where

µ̂z(rp) = µz +

(
σ2
z

σ2
z + ν2

z

)
(rp − µz), σ̂−2

z = σ−2
z + ν−2

z . (A.4)

It is not entirely clear what objective should be maximized by subjects’ responses in the
experiments reviewed by Zhang and Maloney (2012), since the experiments are typically not
incentivized (and of course, one might assume in any event that there should be important
“psychic” benefits from accuracy in addition to any monetary rewards). One simple hypothesis
might be that the subject’s estimate p̂ is the one implied by the maximum a posteriori
(MAP) estimate of the log odds of the event conditional on an internal representation rp
with statistics of the kind proposed above.66 In this case, the model predicts an estimate

p̂(rp) =
eẑ(rp)

1 + eẑ(rp)
, (A.5)

where the estimated log odds are given by ẑ(rp) = µ̂z(rp), the function defined in (A.4). We
obtain the same prediction if instead we suppose that a subject computes an estimate of
the log odds given by the posterior mean value of z, and then converts this into an implied
estimate for p using (A.5).

Then since µ̂z(rp) is a monotonic function, and the estimate for p specified in (A.5) is
also a monotonic function of the estimate for z, the median estimate of p is predicted to be

p̄ = p̂(z) =
eµ̂z(z)

1 + eµ̂z(z)
.

This implies that

log
p̄

1− p̄
= µ̂z(z),

which is a relation of the form (A.1), in which

γ = γ̂ ≡ σ2
z

σ2
z + ν2

z

, log
p0

1− p0
= µz. (A.6)

66This hypothesis is discussed mainly because it allows us a simple closed-form solution. However, in at
least some experimental studies of probability estimation, subjects report their probability estimate in terms
of log odds; see Phillips and Edwards (1966). And Zhang and Maloney (2012) argue that there is reason
to believe that the brain represents probabilities in terms of log odds, so that probability estimates can be
understood as resulting from intuitive calculations in terms of log odds.
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The average estimated log odds would thus be an increasing function of the true log odds,
with a slope less than one, implying a conservative bias. Moreover, the cross-over value is
predicted to be the probability corresponding to log odds of z = µz: the mean of the possible
log odds under the prior. Hence this kind of Bayesian model provides a potential explanation
for the results summarized in Zhang and Maloney (2012).

An alternative behavioral model would assume that subjects’ estimates of p correspond
to the posterior mean value of p (rather than the value of p implied by the posterior mean
value of z); that is, that p̂ = E[p |rp]. In this case, we cannot give an explicit analytical
solution for p̂(rp), but Daunizeau (2017) offers a “semi-analytical” solution which he shows
numerically is quite accurate over a wide range of parameter values. Using this result, the
posterior expected value p̂ can be approximated by the value such that

log
p̂

1− p̂
= αµ̂z(rp), (A.7)

where
α = [1 + aσ̂2

z ]
−1/2 < 1

and a is a constant equal to about 0.368. The median estimate of p should then satisfy

log
p̄

1− p̄
= αµ̂z(z), (A.8)

which is again a relation of the form (A.1), but now with

γ = αγ̂, log
p0

1− p0
=

(
α(1− γ̂)

1− αγ̂

)
µz,

where γ̂ is again defined as in (A.6).
Again we find (to an excellent degree of approximation) that the relationship between p

and the median estimate p̄ should be of the linear-in-log-odds form assumed in the regressions
of Zhang and Maloney (2012). Again the average estimated log odds would thus be an
increasing function of the true log odds, with a slope less than one, implying a conservative
bias; and again the value of the log odds at which the cross-over from over-estimation
to under-estimation should occur is an increasing function of µz (though deviating from
even odds slightly less than does µz). The consistency of these results with the empirical
evidence in Zhang and Maloney (2012) suggests that the model (2.2) of imprecise encoding
of probability information is a realistic one.

Note that in an experiment like that of Enke and Graeber (2022), in which the magnitude
|X| is the same on all trials (with only p and the sign of X differing across trials), a
model of bias in the estimation of probabilities directly implies a model of bias in lottery
valuations. If |X| is the same on all trials, and we assume a decision rule that is optimized
for the distribution of lotteries actually encountered in the experiment, then there can be no
posterior uncertainty about the value of |X|. Then if we ignore the issue of response error
(analyzed in section B.1), the bidding rule that would maximize the DM’s expected financial
wealth will simply be

C = E[p |rp] ·X,

42



so that our model predicts

log
WTP

EV
= log E[p |rp] − log p. (A.9)

Thus the relative risk premium implied by subjects’ bids should (according to our model) be
purely a function of the bias in the optimal Bayesian estimate of p conditional on the noisy
internal representation rp of the relative probabilities.

In the case of a symmetric prior distribution (one in which the relative probabilities
(1 − p, p) are exactly as likely as (p, 1 − p) for all p), we should have µz = 0. Our results
above then imply that p0 should equal 0.5, and that we should observe that subjects’ median
bids should satisfy |WTP | > |EV | for lotteries with p < 0.5 and |WTP | < |EV | for lotteries
with p > 0.5, in either the gain or loss domain, as Enke and Graeber (2022) find.

Moreover, fixing the prior distribution of the probabilities, the size of these biases (i.e.,
the systematic departures from risk-neutral bidding) should depend only on σ2

z , the degree
of imprecision in the internal representation of probabilities. A larger value of σ2

z should
increase σ̂2

z , and as a consequence should lower the value of α. It should also make µ̂z(z)
closer to zero, for any value of z. Hence for both reasons, the median value p̄ of the posterior
mean estimate of p given by (A.8) should be closer to 0.5, for any true p, the larger is
σ2
z . This in turn means that for any p ̸= 0.5, the size of the departure from risk-neutral

bidding implied by (A.9) should be an increasing function of σ2
z . This prediction is consistent

both with the results of Enke and Graeber that show that subjects with higher reported
cognitive uncertainty exhibit larger departures from risk-neutrality (in all four quadrants of
the Tversky-Kahneman “fourfold pattern”), and with their demonstration that interventions
that ought to reduce the precision of subjects’ awareness of the value of p cause them to
exhibit larger departures from risk-neutrality (again in all four quadrants).

We show how these predictions can be extended to the more general case in which there
is cognitive uncertainty about the magnitude |X| of the monetary payoff as well, and also
derive the consequences of taking into account unavoidable response error, in the section
that follows.

B Noisy Coding and Lottery Valuation: Derivations

Here we explain the details of the derivation of the theoretical model sketched in the main
text.

B.1 Implications of Cognitive Noise for Optimal Bidding

To simplify the discussion, we first consider the case of a lottery in which there is a probability
p of obtaining a positive monetary payoff X. The quantities (p,X) that specify the decision
problem on a given trial have noisy internal representations (rp, rx), the conditional distributions
of which are given by

rp|p ∼ N(log(p/1− p), ν2
z ), rx|(rp, X) ∼ N(logX, ν2

x(rp)),

where the function ν2
x(rp) is to be optimized (but is taken as given in this section). Note

that the conditional distribution of rp is independent of the magnitude of X, and that the
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conditional distribution of rx depends on the value of p only through its internal representation
rp. We can view rp as being determined first, in a way that depends only on the value of p;
the internal representation rx is then determined by X, but in a way that can depend on
the already encoded value rp.

The DM’s optimal bid as a function of the internal representation (rp, rx) depends on
the prior distribution from which the true values (p,X) are expected to have been drawn.
We suppose that p and X are independent random variables, with a prior distribution for
X given by

logX ∼ N(µx, σ
2
x).

(The conclusions in this section are independent of what we assume about the prior distribution
for p, other than that the two variables are distributed independently of one another.) Under
the assumption of a log-normal prior for X, the posterior for X is also log-normal. It follows
that

E[X |rp, rx] = exp[(1− γx(rp))µx + γx(rp)rx +
1

2
(1− γx(rp))σ

2
x],

where

γx(rp) ≡ σ2
x

σ2
x + ν2

x(rp)

is a quantity satisfying 0 < γx(rp) < 1 that can be different for each rp. It similarly follows
that

E[X2 |rp, rx] = exp[2(1− γx(rp))µx + 2γx(rp)rx + 2(1− γx(rp))σ
2
x].

As explained in the main text, we assume that the DM’s bid C on a given trial is drawn
from a distribution of possible bids

logC ∼ N(f(rp, rx), ν
2
c ),

where the function f(rp, rx) is to be optimized. Note that we can alternatively write

logC = f(rp, rx) + ϵc, (B.1)

where
ϵc ∼ N(0, ν2

c )

is distributed independently of rp and rx.
We now consider the optimal choice of the function f . For each possible internal

representation (rp, rx), we have a separate optimization problem: choose f(rp, rx) to minimize

E[(C − pX)2 |rp, rx] = E[C2 |rp, rx] − 2E[CpX |rp, rx] + E[p2X2 |rp, rx]
= E[exp(2ϵc)] · exp(2f(rp, rx))

− 2E[exp(ϵc)] · exp(f(rp, rx)) · E[p |rp] · E[X |rp, rx]
+ E[p2 |rp] · E[X2 |rp, rx],

where we have used (B.1) to substitute for C as a function of rp, rx, and ϵc. This is a quadratic
function of exp(f(rp, rx)). Moreover, since

E[exp(2ϵc)] = exp(2ν2
c ) > 0,
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it is a strictly concave function, with a unique minimum when

E[exp(2ϵc)] exp(f(rp, rx)) = E[exp(ϵc)] · E[p |rp] · E[X |rp, rx].

Using the fact that both X and ϵc are log-normally distributed (conditional on rp, rx), we
can express the optimal choice of f as

f(rp, rx) = log E[p |rp] + (1− γx(rp))[µx +
1

2
σ2
x] + γx(rp)rx − 3

2
ν2
c .

When f is chosen in this way, the minimized value of the quadratic function is

E[(C − pX)2 |rp, rx] = exp(2(1− γx(rp))[µx +
1

2
σ2
x] + 2γx(rp)rx) ·{

exp((1− γx(rp))σ
2
x)E[p

2 |rp] − exp(−ν2
c )E[p |rp]2

}
.(B.2)

Substitution of this solution into (B.1) implies that the equation

logC − log(pX) =
(
log E[p |rp]− log p

)
+ (1− γx(rp))[µx +

1

2
σ2
x − logX]

+ γx(rp)[rx − logX] − 3

2
ν2
c + ϵc

gives the predicted value of log(WTP/EV ) in the case of any given lottery (p,X), any given
internal representation (rp, rx), and any given realization of the response noise ϵc. Integrating
over the conditional distributions of the random variables (rp, rx, ϵc) in the case of a given
lottery (p,X), we obtain the prediction that

E[log(C/pX) |p,X] = αp + βp logX, (B.3)

where the coefficients

αp ≡ E
[
log E[p |rp]− log p |p

]
+ (1− γp)[µx +

1

2
σ2
x] −

3

2
ν2
c ,

βp ≡ −(1− γp),

γp ≡ E[γx(rp) |p]

all depend on the value of p but are independent of X. (Note that, among other things, this
solution implies equation (4.4) in the main text.)

Since 0 < γx(rp) < 1 for each possible value of rp, it follows that 0 < γp < 1 for each value
of p, and hence that −1 < βp < 0 for each p. We thus conclude that for any lottery (p,X),
the predicted distribution of values for WTP (i.e., the distribution of the random variable
C in (B.3)) is such that the mean value of log(WTP/EV ) should be an affine function of
logX, with a slope and intercept that can vary with p. Furthermore, for each value of p,
the slope must satisfy −1 < βp < 0. These predictions are tested in the way discussed in the
main text.

In the case that X is negative (the lottery offers a random loss rather than a random
gain), we suppose that p and the magnitude |X| are encoded with noise in the same way
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(and with the same parameters) as is specified above in the case that X is positive. The
optimal bid in this case will obviously be negative; we assume that in the case of a negative
bid C, the absolute value |C| will again be given by the right-hand side of (B.1), just as in
the case of a positive bid. The optimal function f(rp, rx) will then be exactly the same as in
the derivation above. We conclude that the distribution of values for C/pX will be exactly
the same function of p and |X| as in the case where X is positive. In particular, (B.3) will
again hold, except with logX replaced by log |X| on the right-hand side; the coefficients
αp, βp will be the same functions of p as in the case of random gains. This prediction is also
tested in the way discussed in the main text.

B.2 Endogenous Encoding Precision

We turn now to the way in which the coefficients αp, βp are predicted to vary with p. This
depends on what we assume about the noisy encoding of p, and about the prior over values of
p for which the decision rule is optimized; but it also depends on what we assume about how
ν2
x(rp) varies with rp. We suppose that the latter function is endogenously determined, so as
to maximize the accuracy of bidding subject to a cost of encoding precision, as discussed in
the main text.

Note that our model of noisy coding implies that conditional on the value of rp, the
distribution of rx is

rx|rp ∼ N(µx, σ
2
x + ν2

x(rp)),

from which it follows that

2γx(rp)rx|rp ∼ N(2γx(rp)µx, 4γx(rp)σ
2
x).

Thus exponentiation of this variable results in a log-normal random variable, with mean

E[exp(2γx(rp)rx) |rp] = exp(2γx(rp)µx + 2γx(rp)σ
2
x).

Using this result, we can then integrate (B.2) over the possible realizations of rx to obtain

E[L̃ |rp] =
g̃

2
· exp(2(µx +

1

2
σ2
x)) ·

{
exp(σ2

x)E[p
2 |rp] − exp(γx(rp)σ

2
x − ν2

c )E[p |rp]2
}
.

Thus we can write

E[L̃ |rp] = Z(rp) − Γφ(rp) · exp(γx(rp)σ2
x),

where

Γ ≡ g̃

2
exp(−ν2

c ) > 0, φ(rp) ≡ E[p |rp]2 > 0,

and Z(rp) are all positive factors with values that are independent of the choice of ν2(rp).
We thus observe that for any rp, the value of E[L̃ |rp] is a monotonically decreasing function
of γx(rp), and hence a monotonically increasing function of ν2

x(rp).
If the cost of greater precision in the encoding of X is given by

κ(ν2
x) =

Ã

ν2
x

=
Ã

σ2
x

( γx
1− γx

)
,
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then minimization of total costs (counting the cost of precision) requires that for each rp,
the value of γx(rp) be the solution to the problem

min
γx

F (γx; rp) ≡ Ã

σ2
x

( γx
1− γx

)
− Γφ(rp) · exp(γxσ2

x). (B.4)

We further observe that

∂F

∂γx
=

Ã

σ2
x

1

(1− γx)2
− Γφ(rp)σ

2
x · exp(γxσ2

x),

an expression that has a positive sign if and only if

A

(1− γx)2
> φ(rp) exp(γxσ

2
x), (B.5)

where we now use

A ≡ Ã

Γσ4
x

> 0

as an alternative parameterization of the size of the cost of precision. Taking the logarithm
of both sides of the inequality (B.5), we see that

∂F

∂γx
> 0 ⇔ G(γx; rp) > 0,

where we define

G(γx; rp) ≡ logA − logφ(rp) − 2 log(1− γx) − γxσ
2
x. (B.6)

We see from this that F (γx; rp) is a decreasing function of γx at γx = 0 if and only if

A < φ(rp), (B.7)

so that G(0; rp) < 0. We also note that F (γx; rp) is an increasing function of γx as γ → 1
(indeed, increasing without bound). Hence (B.7) is a sufficient condition for the existence of
an interior solution to the problem (B.4) at some 0 < γx < 1. Moreover, the function defined
in (B.6) is a strictly convex function of γx; hence its graph can cross the line G = 0 for at
most two values of γx, and then only if G > 0 at both extremes.

Thus if (B.7) holds, there must be exactly one solution to the first-order condition

G(γx; rp) = 0, (B.8)

an equivalent way of writing condition (4.3) stated in the main text. (Condition (4.3) in
the main text is just the requirement that (B.5) hold as an equality.) In addition, we must
have G < 0 for all smaller values of γx, while G > 0 for all greater values of γx. From this
it follows that the solution to the FOC must be the global minimum of the function F , and
hence the solution to problem (B.4).

We also observe that the value of rp affects this solution only through its effect on the
value of φ(rp); thus we can solve for the optimal γx as a function of the value of φ(rp). When
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φ(rp) satisfies (B.7), so that we have an interior solution to the FOC, we can compute the
derivative of γx with respect to changes in the value of φ(rp) through total differentiation of
the FOC. It follows from (B.6) that

∂G

∂φ
= − 1

φ
< 0,

∂G

∂γx
=

2

1− γx
− σ2

x > 0,

if σ2
x ≤ 2 as assumed in the main text. Then total differentiation of the FOC (B.8) implies

that
dγx

dφ(rp)
= − ∂G/∂φ

∂G/∂γx
> 0.

It follows that the optimal solution for γx will be a monotonically increasing function of
φ(rp), with γx → 0 as φ → A and γx → 1 as φ → ∞. Or equivalently, the optimal solution
for ν2

x will be a monotonically decreasing function of φ(rp), with ν2
x → ∞ as φ → A and

ν2
x → 0 as φ → ∞.
Let us now consider the alternative case in which φ(rp) ≤ A. In this case G ≥ 0 when

γx = 0, and since ∂G/∂γx > 0 (again assuming that σ2
x ≤ 2), it follows that G > 0 for all

γx > 0. This implies that ∂F/∂γx > 0 for all γx > 0, so that the solution to the problem
(B.4) must be γx = 0 in all such cases. Thus we obtain a unique optimal solution for γx (and
hence for ν2

x) for any value of φ(rp). The optimal γx is a non-decreasing function of φ(rp):
constant (and equal to zero) for all 0 ≤ φ(rp) ≤ A, and increasing for all φ(rp) > A.

C Likelihood of the Data under Alternative Models

Let yi be the observed value on any trial i of the variable log(WTP/EV ). The log-likelihood
of the data {pi, Xi, yi} can be expressed in the form

LL =
∑
i

[L1(pi, Xi) + L2(yi |pi, Xi)], (C.1)

where the sum is over the trials in the data set, indexed by i. For each trial, the contribution
L1(pi, Xi) is the log of the likelihood of the subject’s being presented with lottery (pi, Xi)
according to the prior; and L2(yi |pi, Xi) is the log of the conditional likelihood of the (scaled)
response yi, given lottery (pi, Xi), under a given parametric model of bidding behavior. In our
atheoretical models, the parts L1 and L2 are each functions of different sets of parameters:
the parameters of the priors matter only for L1, while the behavioral parameters matter
only for L2. But in our optimal bidding model, instead, the conditional likelihoods L2 also
involve the parameters of the prior, in the way explained in Appendix section B.

We can write (C.1) in the form

LL =
∑
j

NjLj, (C.2)

where the sum is over the different lotteries (indexed by j) used in the experiment, Nj is the
number of trials involving lottery j, and Lj is the average contribution to the log likelihood
from the trials involving that lottery. Each term Lj depends only on the data for trials

48



i ∈ Ij, the set of trials on which (pi, Xi) = (pj, Xj). Thus Lj depends only on pj, Xj, and the
bids {WTPi} for trials i ∈ Ij. We can also further decompose each of the terms LLj in the
same way as in (C.1), writing

Lj = L1(pj, Xj) + L2,j, (C.3)

where

L2,j =
1

Nj

∑
i∈Ij

L2(yi |pj, Xj).

The L1 terms are the same for all of the models that we consider in this paper. Our
specifications (2.9) and (2.10) for the prior imply that

L1(pj, Xj) = −1

2

(
log |Xj| − µx

σx

)2

− log(
√
2πσx) − log(2

√
3σz), (C.4)

for any pj such that

µz −
√
3σz ≤ log

pj
1− pj

≤ µz +
√
3σz. (C.5)

(Here we have omitted certain additive terms in (C.4) that are independent of the assumed
parameter values; these terms have no effect on our judgments about the relative value of LL
under different parameter values, and hence no effect on our maximum-likelihood parameter
estimates or our model-comparison statistics.)

If pj instead falls outside the interval (C.5), i.e., outside the support of the prior (2.10),
given the assumed parameter values, then the prior probability of such an observation is
zero, and L1(pj, Xj) = −∞. Hence in our search for maximum-likelihood parameter values,
we can impose as a constraint that the parameters of the prior must satisfy

µz −
√
3σz ≤ min

j
log

pj
1− pj

, µz +
√
3σz ≥ max

j
log

pj
1− pj

,

where the minimum and maximum are over the set of probabilities used in the experiment.67

Subject to these constraints, we find values of the parameters that maximize the function
LL, using expression (C.4) for the L1 terms.

In each of the atheoretical characterizations of the data considered in Table 1, we assume
a distribution of bids for the lottery (pj, Xj) of the form

yi ∼ N(mj, vj) (C.6)

on each trial i ∈ Ij; the models differ only in the restrictions that they place on the possible
values of the parameters {mj, vj}. In the case of any model of this kind, the average
contribution of each trial involving lottery j to the conditional log-likelihood of the data
is then given by

L2j = − 1

2vj

[
v̂j + (m̂j −mj)

2
]
− 1

2
log(2πvj), (C.7)

67As explained further in Appendix section D.1, these minimum and maximum probabilities are 0.05 and
0.95 respectively.
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where we define the sample mean and variance of the data as

m̂j ≡ 1

Nj

∑
i∈Ij

yi, v̂j ≡ 1

Nj

∑
i∈Ij

(yi − m̂j)
2.

Note that in (C.7), the quantities mj, vj are parameters of the model (the values of which are
estimated to fit the data), while the quantities m̂j, v̂j are data moments. Given the data, the
MLE estimates for the parameters (in the absence of any further restrictions) will depend
only on these moments of the data, and are equal to68

mj = m̂j, vj = v̂j.

Thus in the case of any model parameters {mj, vj}, the value of the log-likelihood LL
can be computed from the data moments {m̂j, v̂j}, using equations (C.2) – (C.4) and (C.7).
This is the method used for the results in Table 1 using “pooled data.” In these calculations,
the common parameters {mj, vj} are assumed to specify a model that applies equally to each
of the 24 subjects in our study. In the second part of Table 1, we instead fit the parameters
of each model to the data moments of a fictitious “average subject.”

If we let {m̂h
j , v̂

h
j } be the sample means and variances of the bids of some subject h (any

of the subjects who express valuations for lottery j), then the data moments used in the
“pooled data” calculations can be written as

m̂j =
1

Nj

∑
h

Nh
j m̂

h
j , v̂j =

1

Nj

∑
h

Nh
j (v̂

h
j + (m̂h

j )
2),

where Nh
j is the number of non-zero bids on lottery j by subject h.69 The data moments of

the “average subject” are instead computed as

m̂avg
j =

1

Nj

∑
h

Nh
j m̂

h
j , (v̂avgj )1/2 =

1

Nj

∑
h

Nh
j (v̂

h
j )

1/2. (C.8)

These are the moments plotted in Figures 2 and 3.
In the calculations reported in the lower part of Table 1, we estimate the parameters

of each atheoretical model so as to maximize the log likelihood of these “average subject”
data. We again compute LL for any model parameters {mj, vj} using equations (C.2) –
(C.4) and (C.7), but substituting {m̂avg

j , v̂avgj } for the data moments in (C.7), rather than
the pooled-data moments {m̂j, v̂j}. We similarly substitute the quantities {Navg

j } for the
quantities {Nj} in (C.2). Here Navg

j is the effective number of observations of bids on lottery
j by the average subject, defined as

Navg
j ≡ 1

Hj

∑
h

Nh
j ,

68This explains our notation for the data moments: m̂j is the MLE estimate of the parameter mj , and v̂j
is the MLE estimate of the parameter vj .

69This can be less than 8 for some subjects, if they bid zero on some trials. See further discussion in
Appendix section D of the exclusion of those trials from our data set.
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where Hj is the number of subjects bidding on lottery j whose data are averaged in order
to define the moments of the average subject.70

In the same way, we estimate the parameters of our optimal bidding model so as to
maximize the log likelihood of the “average subject” data.71 The exact solution to the
optimal bidding model does not imply that a DM’s bids on a given lottery should be
drawn from a log-normal distribution, as specified in (C.6); while (B.1) implies a log-normal
distribution of bids conditional on the internal representation r, when we condition on the
true lottery characteristics (as in our computation of the data moments) rather than on the
unobserved internal representation, the predicted distribution should instead be a mixture
of log-normal distributions. For purposes of model fitting, however, we use a Gaussian
approximation to the model predictions, according to which yi should have a log-normal
distribution as specified in (C.6), the parameters of which are given by the mean and variance
of log yi predicted by the optimizing model. Using this approximation, we can compute an
approximate likelihood of the data under any assumed model parameters, simply on the
basis of data for the first and second moments {m̂avg

j , v̂avgj }.72
Our MLE estimates of the parameters of the optimal bidding model (reported in Table

2) are obtained by maximizing the approximate likelihood function calculated in this way.
The reported values of LL and BIC similarly use the maximized value of the approximate
likelihood function. And finally, the value of LL/N reported in Table 2 actually divides LL
by Navg = N/H, the average number of bids per subject, where H is the number of subjects
whose data are averaged.

The same method is used in Table 2 to compute MLE parameter estimates (and values
for LL and BIC) based on the data for other “average subjects.” For example, in the case of
the 640-trial average subject, we compute data moments for a fictitious subject as in (C.8),
but now the lotteries j for which the moments are computed are only the 80 lotteries used for
subjects in group 5 (the 640-trial subjects), and the sums are only over the subjects h that
belong to group 5.73 In (C.8), Nj is now understood to mean

∑
h N

h
j , where the sum is only

over the subjects in group 5. Finally, in calculating Navg
j , we use the number of subjects in

the 640-trial group for the value of Hj;
74 and in computing LL/N , we use a value Navg that

divides the total number of trials by the 640-trial subjects by the number of such subjects.75

In the case of the 400-trial average subject, we similarly compute moments only for the
100 lotteries that are evaluated by at least some of the subjects in groups 1-4 (the 400-trial

70Note that this is not the same for all lotteries j. The value of Hj varies between 5 (in the case of lotteries
with p = 0.3 or 0.7) and 22 (in the case of lotteries with p = 0.1 or 0.9); see Table 3 below.

71We don’t fit the optimal bidding model to the pooled data, since we don’t think that it makes sense
to attribute the variability of the bids for a given lottery, as measured by v̂j , entirely to randomness of the
trial-to-trial bidding of a single type of subject.

72Use of this approximation is desirable, not simply as a way of simplifying our numerical solution for the
likelihood, but because we have only defined the first and second moments of the “average subject data” —
we don’t have a complete sample of bids by the fictitious “average subject.”

73For the different groups of subjects, and the lotteries evaluated by each group, see Appendix section D.1
below.

74Thus Hj = 12 in the case of the 640-trial average subject, for each of the lotteries on which group 5 bid.
75Note that the number of bids Navg by the 640-trial average subject is not 640, because of the trials on

which subjects in group 5 decline to bid, as discussed further in Appendix section D.3. For the 640-trial
average subject, Navg is actually only equal to 626.67. This is why in Table 2, the number given for LL/N
is not equal to the number given for LL divided by 640.
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group members number of trials values of p
1 1-6 400 0.1, 0.4, 0.6, 0.8, 0.9
2 13-15 400 0.1, 0.3, 0.5, 0.7, 0.9
3 16 400 0.05, 0.1, 0.5, 0.9, 0.95
4 17-19 400 0.05, 0.3, 0.5, 0.7, 0.95
5 7-12, 20-28 640 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95

Table 3: Number of trials and values of p used for different groups of subjects.

subjects), and for each lottery j of this kind, we sum only over the subjects h in the groups
that evaluate lottery j. For each lottery j in this set of 100 lotteries, Hj is the number of
400-trial subjects who evaluate lottery j (which varies across lotteries). Finally, in computing
LL/N , we use a value Navg that divides the total number of non-zero bids by the 400-trial
subjects by the number of such subjects.76

D Experimental Data: Additional Details

Here we offer additional details about the data that we fit to the alternative models discussed
in the main text.

D.1 Probabilities Used in the Lotteries

As explained in the main text, each subject was asked to evaluate a set of lotteries (p,X),
where both p and X are drawn from a finite set of possibilities. Each of the finite set of
values for p (for that subject) was paired with each of the finite set of values for X, and each
of the pairs (p,X) that occurred for a given subject were presented equally often (8 times
over the course of the session). The different lotteries (p,X) were presented in a random
order.

However, the finite set of values p that were used was different for different groups of
subjects, as indicated in Table 3. The subjects are classified in the table as members of one
or another of five groups, according to the set of lotteries presented to them. (One group,
group 3, consists of only a single subject, subject 16.) In the main text, we classify subjects
into two larger groups, the 400-trial subjects (the union of groups 1-4 in Table 3) and the
640-trial subjects (group 5). Note that while the 640-trial subjects all faced the same set of
lotteries, the 400-trial subjects did not; each of these evaluated a set of lotteries using only
five values of p, but the values of p used were different across the four groups of 400-trial
subjects. We do not, however, estimate separate model parameters for the individual groups
of 400-trial subjects, given that (at least in the case of groups 2, 3, and 4) there are only a
few subjects in each group.

Out of the 28 subjects listed in Table 3, four subjects were excluded from the study on
the ground that their responses suggested limited attention to (or misunderstanding of) the
assigned task. These were subjects 9, 10, 11, and 19, discussed further in the next subsection.

76Because the fraction of zero bids is smaller in the case of the 400-trial subjects, as discussed below, this
results in Navg = 398.75, a number only slightly less than 400.
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With these exclusions, we are left with data from 24 subjects, 12 in the 400-trial group and
12 in the 640-trial group.

D.2 Excluded Subjects

We excluded four subjects from use in our analysis, on the ground that their bids seemed
insufficiently sensitive to the data defining each individual lottery for us to think that
they were taking much care to think about the problem presented. To quantify this, we
decomposed the variance of each subject’s bids into two parts:

var[logWTP ] =
∑
j

Nj

N
varj(logWTP ) + var[Ej(logWTP )],

where Ej[·] and varj[·] refer to mean and variance of the distribution of bids associated with
a particular lottery j, and Nj/N is the fraction of all bids by that subject that are for
lottery j. Thus the first term on the right-hand side measures the average variability of the
subjects’ bids for a particular lottery, while the second term measures the variability across
lotteries of the subject’s average bid. Our proposed measure of inattentiveness is then e,
the fraction of the variance accounted for by the first term. (Note that we are not assessing
the correctness of anyone’s bids, or their conformity to any theory, but simply the degree to
which the trial-to-trial variation in their bids is accounted for by the different lotteries that
are presented on different trials.

For each subject, we separately compute the measure e for gain trials and loss trials. We
then retain the subjects in our data set if and only if e < 2/3 for both gain and loss trials.
All except subjects 9, 10, 11, and 19 pass this test.77 We measure e separately for the gain
and loss trials, because some subjects appear to be much more inattentive on one kind of
trials.

Figure 7 gives information about the bidding of each of the four excluded subjects.
Subject 11 is a particularly clear example of inattentiveness: the subject’s distribution of
slider positions is roughly the same for all lotteries, with little evident sensitivity to the values
of either p or X on the given trial.78 This behavior is not inconsistent with our model, of
course, but the model would attribute a very large degree of cognitive noise to this subject’s
internal representations of both p and X, different from those of most other subjects.

Subjects 9 and 19 are instead examples of less apparent attention (or less understanding
of the task) in the case of lotteries involving losses. Both of these subjects differentiate their
bids in a fairly reasonable way in the case of lotteries involving gains. But subject 19 bids
similarly for all lotteries involving losses (regardless of the values of p and |X|), suggesting
confusion about the question asked in the case of lotteries involving losses. Subject 9’s bids
in the loss domain are relatively insensitive to the value of |X|, and while they do depend

77Subject 9 is insufficiently sensitive to the lottery data in the case of the gain trials; subjects 10 and 19
are insufficiently sensitive in the case of the loss trials; and subject 11 is highly insensitive to the lottery
data on both kinds of trials.

78The figure shows the subject choosing bids around $10 in the case of lotteries involving gains, and bids
around -$10 in the case of lotteries involving losses; but this is because of the different way in which we
interpret the subject’s slider position in the two cases. There is not much evidence that the subject pays
attention even to the sign of the payments involved on a given trial.
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Figure 7: Bid distributions for each of the lotteries (as functions of X and p), for each of the
four excluded subjects. Colors indicate the value of p. For each lottery, the dots (connected
by lines for each p) indicate the median bid, and the upper and lower whiskers indicate the
25th and 75th-percentile bids for that subject.

on the value of p, they don’t depend on p in a sensible way: the subject offers to pay more
to avoid a random loss when the probability of the negative outcome is smaller. This again
suggests confusion about the question being asked (perhaps confusion about the significance
of different slider positions in this case).

Finally, subject 10’s bids are somewhat sensitive (and in the reasonable direction) to
the values of both p and |X|, in both the gain and loss domains; but subject 10’s bidding
behavior is noisier than that of the non-excluded subjects. If we fit the optimal bidding
model to the data of subject 10 alone, the estimated cognitive noise parameters are much
larger for subject 10 than for the average subject from among the non-excluded 640-trial
subjects, as shown in Table 4.79 Thus describing the behavior of subject 10 with separate
parameters, rather than considering subject 10 in the group used to define the behavior of
the 640-trial average subject, seems to be appropriate even if one might wish to also consider
the fit of our model to the bidding by subject 10 when assessing the success of the model.80

79The parameter estimates and value for LL/N shown in the table for the average subject from among
the 640-trial subjects (other than subjects 9, 10, and 11) are the same as the ones already reported in Table
2 in the main text.

80With regard to the fit of the optimal bidding model to the data of subject 10: when we allow for subject-
specific parameters, the fit is no worse than the one shown in Figures 5 and 6. The value of LL/N is actually
slightly larger when the model is fit to the data of subject 10, than in the case of the fit to the data of the
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Alternative Parameter Estimates
data A ν2

z ν2
c LL/N

640-trial (exc. 9, 10, 11) 0.015 2.54 0.16 -2.830
subject 10 1.03 6.73 0.21 -3.275

Table 4: Alternative estimates of the cognitive noise parameters for the optimal bidding
model, for the “average subject” based on the data for 640-trial subjects other than subjects
9, 10, and 11, and when the model is fit to the data of subject 10.

Thus we offer the following summary of the differences between the data of the excluded
subjects and those included in the data analyzed in the main text: Two of the excluded
subjects (subjects 10 and 11) bid in a way that is consistent with our model of optimal
bidding in the presence of cognitive noise, but would require larger values of the cognitive
noise parameters to rationalize their behavior than in the case of the included subjects. The
other two excluded subjects (subjects 9 and 19) do not behave in a way consistent with our
model, but seem not to have understood the task (in particular, not to have understood the
lotteries involving losses).

It is notable that the subjects who rate as least attentive according to our e measures
are often the ones in the 640-trial group. Three out of four of the excluded subjects are
from this group; but in addition, among the 15 subjects for whom e > 1/4 when all trials
are considered, 12 are 640-trial subjects. Thus in general, the 640-trial subjects made bids
that respond less precisely to the data presented to them, perhaps because of fatigue or
boredom. This suggestion is also supported by the observation that the estimated cognitive
noise parameters for the 640-trial average subject are larger than those for the 400-trial
average subject.

D.3 Zero Bids

In addition to excluding the bids of four subjects altogether, we also drop the bids of the 24
remaining subjects when the bid is exactly zero (the leftmost possible position of the slider),
since, as explained in the main text, we regard this as declining to bid on that lottery. Here
we provide additional information about the occurrence of these zero bids.

Zero bids were more common among the subjects in the 640-trial group (who, as noted
above, also displayed more signs of inattentiveness in other respects). The 12 non-excluded
640-trial subjects submitted zero bids on a total of 160 trials, or about 2 percent of all trials.
Zero bids were instead relatively rare for the 400-trial subjects, who submitted only 15 such
bids (0.3 percent of their trials).

Zero bids also occurred much more frequently for some lotteries than for others, as shown
by the “heat map” in Figure 8.81 Zero bids are most likely to occur when p or X (or both)
are small. As the figure illustrates, most of the zero bids were submitted for lotteries with
an EV of less than 3 dollars (in absolute value), meaning that the optimal bid would have

“average subject” shown in Figures 5 and 6. (Compare the value on the bottom line of Table 4 with the one
on the fourth line of Table 2.)

81Note that the data shown in the figure are only for the 24 non-excluded subjects.
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Figure 8: The fraction of zero bids for each of the lotteries (X, p) that are presented to
subjects. (Color code is explained by the scale at the right.)

been in the left-most 10 percent of the range of the slider. Many are in cases where the
EV is not much more than a dollar (in absolute value). Zero bids were also somewhat more
common in the case of lotteries involving losses: 60 percent of the zero bids occur in these
cases, even though an equal number of lotteries involving losses and gains were presented to
the subjects.82 Zero bids were especially common in the case of lotteries involving losses and
only a small probability (p = 0.05) of a non-zero loss; in this case, zero bids were submitted
on 8.7 percent of all trials.

We assume that the decision whether to bother to submit a (non-zero) bid is based on
a cursory inspection of the terms of the lottery (p,X). This can be modeled as a decision
rule conditioned on some noisy internal representation of the information (p,X), though the
information used for this first-stage decision need not be the same internal representations
(rp, rx) that are used to choose a non-zero bid in the second stage (when it is reached).
After all, we suppose that declining to submit a bid allows a saving of cognitive effort of
some kind; this might mean not having to retrieve the noisy representations (rp, rx) that are
instead needed if the DM chooses to submit a bid.83

Given the first-stage noisy internal representation and the first-stage decision rule, a DM
has some probability s(p,X) of choosing to submit a non-zero bid on a trial when the lottery
is (p,X).84 The DM’s prior in the second stage (when it is reached) should then depend

82This represents a departure from the symmetry of behavior in the gain and loss domains to which
our data on non-zero bids by the non-excluded subjects largely conform. For example, we have shown in
Table 1 that if the BIC is used as a basis for model comparison, the symmetric model is preferred to the
unrestricted model, and the symmetric affine model is similarly preferred to the general affine model. But
another suggestion that lotteries involving losses are more difficult to value, at least for some subjects, is
provided by the responses of excluded subjects 9 and 19, shown in Figure 7.

83Similarly, we assume two distinct information structures (internal representations), each with a separate
information cost, for the two stages of the decision problem in Khaw et al. (2017).

84An empirical measure of this probability is given by one minus the fraction shown in Figure 8 for each
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on this selection effect. If π(p,X) represents the distribution from which the experimenter
draws values of (p,X), then the DM’s second-stage prior should be given by

π̃(p,X) =
π(p,X)s(p,X)

Eπ[s]
.

However, we simply take the second-stage prior π̃(p,X) as given in our analysis of the
second-stage problem. We estimate the parameters of the second-stage prior so as to fit
as well as possible the empirically observed frequency distribution of lotteries (p,X) that
reach the second stage. Thus the observed pattern of selection of the lotteries for which the
second stage is reached is taken into account, but we have no need (for our purposes here)
to estimate a model of the first-stage decision. That is left for future study.

lottery (p,X).
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