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A Successful Replication of “Dust Pollution From the Sahara and

African Infant Mortality”

Nikolai M Cook∗

Wilfrid Laurier University

October 12, 2022

1 Summary

This analysis is an independent replication of Heft-Neal et al. (2020).1 The original authors (HBBVB) provide
evidence that particulate matter air pollution increases infant mortality in 30 African nations between 2000
and 2015. They provide three effect estimates. Using ordinary least squares, a 10 µg/m3 increase in PM2.5

exposure results in an estimated 8.6% increase in infant mortality. Using dust in the Bodélé depression as an
instrumental variable, the same exposure increases infant mortality by 23.6%. Using rainfall in the Bodélé
depression, the same exposure increases infant mortality by 24.3%. Using similar data and independently
developed procedures I find corresponding estimates of 3.4%, 31.0%, and 29.7%.

2 Data

For their dependent variable, HBBVB use data provided by The Demographic and Health Surveys Program.
They use 990,696 individual birth records from 65 surveys conducted in 30 countries between 2001 and 2015.
The dependent variable, infant mortality, is a binary variable which takes a value of one when a child is
reported to have died within twelve months of birth. Average infant mortality in their sample is 71 deaths per
1,000 births. Using the same surveys and dependent variable I examine 1,007,474 individual birth records.
Average infant mortality in my sample is 72 deaths per 1,000 births.

For their primary independent variables, HBBVB use two datasets provided by Van Donkelaar et al.
(2016); V4.GL.02 and V4.GL.02 (Dust and Sea Salt Removed). These provide annual concentrations of
ground level PM2.5 by combining ground station readings, meteorological models, and remote sensing. The
data offer global coverage from 1998 through 2016 at a spatial resolution of 0.01 degrees (approximately
1.11 kilometers). As the data is annual, HBBVB use birth month to construct post-birth PM2.5 exposure.
For example, if a child is born in the second month of the year, that child’s post-birth PM2.5 exposure is
equal to 10

12 the current year + 2
12 following year’s local PM2.5. While HBBVB do not report average PM2.5

exposure, I find average post-birth exposure of 25.23 µg/m3 (over five times the 2021 WHO’s recommen-
dations). HBBVB also create two instrumental variables. The first uses PM2.5 in the Bodélé depression as
an instrument for local levels. The second uses rainfall in the Bodélé (which lowers the amount of PM2.5

transported from this source). They use precipitation data provided by CHIRPS which consists of average

∗This analysis was preregistered prior to data access with the Open Science Foundation on August 15, 2022 and may be
accessed here. Data access was granted by the Demographic and Health Surveys Program on August 16, 2022. The original
authors’ response to this replication is available here. I am grateful to Abel Brodeur for helpful conversations. Errors are my
own.

1Following the definitions provided by the Institute for Replication, a computational reproduction uses same data and
procedures as the original authors, a robustness replication uses same data and different procedures, a direct replication
uses different data but same procedures, and a conceptual replication uses different data and different procedures. This
analysis is a conceptual replication as it uses same (although independently collected) data for some parts and different
data in others, coupled with different and independently developed procedures. The article is also likely to be computationally
reproducible. Original (limited due to sharing restrictions) data and procedures can be found here. The original authors’
response to this replication is available here.
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monthly rainfall over the African continent, and is available from 1981 through 2022 (as of writing) at a 0.05
degree resolution (Funk et al., 2015).

HBBVB include additional independent variables. First, local average annual rainfall using the CHIRPS
data, which averages 123 cm (this analysis finds an average of 103.60 cm). Second, local average temperatures.
The original article does not provide details on the data used or the sample average temperature. I use annual
0.5 degree resolution temperature data provided by Fan and Van den Dool (2008). My sample average is
24.52 degrees Celsius. Third, variables from the DHS surveys; clean cooking fuel, mother completed primary
school, mother’s age, mother’s age2, child sex, child birth order, and twin child. I do the same. Fourth,
HBBVB include satellite measured night-time lights as a proxy for economic activity. I do not include this
control, following recent concerns that night-time lights may not reflect economic activity, particularly in
low density areas (Gibson et al., 2020, 2021).

3 Methods

Following HBBVB, I first estimate the ordinary least squares:

Mortalityi,j,c,m,t = β × PM2.5 + µXi,j,c,m,t + γj + δt + νc,m + εi,j,c,m,t (1)

Where Mortalityi,j,c,m,t takes the value zero unless individual i in cluster j in country c born during
month m and year t dies within twelve months of birth. The primary coefficient of interest β estimates the
effect post-birth PM2.5 exposure has on mortality. Xi,j,c,m,t represents a vector of controls. Fixed effects are
included for DHS-cluster (γj), birth-year (δt) and country-month (νc,m). In Table 1, I present coefficients
with and without Xi,j,c,m,t to demonstrate robustness not offered in the original article.

When applying an instrumental variable approach, I estimate the first stage as:

PMi,j,c,m,t = λDVi,t + µXi,j,c,m,t + γj + δt + νc,m + εi,j,c,m,t (2)

Where PMi,j,c,m,t denotes post-birth exposure to PM2.5 for individual i in cluster j in country c born
during month m and year t. The instrument DVi,t represents the share of PM2.5 from natural sources for
cluster j multiplied by the dust (PM2.5) level in the Bodélé (this is replaced with Bodélé rainfall for the
second instrument). The second stage is identical to Equation 1, with predicted levels of local PM2.5 in
place of directly measured local PM2.5.

A summary of the differences between the original article and this analysis is as follows. First, the
outcome variable data was independently collected and processed. This includes the DHS surveys and the
matching procedures for connecting them to GPS data which likely explains differences in the number of
individual birth records. Second, this analysis excludes night-time lights following recent concerns (Gibson
et al., 2021). Third, the original article does not make clear its source for temperature data. I use data from
Funk et al. (2015) which may have a different spatial resolution and aggregation method than the original.
Fourth, this analysis applies both space- and time-clustered standard errors where the original article is
silent. Despite these differences, in the next section I present estimates that are of similar sign, magnitude,
and statistical significance as HBBVB.

4 Results

Table 1 presents results. In all columns, the dependent variable is mortality which takes a value of one if a
child dies within twelve months of birth. The primary independent variable is post-birth PM2.5 exposure.
Columns 1 and 2 present regression coefficients for the ordinary least squares of Equation 1. In Column
1, a 10 µg/m3 increase in PM2.5 exposure is associated with a 5.5% increase in mortality. The sample
average is 72 deaths per 1,000 births, implying that this increase in post-birth PM2.5 exposure is associated
with an additional 0.055 ∗ 72 = 3.96 deaths. In Column 2, I now include the same controls as HBBVB
with the above-noted exception of night-time lights. The estimated effect of post-birth PM2.5 falls to 3.4%
but remains statistically significant. Further, the additional controls offer a ‘sanity’ check. Cleaner cooking
fuel is associated with a negative effect on mortality, following the improvements to indoor air quality.
Demographic controls also have the expected sign such as better educated mothers. As in HBBVB, I include

2
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precipitation and temperature, neither seem to affect mortality. All columns include fixed effects to control
for time invariant determinants of mortality by location (DHS-cluster), local seasonality (country-month),
and shocks common to the entire sample (birth-year).

Instrumental variables estimates are presented in Columns 3 through 6. In column 3 and 4, I use PM2.5

in the Bodélé (which is largely from natural sources i.e. dust) multiplied by the share of local PM2.5 from
natural sources as an instrument to predict local PM2.5. As in the original article, the coefficients of PM2.5

on mortality are positive, statistically significant, and larger than the OLS coefficients. HBBVB note at
this point that instrumental variable estimates identify ‘local average treatment effects’, namely the average
effect of additional PM2.5 on a child for whom additional dust in the Bodélé increases local PM2.5. In
Column 4, which now includes the suite of controls as in the original article, a 10 µg/m3 increase in PM2.5

exposure is associated with a 31.0% increase in mortality. The sample average for mortality is 72 deaths
per 1,000 births, implying that this increase in post-birth PM2.5 exposure is associated with an additional
0.310 ∗ 72 = 22.32 deaths. In Columns 5 and 6 (which use the rainfall instrument) the results are similar.

5 Conclusion

This analysis is an independent conceptual replication of Heft-Neal et al. (2020) and finds effect sizes of
similar sign, magnitude, and statistical significance. It uses the same (although independently downloaded)
data and different procedures which were developed solely with reference to the text of the published article.
While HBBVB provide relatively easy access to replication materials, this analysis opted to replicate as
independently as possible. This accomplishes at least three things. First, HBBVB is sufficiently detailed
that in the absence of its replication package it can be replicated. Second, it is possible and encouraged to
independently replicate published articles regardless of replication packages. Third, future researchers may
still complete a less intensive computational reproduction.

3
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Table 1: Impacts of PM2.5 on Infant Mortality
Estimation Method OLS Dust Instrument Rainfall Instrument

(1) (2) (3) (4) (5) (6)

Heft-Neal et al. (2020) N/A 0.086*** N/A 0.236*** N/A 0.243***
(0.028) (0.060) (0.061)

Dependent Variable: Mortality

PM2.5 (Per 10 µg/m3) 0.055∗∗∗ 0.034∗ 0.394∗∗∗ 0.310∗∗∗ 0.372∗∗∗ 0.297∗∗∗

(0.016) (0.017) (0.074) (0.065) (0.082) (0.074)
Clean Cooking Fuel -0.158∗∗∗ -0.111∗∗∗ -0.113∗∗∗

(0.032) (0.032) (0.034)
Mother has Primary Educ. -0.165∗∗∗ -0.159∗∗∗ -0.159∗∗∗

(0.028) (0.027) (0.028)
Mother’s Age -0.123∗∗∗ -0.123∗∗∗ -0.123∗∗∗

(0.007) (0.007) (0.007)
Mother’s Age2 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000)
Child is Female -0.154∗∗∗ -0.154∗∗∗ -0.154∗∗∗

(0.010) (0.010) (0.010)
Child Birth Order 0.090∗∗∗ 0.089∗∗∗ 0.089∗∗∗

(0.003) (0.004) (0.004)
Child is Twin 2.272∗∗∗ 2.274∗∗∗ 2.274∗∗∗

(0.097) (0.097) (0.097)
Local Precipitation (cm) 0.002 0.014∗∗∗ 0.013∗∗∗

(0.002) (0.004) (0.004)
Local Temperature (C) -0.002 -0.002 -0.002

(0.002) (0.002) (0.002)

DHS-Cluster FE ✓ ✓ ✓ ✓ ✓ ✓
Birth-Year FE ✓ ✓ ✓ ✓ ✓ ✓
Country-Month FE ✓ ✓ ✓ ✓ ✓ ✓
Birth Records 1,007,320 1,007,320 1,007,320 1,007,320 1,007,320 1,007,320
First Stage F-Stat. 89.66 98.70 59.21 67.27
Stock-Yogo Crit. Value 16.38 16.38 16.38 16.38

All coefficients scaled to represent percentage change in mortality. For example, increasing post-birth PM2.5

exposure by 10 µg/m3 increases infant mortality by 5.5% in the first column. Sample average mortality is
72 deaths per 1,000 births, suggesting this increase would causes 3.96 additional deaths. Standard errors
are clustered at the DHS-cluster and birth-year levels. All estimates do not use sample weights - their
introduction does not qualitatively alter results. (*** p < 0.01, ** p < 0.05, * p < 0.1).
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