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Abstract
The frequency and severity of fluvial floods are expected to increase due to climate change. 
This paper investigates whether flood risk perception in the housing market changes across a 
country after the occurrence of a catastrophic fluvial flood. Using a comprehensive geocoded 
German house price data set and official flood risk maps, we exploit the July 2021 fluvial flood 
that was salient across Germany as an exogenous variation to causally measure the flood 
risk valuation update in a difference-in-differences setup. While we find that house prices 
decreased in the most inundated regions, no price changes occurred in flood risk regions 
that were not directly affected. This finding indicates that people did not update their risk 
perception after indirect exposure. With this paper, we contribute to the understanding of 
the impact of a salient flood on flood risk capitalization in places without direct exposure.
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1 Introduction

The latest report of the Intergovernmental Panel on Climate Change (IPCC) sheds much-

needed light on flooding events with two crucial points. First, climate change has exacer-

bated extreme weather events such as floods, and second, both the frequency and the severity

of coastal and fluvial floods have increased over time (IPCC Working Group I, 2021). The

report further discusses how the potential damages to lives, infrastructure, and properties

are expected to increase and be large. The report’s findings, however, stand in contrast to

the literature on real estate markets which finds that flood risks tend to be undervalued

by homeowners. In other words, flood risks are not correctly capitalized in home prices

(Bakkensen and Barrage, 2022; Hino and Burke, 2021; Muller and Hopkins, 2019).1

However, after floods have occurred, the associated risk perception changes. The lit-

erature finds that direct experience with a flooding event dampens house prices, property

prices fall in the most affected areas due to damage and also increases in flood risk discounts

(Beltrán et al., 2019; Atreya et al., 2013; Atreya and Ferreira, 2015; Bin and Polasky, 2004;

Bin and Landry, 2013; Daniel et al., 2009; Kousky, 2010). Effects on home prices in regions

that are aware of the flood but not geographically close to the impact of the flooding have

not been in the focus of research yet.2 Nevertheless, this effect is important since only if

markets react this channel could prevent dangerous disproportionate urban and economic

development in these regions even before the damage occurs.

Against this backdrop, this paper investigates the impact of a salient flood event on flood

risk valuation in areas that were not directly affected by the flood. To tackle this question, we

focus on Germany and exploit the heavily damaging floods in July 2021 (“Jahrhunderflut”).

The heavy precipitations between 12–19 July 2021 resulted in flash floods which led to

189 deaths3 and severe damages.4 Current estimates point to damages worth EUR 33

billion in residential, commercial, and industrial sectors as well as in the public sector and

at infrastructures (Munich RE, 2022; Koks et al., 2021). Given the impact, the flooding

was broadly covered by the media, and the cause of the flood was attributed to climate

change (Kahle et al., 2022).5 The salience of the flood to the public was further amplified
1See Beltrán et al. (2018) for a meta-analysis up to May 2014.
2In the broader social science literature, research on indirect exposure (e.g., through salient media coverage
of an event and its impact) on risk perception is inconclusive, and reports mixed results (Binder et al.,
2014; Niu et al., 2022). Many studies find an effect of media on risk perception (Binder et al., 2014;
Liu et al., 2021). However, this positive relationship is mostly reported for health- or food-related issues
(Bekalu and Eggermont, 2014; Garfin et al., 2022; Han et al., 2014; Ju and You, 2021; Mou and Lin, 2014;
Ng et al., 2018; Raupp, 2014; Vyncke et al., 2017). The few studies that investigate the effect of indirect
experience on environmental risk perception find a limited influence of indirect experience and did not
look at flooding events (Brenkert-Smith et al., 2013; Johnston et al., 1999; Niu et al., 2022).

3This death toll is the highest in Germany from water-related hazards since a storm surge in February 1962
along the North Sea Coast (Thieken et al., 2022)

4See Dietze et al. (2022) for a scientific description the July 2021 flood.
5See Figure A.1 in the Appendix for Google trends data in Germany. Shortly after the event, search terms
such as "Flooding", "High tide", "Rain" and "Climate Change" spiked.
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by the flooding becoming a key topic of the 2021 federal election. Therefore, the flood

event is suitable as an exogenous variation to measure indirect flood experience as it was

unprecedented in the lives lost, and economic damage it caused, and this information was

spread across the whole country and not just inundated regions.

We exploit the salient flooding event as an exogenous variation to determine whether

people update their risk perception in the housing market after a fluvial flood. To that end,

we use a comprehensive geocoded data set on German house prices and official flood risk

maps. We apply a difference-in-difference design, which allows us to compare house prices in

and outside flood risk zones with similar characteristics accounting for potentially different

price levels before the flood. This setup allows us to investigate whether the flood event

induced a decrease in home prices in flood risk zones6 relative to a similarly characterized

comparison group outside (but close by) flood risk zones.

While we provide indicative evidence that flood risks are capitalized in the German

housing market, we find that the July 2021 flood event had no statistically significant impact

on the price of houses in flood risk zones compared to comparable houses outside the flood

risk zones. This finding is robust to various specifications and samples. On the other hand,

we find a negative and statistically significant impact of the flood on house prices in regions

that were directly affected – either by being inundated or recording casualties. This finding is

in line with our expectations as those directly affected regions experienced physical damage

and a likely update on flood risk perceptions as documented in the literature. Importantly,

our finding suggests that people that do not directly experience the flood do not seem to

update their flood risk perception. Our findings should alert policymakers seeking to protect

lives and wealth from the outfalls of climate change. We discuss three possible explanations

for those null results: first, the indirect experience of a flood event (e.g., media) only weakly

increases risk perception. Second, risk perception may not translate into action, which

would be reflected in house prices. And lastly, contrary to the US literature, house prices in

Germany may already include rationally derived risk premiums.

Our work contributes to the literature relating flood risk to the real estate market in

several ways. First, we focus on fluvial floods exploiting a country-wide data set of geocoded

home offers and flood risk maps. The flooding events in 2021, which left behind severe

damages to life and property, were flash floods caused due to excess rainfall concentrated

within a brief period. Due to climate change, fluvial floods are expected to increase in

magnitude and likelihood. Our paper thus contributes to the understanding of the impact

of fluvial floods, which remains under-researched compared to coastal flooding. In contrast

to sea level rise affecting coastal regions, flash floods are less predictable but also have a

significant impact. Second, and connected to the first, we focus on the effect of the July
6Excluding those which ended up being part of the affected regions in the 2021 flooding events, see Figure
A.3 for definition and data.
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2021 flood on indirectly affected regions. In other words, we investigate whether the flood

impacted home prices in flood-risk areas that were not affected by the flood. We thus

contribute to the understanding of risk perception updating following a salient flood event

which usually looks at updating in or close to inundated regions. These studies often lack

the ability to disentangle physical damage from risk perception updating. Third, to the

best of our knowledge, we are the first to analyze risk perception updating in the German

real estate market. While a large body of literature focuses on the US housing markets,

the German case differs on various points (e.g., larger rental market, less polarization in

climate change belief). We comprehensively analyze the causal impact of the flood on risk

perception updating and provide the first evidence of flood risk valuation in the German

housing market.

The paper proceeds as follows. Section 2 presents the flood risk and housing data set

and the German context. Section 3 introduces the empirical strategy we use to analyze the

effect of the flood. In Section 4, we present the main results, test their robustness, and

investigate heterogeneous treatment effects. Section 5 discusses our results and Section 6

concludes the paper.

2 Data

Our data is spatially explicit with two main strands, one for our outcome variable, home

offer price for a given object at a given point in time, and one for our variable indicating

the treatment group, that of being inside a flood risk zone.

2.1 Flood risk data

The federal flood risk map, which acts as the basis for treatment assignment in our study,

is obtained from the German Federal Institute of Hydrology (BfG, 2020). We use the latest

version of the map, wherein the last updates were made towards the end of 2019. As a

result, we are confident that no new information from the 2021 floods had an impact on

the map. This static map is obtained as spatial polygons for fluvial and coastal flood risks.

The flood risk is further categorized into low, medium, and high risk levels, which refer to

flood occurrence probabilities of once within the next 200 years, once within the next 100

years, and once within the next 5 to 50 years, respectively. The higher-risk areas tend to

be closer to water bodies. The median distance from a house to the nearest water body in

low-risk areas is about 2681 meters, in medium-risk regions is about 1964 meters, and in

high-risk areas is 1833 meters. For our analysis, we will only focus on fluvial flood risk since

our treatment– the exogenous shock of the occurrence of the 2021 floods– was related to

extreme precipitation, which causes flooding around rivers and not coasts.7

7Moreover, coastal flooding areas suffer from storm surges or sea-level rise but heavy precipitations should
not affect coastal flooding.
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As shown in Figure 1, while most of the homes in the flood risk areas appear to map out

some of the major river networks in Germany, a large number of dots (houses) are affected

by smaller water bodies. Table A.2 presents a map of German water bodies as a comparison.

The North-East part of the map appears bare, without any homes subject to flood risk since

we do not consider coastal flood risk in this study. Once again, our justification is that the

2021 floods were flash floods and provided a different set of information to households than

coastal floods would.

Figure 1: Homes in Fluvial Flood Risk Zones, Germany

Notes: This figure depicts the homes which lie in fluvial flood risk areas, each dot represents one home

2.2 Housing data

To analyze the housing market, we use the RWI-GEO-RED real estate dataset (Schaffner,

2020) from the Research Data Center Ruhr at the RWI (FDZ Ruhr). The comprehensive

data set on the German real estate market provides data from Germany’s leading online

real estate portal ImmobilienScout24. The data includes necessary information such as the

offer price measured in Euros, the date on which the ad was first put up, and the date on

which the ad was taken down. Advertisers also include other property-specific characteristics

such as the living area, number of rooms, condition of the house, year of construction, and

building characteristics. As the data comes from a cooperation with ImmobilienScout24 we

are able to use back-end information from the website such as the exact geo-coordinates.

This enables us to combine both datasets, the flood risk areas, and the housing information.
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We have four possible data sets for the analyses in the combination of rent and sale prices

as well as apartments and houses. We focus on the sale of houses for two reasons. First,

long-term and expensive purchasing decisions are likely more influenced by long-term risk

perceptions, and second, owners of homes are more responsible for potential flood damage

than renters. In our sample, one property appears only once – we ensure this by including

only the last spell of an ad placement corresponding to a given property.

2.3 Treatment and control group

To combine the home prices data with the flood risk data, we merge the two datasets based

on the geolocation of the properties and the flood risk zones. We then determine where

each property is located with respect to a flood risk area. We focus on the treatment and

control groups’ adequate definition. For our main specification, we take houses that are

located inside flood risk zones as the treatment group. To focus on the indirect impact of

the flood event, we exclude areas that were directly impacted by the flood. To that end,

we exclude counties that recorded casualties due to the flood. When estimating the effect

in turn on only directly affected regions, we also apply a second definition that excludes

regions that were inundated (see Figure A.3 for an illustration of these two definitions and

the data sources used). The exclusion of directly affected areas ensures that potential effects

from our estimations only stem from a change in the risk perception and are not driven by

physical damages.

The control group needs to be closely aligned with the treatment group for identification.

That is for the underlying theoretical assumption of the identification that the control group

develops similar to the treatment group until the event takes place. Therefore, the control

group needs to reflect how the treatment group would have developed in the absence of the

event. The control group is best suited for this purpose if it is geographically very close to

the treatment group. This geographical proximity assures that regional amenities, affecting

the local housing prices, play a similar role in both groups. We exploit the proximity of

houses to flood risk zones and choose houses with up to 3 kilometers distance to the nearest

border of a flood risk zone as the control group in our main specification.

However, the definition of the control group in close proximity to the flood risk areas also

poses some potential issues. First, inhabitants might not be aware of the exact delineation

of the flood risk zones. Thus, they might feel affected by a change in risk perception, even

when not located in the officially defined treatment group. In this case, the control group is

affected in the same direction as the treatment group, leading to a potential underestimation

of the effect. People buying houses outside but very close to flood risk zones might still have

an increased risk perception. Therefore, we draw a 0.5-kilometer buffer around flood risk

areas and exclude houses inside that buffer to address the spillover concerns.
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Second, there might be spillovers from the treatment group to the control group. If

people tend to relocate from the flood risk areas, they might move to the control group

areas. Thus, the control group might be positively affected by the event, leading to an

overestimation of the effect. We test the robustness of the results addressing those concerns

in Section 4.2. Figure 2 shows an exemplary flood risk zone (treatment group) and the

corresponding buffer and control group.

Figure 2: Treatment and Control Groups

Notes: This figure depicts a fluvial flood risk zone (black), the corresponding buffer/neutral zone of 0.5 km
(white), and the corresponding control group region (gray) extending from 0.5 km to 3 km around the flood risk
zone. In blue is the inland waterbody. Red dots are homes inside the black flood risk zone, the green dots are
control homes in the 0.5 km to 3 km grey control ring.

Overall, our final data set covers a pooled cross-section of around 1.4 million properties

that were put up for sale during January 2014 to May 2022. Table 1 presents summary

7



statistics for the control group (Columns 1 and 2) and the treatment group (Columns 2 and

3) before and after treatment.8

Table 1: Descriptive Statistics: Treatment and Control Group

Outside flood risk area Inside flood risk area ∆Outside−Inside

Before After Before After Before After

Price per m2

mean 2051.873 2910.239 1868.409 2727,000 183.464 183.239

sd (1157.898) (1443.261) (1055.989) (1360.899)

n 1,087,678 95,984 216,167 18,506

Construction year

mean 1974.044 1946.189 1962.558 1938.116 11.486 8.073

sd (45.270) (39.979) (56.302) (47.877)

n 854,725 77,338 170,901 15,184

Number of rooms

mean 5.439 5.306 5.469 5.313 -0.03 -0.007

sd (1.650) (1.631) (1.728) (1.725)

n 1,022,697 89,580 197,532 16,571

Condition (categorical 1-4)

mean 2.690 2.692 2.613 2.593 0.077 0.099

sd (0.625) (0.593) (0.657) (0.641)

n 535,700 56,343 100,649 10,517

Cellar (dummy)

mean 0.343 0.308 0.339 0.326 0.004 -0.018

sd (0.475) (0.462) (0.473) (0.469)

n 1,068,941 95,984 212,533 18,506

Number of floors

mean 2.128 2.101 2.186 2.159 -0.058 -0.058

sd (0.708) (0.699) (0.742) (0.763)

n 555,792 54,474 108,190 10,636

Houses outside of flood risk zones are, on average, more expensive than houses inside

dedicated areas at risk of flooding, according to flood risk maps. The difference between

the groups does not seem to change much after the treatment. The differences between the

control variables are relatively small. The condition of the houses remains nearly unaffected

before and after the treatment in both groups. There is no descriptive evidence that changes

in the composition of the treatment group occurred due to the the flood event.
8In preparation of the dataset, we disregard extreme outlier observations. More specifically, we exclude the
top and bottom 1 percent of the selling price and living space distribution each year and then the top and
bottom 1 percent of the price per square meter distribution.
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3 Empirical Strategy

We use a difference-in-differences design to estimate the changes in the net prices of houses

after the July 2021 flood. The difference-in-differences methodology to estimate the average

treatment effect on the treated (ATT) is a two-way fixed effects (TWFE) model of the

following form:

log Yi,g,t = α flood_riski×postt + β flood_riski + γ Xi,g,t + λg + ϕt + εi,g,t (1)

where Yi,g,t, the price Y of house i located in grid g offered in year t, is regressed on the time-

invariant indicator flood_riski, a vector of house characteristics (Xi,g,t), the fixed effects

on 1×1km grid level (λg) and year-month fixed effects (ϕt). The grid fixed effects control

for all unobserved grid-specific effects that are the same across time, while the year-month

fixed effects control for all unobserved trends across time that are the same across regions.

The coefficient β belonging to flood_riski indicates the general effect of being located

within a flood risk zone. Note that this coefficient cannot give a marginal impact on the

valuation of being located in a flood risk zone. Houses located in flood risk zones typically

benefit from natural amenities like the proximity to the respective river. Furthermore, the

connectivity might be affected by the proximity to the river. Thus, the coefficient β subsumes

all amenities and disamenities correlated with the specific location in a flood risk zone, but

it cannot directly be interpreted as a causal estimate.

The key coefficient of our analysis is the coefficient α corresponding to the interaction

flood_riski × postt. As postt indicates the period after the flood in July 2021, the interac-

tion reflects the changed risk perception in flood risk areas. In contrast to the time-invariant

location within a flood risk area, we can derive causal estimates on the changed risk per-

ceptions. There is no reason that the existing amenities (or disamenities) correlating with

the higher flood risk have undergone any change right in the time of the flood event (in the

areas which have not experienced flooding on their own).9

Across specifications, we also show alternatives that control for different trends across

counties by either including county by year-month fixed effects or county by year-month

linear trends. Additionally, the house characteristics control for the construction year of the

house (categorical), the number of floors, the number of rooms, the presence of a cellar, and

the conditions of the object (categorical).

The identifying assumption in the canonical difference-in-difference framework is the

parallel trends assumption. It assumes that untreated and treated potential outcomes for

the treatment and control group follow parallel trends conditional on the specification. The
9This underlines the necessity to exclude directly flooded areas in the July 2021 flooding since these areas
experienced further changes due to the local destruction.
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effect is identified even if shocks affect the potential outcome, as long as it is not correlated

with the flood risk zones. Although it is impossible to test this assumption conclusively,

it is common practice to perform an event study to show that there is no statistically

significant effect on property prices between the groups in a period before the flood occurred.

Methodologically, the concept can be written as

log Yi,g,t =
t−1∑
s= t

αs(flood_riski × Posts,j) +
t̄∑

s= t

αs(flood_riski × Posts,j)

+ β flood_riski + γ Xi,g,t + λg + ϕt + εi,g,t, (2)

where t is the first pre-treatment period for which we want to rule out anticipation effects,

while t̄ represents the last post-treatment period for which we expect adjustment effects. We

take α−1 as the reference category (setting it to zero). Therefore, the period-specific effects

in the first sums term (anticipatory effects) and the second sums term (reactive effects) are

interpreted relative to the period t− 1.

The examination of event study estimates (Figure 3) provides evidence that there are no

significantly different pre-trends, making it more likely that the parallel trends assumption

holds.

4 Results

The results section is structured as follows. After presenting the results in the difference-

in-differences and the event study setup, we take a closer look at possible heterogeneities

of the effect. Finally, we run an extensive set of further analyses to test the validity of our

results.

Table 2 presents our main results. We run our model in four specifications by translating

the presented identification strategy into a testable model. Column 1 does not control

for any property characteristics of the offered houses. Although this is not our preferred

model, it may hinge on a potential effect of compositional changes of the offered houses

before and after the event. While the property characteristics are added in column 2,

column three additionally controls for county-specific year-month fixed effects. This gives

the model additional flexibility to control for time-specific effects at the county level. Such

high flexibility for counties’ temporal development is associated with the drawback of a large

range of additional fixed effects added to the model. In column 4, this temporal flexibility on

the county level is parameterized in county-specific linear time trends, reducing the temporal

flexibility but still allowing for county developments without taking as much variation out

of the model.
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Nevertheless, the flood had no statistically significant effect across all specifications.

Therefore, we find no evidence that the July 2021 flood event led to changes in house prices

in flood-risk areas that are located in regions that were not directly affected by the flood.

The risk perceptions seem not to be updated by the flooding event.

Table 2: Main Results

Dependent variable: log (price per m2)

(1) (2) (3) (4)

Treatment effect -0.0107 -0.0031 0.0030 0.0034

(0.0099) (0.0085) (0.0078) (0.0079)

Property characteristics no yes yes yes

Grid FE yes yes yes yes

Year-Month FE yes yes no yes

County×year-month FE no no yes no

County×year-month linear trends no no no yes

Number of observations 1,407,548 1,407,548 1,406,662 1,407,548

Notes: Standard errors clustered at zip code level. Standard errors in parentheses. In specification 3 we control for
continuous construction year and a dummy indicating missing construction year information instead of the categorical
control since some categories were too sparse with the restrictive set of fixed effects. * p < 0.1, ** p < 0.05, ***
p < 0.01

Figure 3 presents the event study estimates. The event studies have clear advantages

regarding the potential recognition of violated parallel trends in the pre-treatment period

and the detection of temporal developments of the treatment effect over time. As treatment

effects are estimated individually for every month, the number of observations forming each

treatment effect decreases substantially compared to the difference-in-differences approach.

Consequently, individual monthly treatment effects might form outliers, not in line with the

expected effects.

Regarding the four different specifications in panel a) to panel d) refer to the same

specifications exploited in Table 2. The estimates for the pre-treatment periods are binned

after 24 months. Regarding the treatment effects, the results illustrate the same picture as

the difference-in-differences model. The reactive period-specific effects after the treatment

also show no pattern. The flooding event did not lead to any change in the risk perception.

Besides, the event-study setup allows for a deeper inspection of potential misspecifica-

tions. A concern against any type of difference-in-differences analysis is the different devel-

opment between treatment and control groups, even in the absence of treatment. Though

this is not directly testable, the pre-trends do not show significant differences between the

groups.
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Figure 3: Event Study Results
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4.1 Heterogeneities

Risk level

Next, we investigate whether the effect differs depending on the level of flood risk. One

concern might be that people have too little information about flood risk and flood risk

maps. Therefore, we exploit the information from the German Federal Institute of Hydrology

which divides flood risk into "high", "medium" and "low" since low-risk areas might be less

aware of flood risk. Table 3 presents the results when we restrict our treatment group to

the respective risk level. We do not find heterogeneous treatment effects across risk levels

and estimate null effects for all levels. Even the high-risk regions do not seem to update

their risk premia after the event. Therefore, too little information about being in a flood

risk zone does not seem to be the main driver of the null result.

To further investigate the concern that people are not aware of the risk level in flood

risk zones we look at whether the risk level is capitalized when controlling for house char-

acteristics and our sets of fixed effects. Table A.1 in the Appendix presents the results of

this analysis. We consistently find statistically significant negative effects of a house being
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located in a flood risk area on prices per square meter ranging from 5 percent to 14 percent.

We caution against a causal interpretation of the point estimates as we cannot control for all

characteristics which affect property prices and are correlated with flood risk zones, however,

it provides suggestive evidence that people are indeed aware of flood risk to a certain extent

and it reflects in housing prices. Furthermore, we show that all levels of risk are statistically

significantly associated with lower prices indicating that all types of flood risk are known

by the market (Table A.2. This also corroborates our choice that we use all levels of risk

together as treatment group indicator and not just for example high risk areas.

Table 3: Heterogeneity: Risk level

Dependent variable: log (price per m2)

Low risk Medium risk High risk
Treatment effect 0.0013 -0.0001 0.0240

(0.0102) (0.0115) (0.0215)
Property characteristics yes yes yes
Grid FE yes yes yes
County×year-month FE yes yes yes
Number of observations 1,283,439 1,265,485 1,204,418

Notes: Standard errors clustered at zipcode level. Standard errors in parentheses. We control for continuous con-
struction year and a dummy indicating missing construction year information instead of the categorical control since
some categories were too sparse with the restrictive set of fixed effects. * p < 0.1, ** p < 0.05, *** p < 0.01

Climate change belief

Following Baldauf et al. (2020) and Bakkensen and Barrage (2022) we explore whether

there are heterogeneous effects based on beliefs about climate change risks. Baldauf et al.

(2020) find that in the US, houses projected to be underwater in areas where people be-

lieve in climate change sell at a discount compared to denier areas. As we do not have

any direct measure on the local intensity of climate change belief, we have to proxy this

information. We use the Sinus-Milieus designed by the Sinus Institute which are provided

by microm Geomarketing GmbH on the 1km×1km level and easily links to the RWI-GEO-

GRID data. The Sinus-Milieu describes the social background of grids in two dimensions:

the social status (lower, middle upper class) and the basic values (traditional, modernization

and re-orientation). Within these two dimensions, ten groups are formed ranging from a

“traditional milieu” to a “neo-ecological milieu”. Based on the prevalence of these ten groups

within a grid, we classify every grid into a higher likeliness to be belong to the group of

climate change believer or denier. To explore whether this could translate into a possible

heterogeneity for Germany and for updating risk, we perform a median split of the share

of people who believe in climate change. Table 4 depicts the results for the climate change

believe heterogeneity. We do not find a significant effect on the outcome variable in both

subsamples. This indicates that climate change beliefs do not seem to affect house price
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updates in Germany. A likely explanation is that in Germany, compared to the US, there

is less heterogeneity in the belief in long-run climate change risks.

Table 4: Heterogeneity: Climate change believers

Dependent variable: log (price per m2)

Low belief High believe
Treatment effect -0.0076 0.0104

(0.0114) (0.0101)
Property characteristics yes yes
Grid FE yes yes
County×year-month FE yes yes
Number of observations 654,850 744,027

Notes: Standard errors clustered at zipcode level. Standard errors in parentheses. We control for continuous con-
struction year and a dummy indicating missing construction year information instead of the categorical control since
some categories were too sparse with the restrictive set of fixed effects. * p < 0.1, ** p < 0.05, *** p < 0.01

4.2 Validity checks

Spillovers

Another crucial assumption to ensure our method estimates the true effect is the stable

unit treatment value (SUTVA) assumption (Imbens and Rubin, 2015). We assume there

is no spillover between the treatment and control group due to the treatment. That is,

we expect house prices in the control group not to change due to the flood. Since people

might not see the borders of the flood risk zones sharply, we addressed the spillover concern

in our main specification by including a 500-meter buffer around the flood risk zone. To

investigate whether the choice of the size of the buffer may have impacted the results and

to rule out spatial spillovers even more convincingly, we increase the buffer size to 1km.

Table 5 presents the results with the increased buffer size. The estimated coefficients stay

statistically insignificant.

Placebo test - Directly affected regions

A conventional placebo test investigates whether a statistically significant result was found

by chance or due to suboptimal data or method. It estimates the same model in a setup

where there should be no effect by definition. If the test yields a result, the finding is not

robust. In our case, this logic is turned around. We want to investigate a null result and

prove that it is not found by chance or due to suboptimal data or method. Therefore, we

estimate our model in a case where we expect an effect by definition. If we do not find an

effect, our data or method might not be suited to detect the impact.

Therefore, we restrict our sample to the regions directly affected by the flood the most.
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Table 5: Extended buffer: 1 kilometer

Dependent variable: log (price per m2)

(1) (2) (3)
Treatment effect -0.0144 -0.0054 -0.0033

(0.0104) (0.0091) (0.0087)
Property characteristics no yes yes
Grid FE yes yes yes
Year-Month FE yes yes no
County×year-month FE no no yes
Number of observations 1,008,885 1,008,885 1,007,394

Notes: Standard errors clustered at zipcode level. Standard errors in parentheses. In specification 3 we control for
continuous construction year and a dummy indicating missing construction year information instead of the categorical
control since some categories were too sparse with the restrictive set of fixed effects. Specification 4: variance matrix
is nonsymmetric or highly singular * p < 0.1, ** p < 0.05, *** p < 0.01

By definition, these regions are not in the focus of our original research question on indirect

effects as they were affected directly. Damages to houses and surrounding factors such as

infrastructure should lead to a negative effect on house prices (Beltrán et al., 2019; Atreya

et al., 2013; Atreya and Ferreira, 2015; Bin and Polasky, 2004; Bin and Landry, 2013; Daniel

et al., 2009; Kousky, 2010). Furthermore, due to the direct flood experience, the literature

suggests that risk perception in these regions will respond strongly, leading to negative

effects. Therefore, we restrict our sample to the counties most affected by the flood. We use

two alternative ways to categorize “most affected” regions. First, we identify counties with

at least one casualty caused by the flood. Second, we identify areas that were inundated

due to the flood.10 Figure A.3 displays the geographic coverage of the two alternatives.

Table 6 presents the results for both alternatives. We find that the flood negatively

affected house prices. The estimated coefficients are statistically significantly different from

zero at the 1 and 5 percent level, respectively. The point estimates suggest an effect of

around 6.6 percent when using casualties to identify the most affected regions and around

3.9 percent in inundated areas. We do not include county-by-time fixed effects or county

trends since the most affected regions are relatively homogeneous and located in specific

parts of Germany.

Placebo test in time

Next, in a similar spirit to test our data and model, we perform a placebo test in time to

prove that our setup does not produce results by chance when looking at a hypothetical

treatment that should not have an effect by definition since no event occurred. To that

end, we use a hypothetical flood three years before the July 2021 flood. In other words, the

hypothetical treatment timing in this placebo example is July 2018. We remove observa-
10Please see Notes of Figure A.3 for identification of affected regions and data sources used.

15



Table 6: Placebo Results: Most affected regions

Dependent variable: log (price per m2)

Most affected counties (deaths) Most affected counties (inundated)
Treatment effect -0.0659*** -0.0394**

(0.0224) (0.0189)
Property characteristics yes yes
Grid FE yes yes
Year-Month FE yes yes
Number of observations 145,594 295,393

Notes: Standard errors clustered at zipcode level. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

tions from July 2021 onward to produce a clean and independent placebo result. Table 7

depicts the results. As expected, the treatment effect remains insignificant, indicating that

the hypothetical flooding event did not affect house prices in flood-risk areas.

Table 7: Placebo results: Variation in treatment timing

Dependent variable: log (price per m2)

(1) (2) (3)

Treatment effect -0.0105 0.0025 0.0094

(0.0067) (0.0058) (0.0057)

Property characteristics no yes yes

Grid FE yes yes yes

Year-Month FE yes yes no

County×year-month FE no no yes

Number of observations 1,293,117 1,293,117 1,292,298

Notes: Hypothetical treatment: July 2018. We exclude actually treated observations (all observations from July
2021 onward). Standard errors clustered at the zip code level. Standard errors in parentheses. In specification 3 we
control for continuous construction year and a dummy indicating missing construction year information instead of
the categorical control since some categories were too sparse with the restrictive set of fixed effects. * p < 0.1, **
p < 0.05, *** p < 0.01

Different samples

The null result might also be the due to the chosen comparison group. Therefore, we

show three alternatives: a) a sample with a control group looking at the distance to the

nearest treated house instead of the border of a flood risk zone, b) one which does not

restrict the control group in any way except for dropping, as in any specification, coastal

flood risk and directly affected regions and c) a sample where the control group consists of

houses that are in three-kilometer distance to water bodies to proxy for the amenity value of
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treated houses. Table 8 displays the results for those alternative sample definitions. Across

all samples, we find qualitatively similar results to our main sample. The flood has no effect

on house prices that is statistically significantly different from zero.

Table 8: Different Samples

Dependent variable: log (price per m2)

Nearest Neighbour Full Sample Near Waterbodies (3km)
Treatment effect 0.0008 -0.0004 -0.0000

(0.0081) (0.0078) (0.0092)
Property characteristics yes yes yes
Grid FE yes yes yes
County×year-month FE yes yes yes
Number of observations 1,449,576 3,587,183 1,010,516

Notes: Standard errors clustered at zipcode level. Standard errors in parentheses. We control for continuous con-
struction year and a dummy indicating missing construction year information instead of the categorical control since
some categories were too sparse with the restrictive set of fixed effects. * p < 0.1, ** p < 0.05, *** p < 0.01

Different market responses

Lastly, we investigate whether the flood had an alternative impact on the housing market,

which might mask an effect on house prices. The offering prices, which we exploit in our

model may not directly show lower willingness to pay of the buyers as the only reflect the

asking price of the sellers. Thus we switch to an alternative measure using the time on

market of houses. If houses in flood risk areas loose attractiveness which does not translate

into prices, consequently the time on market should increase. Therefore, we estimate the

effect of the flood on the natural logarithm of the days that an offer is online. We take

the main sample and specification but additionally control for the natural logarithms of size

in square meters and offering price of a house. We find that the flood had no statistically

significant impact on the number of days that house offers stay online (Table 9). This

indicates that the market did not respond in any other way which might mask an effect on

risk premiums.

5 Discussion

Our first possible explanation for our null result is that indirect experience is insufficient to

trigger higher risk perception. As many studies have shown, direct experience is one of the

most influential predictors for risk perception (e.g. Bubeck et al., 2012; Bustillos Ardaya

et al., 2017; Frondel et al., 2017; Ge et al., 2021; Grothmann and Reusswig, 2006; Kellens

et al., 2011; Lindell and Hwang, 2008; Lujala et al., 2015; Miceli et al., 2008; O’Neill et al.,

2016; Qasim et al., 2015; Siegrist and Gutscher, 2006; Wachinger et al., 2013; Zaalberg

et al., 2009). Since this influential predictor is missing for the people in our study, the risk
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Table 9: Online duration of house offer

Dependent variable: log (days)

(1) (2) (3)
Treatment effect -0.0003 -0.0038 -0.0051

(0.0227) (0.0210) (0.0225)
Property characteristics no yes yes
Grid FE yes yes yes
Year-Month FE yes yes no
County×year-month FE no no yes
County×year-month linear trends no no no
Number of observations 1,407,548 1,407,548 1,406,662

Notes: Standard errors clustered at zipcode level. Standard errors in parentheses. We control for continuous con-
struction year and a dummy indicating missing construction year information instead of the categorical control since
some categories were too sparse with the restrictive set of fixed effects. * p < 0.1, ** p < 0.05, *** p < 0.01

perception of people that only have indirectly experienced the flood might not increase and

willingness-to-pay does not change.

In addition, we believe it is essential to differentiate between personal and social risk

perception. Personal risk perception describes the individual’s belief that risk affects them

personally, while social risk perception characterizes the risk associated with a group or

society (Liu et al., 2021). According to the “impersonal impact hypothesis” (Tyler and

Cook, 1984), media can only influence social risk perception but not alter the perceived

personal risk. Since we believe that personal risk perception is key to changing individual

behavior, the media’s impact on social risk perception might not be sufficient to alter an

individual’s willingness-to-pay. Several studies support the impersonal impact hypothesis

(Brenkert-Smith et al., 2013; Liu et al., 2021; Wahlberg and Sjoberg, 2000; Young et al.,

2013) while others find evidence for the impact of media on social risk perception (Frewer

et al., 2002; Ng et al., 2018). However, most studies investigating media’s impact on risk

perception do not distinguish between social and personal risk perception. Therefore, further

research is needed to assess this explanation of our null result.

A second explanation of our findings may be that risk perception does not translate into

action. The literature on the relationship between risk perception and taking action (e.g.,

taking mitigation measures, buying insurance, adjusting willingness-to-pay) is ambiguous.

Some studies suggest that no or only a weak relationship exists (Bubeck et al., 2012; Roder

et al., 2019), while others report that people act upon their risk perception (Atreya et al.,

2013; Deng et al., 2015; Ge et al., 2021; Martin et al., 2009; Ruin et al., 2007; Zhang et al.,

2010). Direct experience is one of many factors that can prompt people to act upon their

risk perception (Bin and Polasky, 2004; Bubeck et al., 2012; Deng et al., 2015; Ge et al.,

2021; Wachinger et al., 2013). Since we focus at regions that were not directly affected by

the flood, the direct experience nudge might be missing when translating risk perception

18



into lower housing prices. Furthermore, Wachinger et al. (2013) explain that individuals

may not realize agency since they assume that the authorities will protect them, or that

individuals may not have the abilities or resources to act upon their perceived risk.

The third possible explanation describes that a perfectly rational evaluation of risk is

already capitalized in house prices in Germany. Therefore, no adjustment in housing prices

after the flood could be observed since the prices reflect the rational valuation of flood risk.

However, we do not believe that this explanation holds in our case since literature from

the US context consistently finds that people do not rationally value flood risk (Bakkensen

and Barrage, 2022; Beltrán et al., 2018; Hino and Burke, 2021; Muller and Hopkins, 2019).

Instead, an undervaluation of flood risk explains the – rationally speaking – overvalued

housing prices in flood risk zones. However, further research in the German context is

needed to fully rule out this possible explanation.

6 Conclusion

The likelihood and severity of flash floods are expected to increase due to climate change.

It is well documented in the literature that floods result in lower house prices in inundated

regions due to damages and updated flood risk perceptions in the population. However,

what is less clear is whether a flood event will result in risk perception updating in regions

that did not directly experience the flood but were only indirectly exposed (e.g., through

media).

We exploit the salient flooding event in July 2021 as an exogenous variation to determine

risk perception updating in the German real estate market. To identify the causal effect,

we apply a spatial difference-in-differences approach which allows us to compare houses

in flood-risk areas with comparable houses outside these zones before and after the flood.

Across various specifications and samples, we find no evidence that the event changed house

prices in flood-risk areas in not directly affected regions. Moreover, we find that house prices

in directly affected regions decreased, likely due to the direct damages and risk perception

updating after direct exposure to the flood.

Our findings suggest that people do not update their risk perceptions if they were only

indirectly exposed to a flood event. Government action may thus be warranted to, for

example, provide protective measures, discourage development in flood-risk areas or ensure

adequate protection of individuals. In the short term, given that flash floods are expected to

increase, state authorities should have flood emergency protocols and early warning systems

in place to protect lives. In the longer term, land-use and zoning policies may discour-

age development in flood-risk areas. This may include increasing the natural space along

riverbanks and flood plains. Moreover, municipalities may take adaptive measures such as

increasing permeable surfaces or building-scale rainwater tanks. This policy option may
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require large-scale investments. Furthermore, the government may support and/or require

property owners in flood-prone areas to take preventive measures. Last but not least, the

option of protection is to obligate people living in flood risk zones to purchase flood insur-

ance. While this policy option shifts the costs of protection towards housing owners, it can

only ensure financial damage protection. It might incentivize appropriate development in

these regions but not prevent damage in the first place.
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Appendix A: Descriptives

Figure A.1: Google trends for Germany in 2021

Notes: This figure depicts different Google trends search terms over the year 2021. All of the search terms spike
in the week of the flooding.

Figure A.2: Water bodies in Germany

Notes: This figure depicts the water bodies in Germany. The data is provided by Copernicus CLC 2012.
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Figure A.3: Definition most affected regions

(a) Definition 1: Deaths

(b) Definition 2: Inundated

Notes: Panel A displays districts in which there were casualties due to the flood. Districts with casualties are
identified based on newspaper articles mentioning deaths related to the flood and collected on Wikipedia. Panel B
displays the areas which were inundated as a result of the July 2021 flood. The data is provided by COPERNICUS
EMSR517: Flood in Western Germany.

27

https://de.wikipedia.org/wiki/Hochwasser_in_West-_und_Mitteleuropa_2021#Deutschland
https://emergency.copernicus.eu/mapping/list-of-components/EMSR517
https://emergency.copernicus.eu/mapping/list-of-components/EMSR517


Appendix B: Valuation

Table A.1: Valuation

Dependent variable: log (price per m2)

(1) (2) (3) (4) (5) (6)

Flood risk -0.1416*** -0.0941*** -0.0721*** -0.0939*** -0.0498*** -0.0597***

(0.0176) (0.0145) (0.0139) (0.0144) (0.0057) (0.0181)

Property characteristics no yes yes yes yes yes

Grid FE yes yes yes yes no yes

Zip code FE no no no no yes no

Year-Month FE yes yes no yes yes no

County×year-month FE no no yes no no no

Zip code×year-month FE no no no no no yes

County×year-month linear trends no no no yes no no

Number of observations 1,407,548 1,407,548 1,406,662 1,407,548 1,416,366 1,300,194

Notes: Standard errors clustered at the zip code level. Standard errors in parentheses. In Columns 3 and 6, we
control for continuous construction year and a dummy indicating missing construction year information instead of
the categorical control since some categories were too sparse with the restrictive set of fixed effects. * p < 0.1, **
p < 0.05, *** p < 0.01

Table A.2: Valuation by flood risk level

Dependent variable: log (price per m2)

(1) (2) (3) (4)

Low flood risk -0.1475*** -0.0984*** -0.0761*** -0.0981***

(0.0173) (0.0144) (0.0138) (0.0143)

Medium flood risk -0.1401*** -0.0921*** -0.0705*** -0.0919***

(0.0187) (0.0153) (0.0147) (0.0151)

High flood risk -0.1171*** -0.0787*** -0.0570*** -0.0792***

(0.0243) (0.0194) (0.0183) (0.0194)

Property characteristics no yes yes yes

Grid FE yes yes yes yes

Year-Month FE yes yes no yes

County×year-month FE no no yes no

County×year-month linear trends no no no yes

Number of observations 1,407,548 1,407,548 1,406,662 1,407,548

Notes: Standard errors clustered at the zip code level. Standard errors in parentheses. In Column 3, we control for
continuous construction year and a dummy indicating missing construction year information instead of the categorical
control since some categories were too sparse with the restrictive set of fixed effects. * p < 0.1, ** p < 0.05, ***
p < 0.01
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