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Abstract 
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We experimentally study a class of participation games, which differ in the number of players, 
the success threshold, and the payoff to not participating. We find that Kalai’s measure captures 
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that the eP equilibrium is played. 
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1 Introduction

Nash equilibrium is a fundamental solution concept in game theory. However, Nash
equilibria differ in the likelihood that they are played. In some games a Nash equilib-
rium is played robustly, i.e., it is viable, while in other games no Nash equilibria are
viable. Kalai (2020) proposes two simple indices—a "formation" index and a "defection"
index—to measure the viability of an equilibrium in a n-player strategic form game. The
formation index of a Nash equilibrium is the minimum number of players, called loyal-
ists, who, when committed to playing their part of the equilibrium, make it a dominant
strategy for each of the remaining players to play their part as well. In other words, the
formation index measures the number of loyalists required to form an equilibrium. An
equilibrium is less viable as the formation index is larger.

The present paper tests the empirical usefulness of Kalai’s viability measure. Is a
Nash equilibrium indeed less likely to be played as the formation index is larger? We
also investigate whether the viability of an equilibrium depends on aspects of the game
which are not accounted for in Kalai (2020)’s viability measure.

Our experiment studies n-player "participation" games, in which players simultane-
ously choose whether or not to participate. A participation game is characterized by
three parameters: the number of players (n), a success threshold (t), and a probability
(k) which governs the payoffs to players who choose not to participate. There are two pos-
sible payoffs: if t+1 or more players participate, then each participating player gets the
"success" payoff; otherwise, each participating player gets the "failure" payoff; players
who do not participate obtain a lottery which gives the success payoff with probability k
and the failure payoff with probability 1−k. A participation game has two pure strategy
Nash equilibria: everyone-participates (eP) and no-one-participates (nP). The forma-
tion index of the eP equilibrium is t. Thus, according to Kalai (2020)’s measure, the eP
equilibrium is less viable as t increases.

We find that the formation index t of the eP equilibrium is empirically a useful mea-
sure of equilibrium viability, holding other aspects of the game fixed: subjects participate
with lower probability in participation games with higher values of t. However, we also
find that the formation index does not capture all aspects of the viability of the eP equi-
librium. In particular, the viability of the eP equilibrium depends on n and k, which do
not enter into the formation index.

Related Literature

Kalai (2020) proposes two viability indices that can be obtained from the character-
istics of a game, the formation and defection indices, which are dual. There are papers
that study notions closely related to the defection index: e.g., fault tolerance (Ben-Or
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et al., 1988; Eliaz, 2002; Gradwohl and Reingold, 2014) and resilience (Abraham et al.,
2006). We experimentally study the empirical usefulness of the formation index which is
indirectly related to the notions above via duality.

To the best of our knowledge, few studies have directly investigated how the charac-
teristics of a game would affect the viability of its Nash equilibria. Li (2017) introduces
the notion of an obviously dominant strategy, and shows experimentally that if a game
has an equilibrium in obviously dominant strategies, then that equilibrium is more likely
to be played than other equilibria. Bartling and Netzer (2016) study robustness of Nash
equilibrium to the presence of externalities not captured by the description of a game.
While both notions above are related to the defection index, these studies do not directly
test the empirical usefulness of the viability indices.

Our paper is related to the literature on coordination games. Following Harsanyi and
Selten (1988)’s introduction of the notion of Pareto-dominant and risk-dominant equilib-
ria, many studies such as Carlsson and van Damme (1993), Cooper et al. (1990), and
Van Huyck et al. (1990) investigate whether the Pareto-dominant or risk-dominant equi-
librium is more likely to be played. More recent contribution to this literature includes
Rankin et al. (2000), Van Huyck et al. (2018), and Duffy and Fehr (2018). Our focus is
different: we study the viability of the Pareto-dominant equilibrium as the formation
index varies.

Participation games are also related to the weakest-link public goods game (Hirsh-
leifer, 1983) and the threshold public goods game (Palfrey and Rosenthal, 1984). In par-
ticular, a participation game with threshold n−1 is a weakest-link public goods game.
Unlike a participation game, the weakest-link game lacks a parameter which varies the
formation index. In the threshold public goods game all the player enjoy the public good
if the threshold is reached, whereas in a participation game only those players who par-
ticipate benefit when the threshold is reached.

2 Theory and Hypotheses

In this section, we introduce basic definitions and examples from Kalai (2020).

2.1 Basic Theory

Let Γ= (N, (A i)i∈N , (ui)i∈N) be a game in strategic form, where N is the set of players
and for each i ∈ N, A i is player i’s set of actions and ui is player i’s utility function. Let
α= (α1, . . . ,αN) ∈ A1×·· ·×AN be a strategy profile. We say α is a best response to strategy
profile β if, for each player i ∈ N we have that ui(αi,β−i)≥ ui(α′

i,β−i) for all α′
i ∈ A i.

Let π= (π1, . . . ,πN) denote an arbitrary fixed focal profile. The strategy profile α is a
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d-defector profile from π if

|{i ∈ N|αi 6=πi}| = d,

i.e., if there are exactly d players in α whose actions are different from π.
Kalai (2020) proposes two indices to measure the viability of an equilibrium, the

defection index and (its dual) the formation index.

Definition 1. The defection index of π, denoted by D(π), is the smallest integer d ∈
{0, . . . , N} such that π is not a best response to some d-defector profile α from π. If π is the
best response to any profile α, then define D(π)= n.

If D(π)= 0, then π is not a best response to itself and thus π is not a Nash equilibrium.
If D(π) ≥ 1, then π is a best response to the 0-defector profile α from π, i.e., it is Nash.
If D(π) = 1, then π is not a best response to some 1-defector profile α from π, i.e., there
is a deviation by a single player such that at least one other player would then find it
optimal to deviate as well. While such a strategy profile π is a Nash equilibrium, it is not
highly viable. At the other extreme, if D(π) = n, then π is an equilibrium in dominant
strategies—for any deviation by n−1 players, it remains optimal for the remaining player
to follow his part of π. Such an equilibrium profile is highly viable.

As D(π) increases, an equilibrium profile π is increasingly viable. It is more resistant
to known deviations by the other players and to uncertainty about whether the other
players will follow their part of equilibrium.

We illustrate the defection index with two examples. The first example, the Party
Line Game, is due to Kalai (2020). The second example, the Participation Game, is due
to Kalai and Kalai (2021).

Example 1. The Party Line Game: Three Democrats and five Republicans simultane-
ously select one of two choices, E and F. The payoff of a player is the number of opposite-
party players whose choice she mismatches. In the divisive equilibrium, Div, all the
Democrats choose F and all the Republicans choose E. Democrats and Republicans ob-
tain payoffs of 5 and 3, respectively.

In the Party Line Game, D(Div) = 2. In particular, if two Democrats deviate to E it
is no longer optimal for Republicans to choose F.1 By contrast, if only a single player—
Democrat or Republican—deviates from Div, it remains optimal for each player to play
their part of Div.

Example 2. The Participation Game: In the n-player Participation Game with thresh-
old t, the players simultaneously choose whether to participate (P) or not (N). The payoff

1Formally, π= (F,F,F;E,E,E,E,E) is not a best response to the 2-defector profile (F,E,E;E,E,E,E,E)
from π.
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of each participant is 1 if the number of participants exceeds t and is 0 otherwise. The
payoff of each non-participant is k, where 0< k < 1. In the everyone-participates equilib-
rium, eP, each player obtains a payoff of 1.

A participation game is defined by a triple (n, t,k). In a n-player participation game,
the defection index of the eP equilibrium is D(eP)= n− t. This is the smallest number of
players who can deviate from eP such that eP is not a best response to the deviation.2 If
n− t−1 or fewer players deviate from eP to N (leaving t+1 or more players choosing P),
it remains optimal for every player to choose P.

Proposition 1 of Kalai (2020) shows that D(π) can equivalently be viewed as the max-
imum number of defectors that π deters. In particular, if one fixes the actions of any
coalition S ⊂ N consisting of n−D(π) players to π(S) := {πi ∈π|i ∈ S}, then in the game in-
duced on the remaining D(π) players the action πi is a dominant strategy for each player
i ∈ N\S.3

This result is easy to see for participation games. Imagine fixing the actions of t
players in the Participation Game (n, t,k) to P. This induces a participation game on the
remaining n− t players. In the induced game, P is a dominant strategy for every player
since a player obtains a payoff of 1 choosing P and obtains k choosing N, regardless of
the actions of the other n− t−1 players.

Kalai (2020)’s second index, the formation index, is defined as follows.

Definition 2. The formation index of π is defined by F(π)= n−D(π).

Kalai (2020) shows that the formation index F(π) has a natural interpretation as the
minimal number of players required to form π. In particular, if one fixes the actions
of any coalition S consisting of F(π) players to π(S), then in the game induced on the
remaining n−F(π) players the action πi is a dominant strategy for each player i ∈ N\S.
This result is easy to see for the Participation Game (n, t,k), where F(eP)= n−D(eP)= t.
If the actions of t players are fixed to P, then P is a dominant strategy for each of the
n− t players in the induced game.

To sum up, an equilibrium π is more viable as D(π) increases or as F(π) decreases.
A higher D(π) implies that π is more resistant to deviations, while a lower F(π) implies
that π is more easily formed.

2.2 The Experimental Game

To evaluate the empirical usefulness of these indices, we study participation games
experimentally. This is an attractive class of games to study since the viability of the eP

2If n− t players deviate to N, then it is no longer optimal for the remaining t players to participate.
3See Kalai (2020) for a formal description of the result, which we describe only informally here.
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equilibrium is determined by a single parameter t, for n fixed. However, we also study
how the viability of equilibrium varies in n, in which case D(π) and F(π) are no longer
dual. Further, we investigate whether the viability of equilibrium depends on k.

The Participation Game (n, t,k) has two-pure strategy—everyone-participates (eP)
and no-one-participates (nP)—equilibria. There is also a unique symmetric mixed-strategy
equilibrium in which each player participates with probability pm which solves

n−1∑
i=t

(
n−1

i

)
pi

m(1− pm)n−i−1 = k.

The formation index of the mixed-strategy equilibrium is n− 1, suggesting that it is
unlikely to be formed.4 Hence, we focus on pure-strategy equilibria. While we frame our
results in terms of the viability of eP we could, equivalently, frame them in terms of the
viability of nP since D(eP)= F(nP) and F(eP)= D(nP).

2.3 Hypotheses

Let p(n, t,k) be the true but unknown probability that a randomly selected player in
the Participation Game (n, t,k) plays P. We use p(n, t,k) as the measure of the viability of
eP, with the equilibrium being more viable as p(n, t,k) increases. It would be equivalent
to measure the viability of eP by the probability that the threshold is reached or by the
probability that eP is played, i.e., everyone participates.

We now describe our hypotheses.

Hypothesis 1. The eP equilibrium is less viable as t increases, i.e., t < t′ implies p(n, t,k)>
p(n, t′,k).

Note that F(eP) does not depend on n or k. The next hypotheses concern whether the
empirical viability of eP depends on n or k.

Hypothesis 2. The viability of the eP equilibrium does not vary with n, i.e., p(n, t,k) =
p(n′, t,k) for n 6= n′.

If we reject Hypotheses 2, it means either F(eP) should be understood to be a measure
of viability for a fixed number of players, or a richer measure of viability is required for
comparing equilibria in games with different n.

An alternative intuitive measure of equilibrium viability is the fraction of players
who must participate to reach the threshold: the eP equilibrium is less viable as the
fraction increases.

4The defection index of the symmetric mixed-strategy Nash equilibrium is 1 since if a single player
deviates from the equilibrium mixture, the best response of each remaining player is a pure strategy.
Furthermore, it is easy to verify that pm is increasing in t and k, but decreasing in n. As we will see later,
our data are inconsistent with these comparative statics.
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Hypothesis 3. The eP equilibrium is less viable as t/n increases, i.e., t/n < t′/n′ implies
p(n, t,k)> p(n′, t′,k).

Kalai (2020)’s measure of viability of the eP equilibrium does not depend on k. Our
last hypothesis concerns whether the empirical viability of eP depends on k.

Hypothesis 4. The viability of the eP equilibrium does not depend on k, i.e., p(n, t,k) =
p(n, t,k′) for k 6= k′.

3 The Experiment

The experiment had three treatments, each with four rounds. The Main treatment
proceeded as follows: In each round, a threshold t of either 4, 8, 12, or 16, was an-
nounced, and then 20 subjects simultaneously decided to participate (P) or not (N). We
call a subject who chose P a participant and a subject who chose N a non-participant.
The payment of each participant was C8 if the number of participants exceeded t and
C0 otherwise. Each non-participant received the lottery that gives C8 with probability
1/2 and C0 otherwise. At each round, they played the same game but with a different
threshold. Subjects received no feedback between rounds, and each subject engaged in
only one treatment.5

This experiment implements the participation game described in Example 2. It is
without loss of generality to assign a utility of 1 to receiving C8 and a utility of 0 to
receiving C0. The expected utility of the lottery is 1/2. Since there are only two outcomes,
C8 or C0, there is no scope for risk preferences to affect equilibrium play.

The Small treatment was the same as the Main treatment except that the group size
and the thresholds were reduced by one half. The Scale treatment differed from the
Main treatment in that each non-participant received C8 with probability 3/4 and C0
otherwise. Table 1 summarizes the three treatments.

Treatment Group Size NP Lottery P Payment Thresholds

Main 20 (8,0.50) 8 or 0 {4, 8, 12, 16}
Small 10 (8,0.50) 8 or 0 {2, 4, 6, 8}
Scale 20 (8,0.75) 8 or 0 {4, 8, 12, 16}

Table 1: Treatments
5To control for order effects, we counterbalanced the order of the thresholds. In the first Main session,

the threshold order was 8–16–12–4. In the second and third sessions, the threshold orders were 16–
12–4–8 and 12–4–8–16, respectively. The same thresholds and orders were used in the Scale and Small
treatments, except that the thresholds were reduced by one half in Small. Since subjects were unaware of
the threshold until it was announced, from a subject’s perspective the thresholds were randomly ordered.
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In the experiment, subjects chose between P or N by clicking a button. We set P
as the default, as illustrated in Figure 1. In particular, P was initially selected and a
subject could choose P by merely clicking the Continue button. Thus, the equilibrium eP
is focal, and we test the viability of eP.6

Figure 1: Screenshot of the Game

One round was randomly selected for payment. In addition to their earning, subjects
also received C5 for participating in the experiment.

4 Results

4.1 Data Summary

Let Yi(n, t,k) denote subject i’s decision when the group size is n, the threshold is t,
and the winning probability of the non-participation lottery is k, where Yi(n, t,k) = 1 if
the subject chooses P and 0 otherwise. We had three sessions for each treatment, and
hence there are 3n observations for each Participation Game (n, t,k). Let Y (n, t,k) denote
the random variable for the number of participation decisions in (n, t,k) over the three
sessions, and let Y (n, t,k) = Y (n, t,k)/3n be the participation rate. Table 2 summarizes
the realized values of these random variables for each (n, t,k).

4.2 Results

In this section, we show the formation index F(eP) is a good measure of the viability
of the eP equilibrium. In particular, the participation probability increases as t de-
creases, holding n and k fixed. We also show that the participation probability depends
on n and k, which is not captured by the formation index.

6Since P was the default, it had "primary salience" according to Mehta et al. (1994). Subjects were not
told that P was the default, and hence P did not have "secondary salience."
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Treatment Obs. Participation Decision Participation Rate
(n,k) 3n Y (n, t,k) Y (n, t,k)

Main
60

t=4 t=8 t=12 t=16 t=4 t=8 t=12 t=16

(20,0.5) 57 54 43 26 0.95 0.90 0.72 0.43

Small
30

t=2 t=4 t=6 t=8 t=2 t=4 t=6 t=8

(10,0.5) 29 28 21 11 0.97 0.93 0.70 0.37

Scale
60

t=4 t=8 t=12 t=16 t=4 t=8 t=12 t=16

(20,0.75) 59 49 30 17 0.98 0.82 0.50 0.29

Table 2: Summary of Data

To test Hypothesis 1, we conduct a one-tailed Fisher’s exact test for every pair of
thresholds within each treatment. In particular, for any two thresholds t and t′ such
that t < t′, we consider the null and alternative hypotheses that

H0 : p(n, t,k)= p(n, t′,k) vs. H1 : p(n, t,k)> p(n, t′,k).

Rejecting the null provides evidence that the participation probability decreases as t
increases from t to t′. There are 60 participation decisions made for each threshold. Un-
der the null hypothesis, the probability that Y (n, t,k) = y, conditional on z participation
decisions in total for thresholds t and t′, is

P[Y (n, t,k)= y|Y (n, t,k)+Y (n, t′,k)= z]=
(60

y
)( 60

z−y
)

(120
z

)
for y ∈ {max{0, z−60}, . . . ,min{60, z}} according to Siegel and Castellan (1988).7 For y ≥
max{0, z−60}, the p-value associated with an outcome Y (n, t,k)= y is

min{60,z}∑
w=y

P[Y (n, t,k)= w|Y (n, t,k)+Y (n, t′,k)= z].

We reject the null hypothesis at the 5 percent significance level if the p-value is less than
0.05. In the Main treatment, for example, we have Y (20,4,0.5) = 57 and Y (20,12,0.5) =
43. Hence for the null hypothesis p(20,4,0.5)= p(20,12,0.5), the associated p-value is

60∑
w=57

(60
w

)( 60
100−w

)(120
100

) ≈ 0.0005.

7Given that Y (n, t,k)+Y (n, t′,k) = z, then Y (n, t,k) must take an integer value between max{0, z−60}
and min{60, z}.
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We reject this null hypothesis at even the 1 percent significance level.
Figure 2 summarizes the data, showing the empirical participation rates for each

threshold and treatment. It also shows the results of tests of the hypothesis that par-
ticipation probabilities are equal at adjacent thresholds. The null hypothesis that these
participation probabilities are the same is rejected for all but two comparisons: the pair
t = 2 and t′ = 4 in the Small treatment and the pair t = 4 and t′ = 8 in the Main treatment.
This null is rejected for every comparison of non-adjacent thresholds.

Part

t

20%

2

40%

4

60%

6

80%

8

∗∗

∗∗∗

Small Treatment

Part

t

20%

40%

60%

80%

4 8 12 16

∗∗∗

∗∗∗

Main Treatment

Part

t

20%

40%

60%

80%

4 8 12 16

∗∗∗

∗∗∗

∗∗

Scale Treatment

Figure 2: Participation Rates by Treatment
∗∗ and ∗∗∗ indicate statistical significance of Fisher’s exact test at the 5% and 1% level, respectively.

We obtain the following result.

Result 1. Participation probabilities decrease in t.

Result 1 shows that F(eP) is a good measure of viability for changes in the threshold.
In particular, as F(eP) increases, the eP equilibrium becomes less viable.

Hypothesis 2 is that the viability of eP does not depend on n. We test this hypothesis
using data from the Main (n = 20) and Small (n = 10) treatments. We consider the null
and alternative hypotheses that

H0 : p(20, t,0.5)= p(10, t,0.5) vs. H1 : p(20, t,0.5) 6= p(10, t,0.5),

for t = 4 and t = 8. Under the null hypothesis that p(20, t,0.5) = p(10, t,0.5), the Pearson
goodness of fit test statistic is

Q = ∑
n∈{10,20}

{
(Y (n, t,0.5)−3np̂)2

3np̂
+ (3n−Y (n, t,0.5)−3n(1− p̂))2

3n(1− p̂)

}
,

where
p̂ = Y (20, t,0.5)+Y (10, t,0.5)

3(20)+3(10)
,
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and it is asymptotically distributed chi-square with 1 degree of freedom. The p-value is
the probability that Q is greater or equal to an observed value.

Figure 3 depicts participation rates in the Main and Small treatments for t = 4 and
t = 8. We cannot reject the null that p(20, t,0.5)= p(10, t,0.5) for t = 4 (p-value of 0.745),
while we reject the null at the 1 percent significance level for t = 8 (p-value<0.001). We
reject the joint null hypothesis that p(20,4,0.5)= p(10,4,0.5) and p(20,8,0.5)= p(10,8,0.5)
at the 1 percent significance level.

Part

t

20%

40%

60%

80%

4 8

∗∗∗

Main (black) and Small (blue) Treatments

Figure 3: Participation Rates for Main and Small
∗∗∗ indicates statistical significance of Pearson’s χ2 test at the 1% level.

Result 2. Participation probabilities depend on n.

Results 1 and 2 established that participation probabilities vary not only with t but
also with n. A natural conjecture consistent with these results is that the participa-
tion probability decreases as the fraction of participants required to reach the threshold
increases. Hypothesis 3 is that the eP equilibrium is less viable as t/n increases. We
consider the null and alternative hypotheses that

H0 : p(n, t,0.5)= p(n′, t′,0.5) vs. H1 : p(n, t,0.5)> p(n′, t′,0.5),

for t/n < t′/n′. Rejecting the null provides evidence in favor of Hypothesis 3.
We conduct a one-tailed Fisher’s exact test for every pair of games such that n 6= n′

and t/n 6= t′/n′. For example, the Participation Game (10,4,0.5) has t/n = 0.4 and it is
paired with the Participation Games (20,4,0.5), (20,12,0.5), and (20,16,0.5) from the
Main treatment. Table 3 shows for the null p(10,4,0.5) = p(20,4,0.5) and alternative
p(10,4,0.5) < p(20,4,0.5) the p-value of the Fisher exact test is 0.543. We do not re-
ject the null. For the null p(10,4,0.5) = p(20,12,0.5) and the alternative p(10,4,0.5) >

11



p(20,12,0.5), the p-value is 0.014. In this case we reject the null in favor of the alterna-
tive. In Table 3, except for two pairs, the null is rejected for each pair-wise comparison.

n = 10
t = 2 t = 4 t = 6 t = 8

t/n 0.2 0.4 0.6 0.8

n = 20

t = 4 0.2 - 0.543 0.002∗∗∗ 0.000∗∗∗

t = 8 0.4 0.253 - 0.020∗∗ 0.000∗∗∗

t = 12 0.6 0.003∗∗∗ 0.014∗∗ - 0.002∗∗∗

t = 16 0.8 0.000∗∗∗ 0.000∗∗∗ 0.015∗∗ -

Table 3: p-values for Fisher Exact Tests
∗∗ and ∗∗∗ indicate statistical significance of Fisher’s exact test at the 5% and 1% level, respectively

Figure 4 compares participation rates in the Main and the Small treatments ordered
by the value of t/n. We cannot reject that participation probabilities are the same in
games with the same ratio t/n, i.e., we cannot reject the null hypothesis that p(n, t,0.5)=
p(n′, t′,0.5) for t/n = t′/n′ against the two-sided alternative. Specifically, for the nulls (i)
p(10,2,0.5) = p(20,4,0.5), (ii) p(10,4,0.5) = p(20,8,0.5), (iii) p(10,6,0.5) = p(20,12,0.5),
and (iv) p(10,8,0.5) = p(20,16,0.5), the associated p-values are 1.000, 0.714, 1.000, and
0.651.

Part

t/n

20%

40%

60%

80%

0.2 0.4 0.6 0.8
Main (black) and Small (blue) Treatments

Figure 4: Comparison between Main and Small
Two-sided Fisher’s exact tests

Taken together, these results establish that participation probabilities are deter-
mined by t/n and are decreasing in t/n.

Result 3. Participation probabilities are determined by t/n and decreasing in t/n.
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Hypothesis 4 is that the viability of eP does not depend on k, i.e., the null and alter-
native hypotheses are

H0 : p(n, t,0.5)= p(n, t,0.75) vs. H1 : p(n, t,0.5) 6= p(n, t,0.75).

We test this hypothesis using the data from the Main and Scale treatments. As in the
tests for Hypotheses 2, we use the Pearson goodness of fit test.

Figure 5 below depicts participation rates in the Main and Scale treatments for each
t ∈ {4,8,12,16}. We reject the null hypothesis that p(20, t,0.5) = p(20, t,0.75) for t = 12 at
the 5 percent significance level (p-value of 0.015) and t = 16 at the 10 percent significance
level (p-value=0.087). We reject the joint null that p(20, t,0.5) = p(20, t,0.75) for all t ∈
{4,8,12,16} at the 5 percent significance level (p-value of 0.021). Hence we obtain the
following result.

Result 4. Participation probabilities depend on k, the winning probability of the non-
participation lottery.

Part

t

20%

40%

60%

80%

4 8 12 16

∗∗

∗

Main (k = 0.5, black) and Scale (k = 0.75, gray) Treatments

Figure 5: Participation Rates for Main and Scale
∗ and ∗∗ indicate statistical significance of Pearson’s χ2 test at the 10% and 5%, respectively.

The measure F(eP) does not depend on k. We find that the empirical viability of
the eP equilibrium varies with k. Figure 5 shows that the participation probabilities
tend to decrease in k. In other words, the formation index does not capture the greater
attractiveness of the strategy N that results from an increase in the winning-probability
of the non-participation lottery.
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5 Discussion and Conclusion

The hypotheses we study can be viewed as hypotheses about the nature of the "iso-
probability" curves that govern the probability that a player chooses to participate (P).
The iso-probability curve for entry probability p̄ in Participation Game (n, t,k) can be
defined as

{(n, t)|p(n, t,k)= p̄}.

Figure 6 below illustrates two examples of iso-probability curves, for a fixed k.8

t

n

p(n, t,k)= p̄
p(n, t,k)> p̄

p(n, t,k)< p̄

t

n

p(n, t,k)= p̄

p(n, t,k)> p̄

p(n, t,k)< p̄

Figure 6: Examples of Iso-Probability Curves

Hypothesis 1, if true, rules out that iso-probability curves are anywhere vertical. It
also implies, as shown in Figure 6, that p(n, t,k) > p̄ for (n, t) that lie below the iso-
probability curve p(n, t,k) = p̄. Result 1 finds support for Hypothesis 1. Hypothesis 2 is
that iso-probability curves are flat, i.e., p(n, t,k) in participation games does not depend
on n. Result 2 rejects Hypothesis 2, thereby ruling out that iso-probability curves are
anywhere flat. Hypothesis 3, if true, implies that iso-probability curves are upward
sloping. Result 3 finds support for Hypothesis 3. It finds, in addition, that the data
is consistent with linear iso-probability curves. Result 4 shows that p(n, t,k) indeed
depends on k and thus a change in k leads to a shift of the iso-probability curves. The
data is consistent with the iso-probability curve for entry probability p̄ shifting down as
k increases.

We find that Kalai (2020)’s formation index is a useful measure of the viability of the
everyone-participates equilibrium as t varies, holding n and k fixed (Result 1). We also
find that Kalai (2020)’s viability indices do not capture all the aspects of a participation
game that affect the empirical viability of equilibrium, e.g., changes in the group size n
(Result 2) or in the winning probability k of the non-participation lottery (Result 4).

8Changes in k potentially shift the iso-probability curves.
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Appendix A. Instructions

Sample Instructions (Main treatment)

Welcome to this experiment. Please read these instructions carefully.
In this experiment you will play the Participation Game for several rounds. Your

earnings will depend on the decisions you make, as well as the decisions of the other
players.

Task: Participation Game

You will play the Participation Game with 19 other players. At the start of each
round, a threshold number T is announced to all the players. You and the other players
then each choose an action: Participate or Not Participate.

Your earnings in the round are determined as follows:

• If you choose Not Participate, then you earn a lottery ticket that gives you 8 Euro
with a probability 0.5 and gives you 0 Euro otherwise.

• If you choose Participate, then you earn 8 Euro if the number of players who
chose Participate, including yourself, is strictly greater than the threshold number
T. Otherwise, you earn 0 Euro.

Payment

At the end of the experiment, one round will be randomly chosen for payment. For
that round, you will learn the number of players who chose Participate and your earning
in the round. Your total payment will be these earnings plus the show-up fee of 5 Euro.
Since each round is equally likely to be selected for payment, it is in your best interest to
take each round seriously.

Comprehension check

Suppose that the threshold is 12, and you chose Participate. If there are 10 subjects
who chose Participate, what is your payoff?
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Appendix B. Procedure

The experimental sessions were conducted in English using subjects recruited from
the Mannheim Laboratory for Experimental Economics of the University of Mannheim.
Due to COVID-19, we did not bring subjects to the lab. Instead, we invited them to join
an online meeting to get announcements from the experimenter and report technical
issues to the experimenter during the session, distributed the unique link for participat-
ing in the online experiment, and paid them via online transfers (either PayPal or bank
transfer) afterward.

Three sessions were conducted for each treatment, and a total of 150 subjects partic-
ipated in one of the nine (= 3×3) sessions. We used an interactive online platform called
LIONESS (Live Interactive Online Experimental Server Software, Arechar et al., 2018).
After the subjects joined an online meeting, the experimenter asks them to turn off the
webcam, remove their profile photos, if any, and rename their displayed names to two
alphabet letters they arbitrarily chose so that their identities, hence decisions, remain
anonymous to the experimenter as well as other subjects. Subjects were asked to read
the instructions displayed on their screens carefully and to pass a comprehension quiz.

The average payment per subject was C10.12. The payments were made via online
transfer after receiving the personal payment code generated at the end of the experi-
ment. Each session lasted less than 30 minutes.
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