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Abstract 
 
We are the first to examine the impact of robotization on work meaningfulness and autonomy, 
competence, and relatedness, which are key for motivation and human flourishing at work. Using 
worker-level data from 13 industries in 20 European countries and OLS and instrumental variables 
estimations, we find that industry-level robotization harms all work quality aspects except 
competence. We also examine the moderating role of routine and cognitive tasks, skills and 
education, and age and gender. While we do not find evidence of moderation concerning work 
meaningfulness in any of our models, noteworthy differences emerge for autonomy. For instance, 
workers with repetitive and monotonous tasks drive the negative effects of robotization on 
autonomy, while social tasks and working with computers - a tool that provides worker 
independence - help workers derive autonomy and competence in industries and jobs that adopt 
robots. In addition, robotization increases the competence perceptions of men. Our results 
highlight that by deteriorating the opportunities to derive meaning and self-determination out of 
work, robotization will impact the present and the future of work above and beyond its 
consequences for employment and wages.  
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1. Introduction 

Robots are becoming increasingly more capable than humans in executing a growing range 
of complex tasks. Smart machines can now perform surgeries, assemble automotive parts, 
distribute packages, and dispense medicine. They are found on factory floors, in restaurants, and 
even on the surface of Mars. This rapidly accelerating wave of automation is arguably one of the 
most powerful forces that will reshape the future of work. 

 
Much of the academic literature and the media have focused on the labor-saving aspects 

of automation and have painted a pessimistic picture for the number of jobs left for humans after 
the introduction of robots. For example, a seminal paper by Frey and Osborne (2017) estimated 
that about 47% of all US occupations could be replaced by machine learning or mobile robotics 
over the next decades. While the potential for automation is not deterministic and does not 
necessarily imply unemployment (Arntz, Gregory, & Zierahn, 2017), the study and the follow-ups 
it spurred for other countries generally painted a bleak future for human workers.  

 
The realization that technology affects particular tasks rather than whole occupations has led 

to substantial revisions of the Frey and Osborne figures (Arntz et al., 2017; Nedelkoska & Quintini, 
2018). For the US and the OECD, the risk of automation is about 9%, ranging from 6% in South 
Korea to 12% in Austria (Arntz et al., 2016).1 When firms adopt technology, workers typically 
adapt their tasks (Dauth, Findeisen, Suedekum, & Woessner, 2021; Spitz-Oener, 2006), which is 
why whole professions typically do not disappear. Therefore, how robotization affects workers’ 
quality of work and which tasks enhance or reduce their well-being at work are pivotal questions.  
Examining the consequences of automation in terms of wages and employment thus paints an 
incomplete picture. This is particularly true because ongoing developments in robot technologies 
and artificial intelligence may imply that the full consequences of the current automation wave are 
yet to unravel.  

 
 An emerging body of literature has explored how the adoption of automated technologies 

affects individual-level outcomes, such as job satisfaction, fear of replacement, and mental health, 
that go beyond wages and employment prospects (see Table 1 for a summary). We substantively 
contribute to this novel body of research by examining how robotization affects workers’ 
perceptions of meaningfulness and the fulfillment of their basic psychological needs of autonomy, 
competence, and relatedness. Finally, we explore heterogeneities in these relationships based on 
the workers’ socio-demographic characteristics (i.e., skills, education, age, gender) and the nature 
of work tasks (i.e., routine, nonroutine cognitive, and nonroutine interactive tasks).  

 
 Our outcome variables are about work meaningfulness and the three core psychological 
needs—autonomy, competence, and relatedness—that form the basis of the self-determination 
theory (SDT) for several reasons. First, based on self-determination theory, autonomy, 
competence, and relatedness are critical to workplace motivation and optimal human functioning 
(Deci & Ryan, 1985).2 Because robots interact with workers’ competencies by changing the nature 
of their tasks and workplace relationships, their adoption can directly affect their sense of self-
determination. Second, work meaningfulness is instrumental in workers’ efforts and has been 
linked to key organizational outcomes such as absenteeism, retirement intentions, and the 

 
1 For example, focusing on data based on the actual tasks of workers, two studies estimated that the risk of automation 
in the US is 9% (Arntz et al. 2016) or 10% Nedelkoska & Quintini, 2018), and not 47%. In addition, Nedelkoska & 
Quintini (2018) found that only 14% of jobs in OECD countries are highly automatable in the sense of having an 
automation probability of over 70%. These estimates, while much lower than those in Frey and Osborne, still imply 
massive potential job losses (e.g., 66 million workers in the 32 OECD countries) that can cause a much larger 
disruption in local economies compared to previous automation waves.  
2 Therefore, we refer to autonomy, competence, and relatedness perceptions as “self-determination variables.”  
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willingness to take on skills training (Nikolova & Cnossen, 2020; Rosso et al., 2010). Finally, paid 
work is a crucial part of people’s lives and takes a large part of the day. Therefore, understanding 
whether and how the adoption of new technologies, such as industrial robots, has the potential to 
make work dull or degrading, or on the contrary, interesting and creative, can provide critical 
insights for job design and job crafting. 
 

Adopting industrial robots in the workplace can affect work meaningfulness and self-
determination through several channels. For example, it can lead to diminishing human 
interactions and worsening relationships at work. Automation can also reduce workers' creativity 
and learning potential and diminish skill utilization and competence development, especially for 
those performing routine or manual tasks. In addition, industrial robots could reduce workers’ 
autonomy if robots and algorithms determine their tasks and work sequence (Gombolay, 
Gutierrez, Clarke, Sturla, & Shah, 2015).  

 
However, robotization is not necessarily detrimental to work meaningfulness and self-

determination. For instance, automation can also reduce “the drudgery of work” by eliminating 
repetitive tasks and freeing up time for creative pursuits (Spencer, 2018), which can improve job 
quality and the ability of workers to satisfy their innate psychological needs from work (Deci & 
Ryan, 2000). For example, by replacing dangerous or dull tasks, robots can improve working 
conditions, which can increase work meaningfulness and self-determination. Indeed, robots are 
already taking over tasks related to high-risk military operations, space explorations, bomb 
detection, and detonation, as well as “dirty” jobs, such as sewer cleanup, milking cows, or 
conducting autopsies (Marr, 2017). Human beings can then have more time and space to focus on 
creative tasks or those that require interaction and human judgment. Thus, the extent to which 
robots affect workers’ perceptions of work meaningfulness and self-determination remains an 
empirical question. 

 
To investigate this question, we use worker-level data from 2010 and 2015 from 20 

European countries and 13 industries. We combine these data with industry-level information on 
changes in robots per 10,000 workers (i.e., robotization) and analyze the data using Ordinary Least 
Squares (OLS) and Instrumental Variable (IV) techniques.  

 
Our key finding is that robots erode work meaningfulness and all aspects of self-

determination except competence. When it comes to competence, robotization enhances the 
competence perceptions of men. Furthermore, the negative consequences of robotization for 
work meaningfulness are regardless of workers’ tasks, skills, and socio-demographic 
characteristics. In other words, robotization negatively and similarly affects workers despite their 
tasks and despite their career stage, gender, and skills.  

 
At the same time, we find important heterogeneity when it comes to self-determination 

outcomes and autonomy in particular. Specifically, working with computers and clients 
substantially cushions or completely offsets the negative consequences of automation for 
autonomy. At the same time, monotonous and repetitive tasks and the dependence on the work 
pace of a machine amplify the already negative effects of automation on autonomy. The negative 
ramifications of robotization for autonomy are also stronger for the lower-skilled, meanwhile. The 
groups that are disproportionately affected based on our research also overlap with those that 
prior studies focusing on wages have identified (e.g., Graetz & Michaels, 2018). We document that 
low-skilled workers suffer less task autonomy above and beyond the negative wages or 
employment effects they incur due to automation.  
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More generally, the value-added of our work is that we document that robotization 
advantages or disadvantages certain workers of groups in terms of their perceived work quality 
above and beyond any consequences that it may have for their wages and employment contracts. 
In addition, we help identify which tasks and arrangements may help workers adapt to technology 
and take advantage of it.   

 
The effects we document are relatively modest, if meaningful. For example, our elasticity 

estimates suggest that a 100% increase in robotization (i.e., doubling) corresponds to a 1% decline 
in work meaningfulness and 0.8% relatedness, and a 2% decline in autonomy. Indeed, rises in 
robotization were high across many industries (Figure 1 and Table A1). Across all industries in our 
sample, the average increase in robotization was 64% in the 2005-2009 period and 28% in the 
2010-2014 period (Figure 1 and Table A1), or 126% for the 2005-2014 period overall. The 
industries with the largest increases included metal, construction, food and beverages, electricity, 
gas, water supply, and mining and quarrying.  

 
There are relatively few robots per worker in some industries, such as education (See Table 

A1 and Figures 1 and 10). Such industries with low levels of robotization can potentially face large 
increases in the future. If the adoption of industrial robots continues to accelerate, the negative 
well-being consequences we document can be substantial. The IFR reports that robot installations 
in Europe declined in 2019 and 2020, though the prediction is that there will be small growth in 
robotization in the European region in the near future (IFR, 2021b). Over a longer time period, 
the increases may be even larger, especially as new technologies related to AI and machine learning 
proliferate.  

 
This suggests that the consequences of robotization for work meaningfulness and self-

determination we find are small but important. Furthermore, our tests on heterogeneity show that 
these effects may vary substantially across tasks, skills, and demographic characteristics of workers, 
where we find even positive effects for some groups.  

 
 
2. Literature Review 

 
The extant literature has mainly focused on robotization’s consequences on employment 

and wages (e.g., Acemoglu & Restrepo, 2020; Borjas & Freeman, 2019; Dauth et al., 2021). For 
example, Acemoglu and Restrepo (2020) show that robot adoption between 1990 and 2007 
corresponds with large declines in employment and wages in US commuting zones. Similarly, 
Borjas and Freeman (2019) estimate that robotization led to wage and employment declines 
between 2014 and 2016 in the US. In China, robot adoption is also negative for employment and 
wages across cities for the 2000-2016 period (Giuntella & Wang, 2019). Nevertheless, recent work 
using data from other countries has challenged this gloomy view of robots in the labor market.  

 
For example, in the German context, Dauth et al. (2021) show that robots improve the 

job security of those already on the job, even though they reduce the demand for young workers. 
Adachi, Kawaguchi, and Saito (2020) found that robot adoption in Japanese industries and regions 
increased employment in the 1978-2017 period. The French evidence on robots and employment 
is also positive (Acemoglu, Lelarge, & Restrepo, 2020; Aghion, Antonin, Bunel, & Jaravel, 2020), 
with no consequences for wages (Acemoglu et al., 2020). Across 17 advanced economies, 
robotization has led to increases in wages but declines in the hours worked among the low-skilled 
(Graetz & Michaels, 2018). Similarly, de Vries et al. (2020) found that robotization decreases the 
employment share of routine manual jobs.  
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Despite the burgeoning literature on robotization, economists have paid little attention to 
its broad job quality ramifications. This is unfortunate because it limits our understanding of 
workers’ perspectives on the issue of how automation affects their job quality beyond wages and 
employment prospects. Nevertheless, the previous literature has focused on information and 
communication technologies and how they affect well-being at work and beyond (see Castellacci 
& Tveito, 2018 for a review).  

 
Table 2 summarizes the extant studies in the literature that examine the effect of 

automation risk and robot adoption on job demands and different well-being outcomes 
(Abeliansky & Beulmann, 2021; Antón Pérez, Fernández-Macías, & Winter-Ebmer, 2021; Lordan 
& Stringer, 2022; Gorny & Woodard, 2020; Patel & Wolfe, 2020; Schwabe & Castellacci, 2020). 
Most of the literature has focused on health outcomes, with only a few papers looking at job 
satisfaction and job quality.  

 
The main conclusion of this emerging research stream is that automation exposure 

negatively affects mental and physical health in the United States. The evidence on the health 
consequences for Germany and Australia is more mixed. Studies link automation to worsened job 
satisfaction in the US and Europe, including Norway, and greater work intensity in Europe. Most 
of these effects are concentrated among low-skilled workers in routine jobs. 

 
First, adopting industrial robots can harm job satisfaction by inducing greater fear of future 

machine replacement. For example, studying a large sample of workers in Norway for the period 
2016-2019, Schwabe & Castellacci (2020) find that introducing industrial robots in local labor 
markets increases workers’ fear of machine replacement, which, in turn, significantly decreases 
their job satisfaction. In fact, 40% of workers in their sample report fear that their working tasks 
will be substituted by smart machines in the future, a number that is similar to other European 
countries. Schwabe & Castellacci’s (2020) results are driven mostly by low-skilled workers, who 
are more likely to engage in routine-based tasks and hence be exposed to automation. 

 
Similarly, Gorny and Woodard (2020), using data from both the US and Europe, show 

that workers in occupations with a higher risk of automation through computer-controlled 
equipment are more likely to experience lower job satisfaction. However, they find that the 
monotonicity and low perceived meaning of such jobs drive low job satisfaction rather than fears 
of future job replacement. Their results suggest that job meaning plays a central role in the 
relationship between robot adoption and subjective well-being outcomes such as job satisfaction. 

 
Second, a related strand of the literature suggests that the adoption of industrial robots 

and automation risk, which come with expectations of reduced wages and higher unemployment 
in the future, can also negatively impact workers’ physical and mental health more generally (e.g., 
Abeliansky & Beulmann, 2021; Lordan & Stringer, 2022; Patel et al., 2018). Specifically, fear and 
anxiety of future job losses associated with the introduction of smart machines can lead to job 
insecurity (Reichert and Tauchmann, 2017). In turn, meta-analytic studies show that higher levels 
of job insecurity can lead to poor physical and mental health outcomes (De Witte et al., 2016).  
Indeed, using data from the General Social Survey in the US, Patel et al. (2018) find that a 10% 
increase in automation risk at the county level is associated with 2.38, 0.8, and 0.6 percentage 
points lower general, physical, and mental health, respectively. 

 
Similarly, using data from the German Socio-Economic Panel, Abeliansky & Beulmann 

(2021) show that workers in industries that experience an increase in the stock of robots are more 
likely to report poorer mental health outcomes due to greater job insecurity. Once again, the results 
tend to be driven by routine task jobs but are also concentrated among males. Nevertheless, using 
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the same German data, Gihleb et al. (2018) found no effects of robotization on psychological 
burdens, work, or life satisfaction.  

 
Finally, one study has examined the effects of robot adoption on job quality and working 

conditions, such as work intensity (e.g., the pace of work, time pressure, etc.), the physical 
environment, and skill and discretion. A recent study by Antón et al. (2020) finds that the increase 
in the robot stock at the regional level is associated with higher work intensity but has no effect 
on any other job quality indicator related to the physical environment. 
 

Our study advances this emerging stream of research by examining the effect of 
robotization on work meaning and self-determination. This is important because recent models of 
sustainable happiness suggest that subjective well-being (e.g., job satisfaction) is a by-product of 
engaging in eudaimonic and growth-promoting activities that help satisfy people’s basic 
psychological needs (Ryan & Deci, 2001; Sheldon & Lyubomirsky, 2021). In other words, the 
variables we study are critical psychological mechanisms that underpin the relationship between 
robotization and key organizational outcomes such as job satisfaction. 
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Table 1: Related Literature 
Reference  Outcome 

variable(s) 
Automation 
measure 

Level of 
analysis 

Main Data Sources Econometric 
technique(s) 

Key findings 

Health 
Patel et al. 
(2018)  

Health (general, 
physical, mental) 

Automation risk 
at the 
occupation level  

US 
county-
level 

Health Rankings (CHR) 2017, 
Frey and Osborne's (2017) occupational 
automation probabilities aggregated 
at the county level using American 
Community Survey (ACS) 
2015, and Statistics of US businesses 2014 

2SLS (instruments = 
surrounding 
counties’ automation 
risk, Chinese 
imports since the 
1990’s) 

Worse likelihood of poor/fair 
health; frequent physical distress; 
frequent mental distress 

Abeliansky 
& 
Beulmann 
(2021) 

Mental health  Robot stock per 
1,000 workers at 
the industry 
level  

Individual-
level 

German Socio-Economic Panel, 
International Federation of Robotics 
(IFR), WIOD trade data, Baumgarten et 
al. (2013) task content data 

Individual Fixed 
Effects; IV 
(instrument = 
robotization in other 
advanced countries)  

W(Schwabe & Castellacci, 
2020)orse mental health; driven by 
job insecurity fears, especially for 
routine-task workers and males.  

Lordan 
and 
Stringer 
(2022) 

Mental health and 
life satisfaction; 
physical health; 
general health 

Job automation 
risk 

Individual- 
level 

Australian panel dataset HILDA 2001-
2018, Autor and Dorn job automation 
classification (Routine Task Intensity) 
index 

Individual panel 
regressions 
(individual, time, 
area, occupation, & 
industry fixed 
effects) 

No effects overall, but in industries 
at high risk of automation => 
worse mental health and life sat. but 
better mental health and life sat. in 
the services industry; heterogeneity 
by socio-demographics  

Gihleb et 
al. (2022) 

Workplace injuries, 
job intensity, 
disability, mental 
health, work, and life 
satisfaction 

Robot stock per 
US worker (for 
the US); Robot 
stock per 
German worker 
based on the 
initial 
occupation 
(German 
sample) 

City-level 
(US), 
Individual-
level 
(Germany) 

Occupational Health and Safety 
Administration (OSHA) Data Initiative; 
Center for Disease Control and National 
Center for Health Statistics; American 
Community Survey (ACS); Behavioral 
Risk Factor Surveillance System 
(BRFSS); German Socio-Economic Panel 
(1994-2016); International Federation of 
Robotics (IFR) 

IV (instrument= 
robot adoption in 
other countries, only 
for the US but not 
for analyses for 
Germany) 

US: declines in workplace injuries; 
increase in drug- and alcohol-
related deaths and worse mental 
health;  
Germany: less physical intensity; 
less disability; no effects on mental 
health and work and life satisfaction 

 
Job satisfaction and job quality 

Schwabe 
& 
Castellacci 
(2020) 

Job satisfaction Fear of machine 
replacement 
 

Individual- 
level 

Norway, 2007-2019, Working Life 
Barometer, International Federation of 
Robotics (IFR), Eurostat employment data 

IV (instrument= 
lagged change in the 
robot stock per 1000 
workers at the 
region-industry 
level) 

Worse job satisfaction; driven by 
low-skilled workers (more exposed 
due to routine tasks). 
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Reference  Outcome 
variable(s) 

Automation 
measure 

Level of 
analysis 

Main Data Sources Econometric 
technique(s) 

Key findings 

Gorny & 
Woodard 
(2020) 

Job satisfaction Automation risk  
 

 

Individual-
level  

General Social Survey (US), European 
Social Survey, Work Orientations IV 
dataset of the International Social Survey 
Programme or ISSP, automation risk from 
Frey and Osborne (2017), Dengler and 
Matthes (2015), Arntz et al. (2016), and 
Manyika et al. (2017) 

Ordered probits Worse job satisfaction; due to 
monotonicity and low perceived job 
meaning driving both 
automatability and low job 
satisfaction. 

Anton et 
al. (2020) 

Job quality aspects 
(work intensity, 
physical 
environment, skills & 
discretion) 

Change in the 
robot stock per 
worker at the 
regional 
(NUTS-2) level  

Regional- 
level 

European Working Conditions Surveys 
(1995-2005), International Federation of 
Robotics (IFR), European Union Labour 
Force Survey, European Community 
Household Panel, EUKLEMS 

IV (instrument = 
change in the robot 
stocks in other 
advanced countries) 

Worsens work intensity;  
No effects on any other job quality 
indicators 
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3. Conceptual Framework  
 

2.1. Meaningful work and self-determination 
 

Work meaningfulness is an important aspect of “subjective” job quality and matters for 
motivation and work effort (Cassar & Meier, 2018; Nikolova & Cnossen, 2020). People derive 
meaning from the intrinsic value of their work when they think they engage in useful, interesting, 
or fulfilling activities. In this sense, work meaningfulness is a psychological state that depends on 
the workers’ perception of their job as valuable and worthwhile (Hackman & Oldham, 1976). 
When people feel that their efforts are important for successfully executing a certain task, they 
tend to strongly identify with that goal. As a result, they are relatively more likely to experience 
meaning compared with a situation when they do not identify themselves with the goal. The 
motivation to experience a sense of meaning at work is so strong that, on average, people are 
willing to accept a 37% salary cut to engage in more meaningful work—$32,666 for a meaningful 
job vs. $52,498 for a meaningless job (Hu & Hirsh, 2017). Experimental studies from the US and 
Germany also demonstrate that work meaningfulness lowers reservation wages (Ariely et al., 2008; 
Kesternich et al., 2021), yet only in the case of high work meaningfulness in the German case 
(Kesternich et al., 2021).  Therefore, work meaningfulness is an important work aspect for many 
individuals, also demonstrated by recent trends related to the Great Resignation and Quiet 
Quitting.  

 
Furthermore, feelings of self-determination are based on three different but 

complementary inputs: competence, autonomy, and relatedness (Deci & Ryan, 1985; Ryan & Deci, 
2017). Workers feel competent when their skills match the complexity of the task. When a task is 
too easy, they feel like anyone could have done it, and when it is too hard, they do not feel they 
contributed anything personally to the final product. Therefore, feeling competent and that one’s 
skills are necessary for the workplace is an important aspect of self-determination. 

  
Second, people feel autonomous when they make decisions regarding the execution and 

planning of the order of tasks. In the job characteristics model, autonomy is about “freedom, 
independence, and discretion” when it comes to scheduling and carrying out the work (Hackman 
& Oldham, 1976). It is about own initiatives and decisions rather than top-down instructions in 
the organization of work.  

 
Finally, according to the self-determination model, people require a sense of belonging: 

they want to feel appreciated and supported by their co-workers and employers in their efforts for 
the company. Such high-quality relationships at work are important for fostering work 
meaningfulness (Bailey, Yeoman, Madden, Thompson, & Kerridge, 2019), especially when it 
comes to the “giving to others” aspects (Colbert, Bono, & Purvanova, 2016). If such appreciation 
and opportunities to assist others fall short, people can become demotivated and experience 
feelings of uselessness: they don’t matter for the final product. The three self-determination 
variables are also key factors that can contribute to creating a sense of work meaningfulness 
(Nikolova and Cnossen, 2020). 
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2.2. Robots, work meaningfulness, and self-determination 
 

An industrial robot is a machine able to “manipulate” its environment by grasping or 
moving objects around it.3 Most of the tasks that industrial robots perform are essentially reaching 
and handling tasks. Examples of robots fitting this definition include manipulators that weld or 
paint cars, load and unload workpieces from factory equipment such as CNC (Computer 
Numerical Control) machine tools and semiconductor fabricators, and move materials and pack 
boxes. Examples of pieces of industrial equipment that are not robots include most machine tools, 
an assembly line conveyor belt, and a flexible manufacturing cell (Webb, 2019).  

 
When adopted in the workplace, robots can alter the tasks performed by human labor. 

Workers’ jobs comprise task bundles (Autor, 2013; Autor, Levy, & Murnane, 2003). “Human” 
tasks overlapping with the capabilities of a robot are susceptible to automation. As robots have a 
comparative advantage in repetitive activities and working with objects, workers with relatively 
routine and manual task-intensive occupations are at greater risk of replacing a large share of their 
tasks (Autor et al., 2003; Webb, 2019). However, due to their pre-programmed nature, industrial 
robots have limited capabilities for executing tasks in unpredictable environments, mostly those 
involving human contact.  

 
Robots still have relatively little capacity to replace cognitive, non-routine, and 

interpersonal tasks. Webb (2019) shows that the patent texts for robotic inventions strongly 
overlap with relatively routine and manual occupations and little with nonroutine cognitive and 
interpersonal occupations. While Artificial Intelligence (AI) technologies might substitute for these 
tasks in the future, (industrial) robots are generally inefficient in performing nonroutine cognitive 
and nonroutine interactive tasks.  

 
Because robots only execute a specific set of tasks, the effect of robots on meaningfulness 

and self-determination is ambiguous: robots replace relatively mundane tasks, and this may 
indirectly give rise to focusing on new, interesting, and more complex tasks (Berg, 2019; Parker & 
Grote, 2020), increasing potential of experiencing meaningful work. In this sense, automation 
could reduce unpleasant, dirty, dull, or dangerous work and free up time to pursue tasks and 
activities that bring freedom and fulfillment – an idea dating back to Karl Marx (Spencer, 2018).  

 
However, if the task replacement is not met with a simultaneous shift towards more 

meaningful tasks, experiences of meaningfulness might decrease. Robots that directly replace tasks 
humans used to perform will reduce that person’s sense of meaning. This may also occur if only 
small tasks that are no longer directly associated with the final product's success remain. Such 
“micro-tasks” bear little meaning in themselves, as they are not connected to a purpose or directly 
useful in and of themselves (Parker & Grote, 2020). Moreover, given that robots may replace 
certain tasks and make way for others, the impact of robots on work design may strongly differ 
between workers in the same workplace.  

 
Similarly, robots may also positively or negatively affect one’s perception of self-

determination. This depends strongly on how robots are introduced in the workplace. For 
instance, autonomy might decrease if one’s workflow becomes dependent on the work-pace of 
the robot. Conversely, if workers can use the robot to their benefit, it might create room for 
autonomous agency and discretion in developing new tasks. Likewise, one’s feeling of competence 

 
3 In this paper, we focus on industrial robots, rather than service robots used, for example, in surgery, or in other 
parts of the service sector. The reason for the restriction is that industrial robots have seen by the far the most 
adoption, whereas the adoption of service sector robots is still in its infancy during our time period.  



 
 
 

11 
 

may increase if relatively mundane tasks are replaced, clearing the way for more skillful tasks. 
However, if the robot substitutes for tasks that a worker takes pride in, and no meaningful tasks 
are introduced, the feeling of competence can decrease. Lastly, if robots are seen as partners at 
work, one’s sense of relatedness might not be compromised. However, relatedness can decrease if 
the robot affects the physical environment in such a way that personal connections are disrupted.  

 
Barrett, Oborn, Orlikowski, and Yates (2012) provide a telling case study highlighting how 

the introduction of a robot may affect workers within the same workplace differently. They show 
that the introduction of a drug-dispensing robot in a hospital pharmacy led to contrasting 
experiences for different workers, depending on how the robot altered their work. First, 
pharmacists indicated that their job had improved due to the increased delivery speed of 
medication, which provided more room for in-depth patient counseling. This made their work 
more interesting – appealing more strongly to their sense of competence – and more interactive, 
increasing their sense of relatedness to their patients.  

 
Second, the assistants to the pharmacist, originally responsible for selecting and delivering 

the medications to the pharmacist, had opposite experiences. Their responsibilities diminished to 
the point where they were only required to load medicine onto the robot, which put the medicine 
in the right place. Their sense of competence decreased, as the original expertise of knowing where 
to shelve which medicine was no longer necessary. Furthermore, they also experienced a decrease 
in autonomy, as the robot now guided where to place each item.  

 
The third group, the technicians, had a yet again different experience. Before the robot 

was introduced, they operated similarly to the assistants. However, with the introduction of the 
robot, their relative position in the organization changed. As the robot often stagnated and the 
technicians were the only workers authorized to fix the problems (even if the assistants knew how 
to), this increased their sense of competence and feeling of status within the organization. 

 
These considerations lead to the following hypothesis: 
 

 H1: The consequences of robotization for work meaningfulness and one’s sense of self-determination 
(autonomy, competence, and relatedness) can be positive or negative.  

 
2.3. The moderating effect of workers’ skills and demographics 

 
As the pharmacy case study shows, robot adoption can significantly impact the experience 

of meaning and self-determination in the workplace. Some workers experience more competence 
as they can focus more on tasks that require their specific human capital (such as fixing the machine 
for the technicians), whereas others experience lower competence because the machine makes 
their expertise and contributions obsolete. Importantly, these changes can occur even within the 
same company and seem to rely on the tasks people perform and their skills. The impact of robots 
on meaningfulness and self-determination is not straightforward and may depend on a worker’s 
tasks, skills, and other personal characteristics.4 

 
We propose three moderating variables: task-, skill-, and demographic-based moderators. 

First, technology adoption (robots and ICT) generally leads to tasks being replaced, augmented, or 
created (Acemoglu & Restrepo, 2016). The extant literature suggests that individuals performing 
tasks comparable to those performed by technology (i.e., routine and manual tasks) are relatively 

 
4 Furthermore, institutional and firm-specific characteristics may also play an important role – but we refrain from 
discussing those factors here. 
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more at risk of seeing task replacement (Autor et al., 2003; Autor, 2013; Acemoglu & Restrepo, 
2019). While these workers may not necessarily be facing unemployment, the fact that robots 
perform some tasks may have implications for workers' work meaningfulness and self-
determination. In addition, workers performing nonroutine cognitive (i.e., analytical and 
interpersonal) tasks face a relatively lower risk of replacement, and higher chances of 
augmentation.  
 

We, therefore, expect that the tasks moderate the effect of robots on the workers’ 
perceptions of work meaningfulness and self-determination. Some of these tasks might be more 
susceptible to replacement (e.g., the assistants placing the medicine in the right place). In contrast, 
other tasks can be augmented by technology (e.g., the pharmacists seeing productivity increases 
due to faster medicine delivery) or can even lead to new tasks altogether (e.g., the technicians 
working on robot maintenance). In the pharmacy example, the assistants’ tasks are mainly 
substitutable due to their routine nature: their tasks are now relatively more repetitive and 
monotonous, affecting their sense of meaningfulness and their fulfillment of psychological needs. 
The pharmacists had more opportunities to interact with clients, increasing the relative importance 
of social-intensive tasks in their jobs – tasks in which humans have a comparative advantage over 
robots. Lastly, the technicians were able to increase their meaningfulness at work, as they were 
able to operate and service the machine. However, they did not depend on the work-pace of the 
machine (unlike the assistants) but rather were involved with trouble-shooting, a relatively 
nonroutine cognitive task.  

 
Generalizing the findings from this case study, we distinguish between two types of task 

characteristics that we use as moderators in our analysis. First, we observe the routine intensity of 
tasks. To measure routine tasks, we use questions on one’s dependence on the work pace of a 
machine, repetitiveness of tasks, and monotonicity. Second, we have information about the 
nonroutine intensity of tasks, which we split into non-routine cognitive and nonroutine interactive. For 
the nonroutine cognitive task, we rely on a variable about whether one has to work on a computer, 
meaning they are in charge of operating and working with the technology. We capture the degree 
of interactivity at work by utilizing information on the respondent’s degree of working with clients.  

 
Second, we conjecture that the effect of robots on meaningfulness and self-determination 

depends on workers’ skill levels. High-skilled workers are more likely to benefit from the 
complementarity between human skills and machines, whereas low-skilled workers face more 
difficulty using robots (Autor et al., 2003; Webb, 2019). Therefore, we also include interactions 
with skill-related variables to see whether skills potentially moderate the effects. We utilize two 
measures of skills – one based on educational attainment and one based on the occupational 
category of the respondent.  

 
Third, demographic characteristics could moderate the effects as well. On the one hand, 

older workers might have more trouble accepting the reality of the machines, but on the other 
hand, they may be less affected by automation if they have survived past automation waves. For 
example, Schwabe and Castellacci (2020) show that older workers positively view technology as a 
force that does not directly threaten their careers but adds positive value to work and society. This 
may be because smart machines substitute for young unskilled workers but complement older 
skilled ones (Sachs & Kotlikoff, 2012), thus possibly increasing the job quality of older workers.  

 
We also explore whether there are gender differences in the relationship between 

automation and work meaningfulness and self-determination. For instance, Aksoy et al. (2020) 
also show that the gender pay gap increases with robotization, and medium- and high-skilled males 
disproportionately benefit from robot exposure. While Aksoy et al.’s (2020) results highlight 
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differences in pay, the fact that robots predominantly increase the productivity of men suggests 
that the impact on their experience of meaningfulness and self-determination might also be more 
positive than for women. 

 
As summarized in Table 2, these considerations form the basis of our analysis and lead 

to our second set of hypotheses: 
 
H2a: Workers’ tasks moderate the impact of robotization on work meaningfulness and self-determination: 

robotization is more likely to strongly negatively affect those performing routine-based tasks (i.e., repetitive or 
monotonous tasks and those depending on the work-pace of a machine), whereas workers with nonroutine-based 
tasks should be positively affected. 

 
H2b: The work meaningfulness and self-determination of highly skilled workers and those with higher 

education are less likely to be negatively affected by robotization than low-skilled and low-educated workers.  
 
H2c: The consequences of robotization for older and younger workers’ work meaningfulness and self-

determination are ambiguous. 
 
H2d: Female workers’ work meaningfulness and self-determination are more likely to be negatively affected 

by robotization in their industry compared with male workers.  
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Table 2: Possible consequences of robots on work meaningfulness and self-determination and example moderators of  

Experiences of: Potential positive consequences of 
robots 

Potential negative effects of robots Moderators of the consequences of 
robotization for work meaningfulness, 
autonomy, competence, and relatedness 

Meaningfulness 
(a sense of doing useful 
and fulfilling work) 

Robots as partners in pursuing a worthy cause, 
increasing efficiency and the successful 
completion of tasks 

Robots replacing tasks, reducing personal 
contribution to the end goal 

 
Technology-enabled “micro-tasks” that lack 

meaning 
 Task-based moderators 

Routine intensity of tasks (repetitiveness, 
monotonicity, and dependency on the work 
pace of a machine)  

 
Nonroutine-cognitive and -interactive intensity 

of tasks (working with computers and 
working with clients) 

 
 
Skill-based moderators 
Level of education 
Occupational skill 
 
 
Individual-level moderators 
Age  
 
Gender 
 

Autonomy  
(a sense of discretion in 
determining the order, 
speed, and methods of 
work) 

Increased room for job crafting and 
autonomous agency if human workers control 
robots 

 
Discretion over the development of new tasks, 

when old tasks are replaced 
 
 

Few opportunities for job crafting due to 
dependence on the workflow of robot 

 
Robot control reduces opportunities for 

exercising judgment and agency 
 
More opportunities for management to monitor 

human work 
 

Competence  
(a sense of having the 
right skills to do one’s 
job, the ability to solve 
unforeseen problems, 
and learning new 
things) 

Replacing “dull, dangerous, and dirty” work 
with cognitively demanding tasks 

 
Creation of new tasks related to operating 

robots, requiring new complex skills 
 

Increased standardization and fragmentation of 
tasks, requiring fewer skills 

 
Replacement of tasks makes corresponding 

human skills obsolete 
 
 

Relatedness  
(a sense of feeling helped 
and supported by your 
co-workers and 
supervisors) 

Robots as colleagues, capable of high-level 
social interaction 

 
Replacement of non-social tasks, increasing 

time for interpersonal contact 
 
 

Workers may interpret task replacement as 
being personally replaceable: reducing the 
feeling of being appreciated 

 
Changes to the physical aspects of work that 

disrupt social connections 

Note: Authors' adaptation based on Smids, Nyholm, and Berkers (2020) and Parker and Grote (2020).
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3. Data and variables 
 
There are two main measures of automation exposure used in the literature. First, one can 

observe the amount of automation technology used in an industry to capture changes in the 
physical work environment. Second, risk automation at the occupational level can be gauged by 
the replaceability of tasks in that occupation, regardless of whether the worker is actually exposed 
to that technology. An example of such a measure is the paper by Frey and Osborne (2017), in 
which a group of experts estimates the potential risk of automation for each occupation by 
observing the overlap between the typical tasks in that occupation and the (expected) capabilities 
of technology.  

 
 Our paper adopts the first method of capturing automation exposure. As such, we relate 

whether an increase in the stock of robots affects one’s individual-level experience at work. We 
further use task-based moderators to account for the type of work people execute, where we select 
those tasks that are commonly seen as either replaceable or augmented by technology.  
 

We combine information from several sources to conduct our empirical analyses and test 
our main propositions. First, we rely on data on the number of operational multipurpose robots 
from the International Federation of Robotics (IFR) for each industry in each country and year. 
The IFR calculates robot stocks assuming a service life of 12 years, implying that the robot is out 
of operation after that. The IFR defines an industrial robot as an “automatically controlled, 
reprogrammable, multipurpose manipulator that is programmable in at least three axes, and either 
fixed in place or mobile and intended for and typically used in industrial automation applications” 
(IFR, 2021a, p. 30). The robotization data have many missing values in the early years, especially 
for countries in Central and Eastern Europe. This is why, like other papers in the literature (e.g., 
(Aksoy, Özcan, & Philipp, 2021); de Vries, Gentile, Miroudot, and Wacker (2020)), we rely on the 
IFR data starting in 2005. Like other studies, we had to impute the data for 2005 for Bulgaria, 
Greece, and Lithuania. In principle, the IFR data go back in time to 1995 for some countries. 
However, they have been consistently available for various countries and industries since 2005.  
 

To calculate robotization per 10,000 workers, we also take data on the number of 
employed persons per industry and country in 2005 from the EU KLEMS. The EU KLEMS 
database is also the source of information on the investments in fixed capital stock in computing, 
communications, computer software, and databases, underpinning our ICT control variable. 
Information for several Eastern European countries in our analysis sample is missing, which is 
why we imputed this information based on the non-missing information from neighboring 
countries.  

 
Finally, we use worker-level data from the European Working Conditions Surveys for 2010 

and 2015 (Eurofound, 2012; 2017). While the EWCS has been conducted every 5 years since 1991, 
we only include surveys from 2010 and 2015 in our analysis because we are limited by the 
robotization measure.  The dataset contains worker-level survey answers collected via face-to-face 
interviews with about 1,000 workers per country. The eligible respondents are those aged 16 and 
older who work at least one hour per week. Different workers are polled each year, and the dataset 
is thus not a panel.  
 

The EWCS dataset is very opportune for our purposes for several reasons. First, the 
surveys ask many detailed questions about workers’ socio-demographics and work characteristics. 
Importantly, the EWCS has the variables we need to construct indices of work meaningfulness, 
competence, autonomy, and relatedness based on the methodology in Nikolova & Cnossen (2020) 
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and Nikolova et al. (2022). Second, the survey elicits information about the industry of 
employment (NACE Rev 2, two-digit), which allows us to merge the information from the IFR 
and EUKLEMS with the EWCS. While the EWCS also has information on work meaningfulness 
and self-determination in 2005 (Nikolova & Cnossen, 2020), the two-digit NACE Rev 2 required 
for merging on the industry level information is only available for 2010 and 2015. We drop 
individuals from the EWCS with missing information on the industry of employment as they 
cannot be merged with the rest of the data.  
 

After merging all the information, we drop individuals with more than one job. Our final 
merged dataset has information on individuals working in 13 industries and 20 countries in 2010 
and 2015. We exclude the “all other non-manufacturing” industry and the armed forces' 
occupation from the analyses.  
 

Table 3 details the construction of the key variables used in the analyses.  
 

3.1. Key Independent Variable: Robotization  
 

Our key regressor is the change in the number of robots per 10,000 workers in each 
industry, country, and year. Following Aksoy et al. (2021), we transformed the robotization 
measure using the inverse hyperbolic sine transformation (IHS). This transformation deals with 
the issue that the distribution of the change in robots is highly skewed. Taking the logarithm is less 
desirable than the IHS because the log transformation does not deal with negative numbers and 
zeros. Other authors in the literature have addressed the skewed distribution of the robotization 
variable by taking the percentile rankings of the industries (de Vries et al., 2020; Graetz & Michaels, 
2018). Nevertheless, this solution is problematic because it over-emphasizes small differences 
between the values at the top of the distribution and under-emphasizes large differences between 
changes in the robotization at the bottom of the distribution (Bekhtiar, Bittschi, & Sellner, 2021). 
The hyperbolic sine transformation is preferable because it is similar to a logarithm but preserves 
zero and negative observations (Bellemare & Wichman, 2020). To ease the interpretation of the 
magnitudes of the estimated coefficient estimates, we calculate and report elasticities.   
 
Specifically, for each industry j in country c and year t:  
 
 

𝑟𝑜𝑏𝑜𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛!,#,$ = 	𝐼𝐻𝑆 . %&'.)*+*$,!,#,$%&
-.,...	0'12*300,	!,#,'(()

− %&'.)*+*$,!,#,$%)
-.,...	0'12*300,!,#,'(()

	0   (1) 

 
 

We define robotization as a change because we are interested in technological change in 
terms of a “shock.” We use a four-year gap to calculate the change between t-1 and t-5 because of 
the 5-year gap between the EWCS survey waves. It is also lagged one year to mitigate reverse 
causality issues and to minimize inconsistencies in terms of when the EWCS data were collected 
and the reference period for the robotization stocks. We use the number of workers in 2005 in the 
denominator so that the changes in the robot stock are independent of changes in the number of 
employees. 
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3.2. Dependent Variables 
 

We rely on four dependent variables, all standardized composite indices with a mean of 50 
and a standard deviation of 10 (Olsson, 1979). These variables are based on items and indices in 
Nikolova and Cnossen (2020) and Nikolova, Nikolaev, and Boudreaux (2022). Table 3 details the 
concrete steps involved in constructing the variables. We standardize the indices to have a mean 
of 50 and a standard deviation of 10 for ease of interpretation. Our measure of autonomy deviates 
from that of Nikolova and Cnossen (2020) and is instead based on combining only three variables 
(and not five) into the index.5 Specifically, we rely on a measure of task autonomy based on the 
following variables: (1) ability to choose or change the order of tasks, (2) ability to select or change 
methods of work, and (3) ability to choose or change speed or rate of work.  
 
 
3.3. Control variables 
 

We source additional control variables at the individual level from the European Working 
Conditions survey. We create an additional “missing information” indicator for all categorical 
control variables to avoid omitting from the analyses observations with missing information. This 
additional “missing information” category has no informational value but only helps us preserve 
the number of observations.  
 

The control variables include age group, gender, working hours, education, and ISCO-08 
occupation (excluding the armed services due to the small number of observations).  
 

Finally, we include the inverse hyperbolic sine transformation of changes in ICT capital 
(per 10,000 workers) as an additional control variable. The construction of this variable is identical 
to that of the robotization variable. The idea is that we want to ensure that we are capturing the 
effects of robotization on work meaningfulness and self-determination above and beyond any 
consequences of digitalization.  
 

4. Empirical Strategy 
 
5.1. OLS  
 
We explore the causal effects of robotization on work meaningfulness and self-

determination using ordinary least squares (OLS) and instrumental variables. Our analyses dovetail 
with and combine strategies explored in the extant literature (Acemoglu & Restrepo, 2020; Adachi 
et al., 2020; Aksoy et al., 2021; Anelli, Colantone, & Stanig, 2021; Dauth et al., 2021; de Vries et 
al., 2020; Graetz & Michaels, 2018).  
 

In our OLS estimations, the work meaningfulness or self-determination outcome Y of 
individual i, living in country c and working in industry j in survey year t is:   
 
 
𝑌4,#,$ =	𝛼. +	𝛼-𝑅!,#,$ + 𝛼5𝐼!,#,$ + 	𝑍4,#,$𝜑 +	𝜇# + 𝜋$ + 𝜀4,!,#,$	                                              (2) 
 
 

 
5 According to Parker and Grote (2020), job autonomy has two inter-related aspects – decision-making over the work-
process and choice over when and where to work. Nevertheless, our autonomy measure captures only the first of 
these two aspects, namely the decision-making latitude about the process of work.  
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In Equation (2), we specify robotization the same way as in Equation (1). Furthermore, the 
control variables Z include age group, gender, working hours, education, and ISCO-08 occupation 
detailed in Section 3.3 above, DI is a measure of digitalization (computed similarly to robotization), 
𝜋$	denotes time fixed effects (a dummy variable for 2010 or 2015 survey year), 𝜇#  denote country 
fixed-effects, and å i,c,j,t is the stochastic error term. We use robust standard errors clustered at the 
countryXindustry level. All regressions are weighted using the survey weight. In additional 
specifications (Table A3), we also report results using weights calculated using the within-country 
industry employment shares of hours (Aksoy et al., 2021; Graetz & Michaels, 2018) that provide 
more importance to industries with larger employment shares.  
 

We include time dummies to account for shocks and cyclicalities that affect countries and 
industries similarly. Specifically, technological adoption is often pro-cyclical (Anzoategui, Comin, 
Gertler, & Martinez, 2019; Leduc & Liu, 2019, 2021), and economic booms and busts may also 
affect the work meaningfulness and self-determination of workers. Furthermore, country-specific 
fixed effects account for different institutional and cultural features across countries, including 
cultural interpretation of the underlying self-reported work meaningfulness and self-determination 
variables and labor market regulations.  
 

We also report the elasticities, which are calculated based on Equation (3) in Bellemare and 
Wichman (2020) to facilitate the interpretation of our IHS-transformed robotization variable. 
Specifically, the elasticity is calculated as follows:  
 
x3	6	= a&7

3
	 6
√6'	9-

                                   (3) 
 
 
5.2. Instrumental Variables  
 

The two main challenges of estimating causal effects with Equation (2) are omitted 
variables bias and sorting of workers into industries. First, there may be omitted industry-specific 
shocks that are correlated with both the pace of adopting automation and also affect the way that 
individuals perceive their work meaningfulness and can derive autonomy, competence, and 
relatedness from their jobs. Second, workers with particular unobservable traits may be more likely 
to choose jobs that are more or less likely to be automated.  
 

We mitigate these issues by relying on instrumental variables techniques. Like Anelli et al. 
(2021), our main instrument is based on the industry adoption of robotization in all other countries 
in the sample except the respondent’s, which is similar to the instrument used in Acemoglu and 
Restrepo (2020). The logic of this instrument is that we are trying to capture the industry-specific 
trends in innovation and technological progress that are common across all countries. The 
instrument deals well with the first source of endogeneity outlined above but not with self-
selection. We include relevant control variables to mitigate selection issues and offer several 
sensitivity checks.  
 

This instrument relies on the untestable assumption the industry-level of robotization in 
other countries is independent of the respondents’ work meaningfulness and self-determination.  
The instrument would be invalid if it correlates with unobserved shocks that are common across 
all countries and industries and cause all industries to undertake robotization.6  

 
6 Moreover, workers sort into industries and jobs offering different opportunities for meaningfulness and self-
determination because they have particular unobserved traits, such as motivation or particular preferences for work 
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The cross-country literature on automation has mostly relied on two instruments proposed 

by Graetz and Michaels (2018), i.e., the so-called “replaceable hours” and “robot arms” 
instruments (see, for example, Aksoy et al., 2021 and de Vries et al., 2020). The first instrument 
captures the share of industry’s employment hours performed in occupations that are potentially 
replaceable by robots from the viewpoint of the 1980s in the US. The second instrument captures 
the extent to which US industries in 1980 contained occupations with reaching and handling tasks 
relative to other physical tasks. 
 

These instruments have several limitations, as discussed in, for example, de Vries et al. 
(2020). The variables are based on US’s industrial structure and may capture trends and 
developments across industries that correlate with other changes over time (e.g., digitalization or 
globalization). More fundamentally, these instruments have recently come under attack because 
they violate the monotonicity assumption. Specifically, the first-stage results show implausible 
correlations when we split the data into the manufacturing and non-manufacturing sectors, a 
problem described in Bekhtiar et al. (2021).  In addition, these instruments do not perform well in 
first-stage analyses. Nevertheless, for completeness and transparency, we present the results with 
these instruments (Table A2), though we advise readers to exercise caution with these results.  
 

While the instrument of the industry-level adoption of automation in all other countries 
except the respondent’s is not a silver bullet, its performance in the first-stage regressions and 
associated diagnostic tests seems reasonable. The IV results are also qualitatively in line with the 
OLS results, though the magnitudes of the coefficient estimates are higher with the IV than with 
the OLS results, which is plausible.  
 

Our goal is not to argue about the superiority of one set of instruments over another or 
claim that we resolve all endogeneity concerns. Rather, it is to provide plausibly causal estimates 
and compare and contrast the performance of OLS vs. the 2SLS.  
 
5.3. Exploring Heterogeneities 
 

We empirically test whether workers performing different tasks differentially experience 
self-determination and work meaningfulness by interacting the tasks with robotization, following 
from H2a-H2d. We focus on five tasks:  i) repetitive tasks, ii) monotonous tasks, iii) dependence 
on a machine, iv) working with computers, and v) social tasks.  
 
 
𝑌4,#,!,$ =	𝛼. +	𝛼-𝑅!,#,$ + 𝛽:𝜏!,#,!,$ + 𝛾:𝑅!,#,$ ∗ 𝜏!,#,!,$ +	𝛼5𝐼!,#,$ + 	𝑍4,#,$𝜑 +	𝜇# + 𝜋$ + 𝜀4,!,#,$	     (4)                              
 
 

In Equation (4), the coefficient estimates 𝛾:>   allow us to see whether robotization 
differentially affects the work meaningfulness and self-determination of people working in jobs 
that require performing particular tasks.  We estimate Equation (4) based on the IV strategy. 
 

Furthermore, we explore whether workers in different parts of the skills distribution and 
of different ages and gender differentially experience meaningfulness and self-determination. 
Specifically, we anticipate that automation may lead to de-skilling and therefore worsen the work 

 
meaningfulness and job quality. The IV strategy is unable to deal with this problem. We include individual-level 
controls to mitigate this issue.  
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meaningfulness and self-determination experiences of low-skilled workers while providing high-
skilled workers with the opportunity to shift to new and creative tasks. In this instance, 𝜏!,#,!,$ 
indicates skill levels (high, medium, and low). We operationalize skills by education levels (i.e., 
primary, secondary, and tertiary) and by grouping 1-digit ISCO occupations. Specifically, we 
classify managers, professionals, technicians and associate professionals as high-skilled; clerical 
support workers, service and sales workers, skilled agricultural, forestry, and fishery workers as 
“medium-skilled” workers; and craft and related trades workers, plant and machine operators, and 
assemblers, and elementary occupations as “low-skilled.” The analyses by age and gender are 
analogous to those with tasks and skill levels.   
 
 

6. Results 
 
6.1. Descriptive Statistics 

 
Figure 1 depicts the average number of robots per 10,000 workers for the four years we 

used in our analysis sample: 2005, 2009, 2010, and 2014. Given our empirical setup, our measures 
of robotization refer to changes between 2005-2009 (for EWCS observations in survey wave 2010) 
and 2010-2014 (for EWCS observations in survey wave 2015). Industrial robots are most prevalent 
in the automotive industry (e.g., 367 robots per 10,000 workers in 2014) and least widespread in 
the electricity, gas, water supply, construction, and education/research industries. During the 
2005-2009 period, several industries saw substantial increases in robot adoption, with the biggest 
increases in the automotive, plastic and chemicals, metal, and food and beverages industries (see 
also Table A1). Some industries saw small declines in robotization over the 2005-2009 period, 
namely the agriculture, textile, all other manufacturing, and electronics industries. In the 2010-
2014 period, the biggest increases in robotization were in the construction, mining and quarrying 
industries. Several industries, including plastics and chemicals, electrical, education/research, 
textiles, wood and paper, saw small declines in robotization.  
 

Figures 2-5 detail the development of work meaningfulness and self-determination 
variables over the analysis period. The key takeaway from these figures is that the dependent 
variables change little over the analysis period and tend to be rather stable both within industries 
and over time.  This is potentially important when trying to identify whether changes in 
robotization influence work meaningfulness and self-determination.  
 

Table 4 details the summary statistics for our two analysis samples for survey waves 2010 
and 2015. The first analysis sample relates to specifications, whereby the dependent variable relates 
to work meaningfulness, autonomy, and competence. Because those who work alone did not 
answer the relatedness questions, the analysis sample for relatedness is smaller than for the other 
dependent variables. The sample compositions tend to be relatively stable in terms of most socio-
demographic characteristics.  
 
 
 
 
 
 
6.2. Main Results based on OLS and IV Estimations 
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Table 5 details our main results on the relationship between robotization, work 
meaningfulness, and self-determination, based on estimating Equation (2) above.  Panel A reports 
OLS estimates. Panels B and C feature the first- and second-stage IV estimations, respectively.  
 

Our OLS results suggest that robotization is negatively associated with work 
meaningfulness, autonomy, competence, and relatedness. The IV estimates also corroborate this 
conclusion. Using the instrument of the industry-level automation shock in all other countries 
except the respondent’s, the coefficient estimates from the first-stage regressions (Panel C) show 
that our instrument is good at predicting robotization. The F-statistic of about 100 is relatively 
large, suggesting that our instrument is strong.  
 

The second-stage results (Panel B) further confirm the negative relationship between 
robotization, work meaningfulness, and its determinants. The coefficient estimates in Panel B are 
larger than the OLS ones, suggesting that the OLS estimates are plagued by endogeneity that leads 
to underestimating the impact of robotization on these worker well-being aspects (Aksoy et al., 
2021).  
 

The elasticity estimates suggest that the effect sizes we identify are relatively small. For 
example, a 10% increase in robotization corresponds to a 0.1% decline in work meaningfulness 
and relatedness, a 0.2% decline in autonomy, and a 0.04% fall in competence. However, the latter 
effect is not statistically significant. Admittedly, these effect sizes are relatively small, though we 
argue that they are important. Across all industries in our sample, the average increase in 
robotization was 64% in the 2005-2009 period and 28% in the 2010-2014 period (Figure 1 and 
Table A1), suggesting the implications of changes in work meaningfulness and self-determination 
are indeed meaningful. Therefore, the main conclusion from Table 5 is that robotization hurts 
work meaningfulness and self-determination, and the consequences are small but meaningful, 
given that automation processes in many industries are yet to unfold. Therefore, we show support 
for Hypothesis 1 in the sense that we find a negative and statistically significant relationship 
between robotization and our outcome variables. The negative channels we describe seem to 
dominate the overall patterns, though, as we show in Section 6.4., the results are stronger or weaker 
(or even positive) for some groups.  
 
 
6.3. Robustness Checks 
 

We offer a battery of sensitivity checks. First, using specification curve analyses 
(Simonsohn, Simmons, & Nelson, 2015, 2020), we check whether our results are robust to using 
different sub-samples and modifications of Equation (2). The main logic of the specification curve 
analyses is to re-estimate Equation (2) with alternative control variables (e.g., including and 
excluding the ICT control, including and excluding demographic variables, education, and job 
controls), estimating the equation using OLS or an IV, and excluding one country at a time from 
the analysis sample. We provide such specification curves for all four dependent variables. We 
then graphically present the distribution of the estimates and their confidence intervals in Figures 
6-9.  
  
 All estimates we detail in those figures have country and year fixed effects but differ based 
on the estimator and the included covariates and countries. Specifically, we present the first set of 
estimates based on OLS estimations – first only including the ICT control in addition to the 
country and year fixed effects. We then sequentially include education variables, demographic 
variables, job characteristics, or only education and demographic variables, and finally, all possible 
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controls. We then show different variations of the IV specifications. The baseline IV estimates 
from Table 5, Panel B, are highlighted in blue. We sequentially include different blocks of control 
variables and exclude one country at a time from the regression results. Figures 6-9 detail that the 
results in Table 5 are remarkably consistent across different specifications and modifications of 
Equation (2).     
 

This set of sensitivity checks indicates that our findings are robust to including or excluding 
control variables and countries from the analysis samples. The results we present are not a data 
artifact based on a particular country being included or excluded, the sample, or the choice of the 
control variables.  
 

In addition, we have checked whether the results are robust to using the replaceable hours 
and robotic arms instruments from Graetz and Michaels (2018). As we explain in Section 5.2. 
above, these instruments are less desirable than the instrument we utilize in the main specifications. 
Nevertheless, for completeness, we also offer these results in Table A2. The results remain in line 
with the OLS and main IV results in Table 5.  
 

In Table A3, we investigate whether the results are robust to including different weights. 
Unlike in the main specifications, where we include the survey weights, in Table A3, we use the 
country-specific industry employment shares as Graetz and Michaels (2018) and Aksoy et al. 
(2021). This weight puts more importance on larger industries. Nevertheless, the results are still 
very much in line with our main results in Table 5.  
 

Furthermore, Table A3 offers a robustness check whereby we include countryXyear fixed 
effects, which control for shocks and omitted factors that differentially affect countries across time 
(e.g., globalization shocks, or country-specific natural disasters). The results are largely in line with 
the main estimates we provide in Table 5.  
 

Finally, Table A4 checks whether our results differ based on workers’ job tenure (number 
of years in the company). Specifically, our results may be driven by the self-selection of workers 
into industries that have become automated, or particular workers may be self-selecting into 
staying into industries. There are no differences between employees who have been at the company 
for 0-2 years and those who have worked for their employer longer.  
 
 
6.3. Heterogeneity 
 

We next turn to the tests of Hypotheses H2a-H2d. The results of our heterogeneity 
analyses based on the type of tasks, skills, and socio-demographic characteristics are presented in 
Tables 6 and 7, respectively.  

 
Tables 6-7 demonstrate that robotization’s effect on work meaningfulness does not differ 

based on the respondent’s task content, skills, or demographics. This suggests that workers 
experience a detrimental effect of robotization on their work meaningfulness regardless of their 
tasks, skills, age, and gender. This suggests that people do not derive meaning directly from the 
content of their tasks, but from the individual goals they pursue by doing these tasks. In many 
cases, technology may not change the perception of a task as being useful or fulfilling. Rather, 
technology might change how people think about their contributions to the goal on a higher level 
than their task content. 
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Furthermore, we find that all our measures of routine intensity (working in routine jobs, 
performing monotonous tasks, and being dependent on the work pace of a machine) worsen the 
already adverse impact of robotization on autonomy (Model (2) in Panels A, B, and C in Table 6). 
This may be because robotization furnishes fewer opportunities for job crafting, and in the 
presence of routine tasks, leaves even fewer tasks requiring judgment and agency in the work 
process. We also find that monotonous tasks adversely impact robotization on competence, even 
though there is no main effect of robotization on competence. In other words, the effects of 
robotization on competence are only negative for those with monotonous tasks. Still, we find no 
such pattern for those dependent on a machine's work pace or executing routine tasks. This is in 
line with the insights from the Barrett et al. (2012) pharmacy case study, as well as the broader 
literature documenting the negative impacts of technology on workers executing routine tasks. We 
find one exception in Panel B: carrying out repetitive tasks diminishes robotizations’ harmful 
influence on relatedness. While this is a surprising finding, a potential explanation can be that 
workers with repetitive tasks who may be working in a robot-intensive factory learn to humanize 
the robots. In one example of an Amazon factory, the workers gave their robot colleagues human 
names (Wingfield, 2017). Alternatively, robotization frees up time for workers with routine tasks 
to socialize with their colleagues.   
 

Conversely, nonroutine tasks positively moderate the relationship between robotization 
and autonomy. Those working with computers (Panel D of Table 6) –which we interpret as being 
in control of the workflow of technology by operating it— experience more autonomy than those 
who do not. Nevertheless, the effect is merely cushioning the negative impact of robots and does 
not cancel it out. On the other hand, working with clients (Panel E of Table 6) in robot-intensive 
industries fully mitigates the detrimental impact of robots on autonomy. These findings suggest 
that some of the strain robots exert on autonomy in the workplace is alleviated by working with 
computers and performing social tasks, such as working with customers. We also find that working 
with computers offsets the negative effect of robots on competence, but we find no such 
moderator for nonroutine interactive tasks. We do not find any moderating effect of nonroutine 
tasks on relatedness.  
 

As Section 5.3 details, when exploring skills’ moderating effect on the relationship between 
robotization and work meaningfulness and self-determination, we perform two separate 
regressions - based on the educational level (primary, secondary, and tertiary) and skill level (low-
, medium- and high-skilled). Primary education and low-skilled workers are the reference group in 
these estimations (Table 7). Higher education seems to cushion the negative effects of robotization 
on autonomy. This finding is unsurprising: those with higher education can enjoy more autonomy 
due to robots’ introduction in the workplace, as they can outsource some tasks, giving them the 
freedom to focus on developing new ones. Beyond that, robotization negatively and similarly 
impacts respondents' work meaningfulness, competence, and relatedness regardless of their 
education level.  
 

The results based on skill levels (Panel B of Table 7) provide similar insights – medium-
skilled workers see somewhat smaller negative consequences of robotization when it comes to 
autonomy, while workers’ skills do not attenuate the effect of robots on work meaningfulness, 
competence, and relatedness.  
 

Finally, Panels C and D of Table 7 detail the results of our heterogeneity analysis based on 
age group and gender, respectively. While age does not seem to significantly affect the relationship 
between robots and work meaningfulness and self-determination, gender does. More specifically, 
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robotization increases the competence perception of men. This is an interesting finding and 
suggests that automation increases the self-efficacy beliefs of men.  

 
Gender, however, does not moderate robots’ impact on work meaningfulness, autonomy, 

and relatedness. Furthermore, the finding that robotization equally erodes the work 
meaningfulness and self-determination of workers of all ages is interesting, suggesting that 
employers need to pay attention to workers of all ages and help them adapt to new technologies.  
 
7. Discussion and Conclusion 
 

Studying the causes and consequences of automation for work meaningfulness and self-
determination is instrumental in designing policies to enhance well-being at work. Understanding 
how automation shapes meaningful work perceptions is key to ensuring worker productivity and 
health and minimizing turnover amidst the ongoing processes of globalization and automation 
that fundamentally change the nature of work.  

 
Previous studies suggest that adopting industrial robots can hurt workers' job satisfaction 

and mental health by inducing greater fear of future machine replacement and promoting job 
insecurity (e.g., Schwabe & Castellacci, 2020; Patel et al., 2018; Abeliansky & Beulmann, 2021). 
The fear and anxiety of future job losses associated with the introduction of smart machines can 
be particularly pronounced for low-skilled occupations where workers are more likely to perform 
repetitive tasks and be exposed to automation.  
 

Our paper provides novel and complementary evidence that robotization erodes workers’ 
well-being regarding work meaningfulness and self-determination related to autonomy and 
relatedness. The consequences for competence are not statistically significant, meanwhile. 
Specifically, we find that a doubling robotization corresponds to a 1% decrease in the experience 
of meaningfulness, 1.5% in autonomy, and 0.8% in relatedness. These may seem like small effect 
sizes, but they are significant for several reasons.  
 

First, large increases in the stock of robots per worker are not uncommon across the 
industries we study, as illustrated in Table A1 and Figure 1. Many industries show growth rates of 
over 50% during the period we study. As such, workers’ working conditions and perceived job 
quality will likely change in the future. That may suggest that as an ongoing process, automation’s 
consequences for work meaning and autonomy are yet to arise.  

 
While past automation waves have affected individuals performing routine cognitive tasks, 

the technologies of the future – such as AI – may affect different types of workers, namely high-
skilled ones (Brynjolfsson, Mitchell, & Rock, 2018; Webb, 2019). While all occupations have some 
tasks that can be replaced by machine learning, the authors find few (if any) occupations in which 
all tasks are replaceable by machine learning. For example, among the occupations with the lowest 
suitability for machine learning are massage therapists, animal scientists, and archeologists. In 
contrast, the occupations with the highest levels of replaceability are concierges, mechanical 
drafters, and morticians (Brynjolfsson et al., 2018). This suggests that the nature of many people’s 
jobs will change in the near future, which has implications for job quality and perceived well-being 
at work.   

 
Therefore, while robots are yet to penetrate most industries, our results provide a glimpse 

of some of the challenges associated with the upcoming waves of technological change related to 
mass robot adoption, machine learning, and AI. 
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Second, our analysis sample only includes employed people who have thus not lost their 

job due to robotization. It implies that those individuals may have largely adjusted to their new 
circumstances. If that is the case, our estimates reflect only the tip of the iceberg: there may be 
many people that cannot cope with changing circumstances, and, as a result, may have opted for 
a different occupation, a different industry, or have become unemployed. While testing the 
adaptation explanation requires panel data on the same workers over time, our results suggest that 
our findings do not differ among people who just started the job compared to those with longer 
tenure (Table A4). This suggests that adaptation may not be the main driver of our findings, as 
workers who have been in the company for a long time do not experience automation differently 
than the newcomers.   
 

Third, as Figures 2-5 indicate, work meaningfulness, autonomy, competence, and 
relatedness levels are fairly similar across the industries and are stable over time. In other words, 
these measures have little over-time and between-industry variation. Therefore, the fact that we 
find a significant effect of robotization on these outcomes is meaningful in and of itself.    
 

Finally, as with any regression-based analysis, we show the average consequences of 
robotization for work meaningfulness and self-determination. Many people may experience strong 
negative effects, whereas there may also be workers experiencing the exact opposite. The fact that 
we are showing that the average effect is only marginally negative partially overlooks the fact that 
some workers experience large drops in meaning or self-determination following exposure to 
robots in the workplace. This is especially relevant given that robots are not adopted at a rate 
where everyone in an industry will be directly exposed to the technology.  
 

Nevertheless, our results provide some glimpse into what future automation waves could 
bring in terms of work meaningfulness and self-determination. Specifically, unless firms implement 
proper job designs, the intensified cooperation and co-working between humans and technology 
will likely worsen work meaningfulness and self-determination (i.e., autonomy, competence, and 
relatedness). Of course, our results are not deterministic, and the outcomes can very much depend 
on how technology is adopted and whether and how tasks and job designs are modified. It may 
be possible that humans adapt their ways of looking at their work and find ways to look for and 
discover meaning in their jobs.  

 
We acknowledge several limitations to our study that future data collection efforts can help 

address. Our paper only focuses on European countries and the subset of industries common in 
the IFR, EU KLEMS, and EWCS. In this sense, we cannot say much about developing countries 
or other countries not included in our sample, limiting our geographic generalizability. Moreover, 
our study faces temporal limitations as our analysis period focuses on 2010-2015. Furthermore, 
we lack data on service robots. Our information on industrial robots is likewise limited, and we 
lack details on the characteristics of the robots, including their quality. We also do not have 
information on Artificial Intelligence, the more contemporary form of automation. Despite these 
challenges, the findings of our paper provide important insights that can be used as the basis for 
public policy and job design.  

 
In this sense, our results open up several fruitful avenues for future research. For example, 

combining employer and employee-level data can help shed light on how firm-level technology 
adoption and management practices influence workers’ work meaningfulness and self-
determination outcomes. In addition, understanding the technology adoption process and whether 
or not it is being done in consultation with workers can help shed light on the mechanisms through 
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which workers adapt to new technologies in the workplace. More specifically, it would be 
interesting to understand how robotization can be implemented to satisfy workers’ key 
psychological needs.  
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Table 3: Constructions and variable definitions of main variables 
Variable Explanation and coding 

Dependent variables 
Meaningful work index Index based on extracting the first component of a polychoric principal component analysis (PCA) using the following 

variables: (1) “your job gives you the feeling of work well done” and (2) “you have the feeling of doing useful work.” The 
response scale is: 1=Never, 2=Rarely, 3=Sometimes, 4=Most of the time, 5=Always. The index is standardized to have a 
mean of 50 and a standard deviation of 10.  The index is created based on Nikolova and Cnossen (2020). Cronbach’s alpha 
= 0.74. The first principal component has an eigenvalue of 1.69 and explains 85% of the total variance.  

Autonomy index Index based on extracting the first component of a polychoric principal component analysis (PCA) of the following variables: 
(1) able to choose or change order of tasks, (2) able to choose or change methods of work, and (3) able to choose or change 
speed or rate of work. Variables (1)-(3) are originally measured on a scale 0=No, 1=Yes. The index is standardized to have a 
mean of 50 and a standard deviation of 10. The index is created based on Nikolova, Nikolaev, and Boudreaux (2021).  
Cronbach’s alpha = 0.79. The first principal component has an eigenvalue of 2.57 and explains 86% of the total variance. 

Competence index Index based on extracting the first component of a polychoric principal component analysis (PCA) of the following variables: 
(1) respondent has appropriate skills to cope with current or more demanding duties, (2) main paid job involves” solving 
unforeseen problems on your own,” (3) main paid job involves” learning new things.” Variable (1) is measured as 0 = No. 1 
= Yes. Variables (2)-(3) are measured on a scale, whereby 1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Most of the time, 5 = 
Always. The index is standardized to have a mean of 50 and a standard deviation of 10.  The index is created based on 
Nikolova and Cnossen (2020). Cronbach’s alpha = 0.42. The first principal component has an eigenvalue of 1.75 and explains 
58% of the total variance.  

Relatedness index Index based on extracting the first component of a polychoric principal component analysis (PCA) using the variables: (1)” 
your colleagues help and support you,” (2)” your manager helps and supports you.” Both variables are 
 measured on a scale, whereby 1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Most of the time, 5 = Always.  The index is 
standardized to have a mean of 50 and a standard deviation of 10.  The index is created based on Nikolova and Cnossen 
(2020). Cronbach’s alpha = 0.7. The first principal component has an eigenvalue of 1.65 and explains 83% of the total 
variance.  
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Key independent variable 

Robotization The inverse hyperbolic sine transformation of the change in robot stocks between year t-1 and year t-5 in each industry and 
country, normalized by the number of workers (in 10,000s) in 2005 in that industry and country. 

Control variables 
ICT  The inverse hyperbolic sine transformation of the change in ICT capital stocks (in computing, communications, computer 

software, and databases) between year t-1 and year t-5 in each industry and country, normalized by the number of workers 
(in 10,000s) in 2005 in that industry and country. Missing values for 8 industries for Estonia, Lithuania, Latvia, and Hungary 
are imputed based on the average values for the Czech Republic and Slovakia. Missing values for Bulgaria are done based on 
the imputations based on the averages for all other transition countries; missing values for Poland, Portugal, and Romania 
are based on imputations using neighboring countries.  

Other control variables Age (in years) split into age groups - 1 = 15-35; 2=36 - 45; 3 =45 - 60; 4 - over 60; 5 = missing); male (1 = female; 2 = male; 
3= missing information); household size (number of people in household); weekly working hours transformed into a 
categorical variable denoting the within-country and by year hours quartile to which the respondent belongs. 1=lowest 
quartile, 2=second lowest quartile, 3=third quartile, 4=fourth quartile; 5=missing information.  education ( 1= primary 
education or less (no education, early childhood education and primary education); 2= secondary (lower secondary education 
and upper secondary education); 3=tertiary (post-secondary non-tertiary education, short-cycle tertiary education, bachelor 
or equivalent, master or equivalent, and doctorate or equivalent); 4=missing information);  company size indicator (1=less 
than 250 employees, 2=more than 250 employees, 3=missing information); occupation dummies (ISCO 08 one-digit 
categories, including a missing category);  year dummies; country dummies.  
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Table 4: Summary statistics  
  2010 2015 

  

Work 
meaningfulness, 

autonomy, 
competence 

sample, 
N=8,364 

Relatedness 
sample, 

N=6,715 

Work 
meaningfulness, 

autonomy, 
competence 

sample, 
N=7,842 

Relatedness 
sample, 

N=6,326  

  
Mea

n  St. Dev.  
Mea

n  St. Dev.  
Mea

n  St. Dev.  
Mea

n  St. Dev.  
Robotization 0.710 1.666 0.767 1.734 0.859 1.762 0.947 1.840 
ICT adoption 1.650 2.722 1.690 2.713 1.236 2.693 1.236 2.740 
Age group                 

15-35 0.265 0.442 0.285 0.451 0.242 0.428 0.260 0.439 
36-45 0.285 0.451 0.285 0.451 0.265 0.442 0.269 0.443 
45-60 0.388 0.487 0.387 0.487 0.411 0.492 0.410 0.492 
Over 60 0.058 0.233 0.039 0.194 0.079 0.269 0.058 0.233 
Missing information 0.004 0.066 0.004 0.066 0.003 0.055 0.003 0.052 

Gender                 
Female 0.405 0.491 0.427 0.495 0.397 0.489 0.423 0.494 
Male 0.595 0.491 0.573 0.495 0.603 0.489 0.577 0.494 
Missing information         0.000 0.016 0.000 0.018 

Working hours quartile                 
1st 0.461 0.498 0.493 0.500 0.405 0.491 0.425 0.494 
2nd 0.181 0.385 0.207 0.405 0.213 0.409 0.235 0.424 
3rd 0.135 0.342 0.141 0.349 0.146 0.353 0.158 0.365 
4th 0.197 0.398 0.148 0.355 0.207 0.406 0.166 0.372 
Missing information 0.026 0.158 0.010 0.102 0.029 0.167 0.016 0.124 

Education                 
Primary 0.064 0.244 0.049 0.216 0.050 0.217 0.036 0.187 
Secondary 0.640 0.480 0.634 0.482 0.637 0.481 0.625 0.484 
Tertiary 0.294 0.456 0.315 0.465 0.309 0.462 0.334 0.472 
Missing information 0.002 0.044 0.002 0.044 0.004 0.064 0.004 0.064 

Occupation                 
Managers 0.074 0.261 0.049 0.216 0.065 0.246 0.046 0.210 
Professionals 0.180 0.384 0.204 0.403 0.192 0.394 0.221 0.415 
Technicians and 
associate professionals 0.105 0.307 0.117 0.322 0.075 0.263 0.081 0.273 
Clerical support 
workers 0.059 0.236 0.069 0.253 0.059 0.236 0.067 0.250 
Service and sales 
workers 0.039 0.194 0.043 0.202 0.041 0.198 0.046 0.210 
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Skilled agricultural, 
forestry, and fisheries 
workers 0.066 0.249 0.019 0.137 0.062 0.242 0.020 0.141 
Craft and related 
trades workers 0.254 0.435 0.251 0.433 0.277 0.447 0.259 0.438 
Plant and machine 
operators and 
assemblers 0.121 0.326 0.143 0.350 0.132 0.338 0.153 0.360 
Elementary 
occupations 0.098 0.297 0.102 0.303 0.093 0.290 0.099 0.299 
Unknown occupation 0.004 0.064 0.003 0.058 0.006 0.076 0.006 0.079 

Company size                 
Less than 250 workers 0.858 0.349 0.835 0.372 0.849 0.358 0.820 0.384 
250 workers and more  0.115 0.319 0.138 0.345 0.134 0.341 0.163 0.369 
Missing information 0.027 0.161 0.028 0.164 0.016 0.127 0.017 0.130 

Source: Authors' calculations based on IFR, EUKLEMS, and European Working Conditions Surveys 
(2010, 2015) 
Notes: The table denotes the summary statistics for the key variables used in the regression analyses. 
Variable definitions are available in Table 3. We report the summary statistics for the two analysis 
samples we use: the full analysis samples using the dependent variables work meaningfulness, autonomy, 
and competence, and the smaller analysis sample using the dependent variable relatedness. The 
underlying questions for the relatedness index were not asked to individuals working alone, which limits 
the number of observations.  
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Table 5: The effect of robotization on work meaningfulness, autonomy, competence, and 
relatedness   
  (1) (2) (3) (4) 
  Panel A: Ordinary Least Squares 

  
Work 

meaningfulness Autonomy Competence Relatedness 
Robotization -0.234*** -0.300*** -0.108 -0.183*** 
  (0.062) (0.065) (0.068) (0.066) 
Elasticity -0.005 -0.006 -0.002 -0.004 

R2 0.070 0.171 0.175 0.075 
  Panel B: IV Peer Robot Adoption Second Stage 

  
Work 

meaningfulness Autonomy Competence Relatedness 
Robotization -0.505*** -0.765*** -0.206 -0.409*** 
  (0.128) (0.133) (0.127) (0.127) 
Elasticity -0.010 -0.015 -0.004 -0.008 

R2 0.068 0.167 0.176 0.074 
  Panel C: IV Peer Robot Adoption First Stage 
  Robotization Robotization Robotization Robotization 
Peer robot adoption 0.625*** 0.625*** 0.625*** 0.624*** 
  (0.061) (0.061) (0.061) (0.061) 
1st stage F-stat 106.6 106.6 106.6 103.2 
Number of 
observations 16,206 16,206 16,206 13,041 
Notes: The table reports results from OLS (Panel A) and IV (Panel B) regressions of work 
meaningfulness, autonomy, competence, and relatedness on robotization. The first stage results are 
reported in Panel C. Robotization is measured as the inverse hyperbolic sine transformation in the number 
of robots per 10,000 workers. All regressions include a constant and country and year fixed effects, and 
the following demographic and job controls: age group, gender, hours of work, education, occupation, 
company size, and the inverse hyperbolic sine transformation of changes in ICT capital. All regressions 
include standard errors clustered at the countryXindustry level. All dependent variables are measured on 
a scale of 0 to 100 and standardized to have a mean of 50 and a standard deviation of 10. By construction, 
the relatedness index excludes individuals who work alone.  The instrumental variable in Panel B is based 
on the industry adoption of automation in all other countries in the sample (except that particular 
country).  The elasticity estimate is calculated following Bellemare and Wichman (2020). The 
interpretation of the elasticity estimate in Model (2), Panel (B), for example, is: a 10% increase in 
robotization corresponds to a 0.15% decrease in autonomy. All regressions are weighted using the survey 
weight. The analysis sample is based on 20 European countries and 13 industries. See Table 3 for variable 
definitions.  The instrumental variable is based on the industry adoption of automation in all other 
countries in the sample (except that particular country). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 6: The moderating effects of tasks for the relationship between robotization and work, 
meaningfulness, autonomy, competence, and relatedness 

  (1) (2) (3) (4) 

  
Work 

meaningfulness Autonomy Competence Relatedness 
Panel A: The moderating effect of individual-level repetitive tasks, IV regressions second stage 

Robotization -0.539*** -0.568*** -0.159 -0.670*** 
  (0.173) (0.147) (0.161) (0.157) 
Repetitive tasks -0.717** -0.178 0.697*** -1.211*** 
  (0.304) (0.259) (0.231) (0.289) 
RobotizationXRepetitive tasks 0.154 -0.446** -0.151 0.594*** 
  (0.253) (0.187) (0.209) (0.213) 

R2 0.069 0.168 0.176 0.074 
1st stage F-stat 50.91 50.91 50.91 49.30 
Number of observations 15,917 15,917 15,917 12,839 
Panel B: The moderating effect of individual-level monotonous tasks, IV regressions second stage 
Robotization -0.352** -0.388*** -0.027 -0.358** 
  (0.150) (0.149) (0.164) (0.152) 
Monotonous tasks -2.010*** -0.810*** 0.070 -1.396*** 
  (0.269) (0.273) (0.274) (0.264) 
RobotizationXMonotonous 
tasks -0.216 -0.718*** -0.376* -0.045 
  (0.222) (0.203) (0.199) (0.229) 

R2 0.080 0.173 0.176 0.079 
1st stage F-stat 53.24 53.24 53.24 50.98 
Number of observations 16,113 16,113 16,113 12,974 

Panel C: The moderating effect of dependence on a machine, IV regressions second stage 
Robotization -0.381*** -0.288** -0.184 -0.426*** 
  (0.141) (0.127) (0.155) (0.151) 
Dependence on the work 
pace of a machine  -1.935*** -2.365*** 0.340 -0.655* 
  (0.391) (0.366) (0.327) (0.391) 
RobotizationX Dependence 
on the work pace of a 
machine  0.011 -0.714*** -0.065 0.085 
  (0.238) (0.225) (0.209) (0.241) 

R2 0.075 0.186 0.175 0.075 
1st stage F-stat 53.60 53.60 53.60 49.89 
Number of observations 15,882 15,882 15,882 12,860 

Panel D: The moderating effect of working with computers, IV regressions second stage 
Robotization -0.607*** -1.265*** -0.624*** -0.560*** 
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  (0.180) (0.195) (0.175) (0.181) 
Working with computers 0.428 2.638*** 3.607*** 0.776** 
  (0.322) (0.396) (0.352) (0.384) 
RobotizationXWorking with 
computers 0.161 0.900*** 0.679*** 0.275 
  (0.232) (0.223) (0.218) (0.222) 
R2 0.069 0.181 0.202 0.075 
1st stage F-stat 53.47 53.47 53.47 50.60 
Number of observations 16,173 16,173 16,173 13,019 

Panel E: The moderating effect of individual-level social tasks, IV regressions second stage 
Robotization -0.385** -0.995*** 0.003 -0.432*** 
  (0.173) (0.174) (0.165) (0.165) 
Working with clients 1.425*** 2.672*** 2.886*** 0.638** 
  (0.316) (0.336) (0.276) (0.283) 
RobotizationXWorking with 
clients -0.095 1.074*** -0.093 0.199 
  (0.240) (0.211) (0.187) (0.213) 

R2 0.073 0.192 0.191 0.076 
1st stage F-stat 52.43 52.43 52.43 50.13 
Number of observations 16,158 16,158 16,158 13,008 
Source: Authors' calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 
2015) 
Notes: The table reports results from IV regressions of work meaningfulness, autonomy, competence, and 
relatedness on robotization, by whether the respondent  performs repetitive tasks lasting under 10 minutes 
(Panel A), by whether the respondent performs monotonous tasks (Panel B), by whether the respondent's 
work pace is dependent on the automatic speed of a machine or movement of a product (Panel C), by 
whether the respondent works with a computer at least 25% of the time (Panel D), and by whether the 
respondent performs social tasks (dealing directly with people who are not employees at the respondent's 
workplace, such as customers, passengers, pupils, patients, etc.) at least 25% of the time (Panel E). 
Robotization is measured as the inverse hyperbolic sine transformation in the number of robots per 10,000 
workers. All regressions include a constant and country and year fixed effects, and the following demographic 
and job controls: age group, gender, hours of work, education, occupation, company size, and the inverse 
hyperbolic sine transformation of changes in ICT capital. All regressions include standard errors clustered at 
the countryXindustry level. All dependent variables are measured on a scale of 0 to 100 and standardized to 
have a mean of 50 and a standard deviation of 10. By construction, the relatedness index excludes individuals 
who work alone.  The instrumental variable is based on the industry adoption of automation in all other 
countries in the sample (except that particular country).  All regressions are weighted using the survey weight. 
The analysis sample is based on 20 European countries and 13 industries. See Table 3 for variable definitions.  
*** p<0.01, ** p<0.05, * p<0.1 
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Table 7: The moderating effects of skills for the relationship between robotization and work 
meaningfulness, autonomy, competence, and relatedness 
  (1) (2) (3) (4) 

  
Work 

meaningfulness Autonomy Competence Relatedness 
Panel A: The moderating effect of skill levels (education), IV regressions second stage 

Robotization -1.041** -1.224*** 0.324 -0.917** 
  (0.513) (0.437) (0.448) (0.456) 
Secondary Education 0.673 0.930* 2.348*** -0.191 
  (0.632) (0.522) (0.575) (0.693) 
Tertiary Education 0.998 2.739*** 4.463*** 0.170 
  (0.739) (0.649) (0.601) (0.786) 
RobotizationXSecondary 
Education 0.592 0.382 -0.627 0.608 
  (0.512) (0.431) (0.465) (0.474) 
RobotizationXTertiary Education 0.452 0.797* -0.297 0.256 
  (0.606) (0.462) (0.464) (0.526) 
R2 0.068 0.167 0.176 0.074 
1st stage F-stat 31.34 31.34 31.34 30.79 
Number of observations 16,158 16,158 16,158 13,002 
Panel B: The moderating effect of skill levels (based on ILO classification), IV regressions second 

stage 
Robotization -0.516*** -1.036*** -0.189 -0.243 
  (0.197) (0.194) (0.195) (0.162) 
Medium Skilled 2.216*** 4.704*** 4.902*** 1.410*** 
  (0.463) (0.383) (0.417) (0.447) 
High Skilled 1.517*** 4.248*** 1.443*** 0.634 
  (0.397) (0.580) (0.478) (0.511) 
RobotizationXMedium Skilled 0.024 0.399* 0.034 -0.226 
  (0.308) (0.241) (0.292) (0.264) 
RobotizationXHigh Skilled -0.330 0.251 0.076 -0.438 
  (0.301) (0.330) (0.308) (0.293) 
R2 0.058 0.149 0.155 0.069 
1st stage F-stat 34.97 34.97 34.97 30.49 
Number of observations 16,127 16,127 16,127 12,978 

Panel C: The moderating effect of age, IV regressions second stage 
Robotization -0.647 -0.567 -0.296 -0.611 
  (0.412) (0.405) (0.376) (0.444) 
Age 0.066*** 0.043*** -0.047*** -0.043*** 
  (0.010) (0.011) (0.012) (0.013) 
RobotizationXAge 0.003 -0.005 0.002 0.005 
  (0.009) (0.009) (0.009) (0.010) 
R2 0.068 0.166 0.175 0.073 
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1st stage F-stat 46.97 46.97 46.97 46.00 
Number of observations 16,145 16,145 16,145 12,995 

Panel D: The moderating effect of gender, IV regressions second stage 
Robotization -0.458** -0.869*** -0.504** -0.305 
  (0.202) (0.212) (0.197) (0.217) 
Male 0.045 1.030*** 1.019*** 0.177 
  (0.287) (0.310) (0.269) (0.306) 
RobotizationXMale -0.067 0.151 0.430** -0.154 
  (0.223) (0.227) (0.185) (0.226) 
R2 0.068 0.167 0.175 0.074 
1st stage F-stat 50.19 50.19 50.19 45.09 
Number of observations 16,204 16,204 16,204 13,039 
Source: Authors' calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 
2015) 
Notes: The table reports results from IV regressions of work meaningfulness, autonomy, competence, and 
relatedness on robotization, by the respondent's education level (Panel A), skill level (Panel B), the 
respondents' age (Panel C), and by the respondent's gender (Panel D). Robotization is measured as the 
inverse hyperbolic sine transformation in the number of robots per 10,000 workers. All regressions include 
a constant and country and year fixed effects and the following demographic and job controls: age group, 
gender, hours of work, education, occupation, company size, and the inverse hyperbolic sine transformation 
of changes in ICT capital. All regressions include standard errors clustered at the countryXindustry level. All 
dependent variables are measured on a scale of 0 to 100 and standardized to have a mean of 50 and a standard 
deviation of 10. By construction, the relatedness index excludes individuals who work alone.  The 
instrumental variable is based on the industry adoption of automation in all other countries in the sample 
(except that particular country).  All regressions are weighted using the survey weight. The analysis sample 
is based on 20 European countries and 13 industries. See Table 3 for variable definitions.  
*** p<0.01, ** p<0.05, * p<0.1         
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Figure 1: Industrial robots per 10,000 workers by industry and year, 2009-2014 

 
Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the average robot density (robot stock per 10,000 workers) by industry for 
2005, 2009, 2010, and 2014. The values for 2014 are shown next to each bar. The industries 
Construction, Education/research/development, and Electricity, gas, and water supply have very 
small non-zero values.  
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Figure 2: Work meaningfulness, by industry and year 

 
Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the average work meaningfulness by industry for 2010 and 2015. Work 
meaningfulness is standardized to have a mean of 50 and a standard deviation of 10.  
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Figure 3: Autonomy, by industry and year 

 
Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the average autonomy levels by industry for the years 2010 and 2015. 
Autonomy is standardized to have a mean of 50 and a standard deviation of 10.  
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Figure 4: Competence, by industry and year 

 
Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the average competence levels by industry for the years 2010 and 2015. 
Competence is standardized to have a mean of 50 and a standard deviation of 10.  
 
 

Figure 5: Relatedness, by industry and year 
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Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the average relatedness levels by industry for the years 2010 and 2015. 
Relatedness is standardized to have a mean of 50 and a standard deviation of 10.  
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Figure 6: Specification curve analysis, work meaningfulness  

 
 
Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the specification curve analysis for work meaningfulness as the dependent 
variable and different estimations of Equation (2). The main specification is the one from Table 5, 
Panel B, Model (1). Work meaningfulness is standardized to have a mean of 50 and a standard 
deviation of 10.  
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Figure 7: Specification curve analysis, autonomy 

 
 
Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the specification curve analysis for autonomy as the dependent variable 
and different estimations of Equation (2). The main specification is the one from Table 5, Panel B, 
Model (2). Autonomy is standardized to have a mean of 50 and a standard deviation of 10.  
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Figure 8: Specification curve analysis, competence 

 
 
Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the specification curve analysis for competence as the dependent variable 
and different estimations of Equation (2). The main specification is the one from Table 5, Panel B, 
Model (3). Competence is standardized to have a mean of 50 and a standard deviation of 10.  
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Figure 8: Specification curve analysis, relatedness 

 
 
Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the specification curve analysis for relatedness as the dependent variable 
and different estimations of Equation (2). The main specification is the one from Table 5, Panel B, 
Model (4). Relatedness is standardized to have a mean of 50 and a standard deviation of 10.  
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Figure 10: Industrial robots per 10,000 workers by industry and year, 2014-2019 

 
Source: Authors’ calculations based on IFR and EUKLEMS 
Notes: The figure shows the average robot density (robot stock per 10,000 workers) by industry for 
2015 and 2019. The values for 2014 are shown next to each bar. The industries Construction, 
Education/research/development, and Electricity, gas, water supply have very small non-zero values.  
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Appendix 
 
 
Table A1: Industrial robots per 10,000 workers by industry and year and percentage changes 
between 2005-2009 and 2010-2014 

  

Robots per 
10,000 

workers, 
2005 

Robots per 
10,000 

workers, 
2009 

Robots per 
10,000 

workers, 
2010 

Robots 
per 

10,000 
workers, 

2014 
Pct. Change 
2005-2009 

Pct. Change 
2010-2014 

Electricity, gas, water 
supply 0.145 0.278 0.279 0.473 91.724 69.534 

Construction 0.417 0.738 0.840 1.010 76.978 20.238 

Education/research/d
evelopment 1.408 1.378 1.336 1.653 -2.131 23.728 

Agriculture, forestry, 
fishing 1.842 1.475 1.502 2.157 -19.924 43.609 

Textiles 3.044 2.544 2.429 3.102 -16.426 27.707 

Mining and quarrying 0.460 2.900 3.417 4.349 530.435 27.275 

Wood and paper 8.976 10.760 10.452 12.145 19.875 16.198 

All other 
manufacturing 
branches 14.958 12.378 13.369 15.669 -17.248 17.204 

Electrical/electronics 32.957 30.808 30.712 36.486 -6.521 18.800 

Food and beverages 17.950 31.087 33.663 46.919 73.187 39.379 

Metal 29.094 48.936 49.763 61.113 68.200 22.808 

Plastic, chemical 
products, glass, etc. 55.467 69.527 68.563 71.236 25.348 3.899 

Automotive and other 
transport 261.238 276.571 288.021 366.461 5.869 27.234 

Source: Authors’ calculations based on IFR and EUKLEMS 

Notes: The table shows the average robot density (robot stock per 10,000 workers) by industry for 
the years 2005, 2009, 2010, and 2014, also presented in Figure 1. In addition, this table shows the 
percentage change in the robot density between 2005-2009 and 2010-2014 in the last two columns.  
The industries Construction, Education/research/development, and Electricity, gas, water supply 
have very small non-zero values for the robot density variable.  
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Table A2: The effect of robotization on work meaningfulness, autonomy, competence, and relatedness, 
robustness checks with different instruments 
  (1) (2) (3) (4) 
  Robotization Robotization Robotization Robotization 
  Panel A: IV Replaceable hours and robotic arms first stage 
Robotic arms -5.383** -5.383** -5.383** -6.057*** 
  (2.104) (2.104) (2.104) (2.166) 
Replaceable hours 7.096*** 7.096*** 7.096*** 7.420*** 
  (0.993) (0.993) (0.993) (1.003) 
1st stage F-stat 32.85 32.85 32.85 34.83 
Hansen's J statistics 
(overidentification test) 3.185 10.14 1.559 6.654 
Overidentification test p-value 0.074 0.001 0.212 0.010 
  Panel B: IV Replaceable hours and robotic arms second stage 

  
Work 

meaningfulness Autonomy Competence Relatedness 
Robotization -1.037*** -1.182*** -0.389** -0.657*** 
  (0.189) (0.203) (0.161) (0.166) 
R2 0.053 0.152 0.174 0.069 
Elasticity -0.020 -0.023 -0.008 -0.013 
Number of observations 16,206 16,206 16,206 13,041 
Source: Authors' calculations based on IFR, EUKLEMS, Graetz and Michaels (2018), and European Working 
Conditions Surveys (2010, 2015) 
Notes: The table reports results from IV regressions of work meaningfulness, autonomy, competence, and 
relatedness on robotization. Robotization is measured as the inverse hyperbolic sine transformation in the 
number of robots per 10,000 workers. All regressions include a constant and country and year fixed effects, 
and the following demographic and job controls: age group, gender, hours of work, education, occupation, 
company size, and the inverse hyperbolic sine transformation of changes in ICT capital. All regressions 
include standard errors clustered at the countryXindustry level. All dependent variables are measured on a 
scale of 0 to 100 and standardized to have a mean of 50 and a standard deviation of 10. By construction, the 
relatedness index excludes individuals who work alone.  The instrumental variables are measures of i) the 
share of hours in an industry that is replaceable by robots in 1980 in US industries and ii) the degree to which 
industries in 1980 in the US had occupations that required reaching and handling tasks based on Graetz and 
Michaels (2018). The elasticity estimate is calculated following Bellemare and Wichman (2020). All regressions 
are weighted using the survey weight. The analysis sample is based on 20 European countries and 13 
industries. See Table 3 for variable definitions.  
*** p<0.01, ** p<0.05, *p<0.1         
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Table A3: The effect of robotization on work meaningfulness, autonomy, competence, and relatedness, 
robustness checks with different weights 
  (1) (2) (3) (4) 

  
Work 

meaningfulness Autonomy Competence Relatedness 
  Panel A: Ordinary Least Squares 
Robotization -0.313*** -0.355*** -0.076 -0.240*** 
  (0.055) (0.075) (0.070) (0.086) 
Elasticity -0.006 -0.007 -0.001 -0.005 
R2 0.062 0.157 0.188 0.086 
  Panel B: IV Peer Robot Adoption Second Stage 
Robotization -0.563*** -0.750*** -0.298** -0.337*** 
  (0.098) (0.137) (0.126) (0.129) 
Elasticity -0.011 -0.015 -0.006 -0.007 
R2 0.061 0.155 0.187 0.086 
1st stage F-stat 142.1 142.1 142.1 139.6 
Weighted number of 
observations 15,352 15,352 15,352 12,292 
Number of observations 16,206 16,206 16,206 13,041 
Source: Authors' calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 
2015) 
Notes: The table reports results from OLS (Panel A) and IV (Panel B) regressions of work meaningfulness, 
autonomy, competence, and relatedness on robotization. The main difference with Table 5 is that this table 
relies on different weights, namely country-specific industry employment shares. Robotization is measured as 
the inverse hyperbolic sine transformation in the number of robots per 10,000 workers. All regressions include 
a constant and country and year fixed effects and the following demographic and job controls: age group, 
gender, hours of work, education, occupation, company size, and the inverse hyperbolic sine transformation 
of changes in ICT capital. All regressions include standard errors clustered at the countryXindustry level. All 
dependent variables are measured on a scale of 0 to 100 and standardized to have a mean of 50 and a standard 
deviation of 10. By construction, the relatedness index excludes individuals who work alone.  The instrumental 
variable in Panel B is based on the industry adoption of automation in all other countries in the sample (except 
that particular country).  The elasticity estimate is calculated following Bellemare and Wichman (2020). The 
analysis sample is based on 20 European countries and 13 industries. See Table 3 for variable definitions.  
*** p<0.01, ** p<0.05, * p<0.1         
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Table A4: The effect of robotization on work meaningfulness, autonomy, competence, and relatedness, 
robustness checks with country-by-year fixed effects 
  (1) (2) (3) (4) 

  
Work 

meaningfulness Autonomy Competence Relatedness 
  Panel A: Ordinary Least Squares 
Robotization -0.235*** -0.304*** -0.090 -0.197*** 
  (0.061) (0.062) (0.063) (0.066) 
Elasticity -0.005 -0.006 -0.002 -0.004 
R2 0.075 0.175 0.183 0.080 
  Panel B: IV Peer Robot Adoption Second Stage 
Robotization -0.514*** -0.760*** -0.192 -0.404*** 
  (0.125) (0.133) (0.122) (0.123) 
Elasticity -0.010 -0.015 -0.004 -0.008 
R2 0.073 0.170 0.183 0.079 
1st stage F-stat 105.9 105.9 105.9 103 
Number of 
observations 16,206 16,206 16,206 13,041 
Source: Authors' calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 
2015) 
Notes: The table reports results from OLS (Panel A) and IV (Panel B) regressions of work meaningfulness, 
autonomy, competence, and relatedness on robotization. The main difference with Table 5 is that this table 
includes countryXyear fixed effects, in addition to all the controls and fixed effects included in Table 5. 
Robotization is measured as the inverse hyperbolic sine transformation in the number of robots per 10,000 
workers. All regressions include a constant and country and year fixed effects and the following 
demographic and job controls: age group, gender, hours of work, education, occupation, company size, and 
the inverse hyperbolic sine transformation of changes in ICT capital. All regressions include standard errors 
clustered at the countryXindustry level. All dependent variables are measured on a scale of 0 to 100 and 
standardized to have a mean of 50 and a standard deviation of 10. By construction, the relatedness index 
excludes individuals who work alone.  The instrumental variable in Panel B is based on the industry adoption 
of automation in all other countries in the sample (except that particular country). The elasticity estimate is 
calculated following Bellemare and Wichman (2020). All regressions are weighted using the survey weight. 
The analysis sample is based on 20 European countries and 13 industries. See Table 3 for variable 
definitions.  
*** p<0.01, **p<0.05, * p<0.1         
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Table A5: The effect of robotization on work meaningfulness, autonomy, competence, and 
relatedness, by job tenure 

  
Work 

meaningfulness Autonomy Competence Relatedness 
Robotization -0.473*** -0.773*** -0.208 -0.427*** 
  (0.132) (0.144) (0.132) (0.124) 
On the Job 1 Year of Less -0.618 -1.715*** 0.046 0.170 
  (0.458) (0.373) (0.341) (0.440) 
RobotizationX On the Job 1 
Year of Less -0.220 0.059 0.015 0.118 
  (0.319) (0.303) (0.262) (0.342) 

R2 0.069 0.170 0.176 0.074 
1st stage F-stat 52.66 52.66 52.66 51.23 
Number of observations 16,206 16,206 16,206 13,041 
Source: Authors' calculations based on IFR, EUKLEMS, and European Working Conditions Surveys 
(2010, 2015) 
Notes: The table reports results from IV regressions of work meaningfulness, autonomy, competence, 
and relatedness on robotization, by the number of years the respondent has been working for that 
company.  Robotization is measured as the inverse hyperbolic sine transformation in the number of 
robots per 10,000 workers. All regressions include a constant and country and year fixed effects, and the 
following demographic and job controls: age group, gender, hours of work, education, occupation, 
company size, and the inverse hyperbolic sine transformation of changes in ICT capital. All regressions 
include standard errors clustered at the countryXindustry level. All dependent variables are measured on 
a scale of 0 to 100 and standardized to have a mean of 50 and a standard deviation of 10. By construction, 
the relatedness index excludes individuals who work alone.  The instrumental variable in Panel B is based 
on the industry adoption of automation in all other countries in the sample (except that particular 
country). The elasticity estimate is calculated following Bellemare and Wichman (2020). All regressions 
are weighted using the survey weight. The analysis sample is based on 20 European countries and 13 
industries. See Table 3 for variable definitions.  
*** p<0.01, ** p<0.05, * p<0.1 
 
 
 


