Bauer, Philipp C.; Riphahn, Regina T.

Working Paper
Age at school entry and intergenerational educational mobility

CESifo working paper, No. 2541

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Bauer, Philipp C.; Riphahn, Regina T. (2009) : Age at school entry and intergenerational educational mobility, CESifo working paper, No. 2541

This Version is available at:
http://hdl.handle.net/10419/26586

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Age at School Entry and Intergenerational Educational Mobility

PHILIPP C. BAUER
REGINA T. RIPHAHN

CESifo Working Paper No. 2541
Category 2: Public Choice
February 2009

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
Age at School Entry and Intergenerational
Educational Mobility

Abstract

We use Swiss data to test whether intergenerational educational mobility is affected by the
age at which children first enter (primary) school. Early age at school entry significantly
affects mobility and reduces the relative advantage of children of better educated parents.
Keywords: age at entry, intergenerational transmission of education, educational mobility.

Philipp C. Bauer
economiesuisse
Hegibachstrasse 47
8032 Zurich
Switzerland
philipp.bauer@economiesuisse.ch

Regina T. Riphahn
University of Erlangen-Nuremberg
Lange Gasse 20
90403 Nuremberg
Germany
regina.riphahn@wiso.uni-erlangen.de

January 27, 2009
1. Introduction

A high correlation between parent and child educational outcomes typically generates low intergenerational income mobility. While there is substantial scientific interest in comparing intergenerational mobility across societies we still know very little about its determinants.\(^1\) Past research found institutional features such as a high age at school tracking to increase educational mobility (Bauer and Riphahn 2006, Hanushek and Wößmann 2006). Yet substantial mobility differences exist across institutional regimes with similar tracking ages. This study proposes the age at school entry as an additional determinant of educational mobility and measures its causal effect in the institutional framework of Switzerland.

Our research question differs from a literature which studies the effect of age at school entry on pupils' educational performance (e.g. Angrist and Krueger 1992, Currie 2001, Bedard and Dhuey 2006). These analyses do not consider the potential ramifications of the age at school entry for intergenerational education transmission. However, Currie (2001) points to the beneficial equity effect of an early start of general schooling which balances educational endowment differences across pupils more effectively than a system where public education starts later in a child's life. We test whether this equity advantage of early intervention is reflected in the extent of intergenerational educational mobility. – To our knowledge this is the first study to analyze the intergenerational mobility effect of the age at school entry.

We apply data on educational outcomes within a single country, i.e. Switzerland. This

\(^1\) For a comparative study on income mobility see e.g. Solon 2002, for a comparison of education mobility see e.g. Chevalier et al. (2003) or Shavit and Blossfeld (1993).
avoids problems inherent in cross-national comparisons where more than one institutional feature differs across comparison groups and may determine the outcome of interest. We identify the causal effect of the age at school entry on educational mobility based on institutional differences across the Swiss federal cantons. The Swiss educational system is organized at the cantonal level. Probably for historical reasons the 26 cantons impose different regulations regarding age of school entry within otherwise comparable institutional frameworks.

2. **Data and Empirical Approach**

We apply cross-sectional data from the 2000 Swiss population census. The dependent variable indicates the type of secondary training a youth receives at age 17 in categories of high (college-bound), medium (advanced vocational), and low (only mandatory) levels of secondary schooling (for details see Bauer and Riphahn 2007). We similarly categorize parental education.\(^2\) To measure the magnitude of intergenerational education transmission we evaluate the probability that children attend high level (i.e. college-bound) secondary schooling given their parents' education.

In our sample of 62,535 Swiss born youths we observe vast differences in the probability of attaining high level secondary education by parental educational background: among children of fathers with low education about ten percent attend high secondary education. Among the children of highly educated fathers this holds for more than sixty percent.

To investigate the role of the age at school entry we use information from a survey of cantonal education departments where we collected information on the typical age at school

\[^2\text{We consider five education indicators for each parent: high, middle, low, no information provided, parent missing (i.e. single parent household).}\]
entry for the early 1990s. 18 of the 26 cantons clearly stated age 6 (11 cantons) or age 7 (7 cantons) as the regular age of school entry, the other 8 cantons provided age ranges.\footnote{In our baseline estimations we apply the given ages at school entry and use the midpoint (MID) where intervals were provided. In robustness tests we investigate whether our results are sensitive to the coding of the age at entry variable and distinguish results when using only the lower (EARLY) or upper (LATE) bound of the age at entry interval.} In order to illustrate the validity of our identifying assumption we compare the average characteristics of cantons with early and late age of school entry in Table 1. Only few characteristics differ significantly for the two groups of cantons. While some indicators suggest higher overall educational attainment in cantons with early school enrolment, cantons with late school enrolment spend a higher share of the public budget on education. Overall, these figures do not cast doubt on our identification strategy.

Table 2 describes the probability of high child secondary schooling given fathers' education in cantons with early (age 6) and late (age 7) school enrolment. The table separately considers age at entry based on interval midpoints (MID), the earliest (EARLY) and the latest (LATE) school entry ages. A comparison across columns yields that the probability of high (i.e. college-bound) child education increases when fathers are of high, rather than low education (cf. columns 1 and 2). A comparison across rows yields that this difference in the probability of high education varies depending on the age at which children enter school. The differences in the absolute probabilities are mostly insignificant and suggest that early school entry reduces mobility (cf. column 4). We find a significant increase in the relative difference across parental education if the separation is taking place later, rather than earlier, across all three indicators (cf. column 5).

We test whether educational mobility responds to age at entry when controlling for composition effects. We estimate flexible multinomial logit models which regress youth educational outcome (Y) on parental education (PE) and control for a large number of
household, parental, regional, and individual characteristics (X), as well as for an indicator of the age at school entry (Entry). The model is completed by interaction terms of parental education and the age of school entry (PE \cdot Entry):

\[Y = a + b \, PE + c_0 \, X + c_1 \, Entry + d \, (PE \cdot Entry) + \epsilon, \]
\[\frac{\partial \, Y}{\partial \, PE} = b + d \, Entry \]

A jointly significant coefficient vector "d" suggests that the impact of parental education indeed varies depending on the age at school entry. In order to evaluate the age of entry effect we use the estimation results to predict the probability of college-bound (high) secondary schooling for children of parents with high and low education. A difference-in-differences type comparison of the probabilities in situations of early and late school entry then indicates the relevance of the age at entry for educational mobility.

3. Findings

The estimation results are not presented to save space (available from the authors upon request). Table 3 describes the probabilities which are predicted based on estimated coefficients (see columns 1-3). For robustness checks the estimations were performed separately for indicators of the midpoint of the age range of school entry (Panel A: MID), the earliest age of school entry (Panel B: EARLY), and the latest possible age of school entry (Panel C: LATE). In all three cases the eight coefficients "d" of the interaction terms (PE \cdot Entry) (see equation 2) were jointly statistically significant at least at the five percent level.

4 The empirical model controls for a total of 8 indicators of paternal and maternal education, a total of 20 indicators of paternal and maternal occupational position, age of father and age of mother, 4 indicators of religion, 4 indicators of the number of siblings, 6 region indicators, population density in the area of residence, sex of the child, indicator of late school entry and 8 interaction terms of late school entry and parental education.

5 A Hausman test indicated that the IIA assumption of the multinomial logit estimator cannot be rejected in our data.
Thus the correlation between parent and child education appears to be significantly modified by the timing of tracking.

In column 4 (7) Table 3 provides the absolute difference in the predicted probabilities of children with high and low (middle) educated fathers to attain the highest secondary school degree. Column 10 (13) provides the relative differences. The subsequent columns provide p-values for tests of the hypotheses that these probability differences differ across age of school entry regimes. In all cases the probability difference increases with higher age at school entry. The relative differences are more often statistically significant than the absolute differences. The evidence does not allow us to reject the hypothesis that early age at entry yields higher intergenerational mobility.

In Bauer and Riphahn (2006) we showed, that the age of tracking pupils in ability-based streams of secondary school significantly affects intergenerational mobility. As the tracking age constitutes another difference across Swiss federal cantons we need to determine whether the effect of age of school entry on intergenerational educational mobility is robust to controls for the age of tracking. In additional estimations we controlled for whether a canton follows an early or a late tracking regime and reevaluated the effect of the age at school entry. Our results are unchanged, early age at school entry has beneficial and robust effects on educational mobility even conditional on the age of tracking.

4. Conclusion

Based on a literature that investigates the educational attainment effects of age at school entry we hypothesize that early schooling contributes to reduce intergenerational educational transmission and to increase educational mobility. This positive effect of early entry is confirmed in our analysis which takes advantage of institutional differences across Swiss cantonal education systems. The approach is similar to a difference-in-difference
estimation and identifies the causal effect of age at entry if there are no unobservable mobility differences between cantons that are correlated with age at entry.

This is the first test of the effect of age at school entry on educational mobility. It is particularly reliable, as it operates within a given national institutional framework and thus is unaffected by other institutional differences that hamper studies which apply international comparisons to identify the effect of interest.

References

Table 1
Mean characteristics of cantons with early and late age of school entry

<table>
<thead>
<tr>
<th></th>
<th>Mean in early school enrolment cantons</th>
<th>Mean in late school enrolment cantons</th>
<th>Test of equality of means (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population share: tertiary degree</td>
<td>0.048</td>
<td>0.043</td>
<td>0.598</td>
</tr>
<tr>
<td>Population share: advanced school degree</td>
<td>0.095</td>
<td>0.086</td>
<td>0.584</td>
</tr>
<tr>
<td>Population share: no more than mandatory schooling</td>
<td>0.246</td>
<td>0.240</td>
<td>0.697</td>
</tr>
<tr>
<td>Advanced school graduations 2000 / 1000 inhabitants</td>
<td>2.338</td>
<td>1.923</td>
<td>0.071 +</td>
</tr>
<tr>
<td>University graduations 2000 (in 1000 inhabitants)</td>
<td>1.298</td>
<td>1.058</td>
<td>0.115</td>
</tr>
<tr>
<td>Education expenditures per capita (in Swiss Francs)</td>
<td>2602.8</td>
<td>2635.0</td>
<td>0.843</td>
</tr>
<tr>
<td>Share of education expenditures in public expenditures</td>
<td>0.271</td>
<td>0.288</td>
<td>0.366</td>
</tr>
<tr>
<td>Average teacher salary in primary schools</td>
<td>100.50</td>
<td>100.88</td>
<td>0.912</td>
</tr>
<tr>
<td>Average teacher salary in secondary schools</td>
<td>102.60</td>
<td>96.419</td>
<td>0.087 +</td>
</tr>
<tr>
<td>Performance based teacher pay (5=high, 1 = low)</td>
<td>2.154</td>
<td>3.385</td>
<td>0.016 *</td>
</tr>
<tr>
<td>Primary teacher probability of job change (in percent)</td>
<td>3.846</td>
<td>3.077</td>
<td>0.435</td>
</tr>
<tr>
<td>Secondary teacher probability of job change (in percent)</td>
<td>5.077</td>
<td>2.923</td>
<td>0.055 +</td>
</tr>
</tbody>
</table>

Source: Own calculations based on population census 2000 and Müller Kucera and Stauffer (2003). **, *, and + indicate significantly different means at the 1, 5 and 10 percent level.
Table 2 Observed probability of child high secondary education by paternal education and cantonal age at school entry

| | P(high | low) | P (high | high) | Abs. Diff. p-value | Rel. Diff. p-value |
|------------|--------|--------|--------|-------------------|--------------------|
| | 1 | 2 | 3 | 4 | 5 | 6 |
| (A) MID | | | | | | |
| enrolment: 6 | 0.155 (0.007) | 0.689 (0.010) | 0.534 | 0.068 | 4.44 | 0.000 |
| enrolment: 7 | 0.067 (0.005) | 0.575 (0.012) | 0.508 | 8.53 |
| (B) EARLY | | | | | | |
| enrolment: 6 | 0.130 (0.005) | 0.652 (0.007) | 0.522 | 0.177 | 5.03 | 0.000 |
| enrolment: 7 | 0.067 (0.005) | 0.575 (0.012) | 0.508 | 8.53 |
| (C) LATE | | | | | | |
| enrolment: 6 | 0.175 (0.007) | 0.698 (0.009) | 0.523 | 0.266 | 3.99 | 0.000 |
| enrolment: 7 | 0.078 (0.004) | 0.592 (0.008) | 0.514 | 7.63 |

Note: P (high | low) describes the probability that children of fathers with low education pursue the high secondary track, the other probabilities similarly condition on fathers' education. Standard errors are in parentheses, the p-values apply to one sided tests of the null hypotheses that the absolute and relative differences across school entry regimes are identical.
Table 3 Predicted probability of child high secondary education by parental education and cantonal enrolment regime

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4 = 3 - 1</th>
<th>5</th>
<th>6</th>
<th>7 = 3 - 2</th>
<th>8</th>
<th>9</th>
<th>10 = 3 / 1</th>
<th>11</th>
<th>12</th>
<th>13 = 3 / 2</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P(high</td>
<td>P(high</td>
<td>P(high</td>
<td></td>
<td>Diff. age</td>
<td>Diff. age</td>
<td>Diff. age</td>
<td>Diff. age</td>
<td>Diff. age</td>
<td></td>
<td>Diff. age</td>
<td>Diff. age</td>
<td></td>
<td>Diff. age</td>
<td></td>
</tr>
<tr>
<td></td>
<td>low)</td>
<td>mid)</td>
<td>high)</td>
<td></td>
<td>6-5 and 7-6</td>
<td>7-5 and 7-6</td>
<td>6-5 and 7-6</td>
<td>7-5 and 7-6</td>
<td>6-5 and 7-6</td>
<td></td>
<td>7-5 and 7-6</td>
<td>7-5 and 7-6</td>
<td></td>
<td>7-5 and 7-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p-value</td>
<td>p-value</td>
<td>p-value</td>
<td>p-value</td>
<td>p-value</td>
<td></td>
<td>p-value</td>
<td>p-value</td>
<td></td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>(A) MID</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.443</td>
<td>0.287</td>
<td>0.047</td>
<td>3.193</td>
<td>1.801</td>
<td></td>
<td>1.635</td>
<td>(0.549)</td>
<td>0.052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrolment: 5</td>
<td>0.202</td>
<td>0.359</td>
<td>0.646</td>
<td></td>
<td>(0.133)</td>
<td>(0.171)</td>
<td>(0.174)</td>
<td>(0.092)</td>
<td>(0.068)</td>
<td></td>
<td>(1.363)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrolment: 6</td>
<td>0.115</td>
<td>0.258</td>
<td>0.616</td>
<td></td>
<td>(0.088)</td>
<td>(0.147)</td>
<td>(0.176)</td>
<td>(0.113)</td>
<td>(0.071)</td>
<td></td>
<td>(2.890)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrolment: 7</td>
<td>0.061</td>
<td>0.176</td>
<td>0.583</td>
<td></td>
<td>(0.052)</td>
<td>(0.118)</td>
<td>(0.180)</td>
<td>(0.141)</td>
<td>(0.091)</td>
<td></td>
<td>(5.461)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) EARLY</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.497</td>
<td>0.348</td>
<td>0.257</td>
<td>5.895</td>
<td>2.075</td>
<td></td>
<td>2.256</td>
<td>(0.745)</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrolment: 5</td>
<td>0.174</td>
<td>0.323</td>
<td>0.671</td>
<td></td>
<td>(0.125)</td>
<td>(0.169)</td>
<td>(0.170)</td>
<td>(0.095)</td>
<td>(0.071)</td>
<td></td>
<td>(0.060)</td>
<td></td>
<td>(0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrolment: 6</td>
<td>0.105</td>
<td>0.241</td>
<td>0.618</td>
<td></td>
<td>(0.084)</td>
<td>(0.146)</td>
<td>(0.179)</td>
<td>(0.119)</td>
<td>(0.075)</td>
<td></td>
<td>(3.303)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrolment: 7</td>
<td>0.060</td>
<td>0.174</td>
<td>0.560</td>
<td></td>
<td>(0.052)</td>
<td>(0.120)</td>
<td>(0.186)</td>
<td>(0.147)</td>
<td>(0.094)</td>
<td></td>
<td>(5.263)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) LATE</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.413</td>
<td>0.270</td>
<td>0.029</td>
<td>5.283</td>
<td>1.888</td>
<td></td>
<td>4.675</td>
<td>(1.246)</td>
<td>0.202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrolment: 5</td>
<td>0.162</td>
<td>0.304</td>
<td>0.575</td>
<td></td>
<td>(0.087)</td>
<td>(0.147)</td>
<td>(0.179)</td>
<td>(0.126)</td>
<td>(0.087)</td>
<td></td>
<td>(4.034)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrolment: 6</td>
<td>0.112</td>
<td>0.248</td>
<td>0.591</td>
<td></td>
<td>(0.088)</td>
<td>(0.148)</td>
<td>(0.182)</td>
<td>(0.118)</td>
<td>(0.074)</td>
<td></td>
<td>(2.819)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrolment: 7</td>
<td>0.075</td>
<td>0.199</td>
<td>0.607</td>
<td></td>
<td>(0.067)</td>
<td>(0.134)</td>
<td>(0.179)</td>
<td>(0.132)</td>
<td>(0.084)</td>
<td></td>
<td>(4.774)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Note: P (high | low) describes the probability that children of fathers with low education pursue the high secondary track, the other probabilities similarly condition on fathers' education. In parentheses are bootstrapped standard errors, the p-values apply to one-sided tests of the null hypotheses that the absolute and relative differences (presented in columns 4, 7, 10 and 13) in the early enrolment regime are smaller than in the late enrolment regimes. Source: Own calculations based on Census 2000 and on a survey of cantonal education departments.
2477 Gaëtan Nicodème, Corporate Income Tax and Economic Distortions, November 2008

2480 Burkhard Heer and Andreas Irmen, Population, Pensions, and Endogenous Economic Growth, November 2008

2481 Thomas Aronsson and Erkki Koskela, Optimal Redistributive Taxation and Provision of Public Input Goods in an Economy with Outsourcing and Unemployment, December 2008

2483 Bruno S. Frey and Benno Torgler, Politicians: Be Killed or Survive, December 2008

2484 Thiess Buettner, Nadine Riedel and Marco Runkel, Strategic Consolidation under Formula Apportionment, December 2008

2485 Irani Arraiz, David M. Drukker, Harry H. Kelejian and Ingmar R. Prucha, A Spatial Cliff-Ord-type Model with Heteroskedastic Innovations: Small and Large Sample Results, December 2008

2486 Oliver Falck, Michael Fritsch and Stephan Heblich, The Apple doesn’t Fall far from the Tree: Location of Start-Ups Relative to Incumbents, December 2008

2487 Cary Deck and Harris Schlesinger, Exploring Higher-Order Risk Effects, December 2008

2488 Michael Kaganovich and Volker Meier, Social Security Systems, Human Capital, and Growth in a Small Open Economy, December 2008

2491 Urs Fischbacher and Simon Gächter, Social Preferences, Beliefs, and the Dynamics of Free Riding in Public Good Experiments, December 2008

2493 Christian Bruns and Oliver Himmler, It’s the Media, Stupid – How Media Activity Shapes Public Spending, December 2008

2495 Sascha O. Becker, Peter H. Egger, Maximilian von Ehrlich and Robert Fenge, Going NUTS: The Effect of EU Structural Funds on Regional Performance, December 2008

2496 Robert Dur, Gift Exchange in the Workplace: Money or Attention?, December 2008

2497 Scott Alan Carson, Nineteenth Century Black and White US Statures: The Primary Sources of Vitamin D and their Relationship with Height, December 2008

2498 Thomas Crossley and Mario Jametti, Pension Benefit Insurance and Pension Plan Portfolio Choice, December 2008

2499 Sebastian Hauptmeier, Ferdinand Mittermaier and Johannes Rincke, Fiscal Competition over Taxes and Public Inputs: Theory and Evidence, December 2008

2500 Dirk Niepelt, Debt Maturity without Commitment, December 2008

2501 Andrew Clark, Andreas Knabe and Steffen Rätzel, Boon or Bane? Others’ Unemployment, Well-being and Job Insecurity, December 2008

2504 Andreas Irmem, Cross-Country Income Differences and Technology Diffusion in a Competitive World, December 2008

2505 Wenan Fei, Claude Fluet and Harris Schlesinger, Uncertain Bequest Needs and Long-Term Insurance Contracts, December 2008

2507 Hiroyuki Kasahara and Katsumi Shimotsu, Sequential Estimation of Structural Models with a Fixed Point Constraint, December 2008

2509 Louis Hotte and Stanley L. Winer, The Demands for Environmental Regulation and for Trade in the Presence of Private Mitigation, December 2008

2510 Konstantinos Angelopoulos, Jim Malley and Apostolis Philippopoulos, Welfare Implications of Public Education Spending Rules, December 2008

2511 Robert Orłowski and Regina T. Riphahn, The East German Wage Structure after Transition, December 2008

2512 Michel Beine, Frédéric Docquier and Maurice Schiff, International Migration, Transfers of Norms and Home Country Fertility, December 2008

2515 Bruno S. Frey and Susanne Neckermann, Awards in Economics – Towards a New Field of Inquiry, January 2009

2516 Gregory Gilpin and Michael Kaganovich, The Quantity and Quality of Teachers: A Dynamic Trade-off, January 2009

2517 Sascha O. Becker, Peter H. Egger and Valeria Merlo, How Low Business Tax Rates Attract Multinational Headquarters: Municipality-Level Evidence from Germany, January 2009

2519 Jesus Crespo Cuaresma, Gernot Doppelhofer and Martin Feldkircher, The Determinants of Economic Growth in European Regions, January 2009

2521 Geir B. Asheim and Tapan Mitra, Sustainability and Discounted Utilitarianism in Models of Economic Growth, January 2009

2522 Etienne Farvaque and Gaël Lagadec, Electoral Control when Policies are for Sale, January 2009

2523 Nicholas Barr and Peter Diamond, Reforming Pensions, January 2009

2526 John Whalley, Jun Yu and Shunming Zhang, Trade Retaliation in a Monetary-Trade Model, January 2009

2527 Mathias Hoffmann and Thomas Nitschka, Securitization of Mortgage Debt, Asset Prices and International Risk Sharing, January 2009

2528 Steven Brakman and Harry Garretsen, Trade and Geography: Paul Krugman and the 2008 Nobel Prize in Economics, January 2009

2529 Bas Jacobs, Dirk Schindler and Hongyan Yang, Optimal Taxation of Risky Human Capital, January 2009

2530 Annette Alstadsæter and Erik Fjærli, Neutral Taxation of Shareholder Income? Corporate Responses to an Announced Dividend Tax, January 2009

2531 Bruno S. Frey and Susanne Neckermann, Academics Appreciate Awards – A New Aspect of Incentives in Research, January 2009

2532 Nannette Lindenberg and Frank Westermann, Common Trends and Common Cycles among Interest Rates of the G7-Countries, January 2009

2533 Erkki Koskela and Jan König, The Role of Profit Sharing in a Dual Labour Market with Flexible Outsourcing, January 2009

2534 Tomasz Michalak, Jacob Engwerda and Joseph Plasman, Strategic Interactions between Fiscal and Monetary Authorities in a Multi-Country New-Keynesian Model of a Monetary Union, January 2009

2536 Xenia Matschke and Anja Schöttner, Antidumping as Strategic Trade Policy Under Asymmetric Information, February 2009

2537 John Whalley, Weimin Zhou and Xiaopeng An, Chinese Experience with Global 3G Standard-Setting, February 2009

2540 Lars P. Feld and Jost H. Heckemeyer, FDI and Taxation: A Meta-Study, February 2009

2541 Philipp C. Bauer and Regina T. Riphahn, Age at School Entry and Intergenerational Educational Mobility, February 2009