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Abstract
We propose a novel observation-driven modeling framework that allows for time
variation in the model’s parameters using a proximal-parameter (ProPar) update.
The ProPar update is the solution to an optimization problem that maximizes the
logarithmic observation density with respect to the parameter, while penalizing the
squared distance of the parameter from its one-step-ahead prediction. The asso-
ciated first-order condition has the form of an implicit stochastic-gradient update;
replacing this implicit update with its explicit counterpart yields the popular class
of score-driven models. Key advantages of the ProPar setup are stronger invertibil-
ity properties (especially under model misspecification) as well as extended (global
rather than local) optimality properties. For the class of postulated observation den-
sities whose logarithm is concave, ProPar’s robustness is evident from its (i) muted
response to large shocks in endogenous and exogenous variables, (ii) stability un-
der poorly specified learning rates, and (iii) global contractivity towards a pseudo-
truth—in all cases, even under model misspecification. We illustrate the general
applicability and the practical usefulness of the ProPar framework for time-varying
regressions, volatility, and quantiles.
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1 Introduction

There is ample empirical evidence to suggest that it is unrealistic to assume that a model’s

parameters remain constant for prolonged periods of time. In economics and finance, pa-

rameters are often found to be regime dependent or subject to structural breaks (e.g., Stock

and Watson, 1996). Parameters may also change more gradually, following no discernible

pattern. Particularly in the latter case, it is unclear how best to update the model’s pa-

rameters after observing new data. In specific cases, one may be able to construct ex-post

estimators; e.g., in ARCH-type models (see Teräsvirta, 2009 for an overview), volatility is

made time-varying by using the squared shock, which provides an unbiased ex-post proxy of

the true variance. In general, however, such proxies may be difficult to derive, inefficient, or

nonexistent.

We introduce a comprehensive new framework that allows a model’s parameters to be

made time-varying in an observation-driven setting by using proximal-parameter (ProPar)

updates. The proposed ProPar filter contains alternating prediction and update steps, which

are analogous to those in Kalman’s (1960) filter. The key component of our framework is

the ProPar update step, which ensures that the update remains “proximal” (i.e., close) to

the prediction. Specifically, the ProPar parameter update is the solution to an optimization

problem that maximizes the log-likelihood contribution of the current observation subject

to a weighted ℓ2 penalty centered at the one-step-ahead prediction. In the optimization

literature, such methods are known as proximal-point or proximal-gradient methods (see

subsection 1.1 for related literature). The employed optimization framework implies that

(i) all information in the log-likelihood contribution of the data is used, (ii) the update of

multiple interacting parameters, representing the solution of a joint optimization problem,

is automatically coordinated, and (iii) parameter constraints may be incorporated without

necessarily requiring link functions.

The first-order condition corresponding to the optimization problem solved in the ProPar

update step can be rewritten as an implicit stochastic-gradient update: “implicit” because
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the gradient is evaluated in the updated rather than the predicted parameter and “stochastic”

because it uses noisy data. It is well known in the optimization literature that implicit

gradient methods are inherently more stable than their explicit counterparts. In particular,

implicit gradient updates are guaranteed to improve the objective function—in our case,

the log-likelihood contribution of the last observation—whereas the same does not hold for

explicit gradient updates. This last point is relevant because of the widespread use of explicit

gradient methods in observation-driven models, e.g., in the popular class of score-driven

models (again, see subsection 1.1).

We present several attractive theoretical properties satisfied by the ProPar filter. First,

we show that the ProPar filter is invertible (Theorem 1) under mild parameter restrictions

and assuming concavity of the researcher-postulated logarithmic density; i.e., any differences

stemming from the initialization of the filter disappear almost surely and exponentially fast.

Interestingly, this result requires hardly any assumptions to be placed on the true data-

generating process; as such, it is highly robust to model misspecification. Second, we estab-

lish that the ProPar update yields an updated density that presents an improvement over

the predicted density, where both may be misspecified, in the sense that the local Kullback-

Leibler divergence relative to the true density is reduced (Proposition 3). This result provides

a local information-theoretic foundation in the spirit of Blasques et al. (2015), but it is sub-

stantially stronger as we are able to consider sizeable (i.e., non-infinitesimal) adjustments

of the time-varying parameter. Third, we present conditions for a global contraction of the

ProPar update (Theorem 2) towards a small region centered around the true parameter, or

pseudo-true parameter in the case of model misspecification. This result allows for the situ-

ation in which the prediction is highly accurate while the update, being based on noisy data,

is less accurate. Nevertheless, its value lies in showing that, on average, the ProPar update is

more accurate than the prediction on which it is based, where the largest improvements are

expected for the worst predictions. In sum, the ProPar filter features favorable theoretical

properties that are typically sought in observation-driven models, but rarely combined in a
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single framework; indeed, we are unaware of other approaches offering the same combination

of advantages.

We illustrate advantages of the ProPar framework in three empirical illustrations. First,

we consider a linear regression of daily Microsoft equity returns on the market factor, where

the regression coefficient (i.e., the slope) is made time-varying. Second, we model time-

varying volatility using daily S&P500 data. In both illustrations, the ProPar filter down-

weights the effects of large shocks, making it better able to cope with rare events when

compared to standard alternatives. Third, we consider growth-at-risk estimates captured

by the lower quantiles of quarterly US GDP growth. We show that the corresponding

ProPar update yields an implicit version of Engle and Manganelli’s (2004) adaptive CAViaR

model, where ProPar has the comparative advantage that its quantile update cannot be more

extreme than the observation just received. We use this enhanced stability result, together

with simple parameter restrictions, to ensure that simultaneously modeled quantiles remain

properly ordered, thus avoiding the quantile-crossing problem faced by other methods.

1.1 Related literature

This paper ties in with two main strands of literature. First, the ProPar filter can be viewed

as a stochastic version of Rockafellar’s (1976) proximal-point algorithm, which combines

a function to be optimized with a quadratic penalty involving some previous iterate. As

our log-likelihood function involves (random) observations drawn from the true density, the

ProPar filter can be viewed as a stochastic proximal-point method (e.g., Ryu and Boyd, 2016;

Bianchi, 2016, Patrascu and Necoara, 2018; Asi and Duchi, 2019). The first-order condition

associated with the proximal optimization can also be rewritten as an implicit stochastic-

gradient step (e.g., Toulis and Airoldi, 2015; Toulis et al., 2016; Toulis and Airoldi, 2017;

Toulis et al., 2021). This literature has recognized that an advantage of implicit over explicit

gradient methods lies in the former’s enhanced stability properties.

Second, our paper is related to the class of observation-driven time-varying parameter
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models so labeled in Cox et al. (1981). A key benefit of these models is that the likelihood

can be computed in closed form, thus enabling numerical maximum-likelihood (ML) esti-

mation. The present article relates most closely to literature that makes use of the score

of the log-likelihood function to propagate time-varying parameters. These models are var-

iously referred to as dynamic conditional score (DCS; Harvey, 2013) models or generalized

autoregressive score (GAS; Creal et al., 2013) models. This score-driven framework nests

many established models, such as the GARCH model, and is highly popular due to its ease

of use and strong forecasting performance (e.g., Creal et al., 2014; Harvey and Luati, 2014;

Koopman et al., 2016; Harvey and Lange, 2017; and Opschoor et al., 2018; among others).

As the current article demonstrates, this class of score-driven models can be obtained

within the ProPar framework by replacing, at every time step, the logarithmic observation

density by its local-linear approximation around the one-step-ahead prediction. More di-

rectly, ProPar’s implicit stochastic-gradient update can be replaced by its explicit version,

which also yields the standard (i.e., explicit) score-driven setting. The advantage of avoid-

ing the local-linear approximation, preserving the full logarithmic observation density, and

maintaining the implicit stochastic-gradient update is that it enables us to generalize several

attractive properties of score-driven models from the local to the global setting. For example,

we are able to derive a stronger form of local information-theoretic optimality for ProPar

models than is available for standard score-driven models (Blasques et al., 2015). The key

difference with the approach in Blasques et al. (2015) is that we need not restrict ourselves

to arbitrarily small adjustments in the time-varying parameter. Our invertibility results

are also stronger, placing fewer demands on the actual data-generating process. Finally,

ProPar’s global contraction property towards a pseudo-truth has no obvious equivalent in

the literature on standard score-driven models.

The remainder of this paper is structured as follows. First, Section 2 outlines the ProPar

methodology, highlights the differences with regular score-driven models, and contains a

simple example that illustrates the method. The theory is presented in Section 3, where
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we focus on stability, local information-theoretic optimality, and global contractivity of the

ProPar update. Maximum-likelihood estimation of the static parameters is considered in

Section 4. Section 5 evaluates the empirical performance of three specific ProPar models.

Finally, Section 6 concludes with implications and recommendations. Proofs are contained

in the Appendix.

2 Proximal-parameter framework

2.1 Prediction-update recursion

We consider an N × 1 variable of interest yt, observed at times t = 1, . . . , T , drawn from

an observation density p0(·|θ0
t , ψ

0,Ft−1), where θ0
t is a time-varying parameter vector taking

its values in some parameter space Θ0, ψ0 is a vector of static shape parameters, and Ft−1

denotes the information set at time t− 1, thereby permitting the dependence on exogenous

variables and/or lags of yt. For readability, the dependence on ψ0 and Ft−1 is henceforth

suppressed.

The aim of this paper is to devise a modeling framework that attempts to approximate the

true distribution p0(·|θ0
t ). To this end, we propose a filter that alternates between prediction

and update steps. Specifically, let p(·|θt) denote the researcher-postulated density, which may

or may not be correctly specified, where θt denotes a K×1 vector of time-varying parameters

that can take values in some non-empty convex parameter space Θ ⊆ RK . As above, any

additional dependence on static shape parameters and/or other information available at

time t− 1 is permitted but suppressed for readability. We denote the predicted and updated

parameter vectors by θt|t−1 ∈ Θ and θt|t ∈ Θ, which reflect the researcher’s estimates of θt

using the information set available at times t− 1 and t, respectively.

The main difficulty in working with time-varying parameter models lies in specifying how

θt|t should differ from θt|t−1 after observing yt. We argue that a sound update scheme should

satisfy at least two natural criteria. First, the update should be in accordance with the
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likelihood, such that p(yt|θt|t) ≥ p(yt|θt|t−1): i.e., the updated parameter has an improved fit

when evaluated at the observed data yt. Second, as each observation yt is inherently noisy,

it is desirable to regularize (i.e., limit in magnitude) the amount by which the update θt|t

deviates from the prediction θt|t−1. Penalizing the magnitude of θt|t − θt|t−1, measured in

some norm, prohibits the filtered path from becoming excessively volatile.

To satisfy both criteria, this article proposes the class of proximal-parameter (ProPar)

models. These models perform the parameter update at time t by maximizing the researcher-

postulated logarithmic observation density log p(yt|·) subject to a weighted ℓ2 penalty cen-

tered at the prediction θt|t−1. That is, we consider the parameter update

θt|t := argmax
θ∈Θ

f(θ|yt, θt|t−1, Pt), (1)

where

f(θ|yt, θt|t−1, Pt) := log p(yt|θ) − 1
2
∥∥∥θ − θt|t−1

∥∥∥2

Pt

, (2)

denotes the regularized log-likelihood contribution and ∥x∥2
Pt

= x′Ptx is the squared ℓ2 norm

with respect to a positive-definite weight matrix Pt. By formulating the parameter update as

the solution to a maximization problem, the proposed method has several favorable charac-

teristics. First, all information in the conditional density is utilized to update the parameter,

as opposed to, e.g., moment information only. Second, elements of the parameter update θt|t

are automatically interdependent, because jointly they represent the solution to the multi-

variate optimization problem (1). Third, the update θt|t is automatically contained in the

correct space Θ and does not necessarily require a link function to be specified (although we

may employ link functions for other reasons). We may constrain Θ to any non-empty convex

subset, allowing for straightforward incorporation of a great variety of convex and possibly

non-differentiable constraints.

The weighted ℓ2 penalization yields tractable updates and can be interpreted as a second-

order Taylor expansion around θt|t−1 of an arbitrary, but more complicated, loss function,
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where Pt acts as the corresponding Hessian. Furthermore, the update in the ProPar approach

defined in equations (1) and (2) takes a comparable form to Rockafellar’s (1976) classic

proximal-point algorithm, which similarly considers the optimization of a target function—

in our case, the log-likelihood contribution of the observation yt—subject to a quadratic

penalty. Because the likelihood contribution is based on the (a priori random) realization yt,

our approach can be viewed as a stochastic proximal-point method (Asi and Duchi, 2019).

Thanks to their favorable characteristics, proximal-point methods are widely employed in op-

timization. In Section 3, we exploit this structure to obtain a variety of attractive properties

of the ProPar filter in terms of stability and optimality.

Below, we formalize two standard assumptions (Assumptions 1 and 2) regarding the

existence and uniqueness of the solution to maximization problem (1). We add two further

assumptions (Assumptions 3 and 4) that allow us to characterize its solution using a standard

first-order condition. While this simplification is not absolutely necessary (e.g., we could work

with subgradients), it helps increase the clarity of exposition and improves mathematical

tractability.

Assumption 1 (Existence) The solution set of argmax
θ∈Θ

f(θ|yt, θt|t−1, Pt) is non-empty with

probability one.

Assumption 2 (Strictly concave regularized log likelihood) f(θ|yt, θt|t−1, Pt) is proper

strictly concave in θ, ∀θ ∈ Θ with probability one.

Assumption 3 (Interior solution) θt|t ∈ Int(Θ) with probability one.

Assumption 4 (Differentiability) log p(yt|θ) is at least once continuously differentiable

in θ, ∀θ ∈ Int(Θ) with probability one.

Under Assumptions 1 through 4, the first-order condition for the parameter update θt|t

in the maximization problem (1) can be rearranged as

θt|t = θt|t−1 + Ht ∇(yt|θt|t), (3)
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where Ht := P−1
t is the learning-rate matrix and ∇(yt|θt|t) := ∂

∂θ
log p(yt|θ)

∣∣∣∣
θ=θt|t

is the

score vector, both at time t. Representation (3) demonstrates that the ProPar framework

yields a gradient-type parameter update. The learning-rate matrix controls the step size

and allows for different learning rates and interactions between the different time-varying

parameters. Crucially, the score is evaluated at the update θt|t rather than the prediction

θt|t−1. This means that update (3) is an implicit gradient method; i.e., the parameter update

θt|t appears on both sides of the equation, hence is not immediately computable. Because

the update θt|t is also stochastic—it is based on the a priori random realization yt—our

framework is closely related to the implicit stochastic-gradient methods of Toulis and Airoldi

(2015), Toulis and Airoldi (2017) and Toulis et al. (2021), among others. While the first-

order condition (3) may not allow a closed-form solution, Assumptions 2 (concavity) and 4

(differentiability) guarantee that the global solution to optimization problem (1) can always

be found numerically using standard optimization techniques (e.g., quasi-Newton methods).

An attractive property of implicit updates is their enhanced stability and optimality

relative to explicit gradient methods, which use the gradient evaluated in the prediction

θt|t−1 rather than the update θt|t. Implicit updates are guaranteed to increase the value of

the objective function—in our case the log-likelihood contribution of yt—whereas explicit

versions may decrease the objective function when the step size is too large; i.e., explicit

methods may “overshoot”. To reduce this problem, explicit gradient methods must often be

implemented with smaller learning rates. In contrast, when the objective function is strictly

concave, implicit gradient methods can be shown to convergence to the global optimum

for any positive definite learning-rate matrix Ht (Toulis and Airoldi, 2017). For this reason,

implicit optimization techniques are widely employed in statistics and machine learning (e.g.,

Kulis and Bartlett, 2010; Li et al., 2014).

A key difference with the existing literature on implicit gradient methods in optimization

is that we consider a setting in which the true parameter is time-varying rather than constant.

In the optimization literature, the penalty matrix Pt is typically set to be increasing over time
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(or equivalently, the learning-rate matrix Ht is set to be decreasing) in such a way that the

parameter update asymptotically converges to some constant pseudo-true parameter value.

Here we are interested in tracking some time-varying true parameter; hence, our filtered path

must not converge over time, but remain responsive even asymptotically.

To complete our dynamic setup, the ProPar update step (3) is complemented with a

prediction step that generates one-step-ahead forecasts. For simplicity, we consider a linear

first-order specification as follows:

θt+1|t = ω + Φ θt|t, (4)

where ω is a K × 1 vector of constants and Φ is a K ×K autoregressive matrix. Conditions

ensuring stable recursions are discussed in the next section. The requirement θt+1|t ∈ Θ can

typically be fulfilled by appropriate parameter restrictions and/or link functions. While the

prediction step (4) could be generalized to allow for non-linear or higher-order dynamics, we

do not pursue this here.

To sum up, suppose we are given (i) some data {yt} for t = 1, 2, . . . , T , (ii) a researcher-

postulated density p(·|θ) satisfying Assumptions 1 through 4, (iii) a set of prediction pa-

rameters ω and Φ, (iv) a sequence of penalization matrices {Pt}, and (v) some initial esti-

mate θ0|0 ∈ Θ. Then we can iteratively apply the prediction-update recursion consisting of

the prediction step (4) and the update step (1) or, equivalently, (3). Together, these recur-

sions produce sequences of parameter predictions, {θt|t−1}, and parameter updates, {θt|t},

such that the description of the ProPar filter is now complete.

2.2 Relationship with (explicit) score-driven filters

The implicit gradient-type update (3) suggests a close connection with the large literature

on score-driven models. To elucidate this relationship, we consider approximating the loga-

rithmic observation density in equation (2) using a first-order Taylor expansion around the
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prediction θt|t−1, i.e., we approximate log p(yt|θ) ≈ log p(yt|θt|t−1) + ⟨θ − θt|t−1,∇(yt|θt|t−1)⟩

where ⟨x1, x2⟩ := x′
1x2 denotes the inner product. Next, in equation (1), suppose that Θ

is the Euclidean space RK . Because the objective function has been linearized, while the

penalty term remains quadratic, optimization (1) can now be performed in closed form. By

solving the first-order condition resulting from this linearization, we obtain a familiar result,

which is the explicit gradient-type update, denoted by θe
t|t. The first-order approximation of

optimization (1) and associated first-order condition read

θe
t|t := argmax

θ∈RK

{
log p(yt|θt|t−1) + ⟨θ − θt|t−1,∇(yt|θt|t−1)⟩ − 1

2∥θ − θt|t−1∥2
Pt

}
, (5)

θe
t|t = θt|t−1 + Ht ∇(yt|θt|t−1). (6)

The score on the right-hand-side of the explicit update (6) is evaluated at the prediction θt|t−1

rather than the update θt|t, such that θe
t|t is immediately computable. In combination with

prediction step (4), the explicit updating strategy (5) yields a well-known class of (explicit)

score-driven models, known either as dynamic conditional score (DCS) models (Harvey,

2013) or generalized autoregressive-score (GAS) models (Creal et al., 2013). This class

of (explicit) score-driven models can thus be viewed as a first-order approximation to the

implicit update (3), similar to how explicit gradient methods in optimization are viewed as

first-order approximations of implicit- or proximal-gradient methods.

It is natural to ask whether the implicit and explicit update strategies yield similar results.

Proposition 1 below shows that both strategies suggest adjustments of the time-varying

parameter that point roughly in the same direction. Geometrically, the angle between the

difference vector θt|t − θt|t−1 and the explicit version of the score (i.e., ∇(yt|θt|t−1)) cannot

exceed 90 degrees.

Proposition 1 (Gradient alignment) Fix t > 0 and let Assumptions 1 to 2 hold. Let

a prediction θt|t−1 ∈ Θ and positive-definite penalty Pt ∈ RK×K be given and assume that
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∇(yt|θt|t−1) is well-defined. Compute θt|t by the update step (1). Then, with probability one,

⟨θt|t − θt|t−1,∇(yt|θt|t−1)⟩ ≥ 0. (7)

For a scalar time-varying parameter (i.e., K = 1), Proposition 1 implies θe
t|t − θt|t−1 and

θt|t − θt|t−1 have the same sign. This is reflected in Corollary 1. In this case, the implicit

score is therefore “score equivalent” using the definition of Blasques et al. (2015).

Corollary 1 (Gradient-sign concordance in one dimension) Fix t > 0 and let As-

sumptions 1 to 4 hold. Let a prediction θt|t−1 ∈ Θ ⊆ R and penalty Pt > 0 be given.

Compute θt|t by the update step (1). Then, with probability one,

sign(∇(yt|θt|t)) = sign(∇(yt|θt|t−1)). (8)

To say more about the properties of the ProPar update step (1), we require more information

regarding the shape of the log-likelihood function log p(yt|θ). In this paper, we focus on the

family of concave log-likelihood functions, which allows us to derive a set of particularly

strong optimality and stability properties.

Assumption 5 (Concave log-likelihood function) log p(yt|θ) + αt/2 ∥θ∥2 is concave in

θ for some αt ≥ 0, ∀θ ∈ Θ, with probability one.

Assumption 5 is a stronger version of Assumption 2, as we now impose concavity on the

log-likelihood contribution itself, rather than on its regularized version (2). The strength of

concavity is measured by αt ≥ 0, where the boundary case αt = 0 implies concavity while

αt > 0 implies αt-strong concavity. A large collection of popular logarithmic densities, as

illustrated in the empirical section, are concave in their parameters. Weaker conditions that

encompass an even larger family of densities are being investigated in a companion paper.

It is well known in the optimization literature that the implicit gradient update is a
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shrunken version of the explicit gradient update (e.g., Toulis and Airoldi, 2015). Proposi-

tion 2 reflects this relationship in our setting.

Proposition 2 (Step-size shrinkage) Fix t > 0 and let Assumptions 1 to 5 hold. Let

a prediction θt|t−1 ∈ Θ and positive-definite penalty Pt ∈ RK×K be given. Based on the

observation yt, compute θt|t by the implicit update (3) and θe
t|t by the explicit update (6).

Then, with probability one,

∥∥∥θt|t − θt|t−1

∥∥∥2

Pt+2αtIK

≤
∥∥∥θe

t|t − θt|t−1

∥∥∥2

Pt
, (9)

where IK is the identity matrix of size K.

Inequality (9) features a weighted norm on both sides, where the weight matrix on the left-

hand-side has a diagonal that is increased by a multiple of the identity matrix. As a result,

the vector inside the norm on the left-hand-side must be smaller in some sense than the

vector inside the norm on the right-hand side. The magnitude of the shrinkage depends

on the ratio between the strength of concavity αt and the penalty Pt, where a larger αt or

smaller Pt imply more shrinkage. In the scalar case (i.e., K = 1), equation (9) can be written

more simply as ∥θt|t − θt|t−1∥2 ≤ Pt

Pt+2αt
∥θe

t|t − θt|t−1∥2, where Pt/(Pt + 2αt) ∈ (0, 1] is the

shrinkage factor.

In practical terms, the shrinkage of the vector θt|t − θt|t−1 evident from equation (9) pro-

vides an additional level of robustness that is particularly useful for dealing with outliers. In

the presence of outliers, the learning-rate matrix Ht must typically be reduced in magnitude

to ensure that the filter is not excessively impacted by such aberrant observations. The

shrinkage property (9) mitigates this problem, allowing ProPar models to accommodate for

larger learning rates relative to standard (i.e., explicit) score-driven models. In the optimiza-

tion literature, the fact that implicit strategies often allow for larger learning rates is well

known (e.g., Toulis and Airoldi, 2017).
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2.3 Example: Linear regression with time-varying slopes

This section illustrates several attractive properties of the ProPar framework using a linear

regression model, in which the parameters are time-varying.

Example 1 (Linear regression) Consider a linear regression model with dependent vari-

able yt ∈ R and independent variable xt ∈ RK, i.e.

yt = β′
t xt + εt, εt

i.i.d.∼ N(0, σ2), (10)

where βt is a K×1 vector of time-varying parameters and εt is an i.i.d. normally distributed

innovation with variance σ2. Then the ProPar update (1) can be computed in closed form as

βt|t = βt|t−1 + σ2

σ2 + ∥xt∥2
Ht

Ht ∇(yt|βt|t−1, xt), (11)

where Ht = P−1
t is the learning-rate matrix and ∇(yt|βt|t−1, xt) denotes the score evaluated

at the prediction,

∇(yt|βt|t−1, xt) =
yt − β′

t|t−1 xt

σ2 xt. (12)

Example 1 illustrates the shrinkage result of Proposition 2 for the linear regression model.

In particular, the right-hand-side of equation (11) features the shrinkage factor σ2/(σ2 +

∥xt∥2
Ht

) ∈ (0, 1], which would be absent (i.e., equal to unity) in the case of an explicit score-

driven update; hence, update (11) can be viewed as a robustified version of the explicit score-

driven update. The amount of shrinkage is increasing in the magnitude of the explanatory

variable (i.e., ∥xt∥2
Ht

) and decreasing in the observation variance (i.e., σ2). For the ProPar

update (11), it is easy to show that if a particular element of xt tends to infinity in an

absolute sense (i.e., |xi,t| → ∞ for some i), then the corresponding element of βt|t goes to

zero (i.e., βi,t|t → 0), while the other elements remain unchanged at their predicted values

(i.e., βj,t|t → βj,t|t−1 for j ̸= i). The fact that the shrinkage factor depends on the realization

of the exogenous variable xt appears to be distinctive for the ProPar version of the model;
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i.e., we are unaware of (explicit) score-driven models with this property.

Another difference with explicit score-driven models is that the ProPar update (11) re-

mains bounded as the learning-rate matrix Ht grows larger (i.e., in a positive definite sense).

This can be seen by noting that Ht appears not only in front of the score, but also in the

denominator of the shrinkage factor. The practical relevance of this observation is that the

ProPar filter is robust against the (suboptimal) choice of the learning rate, whereas explicit

score-driven models tend to require more careful finetuning.

Finally we note that, for the specific case of the linear regression model, many of the

comments made above are analogous to those that have been made when comparing the so-

called least-mean-square adaptive filter and its normalized version (e.g., Diniz, 1997). The

ProPar framework is more generally applicable, however, and in the remainder of this article

we investigate a much wider class of models.

3 Theory

3.1 Stability

Turning to the stability properties of the proposed framework, we are particularly interested

in providing sufficient conditions for filter invertibility, meaning that filtered paths based

on identical data but with different initializations convergence exponentially fast. First,

we show in Lemma 1 that the update step (1) admits strong contraction properties under

Assumptions 1 through 5. We note that no additional conditions are imposed on the true

data-generating process (DGP), as discussed in further detail below.

Lemma 1 (Prediction-to-update stability) Fix t > 0 and let Assumptions 1 to 5 hold.

Let θt|t−1 and θ̃t|t−1 denote two predictions in Θ, which are combined with the observation yt

in the update step (1) to yield two corresponding parameter updates, θt|t and θ̃t|t, respectively.
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Then, with probability one,

∥∥∥θt|t − θ̃t|t

∥∥∥2

Pt+2αtIK

≤
∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

Pt
. (13)

If, in addition, the postulated log-likelihood function θ 7→ log p(·|θ) is twice differentiable,

then, with probability one, the Jacobian matrix ∂θt|t
∂θ′

t|t−1
has all eigenvalues in (0, 1]. This

interval becomes (0, 1) when αt > 0.

The first part of Lemma 1 indicates that the update step of the ProPar filter is non-

expansive in the norm ∥·∥Pt , i.e., the update step does not magnify (and possibly shrinks) the

distance between different paths. The second part of Lemma 1 shows that the eigenvalues of

the Jacobian ∂θt|t
∂θ′

t|t−1
are in the unit interval if the log-likelihood function is twice continuously

differentiable, which reflects an alternative definition of non-expansiveness. For a strongly

concave log-likelihood function (i.e., αt > 0), we obtain a strict contraction in the norm

∥ · ∥Pt as long as the predictions are not identical (i.e., θt|t−1 ̸= θ̃t|t−1). In this case, the

eigenvalues of the Jacobian are strictly bounded between zero and one. The strength of

the contraction is determined by the strength of concavity αt and the penalty matrix Pt.

Interestingly, Lemma 1 does not require further assumptions on the DGP.

To obtain a strictly contracting prediction-to-prediction mapping from time t to time

t + 1, it is sufficient to have both the update and prediction steps be non-expansive in the

norm ∥ · ∥Pt with at least one of them being strictly contractive. That is, when αt = 0, the

prediction mapping from θt|t to θt+1|t must be strictly contracting in the norm ∥ · ∥Pt . When

αt > 0, on the other hand, it is sufficient for the prediction step to be non-expansive. For

example, the identity mapping θt+1|t = θt|t is non-expansive and often useful in practice.

A sufficient condition for non-expansiveness (contractiveness) of the prediction step in

the norm ∥ · ∥Pt is that Pt ⪰ Φ′PtΦ (Pt ≻ Φ′PtΦ). Here, the notation X ⪰ Y (X ≻ Y )

indicates that X−Y has non-negative (strictly positive) eigenvalues for two symmetric real-

valued matrices X and Y of the same size. This requirement is equivalent to ∥Φ∥Pt ≤ 1
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(∥Φ∥Pt < 1), where ∥X∥Pt is the induced operator norm of a matrix X ∈ RK×K . This

condition is closely related to the discrete Lyapunov equation (e.g., Anderson and Moore,

2012). Lemma 2 summarizes the contraction of the prediction-to-prediction mapping in the

norm ∥ · ∥Pt .

Lemma 2 (Prediction-to-prediction stability) Fix t > 0 and let Assumptions 1 to 5

hold. Let Pt be given with Pt ⪰ Φ′PtΦ. Let θt|t−1 and θ̃t|t−1 denote two predictions in Θ that

are used in the update step (1) to yield two corresponding parameter updates, θt|t and θ̃t|t,

and subsequently passed to the prediction step (4) to yield two predictions, θt+1|t and θ̃t+1|t.

Then, with probability one,

∥∥∥θt+1|t − θ̃t+1|t

∥∥∥2

Pt

≤ κt

∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

Pt
, (14)

where the contraction coefficient κt is

κt = λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt) + 2αt

, (15)

where λmax(X) and λmin(X) denote the largest and smallest eigenvalues of X. If either

αt > 0 or Pt ≻ Φ′PtΦ, then, with probability one, κt ∈ [0, 1).

The strength of the contraction of the prediction-to-prediction mapping at time t is

measured by κt, which is a function of the strength of concavity αt, the penalty Pt and

the autoregressive matrix Φ. For a scalar time-varying parameter, the standard condition

|Φ| < 1 is sufficient to yield κt ∈ [0, 1). In the multiple-parameter setting, Φ′Φ ≺ IK implies

Φ′PtΦ ≺ Pt when (i) Φ and Pt are both diagonal or (ii) either Φ or Pt is a constant multiple

of the identity. In this case, the standard condition that the spectral norm of Φ should be

less than one is sufficient to yield κt ∈ [0, 1). To allow for more richly parameterized Φ and

Pt, we could allow Φ to be time-varying by expressing it in terms of Pt as

Φt = P
−1/2
t V P

1/2
t , (16)
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where V is a K ×K matrix of static autoregressive parameters with ∥V ∥2 < 1, where ∥ · ∥2

denotes the ℓ2 operator norm. It is straightforward to show that this transformation implies

Pt ≻ Φ′
tPtΦt. The matrices Φt and V are then similar; i.e., they have the same eigenvalues.

Alternatively, Pt = P could be taken to be constant for all t and expressed as the solution

to (the discrete version of) Lyapunov’s equation P − Φ′PΦ = ∆ ≻ 0, which has a unique

solution P ≻ 0 parameterized in terms of Φ and ∆ ≻ 0. The strict inequalities in this entire

paragraph are permitted to become weak if we additionally require αt > 0.

For the effects of the initialization to disappear exponentially fast, it is required that

the composition of all prediction-to-prediction mappings is contractive. A sufficient (but

stronger than necessary) condition is that each individual prediction-to-prediction mapping

is contractive in a single norm that is the same (i.e., shared) across all mappings over time.

Theorem 1 formulates sufficient conditions for the existence of such a shared norm and

contains an invertibility result that is crucial in enabling maximum-likelihood estimation

of the static parameters (e.g., Straumann and Mikosch, 2006). This desirable invertibility

property also ensures that numerical errors do not accumulate during implementation in

practice, a concern also expressed for the Kalman filter (Anderson and Moore, 2012).

Theorem 1 (Invertibility) For all t > 0, let Assumptions 1 to 5 hold, with additionally

either (i) Pt ≻ Φ′PtΦ or (ii) Pt ⪰ Φ′PtΦ and αt > 0. In addition, let there be some

P̄ , A ∈ RK×K with P̄ ≻ A ≻ OK×K and a sequence {ρt > 0} such that for all t > 0, with

probability one,

κtPt + ρtA ⪯ ρt P̄ ⪯ Pt, (17)

where κt is defined in (15). Take two initial values θ0|0 ∈ Θ and θ̃0|0 ∈ Θ, yielding two

sequences {θt|t−1} and {θ̃t|t−1}, respectively. Then the filter composed of (1) and (4) is

invertible, i.e., there exists a constant c(·) > 1 such that as t → ∞, with probability one,

lim
t→∞

ct
(·)

∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

(·)
→ 0, (18)
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for any norm (·).

Equation (17) in Theorem 1 expresses a sufficient condition for a contraction of all prediction-

to-prediction mappings in the common norm ∥ · ∥P̄ , where P̄ is a constant matrix satisfying

inequality (17). For a scalar time-varying parameter, this condition is guaranteed irrespective

of the sequence {Pt} whenever the standard condition |Φ| < 1 holds. For the unit-root case

|Φ| = 1, it is sufficient that {Pt} is upper bounded while {αt} is strictly lower bounded away

from zero, in both cases uniformly across time, thereby preventing κt from approaching unity.

In the multiple-parameter setting, equation (17) essentially limits only the relative dynamics

of {Pt}, preventing the penalization of different elements of the time-varying parameter

from being too drastically different and varying too much across different time periods.

Condition (17) is less stringent when the persistence in the prediction step is reduced (i.e.,

for Φ closer to OK×K) and/or when the strength of concavity is increased (i.e., for larger

{αt}), as these conditions lead to stronger contractions (i.e., lower {κt}).

The presence of the scalar ρt > 0 in condition (17) indicates that the relative penalization

between parameters matters, but not the overall magnitude. This is because a contraction

in the norm ∥ · ∥P implies a contraction in the norm ∥ · ∥ρtP and vice versa. For this reason,

the sufficient condition (17) is automatically satisfied if the sequence {Pt} is a time-varying

scalar multiple of a static matrix; i.e., {Pt = ζtP} for some sequence {ζt > 0} and P ≻ OK×K

for which P ≻ Φ′PΦ. Matrix A in condition (17) is included to ensure that the contraction

coefficient with respect to the norm ∥ · ∥P̄ is bounded above, uniformly across time, at some

value strictly below unity.

Result (18) implies the exponential almost sure (e.a.s.) convergence of the different paths

{θt|t−1} and {θ̃t|t−1} based on the same data, such that differences due to either (i) varying

initializations θ0|0 and θ̃0|0 or (ii) numerical errors due to finite computer precision disappear

exponentially fast as time progresses. Importantly, Theorem 1 relies on the researcher-

postulated, but not the true, observation density. Hence invertibility in the ProPar frame-

work can be guaranteed without imposing additional restrictions on the true DGP, which
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is convenient as the true DGP is typically unknown. We may even allow Assumptions 1

to 5 to fail for a particular realization of the observation, as long as this violation occurs

with probability zero. When the assumptions are guaranteed to hold for all observations yt,

the above stability result is entirely unaffected by model misspecification. In contrast, the

contraction property of explicit score-driven models is always contingent on the true DGP

and the magnitude of the learning rate Ht = P−1
t . The maximum-permitted learning rate

in explicit score-driven models is closely tied to the properties of the true DGP, while an

infringement of this (typically unknown) upper bound may yield an explosive recursion.

In the optimization literature, similarly, Toulis and Airoldi (2017) find implicit stochastic-

gradient algorithms to be convergent under arbitrary misspecification of the learning rate

when the objective function is concave, whereas explicit methods require finetuning to avoid

divergence.

3.2 Local information-theoretic optimality properties

To illustrate the optimality properties of our framework, we outline several desirable char-

acteristics of the update procedure. We begin with investigating local optimality properties

and subsequently investigate global behavior. First, Definition 1 introduces the concept of

a likelihood-concordant update procedure.

Definition 1 (Likelihood concordance) A parameter update from a prediction θt|t−1 to

an update θt|t based on the observation yt is likelihood concordant if and only if log p(yt|θt|t) ≥

log p(yt|θt|t−1). The update is strictly likelihood concordant if in addition log p(yt|θt|t) =

log p(yt|θt|t−1) implies that θt|t = θt|t−1.

In our view, likelihood concordance serves as a useful minimal requirement for a sensible pa-

rameter update. Specifically, if a parameter update is not likelihood concordant, the model

fit evaluated at the observation yt deteriorates after observing yt, which is clearly undesir-

able. If Assumptions 1 and 2 hold, the ProPar update step is, due to the optimization (1),
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automatically strictly likelihood concordant. In contrast, while standard score-driven mod-

els with appropriately tuned learning rates may be likelihood concordant, the general class

is not. This is because explicit-gradient methods cannot be guaranteed to improve the ob-

jective function unless the step size is arbitrarily small; i.e., explicit gradient methods may

“overshoot”.

Likelihood concordance concerns an improvement in the likelihood of observing yt, which

is achieved by an updating scheme that utilizes the (same) observation yt. The observation

yt may be atypical, however, such that likelihood concordance, while desirable, does not

necessarily imply an improvement in the expected likelihood of a theoretical redraw from

the true density. Nevertheless, it turns out that we can guarantee an expected improvement

in the likelihood for a new observation drawn from a set of positive probability in the vicinity

of the observation yt. To this end, we consider the Kullback-Leibler (KL) divergence of the

predicted and updated densities, where both may be misspecified, relative to the true density.

In computing the KL divergence, we consider only observations that are “similar” to yt.

Computing the difference between both KL divergences amounts to computing the difference

in cross-entropies, relative to the true density, of the updated and predicted densities. Hence

we define the local KL improvement Dt(Y) with Y ⊆ Dom(y) = Dom(yt) as

Dt(Y) := E
y

[
log p(y|θt|t) − log p(y|θt|t−1)

∣∣∣ y ∈ Y
]
, (19)

where E
y
[·] denotes the expectation with respect to the true density p0(y|θ0

t ). Here we dis-

tinguish between the actual yt used to construct the update θt|t, and a theoretical redraw

from the true density, denoted y, which is assumed to be independent from yt. We refer to

updating schemes satisfying the condition Dt(Y) > 0, which is more stringent than likelihood

concordance, as being locally KL-improving.

Definition 2 (Locally KL-improving updates) A parameter update from prediction

θt|t−1 to update θt|t based on the observation yt is a locally KL-improving update if and only if
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∃δ ≥ 0 such that, for Y := {y ∈ Dom(y)| ∥y − yt∥2 ≤ δ }, Pr(y ∈ Y|θ0
t ) :=

∫
Y p0(y|θ0

t )dy > 0

and Dt(Y) > 0.

If the observations are discrete and if θt|t ̸= θt|t−1, then strict likelihood concordance trivially

implies a local KL improvement. This is because, given that we have observed yt, it is clear

that Pr(y = yt|θ0
t ) = p0(yt|θ0

t ) > 0. Hence we may pick δ = 0 (which implies Y = yt) to

obtain the desired result. If the observations take values in a continuum, we require the

postulated density to be continuous, thus imposing no additional constraints on the DGP.

For continuous observations, under Assumptions 1 and 2 and requiring merely continuity of

our postulated density, we can show that all ProPar updates for which the update is unequal

to the prediction (i.e., θt|t ̸= θt|t−1) represent local KL improvements.

Proposition 3 (Local KL improvement of the ProPar update) Fix t > 0 and let

Assumptions 1 and 2 hold. In addition, let either (i) Pr(y = yt|θ0
t ) > 0 or (ii) p(y|θ) be

continuous in y, ∀θ ∈ Θ. Then, with probability one, the ProPar update from θt|t−1 to θt|t

using the observation yt as in (1) is a locally KL-improving update if θt|t ̸= θt|t−1.

Our concept of a locally KL-improving update is closely related to that in Blasques et al.

(2015), who introduce the notion of local realized KL optimality for univariate score-driven

models with continuous observations. However, our setup is different in several ways. Our

definition also encompasses discrete random variables and we limit neither yt nor θt to the

scalar case. The most important deviation is that we dispense with the additional require-

ment in Blasques et al. (2015) that θt|t is contained in some arbitrarily small neighborhood

of θt|t−1. This condition, which effectively limits the approach to infinitesimally small step

sizes, is unavoidable in explicit score-driven models because, more generally, explicit-gradient

methods can only guarantee improvements of the objective function in the case of arbitrarily

small step sizes. In practice, the condition that the update θt|t remains arbitrarily close to

the prediction θt|t−1 requires that either (i) the observation roughly confirms the accuracy of

the prediction such that the update is only marginally different, or (ii) a sizeable adjustment
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appears to be needed but the learning rate is kept arbitrarily small. These considerations

suggest that information in explicit score-driven models may be slow to be incorporated;

indeed, one of our empirical illustrations appears to confirm this.

In sum, we find that ProPar models possess a stronger and more generally applicable form

of local optimality than explicit score-driven models. This result does not require us to place

any additional demands on the likelihood or the DGP; indeed, Assumptions 1 and 2 and

continuity of the postulated likelihood in the data are sufficient. The main disadvantage of

explicit-gradient methods with non-infinitesimal learning rates, namely that they can lead to

a deterioration of the objective function, is precluded when using implicit gradient methods.

While it is tempting to try and prove a guaranteed global KL improvement of the update

by investigating Dt(Y) with Y = Dom(yt), it is straightforward to show that this is generally

infeasible due to the stochastic nature of the observation and, hence, the update. While

there is no hope of generalizing Proposition 3 to the global setting, the next subsection

demonstrates that the ProPar update is globally contracting towards some small region

around the pseudo-true parameter.

3.3 Global optimality properties

We now turn to the investigation of global optimality properties of the ProPar filter. To this

end, we make the following assumptions.

Assumption 6 (Uniqueness of pseudo-truth) ∃θ⋆
t such that E

y
[log p(y|θ⋆

t )] > E
y
[log p(y|θ)]

∀θ ∈ Θ \ {θ⋆
t } and E

y
[∇(y|θ⋆

t )] = 0.

Assumption 7 (Bounded information) E
y
[∥∇(y|θ⋆

t )∥2] < ∞.

Assumption 6 asserts the existence of a unique pseudo-truth θ⋆
t that maximizes the expected

(postulated) log-likelihood function E
y
[log p(y|θ⋆

t )], where the expectation operator E
y
[·] is

computed using the true (but unknown) density. Equivalently, θ⋆
t is the unique minimizer

of the KL divergence. If the logarithmic density is differentiable and strongly concave with
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probability one—i.e., Assumptions 4 and 5 for some αt > 0 hold—then the existence of a

unique pseudo-truth is automatic and need not be separately assumed. In the case of correct

model specification, the truth and pseudo-truth coincide (i.e., θ0
t = θ⋆

t ). Assumption 7 posits

that the norm of the squared score computed with the postulated density, and evaluated in

the pseudo-truth, is finite in expectation with respect to the true observation density.

When the prediction θt|t−1 is very close to the pseudo-truth θ⋆
t , the update θt|t will be

inferior to the prediction with some positive probability, as θt|t is based on the noisy realiza-

tion yt. Hence an improvement is harder to achieve when the prediction is quite accurate;

indeed, an improvement is impossible by Assumption 6 when the prediction is already pin-

point accurate (i.e., in the case θt|t−1 = θ⋆
t ). On the other hand, when the prediction θt|t−1

is a long way from the pseudo-truth θ⋆
t , the update θt|t will in expectation be superior to

the prediction θt|t−1. The next result makes explicit this tug of war between contractive and

expansive forces.

Lemma 3 (Contractive and expansive forces) Fix t > 0 and let Assumptions 1 to 7

hold. Then

E
yt

[∥∥∥θt|t − θ⋆
t

∥∥∥2

Pt

]
︸ ︷︷ ︸
MSE after updating

≤
∥∥∥θt|t−1 − θ⋆

t

∥∥∥2

Pt︸ ︷︷ ︸
SE of prediction

+ 2E
yt

[
⟨∇(yt|θt|t) − ∇(yt|θ⋆

t ), θt|t − θ⋆
t ⟩
]

︸ ︷︷ ︸
≤ 0, contractive force

(20)

+ E
yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

Ht

]
︸ ︷︷ ︸

≥ 0, expansive force

,

where E
yt

[·] denotes the expectation with respect to the true density p0(yt|θ0
t ) and (M)SE de-

notes the (mean) squared error.

Lemma 3 shows that the expected squared distance of the update from the pseudo-truth

measured in a weighted norm (i.e., E
yt

[∥θt|t − θ⋆
t ∥2

Pt
]) is at most equal to the squared distance

of the prediction from the pseudo-truth (i.e., ∥θt|t−1 − θ⋆
t ∥2

Pt
) plus two additional terms.

These additional terms determine whether the update is expected to be an improved or
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not. When the researcher-postulated logarithmic density is concave with probability one

(Assumption 5), we have that ⟨∇(yt|θt|t)−∇(yt|θ⋆
t ), θt|t −θ⋆

t ⟩ is non-positive with probability

one. It follows that the term E
yt

[⟨∇(yt|θt|t)−∇(yt|θ⋆
t ), θt|t −θ⋆

t ⟩] is then also non-positive, such

that it can be seen to act as a contractive force. The last term E
yt

[∥∇(yt|θ⋆
t )∥2

Ht
] involves a

weighted norm of the postulated gradient evaluated at the pseudo-truth and averaged over

yt using the true density; hence, it reflects the irreducible noise obtained by updating based

on the noisy observation yt. Naturally, it is non-negative and acts as an expansive force.

Importantly, the magnitude of the irreducible noise does not depend on the prediction

θt|t−1; hence, the strength of the expansive force remains constant as θt|t−1 is moved further

from the pseudo-truth θ⋆
t . On the other hand, the contractive force is typically increasing in

the distance of θt|t−1 from θ⋆
t , such that this contractive force tends to dominate when θt|t−1

is far from θ⋆
t . In the region where this contractive force dominates, we can expect updates

to be beneficial. Conversely, the region around θ⋆
t where the expansive force dominates is

known as the noise-dominated region (NDR, e.g., Ryu and Boyd, 2016, p. 15; Patrascu and

Necoara, 2018, p. 3).

While the assumption of an increasing contractive force away from the pseudo-truth is

intuitive and verifiably true for most densities used in practice, it must still be formalized, as

we do below in Assumption 8. The assumption itself is somewhat subtle to state, as it turns

out that concavity (i.e., αt = 0) of the postulated logarithmic observation density is neither

necessary nor sufficient, while strong concavity (i.e., αt > 0) is sufficient but stronger than

necessary. Assumption 8 contains weaker versions of strong concavity similar to the ones

employed in the optimization literature (e.g., Toulis et al., 2021, Assumption 3). Effectively,

Assumption 8 ensures that the gradient is, on average, pointed in the correct direction while

its magnitude increases sufficiently fast as we move away from the pseudo-truth.
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Assumption 8 (Increasing expected gradient away from pseudo-truth)

a) ∃δ, C > 0 such that ∀θt|t ∈ Θ⋆
δ := {θ ∈ Θ| ∥θ⋆

t − θ∥2 ≥ δ},

2E
yt

[
⟨∇(yt|θt|t) − ∇(yt|θ⋆

t ), θt|t − θ⋆
t ⟩
]
< −E

yt

[
∥∇(yt|θ⋆

t )∥2
Ht

]
− C, (21)

b) ∃α̃t > 0 such that ∀θt|t ∈ Θ,

E
yt

[
⟨∇(yt|θt|t) − ∇(yt|θ⋆

t ), θt|t − θ⋆
t ⟩
]

≤ −α̃tE
yt

[
∥θt|t − θ⋆

t ∥2
]
. (22)

Assumption 8a posits that if θt|t is far enough from θ⋆
t , the contractive factor dominates

the irreducible noise E
yt

[∥∇(yt|θ⋆
t )∥2

Ht
] by at least some positive amount C. Assumption 8b

is a stronger version of Assumption 8a and assumes that the contractive factor scales with

the distance ∥θ⋆
t − θt|t∥2. Assumption 8b can in turn be seen as a weaker condition than

αt-strong concavity, as the latter implies the existence of some α̃t ≥ αt. This is because the

relationship in Assumption 8b is expressed (i) in terms of an expectation and (ii) in relation

only to the pseudo-truth θ⋆
t , whereas αt-strong concavity would require a similar inequality

to hold (i) with probability one and (ii) for all pairs of points. Assumptions 8a and 8b thus

allow for some degree of non-concavity in the postulated log-likelihood function; combining

them with Lemma 3 yields the contraction result in Theorem 2.

Theorem 2 (Contraction to the NDR) Fix t > 0 and let Assumptions 1 to 8a hold.

Then ∃δ, C > 0 such that ∀θt|t ∈ Θ⋆
δ := {θ ∈ Θ| ∥θ⋆

t − θ∥2 ≥ δ},

E
yt

[
∥θt|t − θ⋆

t ∥2
Pt

]
≤ ∥θt|t−1 − θ⋆

t ∥2
Pt

− C. (23)

If in addition 8b holds for some α̃t > 0, then ∀θt|t ∈ Θ,

E
yt

[
∥θt|t − θ⋆

t ∥2
Pt+2α̃tIK

]
≤ ∥θt|t−1 − θ⋆

t ∥2
Pt

+ E
yt

[
∥∇(yt|θ⋆

t )∥2
Ht

]
. (24)
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In Theorem 2, Assumption 8a guarantees a fixed reduction in the expected squared error

when the prediction is far from the pseudo-truth. Under Assumption 8b, this result can be

strengthened to obtain a global linear contraction up to some level of accuracy determined

by the weighted magnitude of the additive noise. The speed of contraction is regulated

by the average curvature of the log-likelihood function from the prediction to the pseudo-

truth, measured by α̃t, and the size of the penalty Pt. Ceteris paribus, a smaller penalty

or stronger form of concavity yields a faster contraction. Moreover, the irreducible noise is

increasing in the size of the learning-rate matrix Ht = P−1
t , such that larger learning rates

(or, equivalently, smaller penalties) lead to a larger NDR. The optimal choice of learning rate

is therefore determined by a trade-off between contraction speed when far from the pseudo-

truth and the size of the NDR. Finally, by continuity, the expected contraction in terms of

the parameter θ to the pseudo-truth θ⋆
t also implies a contraction on an upper bound in the

expected log-likelihood difference relative to the pseudo-truth; in the correctly specified case,

this is the KL divergence.

4 Estimation

The parameters of the ProPar model, including the penalty matrices {Pt} in the update (1),

parameters ω and Φ in the prediction step (4), and any additional fixed shape parameters in

the observation density are generally unknown and need to be estimated. In our empirical

illustrations below, the penalty matrix is taken to be constant (i.e., Pt = P for all t) and tar-

geting is used for the initialization (alternatively, the initial parameter values θ0|0 could have

been estimated). Determination of all aforementioned parameters can proceed by maximum-

likelihood (ML) estimation based on the standard prediction-error decomposition. We use

the results obtained in Blasques et al. (2022), who derive sufficient conditions for consistency

and asymptotic normality of the ML estimator for explicit score-driven models with a scalar

time-varying parameter (K = 1). They consider both the correctly and incorrectly specified
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cases. A crucial ingredient of their proofs is the invertibility concept in Bougerol (1993) and

Straumann and Mikosch (2006).

We have demonstrated that ProPar models produce more stable updates than explicit

score-driven models due to the inherent structure of implicit updates. For concave loga-

rithmic observation densities in particular, the ProPar update for a given learning rate is a

shrunken version of the explicit score-driven update (see Proposition 2). In this case Theo-

rem 1 also presents a simpler and stronger form of invertibility than is available for explicit

score-driven models. As a result, applying the theory developed in Blasques et al. (2022), we

are able to obtain the same results under similar or possibly weaker assumptions regarding

the DGP and the parameter space of Pt and Φ. In particular, we require that the static

parameters to be estimated are identified, that the series {yt} is stationary ergodic with some

finite moments, and that the postulated density is sufficiently continuous in its arguments

and has bounded derivatives. The latter conditions provide sufficient moments to be used

in the appropriate law of large numbers and central-limit theorem (see Blasques et al., 2022

for details). For concave logarithmic observation densities, we conjecture that for ProPar

models these results can in principle be straightforwardly extended to the multi-parameter

case (K > 1), a full asymptotic investigation of which is beyond the scope of this article.

5 Empirical illustrations

5.1 Linear regression with time-varying slope

The capital asset pricing Model (CAPM), an important benchmark in finance, links the

expected excess returns of individual assets to those of the market in a linear fashion. How-

ever, empirical evidence (e.g., Jagannathan and Wang, 1996) shows that the assumption of

a constant market coefficient β may be unrealistic, especially in equity markets. We exam-

ine the possible time-varying nature of the CAPM market β using the ProPar framework.
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Specifically, we model the excess asset return yt as

yt = α + βt mt + εt, εt
i.i.d.∼ N(0, σ2), (25)

where α is a static intercept, mt denotes the excess market return at time t, and εt is an

i.i.d. normally distributed shock with mean zero and variance σ2. The ProPar update is a

special case of the general setup of Example 1. For the prediction step, we use the linear

first-order specification (4). The penalty parameter or its inverse, the learning rate η > 0, is

assumed constant.

We apply the ProPar dynamic regression model (25) to simple daily excess returns of

Microsoft (MSFT) from 14 March 1986 until 29 April 2022, obtained from Yahoo Finance.1

For the market return and risk-free rate we use the series from Kenneth French’s database.2

Figure 1 shows the evolution of βt|t−1 for the ProPar model and its explicit version, i.e., the

explicit score-driven model. Figure 1 also contains the estimated impact curves βt|t − βt|t−1

with respect to the market return mt for a fixed yt = 0 and two different predictions (i.e.,

βt|t−1 = 1 and βt|t−1 = −0.5).

In Figure 1, we observe that the ProPar and explicit score-driven models generally gen-

erate a similar series {βt|t−1}, while the path generated by the ProPar model seems to be

leading. In particular, the explicit score-driven model appears to be slow to recover from

large shocks, such as the crash on Black Monday, 1987. The reason for this delayed reaction

is that, in explicit score-driven models, the learning rate η must be substantially reduced

to deal with outliers, even though this implies a reduced responsiveness in the remainder of

the sample, as is evident around 1994 and 2004. This problem is drastically reduced for the

ProPar model by the more favorable (asymptotic) impact curve with respect to the exoge-

nous input. In Figure 1, we observe an unbounded quadratic impact of mt on the adjustment

βt|t − βt|t−1 in the explicit score-driven model, while the ProPar impact curve is similar for
1https://finance.yahoo.com/quote/MSFT/history?p=MSFT
2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Figure 1: Time-evolution of βt|t−1 and estimated impact curve of the ProPar and explicit
score-driven (i.e., GAS) models for MSFT from March 1986 until April 2022.

Note: In the left figure the horizontal black dashed line reflects the estimate of β obtained from a static
version of the regression model in (11) and the vertical dotted line marks Black Monday on October 19,
1987. The right figure displays the impact of different values of the exogenous variable mt on the update
magnitude βt|t − βt|t−1 for a fixed yt = 0 and two different predictions βt|t−1 = 1 and βt|t−1 = −0.5. The
horizontal dotted lines reflect the negative values of these predictions.

small |mt| but bounded for large |mt|. Specifically, for ProPar we observe that |mt| → ∞

implies βt|t −βt|t−1 → −βt|t−1 and hence βt|t → 0. When the exogenous variable is excessively

large, therefore, the dynamic slope βt|t under the ProPar specification reverts to zero. This

enhanced stability property allows ProPar’s estimated learning rate to substantially exceed

that of the explicit score-driven model (γ̂ = 0.0169 versus γ̂ = 0.0092 for ProPar and the

explicit method, respectively), which explains ProPar’s higher sensitivity during non-crisis

times.

5.2 Time-varying volatility

Modeling asset-price volatility plays a central role in finance and provides important input

for risk management, among others. We consider a time-varying volatility model using the

ProPar filter. Specifically, we model the logarithmic asset return yt as

yt = µ+ σt zt, σt = exp(ht) zt
i.i.d.∼ N(0, 1), (26)
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where µ is a static mean, ht = log σt is the dynamic conditional logarithmic volatility, and

zt is a standardized i.i.d. normally distributed shock. The ProPar update and prediction are

ht|t = ht|t−1 + η

( yt − µ

exp(ht|t)

)2

− 1
 , (27)

ht+1|t = ω + ϕht|t, (28)

where the prediction parameters (i.e., ω > 0 and ϕ ∈ [0, 1)) and the learning rate (i.e., η > 0)

are to be estimated by maximum likelihood. The ProPar update ht|t can be analytically

solved from equation (27) using the Lambert W function, which is available in most standard

software packages.

We estimate the ProPar volatility model in (27) and (28) for daily S&P500 returns from

4 January 2000 until 28 June 2022, obtained from the Oxford-Man library.3 We compare the

ProPar model against its explicit (i.e., GAS) counterpart, which can be obtained by replacing

ht|t on the right-hand-side of update (27) by ht|t−1. In addition, we estimate Nelson’s (1991)

EGARCH model without a leverage term. Figure 2 shows the estimated paths of σt|t−1 for

the different models and the estimated news impact curves for σt|t−1 = 1.

Figure 2 reveals that the ProPar filter closely aligns with the EGARCH model. The

explicit score-driven model displays a similar pattern, but is more sensitive to large shocks

during low-volatility periods. The estimated impact curves demonstrate that the ProPar

model is less sensitive to large shocks than the EGARCH model, which in turn is more robust

than the explicit score-driven model. In the absence of large shocks, the three models closely

align. In terms of fit, we find minor advantages of the ProPar model over the EGARCH

model, which in turn outperforms the explicit score-driven model. For example, the log-

likelihood values are −7781.4, −7790.3 and −7795.7 for the ProPar, EGARCH, and explicit

score-driven models, respectively. We find a similar result in terms of the mean squared

error (MSE) when compared to the 5-minute realized variance (5.0336, 5.0466, and 5.1199,
3https://realized.oxford-man.ox.ac.uk/
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Figure 2: Time-evolution of σt|t−1 and estimated impact curve of the ProPar, explicit score-
driven (i.e., GAS) and EGARCH models for daily S&P500 returns from January 2000 until
June 2022.

Note: The EGARCH model is specified as log(σt+1|t) = ω + α(|zt| −
√

2
π ) + β log(σt|t−1) with ω, α and β

parameters and zt = (yt − µ)/σt|t−1 the standardized return at time t. The right figure displays the relative
volatility update as a function of yt for a fixed prediction σt|t−1 = 1 for the estimated models.

respectively). Similarly, the ProPar update σ2
t|t outperforms its explicit counterpart (MSE

4.9017 versus 4.9715, respectively), which suggests that the ProPar updating step may be

useful for now-casting. We conclude that the ProPar framework can be used to construct a

competitive volatility model with an ingrained robustness to outliers, even when it is based

on the Gaussian observation density.

5.3 Time-varying growth at risk

Modeling macroeconomic downside risk is crucial for policymakers. The growth-at-risk

(GaR) framework refers to conditional lower quantiles of GDP growth and has become a

popular measure for macroeconomic risk assessment. Typically, estimation is performed by

means of quantile regressions (QRs; see Koenker and Hallock, 2001). These regressions usu-

ally rely on a set of exogenous variables; e.g., capturing the relationship between GaR on

the one hand and economic and financial conditions on the other (Adrian et al., 2019).

We propose to endogenously update a time-varying conditional quantile by postulating
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an asymmetric Laplace distribution with a time-varying location. Maximizing such a density

is equivalent to the minimization of Koenker and Bassett’s (1978) QR check function. The

ProPar update for the τ -level quantile at time t, denoted by qt|t(τ), can be computed in

closed form as

qt|t(τ) = 1[yt ≤ qt|t−1(τ)] max{yt, q
e
t|t(τ)} + 1[yt > qt|t−1(τ)] min{yt, q

e
t|t(τ)}, (29)

where yt denotes the GDP growth rate at time t, while 1[·] equals an indicator function that

equals one if the condition in square brackets is satisfied and zero otherwise. The ProPar

update (29) is expressed in terms of the explicit score-driven update, denoted qe
t|t(τ), which

is obtained as follows:

qe
t|t(τ) = qt|t−1(τ) + η

σ
(τ − 1[yt ≤ qt|t−1(τ)]), (30)

where η > 0 and σ > 0 denote the learning rate and a dispersion parameter, respectively,

which are assumed constant over time. The form of qe
t|t(τ) is the same as in Engle and

Manganelli’s (2004) adaptive CAViaR model, yielding a downward adjustment of size η(τ −

1)/σ when the observed growth yt falls below the quantile prediction qt|t−1 and an upward

adjustment of size ητ/σ otherwise. Equation (29) reveals that the ProPar update is a

shrunken version of the explicit update; in particular, ProPar has the desirable property

that the update can never be more extreme than (i.e., is capped at) the observation yt.

Quantile crossing poses an important problem in practice when simultaneously model-

ing multiple quantiles using QRs. Thanks to the particular form of the update (29), the

ProPar model can ensure an appropriate ordering of the quantiles using simple parameter

restrictions. Specifically, if we assume that all quantile updates share the same learning

rate η and dispersion parameter σ, then the updated quantiles remain correctly ordered.

To illustrate, consider an observation yt that falls between the predictions of two different

quantiles. Consequently, one must be updated downward, the other upward. Because the
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ProPar update is capped at the observation, the two quantiles cannot cross. In contrast, the

explicit score-driven update generally permits such crossings to occur. To guarantee that the

correct ordering of quantiles is maintained not only in the update but also in the prediction

step, we specify the prediction as

qt+1|t(τ) = c(τ) (1 − ϕ) + ϕ qt|t(τ) + γ xt, (31)

with an autoregressive parameter ϕ ∈ [0, 1) that is common across quantiles and intercepts

c(τ) that are strictly ordered in τ . Furthermore, xt denotes an exogenous variable available

at time t with common slope parameter γ.

We estimate the 5, 10, 25, and 50 percent GaR using the ProPar and adaptive CAViaR

models using quarterly US GDP growth rates from 1971-Q1 until 2021-Q4. For the exoge-

nous variable xt, we follow Adrian et al. (2019) in using the National Financial Conditions

Index (NFCI), where quarterly values are constructed by averaging the corresponding weekly

values. Both time series were obtained from the FRED database.4 To reduce the number of

parameters to be estimated, we use a targeting approach and set the constants c(τ) equal to

the unconditional quantiles. The remaining static parameters are estimated in a composite-

likelihood fashion, comparable to Zou and Yuan (2008). We fix the scale parameter σ = 1,

as it does not influence the quantile dynamics and can be treated as a nuisance parameter

(e.g., Geraci and Bottai, 2007). Our postulated log-likelihood function equals the sum of

four logarithmic Laplace densities, of which three are asymmetric and one is symmetric (i.e.,

the one corresponding to the median).

Figure 3 shows the 5, 10, 25, and 50 percent GaR estimates obtained from the ProPar

model (29) and adaptive CAViaR model (30). It reveals that the ProPar model is more

responsive than the adaptive CAViaR model. For example, the ProPar model shows greater

downward adjustments during the onset of the COVID-19 pandemic in April 2020 in com-

bination with a faster mean reversion after the crisis. This behavior is made possible by
4See https://fred.stlouisfed.org/series/GDP and https://fred.stlouisfed.org/series/NFCI.
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Figure 3: Growth-at-risk estimates for the ProPar and adaptive CAViaR models, 1971-Q1
until 2021-Q3).

Note: This figure contains the GaR estimates made by the ProPar and adaptive CAViaR models for US
GDP from 1971-Q1 until 2021-Q3 for τ = 0.05, τ = 0.10, τ = 0.25 and τ = 0.50.

the enhanced stability of the implicit update (29) relative to the explicit update (30), which

means that the estimated learning rate η of the ProPar model much exceeds that of the

adaptive CAViaR model (η̂ = 4.002 and η̂ = 0.804 for ProPar and adaptive CAViaR, re-

spectively). Furthermore, the adaptive CAViaR model occasionally suffers from quantile

crossing, while all ProPar quantiles remain strictly ordered at all times. When considering

the median (τ = 0.50), the adaptive CARiaR update frequently cuts across (i.e., overshoots)

the observation yt, whereas the ProPar model, with its capped updates, produces more sta-

ble dynamics that closely mimic the data. In line with Adrian et al.’s (2019) results, we find

that the effect of the NFCI on the quantiles is negative (γ̂ = −0.052 and γ̂ = −0.019 for

ProPar and adaptive CAViaR, respectively), such that higher values of the NFCI correspond

to more negative quantiles.

6 Conclusion

In this article, we have introduced a novel framework for updating time-varying parameters

in an observation-driven setting. Specifically, we proposed a proximal-parameter update that
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maximizes, at each point in time, the logarithmic observation density subject to a quadratic

penalty centered at the one-step-ahead prediction. The first-order condition associated with

this maximization can be written as an implicit stochastic-gradient update, connecting the

proposed method with recent advances in statistics and machine learning. We derived model

invertibility for the class of (possibly misspecified) concave logarithmic observation densi-

ties and formulated sufficient conditions for a global contraction of the parameter update

towards a pseudo-truth. We demonstrated that the class of explicit score-driven models—

known variously as dynamic conditional score (DCS; Harvey, 2013) models or generalized

autoregressive score (GAS; Creal et al., 2013) models—can be obtained within the ProPar

framework by replacing the logarithmic observation density at each point in time by its

local-linear approximation around the prediction. More directly, this class of models can be

obtained by replacing ProPar’s implicit stochastic-gradient update with its explicit version.

Comparing the two methods, we found that the ProPar model extends several attractive

properties of explicit score-driven models from the local to the global setting. In addition,

ProPar models admit stronger contraction properties, yielding a well-behaved filter regard-

less of multiple types of misspecification. Empirical benefits were demonstrated in three

illustrations involving asset pricing, stock-market volatility, and growth-at-risk.
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A Proofs

A.1 Proposition 1

By Assumption 2 we have that the regularized log likelihood f(θ|yt, θt|t−1) is concave in θ

with probability one in yt. As a result, we have for almost every yt that

f(θt|t|yt, θt|t−1) ≤ f(θt|t−1|yt, θt|t−1) + ⟨∇(yt|θt|t−1), θt|t − θt|t−1⟩, (A.1)

reordering and using the fact that θt|t maximizes f(θ|yt, θt|t−1) we obtain

⟨∇(yt|θt|t−1), θt|t − θt|t−1⟩ ≥ f(θt|t|yt, θt|t−1) − f(θt|t−1|yt, θt|t−1) ≥ 0, (A.2)

which yields the desired result. Filling in the first-order condition produces

⟨∇(yt|θt|t−1), Ht∇(yt|θt|t)⟩ ≥ 0, (A.3)

providing an equivalent statement under Assumptions 3 and 4.

A.2 Corollary 1

Using the result of Proposition 1, we have in the scalar case that ∇(yt|θt|t−1)∇(yt|θt|t) ≥ 0

using the strict positivity of the learning rate. Furthermore, ∇(yt|θt|t) = 0 implies that

θt|t = θt|t−1 by the first-order condition, in turn implying that ∇(yt|θt|t−1) = ∇(yt|θt|t) = 0.

Conversely, if ∇(yt|θt|t−1) = 0, we have that θt|t = θt|t−1, as filling in θt|t−1 solves the first-
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order condition (and Assumption 2 implies uniqueness of θt|t). Therefore, ∇(yt|θt|t−1) = 0 if

and only if ∇(yt|θt|t) = 0. Combining this with the fact that ∇(yt|θt|t−1)∇(yt|θt|t) ≥ 0, we

obtain sgn(∇(yt|θt|t)) = sgn(∇(yt|θt|t−1)).

A.3 Proposition 2

Using the first-order conditions of the implicit and explicit update we obtain that the differ-

ence in the update θt|t − θet|t can be written as

θt|t − θet|t = θt|t−1 +Ht∇(yt|θt|t) − θt|t−1 −Ht∇(yt|θt|t−1), (A.4)

whereby rearranging yields

θet|t − θt|t−1 = θt|t − θt|t−1 −Ht[∇(yt|θt|t) − ∇(yt|θt|t−1)]. (A.5)

Pre-multiplying with H
−1/2
t = P

1/2
t , which denotes the symmetric square root of H−1

t = Pt,

and taking the quadratic norm yields

∥θet|t − θt|t−1∥2
Pt

= ∥θt|t − θt|t−1∥2
Pt

− 2⟨∇(yt|θt|t) − ∇(yt|θt|t−1), θt|t − θt|t−1⟩

+ ∥∇(yt|θt|t) − ∇(yt|θt|t−1)∥2
Ht
.

(A.6)

Now using that ∥∇(yt|θt|t) − ∇(yt|θt|t−1)∥2
Ht

≥ 0 and that ⟨∇(yt|θt|t) − ∇(yt|θt|t−1), θt|t −

θt|t−1⟩ ≤ −αt∥θt|t − θt|t−1∥2 by (strong) concavity of the log likelihood from Assumption 5,

we obtain

∥θt|t − θt|t−1∥2
Pt+2αtIK

≤ ∥θet|t − θt|t−1∥2
Pt
, (A.7)

which concludes the proof.
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A.4 Lemma 1

Consider two predictions θt|t−1 and θ̃t|t−1 that are updated based on the observation yt to θt|t

and θ̃t|t, respectively. We consider the weighted norm with respect to Pt of the difference in

updates and substitute the first-order conditions. This yields

∥θ̃t|t − θt|t∥2
Pt

= ⟨Ptθ̃t|t−1 + ∇(yt|θ̃t|t) − Ptθt|t−1 − ∇(yt|θt|t), θ̃t|t − θt|t⟩

= ⟨Pt(θ̃t|t−1 − θt|t−1), θ̃t|t − θt|t⟩ + ⟨∇(yt|θ̃t|t) − ∇(yt|θt|t), θ̃t|t − θt|t⟩,
(A.8)

where the second term is non-positive by concavity of the likelihood. We now use the fact

that ⟨a, b⟩ ≤ 1
2∥a∥2 + 1

2∥b∥2 for any a, b ∈ Rd, which follows from ∥a − b∥2 = ⟨a − b, a −

b⟩ = ∥a∥2 + ∥b∥2 − 2⟨a, b⟩ ≥ 0 and reordering. Filling in a = P
1/2
t (θ̃t|t−1 − θt|t−1) and

b = P
1/2
t (θ̃t|t − θt|t) and also using concavity of the second term yields

∥θ̃t|t − θt|t∥2
Pt

≤ 1
2∥θ̃t|t−1 − θt|t−1∥2

Pt
+ 1

2∥θ̃t|t − θt|t∥2
Pt

− αt∥θ̃t|t − θt|t∥2, (A.9)

from which it straightforwardly follows that

∥θ̃t|t − θt|t∥2
Pt+2αtIK

≤ ∥θ̃t|t−1 − θt|t−1∥2
Pt
. (A.10)

This proves that under Assumptions 1-5, including concavity of the likelihood, we have that

the ProPar update is non-expansive with respect the ∥ · ∥Pt norm. The inequality is strict in

the case of a strongly concave density (αt > 0) and if θt|t ̸= θ̃t|t.

For the second result, we take the derivative of the first-order condition with respect to

θt|t−1. Assuming that the log likelihood is twice differentiable, we obtain

Ht∇2(yt|θt|t)
∂θt|t

∂θ′
t|t−1

= ∂θt|t

∂θ′
t|t−1

− IK , (A.11)
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which may be rearranged to yield

∂θt|t

∂θ′
t|t−1

= [Pt − ∇2(yt|θt|t)]−1Pt, (A.12)

whereby the existence of [Pt − ∇2(yt|θt|t)]−1 is guaranteed by the twice differentiability as-

sumption and the strict concavity of the regularized likelihood in Assumption 2. This is

because under these assumptions the second-order condition reads

∇2(yt|θt|t) − Pt ≺ OK×K , (A.13)

where OK×K the K × K zero matrix and ≺ indicates that the right-hand side minus the

left-hand side yields a positive definite matrix. Therefore, Pt −∇2(yt|θt|t) ≻ OK×K is positive

definite and invertible. As a result, we have that ∂θt|t
∂θ′

t|t−1
is the product of two (symmetric)

positive definite matrices, such that its smallest eigenvalue is strictly larger than 0. To derive

an upper bound for the eigenvalues of ∂θt|t
∂θ′

t|t−1
we rewrite (A.12) as follows

∂θt|t

∂θ′
t|t−1

= IK − [Pt − ∇2(yt|θt|t)]−1(−∇2(yt|θt|t)), (A.14)

where (−∇2(yt|θt|t)) is positive semi-definite by Assumption 5, such that [Pt−∇2(yt|θt|t)]−1(−∇2(yt|θt|t))

has non-negative eigenvalues. It follows that ∂θt|t
∂θ′

t|t−1
has maximum eigenvalue 1. Note that in

the case of strict concavity of the log likelihood, we have that the second term has eigenvalues

strictly larger than 0, such that the maximum eigenvalue of ∂θt|t
∂θ′

t|t−1
is strictly less than 1.
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A.5 Lemma 2

The update-to-prediction mapping from time t to t+ 1 can be written as

∥θt+1|t − θ̃t+1|t∥2
Pt

= ∥Φ(θt|t − θ̃t|t)∥2
Pt

= −∥θt|t − θ̃t|t∥2
Pt−Φ′PtΦ + ∥θt|t − θ̃t|t∥2

Pt
(A.15)

≤ −λmin(Pt − Φ′PtΦ)∥θt|t − θ̃t|t∥2 + ∥θt|t − θ̃t|t∥2
Pt

(A.16)

≤ ε1,t∥θt|t − θ̃t|t∥2
Pt
, (A.17)

where the second line uses that λmin(Pt − Φ′PtΦ) ≥ 0 by positive semi-definiteness of Pt −

Φ′PtΦ, while the last line uses −∥ · ∥2 ≤ −λmax(Pt)−1∥ · ∥2
Pt

. Here ε1,t is given by

ε1,t = λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt)

. (A.18)

By positive definiteness of Pt it follows that Φ′PtΦ is positive semi-definite due to its quadratic

form. Therefore, we have that 0 ≤ λmax(Φ′PtΦ) = λmax(Pt − (Pt − Φ′PtΦ)) ≤ λmax(Pt) +

λmax(−(Pt − Φ′PtΦ)) = λmax(Pt) − λmin(Pt − Φ′PtΦ) ≤ λmax(Pt), such that ε1,t ∈ [0, 1]. If

Pt − Φ′PtΦ is positive definite, we have that ε1,t ∈ [0, 1).

In addition, we can write the result of Lemma 1 as

(1 + 2αt

λmax(Pt)
)∥θ̃t|t − θt|t∥2

Pt
≤ ∥θ̃t|t − θt|t∥2

Pt+2αtIK
≤ ∥θ̃t|t−1 − θt|t−1∥2

Pt
, (A.19)

which yields

∥θ̃t|t − θt|t∥2
Pt

≤ ε2,t∥θ̃t|t−1 − θt|t−1∥2
Pt
, (A.20)

where ε2,t is given as

ε2,t = λmax(Pt)
λmax(Pt) + 2αt

. (A.21)

Clearly, we have that ε2,t ∈ (0, 1] if αt ≥ 0 and ε2,t ∈ (0, 1) if αt > 0.
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Combining (A.17) and (A.20), we obtain

∥θt+1|t − θ̃t+1|t∥2
Pt

≤ κt∥θt|t−1 − θ̃t|t−1∥2
Pt
, (A.22)

where κt is given as

κt = ε1,tε2,t = λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt)

λmax(Pt)
λmax(Pt) + 2αt

= λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt) + 2αt

,

(A.23)

where if either αt > 0 or Pt−Φ′PtΦ positive definite we have that κt ∈ [0, 1), which concludes

the proof.

A.6 Theorem 1

By assumption there exists a P̄ such that we have for all Pt that κtPt ≺ ρtP̄ ⪯ Pt for some

ρt > 0. This condition implies that the prediction-to-prediction mapping from time t to t+1

is strictly contracting in the norm ∥ · ∥ρtP̄ . To see this, we may write

∥θt+1|t − θ̃t+1|t∥2
ρtP̄ ≤ ∥θt+1|t − θ̃t+1|t∥2

Pt
≤ κt∥θt|t−1 − θ̃t|t−1∥2

Pt
(A.24)

= −∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ −κtPt

+ ∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ (A.25)

≤ −λmin(ρtP̄ − κtPt)∥θt|t−1 − θ̃t|t−1∥2 + ∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ (A.26)

≤ δt∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ , (A.27)

where δt is given as

δt = λmax(ρtP̄ ) − λmin(ρtP̄ − κtPt)
λmax(ρtP̄ )

. (A.28)

Due to the condition ρtP̄ − κtPt ⪰ ρtA ≻ 0, we obtain that δt ∈ [0, δ], where δ is given as

δ = λmax(ρtP̄ ) − λmin(ρtA)
λmax(ρtP̄ )

= λmax(P̄ ) − λmin(A)
λmax(P̄ )

, (A.29)
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where due to positive definiteness of P̄ and A we have that δ ∈ (0, 1).

It now follows that

∥θt+1|t − θ̃t+1|t∥2
P̄ ≤ δ∥θt|t−1 − θ̃t|t−1∥2

P̄ , (A.30)

such that every prediction-to-prediction mapping is now strictly contracting in a common

norm ∥ · ∥2
P̄

with at least strength of contraction δ ∈ (0, 1). Therefore we may pick any

c ∈ (1, 1
δ
) and obtain that

lim
t→∞

ct∥θt|t−1 − θ̃t|t−1∥2
P̄ → 0, (A.31)

such that differences due to initialization disappear exponentially fast almost surely. By

norm equivalence it follows that this difference convergences to 0 in any norm.

A.7 Proposition 3

The result follows directly from Definition 2 and an epsilon-delta argument.

A.8 Lemma 3

We write the first-order condition of the ProPar update as follows

H
−1/2
t (θt|t − θt|t−1) = H

1/2
t ∇(yt|θt|t), (A.32)

adding H1/2
t ∇(yt|θ⋆

t ) −H
−1/2
t θ⋆

t to both sides and rearranging gives

H
−1/2
t (θt|t − θ⋆

t ) +H
1/2
t (∇(yt|θ⋆

t ) − ∇(yt|θt|t)) = H
−1/2
t (θt|t−1 − θ⋆

t ) +H
1/2
t ∇(yt|θ⋆

t ). (A.33)
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Taking the quadratic norm yields

∥θt|t − θ⋆
t ∥2

Pt
+ ∥∇(yt|θ⋆

t ) − ∇(yt|θt|t)∥2
Ht

+ 2⟨∇(yt|θ⋆
t ) − ∇(yt|θt|t), θt|t − θ⋆

t ⟩ (A.34)

= ∥θt|t−1 − θ⋆
t ∥2

Pt
+ ∥∇(yt|θ⋆

t )∥2
Ht

+ 2⟨∇(yt|θ⋆
t ), θt|t−1 − θ⋆

t ⟩. (A.35)

We now take the expectation over yt with respect to the true DGP on both sides and use

that E
yt

[∇(yt|θ⋆
t )] = 0 by Assumption 6 and that ∥∇(yt|θ⋆

t ) − ∇(yt|θt|t)∥2
Ht

≥ 0 to obtain

E
yt

[∥θt|t−θ⋆
t ∥2

Pt
] ≤ ∥θt|t−1−θ⋆

t ∥2
Pt

+2E
yt

[⟨∇(yt|θt|t)−∇(yt|θ⋆
t ), θt|t−θ⋆

t ⟩]+E
yt

[∥∇(yt|θ⋆
t )∥2

Ht
], (A.36)

which concludes the proof.

A.9 Theorem 2

The statements follow directly from substituting the expressions in Assumptions 8a and 8b

in Lemma 3.
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