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Abstract

Climate policy often implies increasing energy prices. Due to incomplete reg-

ulation across the globe, concerns about their competitiveness and employment

effects play an important role in the policy debate. Using micro-data on electricity

network charges and the official census data for Germany, we study the impact of

rising electricity costs on plant performance in German Manufacturing. Electric-

ity network charges are determined through regulation in Germany and therefore

exogenous to manufacturing plants, while making up a substantial share of final

electricity prices. Our estimates imply a negative own-price elasticity of electricity

of -0.4 to -0.6 in the short-run: A one cent increase in average network charges

leads to a decrease in electricity procurement of roughly 3 %. There is suggestive

evidence that this elasticity of response is decreasing over time, in line with non-

linearly increasing marginal abatement costs. Generally, we do not find significant

effects on revenues, investments or capital stocks.
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1 Introduction

The challenge posed by climate change is considerable. The world set an ambitious

target in Paris at the 21st Conference of the Parties meeting in 2015. Since then, little

has happened and global greenhouse gas emissions continue to rise. While a solution

in terms of pricing the climate externality either through emissions trading or a tax on

greenhouse gas emissions is available, failure to implement globally coordinated policies

continues to hold back the policy response across the globe: If a country implements

stricter regulation than its trading partners, it might suffer from a loss of competitiveness

or jobs. Unilateral policies might also induce leakage effects, i.e. emissions might shift

from regulated to unregulated economies, reducing the share of global emissions addressed

by regulation. Such concerns have acted as deterrent for unilateral policy efforts in the

past and continue to play a prominent role in the policy debate as regulatory stringency

is likely to increase in the coming years.

The extent to which concerns regarding leakage and competitiveness losses are valid

has been studied in several instances. Much of the previous literature in this context has

focused on emissions trading as a prime example of climate policy price instruments (see

e.g. Lehr et al. 2020 or Naegele and Zaklan 2019 or Martin et al. 2016 for an overview).

The emphasis in these studies has been on the direct effects of implemented policy mea-

sures, and on the primary energy consumption of affected firms. However, many climate

policy instruments ultimately result in price increases of secondary energy carriers like

electricity (e.g. by the means of pass-through of emission allowances onto electricity

prices, as in Hintermann 2016 or Fabra and Reguant 2014). Due to several empirical

challenges, in particular the unavailability of electricity price data and the endogeneity

of electricity prices, as of today, these indirect effects of climate policy measures on firm

performance are much more poorly understood. Studies focussing on the effects of elec-

tricity prices typically rely on quasi-experimental designs such that effects are estimated

on specific subsets of the data which puts limits on their external validity (Gerster and

Lamp, 2020; Flues and Lutz, 2015; Martin et al., 2014). In this paper, we contribute by

studying the effects of an exogenous source of variation within electricity prices, specif-

ically electricity network charges, on the electricity usage behaviour as well as several

competitiveness indicators of German manufacturing plants.
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Electricity network charges are fees that electricity consumers in Germany pay for

the usage of the electricity grid. For industrial users, they make up approximately 15-30

% of total electricity prices. We can treat network charges as plausibly exogenous to

manufacturing plants and hence recover causal effects for three reasons: First, network

operators are centrally regulated by a Federal Agency. Second, for each manufacturing

plant, the location completely determines the relevant network operator. Third, network

charges are set and published prior to the consumption decision of manufacturing plants.

Combining detailed plant-level data from the German Manufacturing Census with data

on spatially and temporally varying electricity network charges from the ene’t GmbH

for more than 7,000 manufacturing plants between 2009 and 2017, we find that a rise in

average network charges leads to a reduction in manufacturing plants’ electricity usage.

Specifically, a one cent increase in average network charges reduces electricity procure-

ment by about 3 % on average in the short-run, translating into an own-price elasticity

of electricity of -0.4 to -0.6. While the 3 % constitute an average effect, there is sug-

gestive evidence for the elasticity of response to decrease over time from more than 4

% in 2009 to roughly 2 % in 2017. This finding is in line with non-linearly increasing

marginal abatement costs, where plants, once the easy to implement adjustments are

made, require larger changes in electricity prices to take the next abatement step. While

we find significant responses of manufacturing plants to network charges with respect

to electricity consumption, we generally cannot identify significant negative effects on

revenues, employment, investments or capital stocks.

Our paper contributes to two strands of literature. First, we add to the already cited

strand of research on the causal effects of climate policy price instruments on energy

demand and firm performance. Our unique setting with both temporally and spatially

varying network charges in combination with detailed plant-level panel data allows us

to deepen the understanding of the effects of rising energy prices in several dimensions:

Among others, we can analyse effect heterogeneities and discuss potential mechanisms

as in Aldy and Pizer (2015), however using micro- instead of sector-level data. The

data structure also allows us to investigate effect dynamics, both with respect to at

which moment in time adjustment processes occur for a given shock, and with respect

to whether the response to an identical shock changes over the years in size or direction.

To the best of our knowledge, we are the first ones not to impose a constant response to
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price changes in estimating electricity price effects on micro-data. Lastly, we are able to

contrast short- and long-run effects, exploiting annual variation in a classic panel study

on the one hand and using a long-differences design on the other hand. Estimates of

long-run effects of climate policies are still scarce, and we contribute by using a longer

time frame to identify such effects than previous studies (e.g. Marin and Vona 2021).

Second, our paper also contributes to the literature on own-price elasticities of elec-

tricity in industrial production (see e.g. Abeberese 2017, Bardazzi et al. 2015 and Boyd

and Lee 2016 for elasticities in the manufacturing sectors in India, Italy and the United

States). We complement this literature by providing evidence on Germany retrieved from

plant-level analyses instead of only exploiting variation at the state-level like previous

studies.

Our findings suggest that climate policies have a significant impact also upon small

industrial consumers which so far have not been the focus of academic study. The strong

response of manufacturing plants’ electricity usage to prices in the short-run, both at the

beginning and at the end of our study period, corroborates that price-based policies are

very effective in combatting climate change – even though there remain many unexplained

factors besides prices governing manufacturing plants’ electricity usage patterns.

The remainder of the paper is structured as follows: Section 2 describes the net-

work structure and regulation of network charges in Germany. Section 3 provides a brief

conceptual framework of electricity prices and marginal costs to abate electricity con-

sumption. Section 4 introduces the data and discusses the research design. Section 5

reports our results. In Section 6 we conclude.

2 Background on electricity prices and networks

2.1 Electricity prices and price components in Germany

Total electricity prices in Germany comprise three different components: (1) the costs of

generation and supply; (2) taxes, levies and surcharges; and (3) network charges. Figure

1 depicts the development of these price components over time for different consumption

bands. As can be seen, the importance of taxes, levies and surcharges has substantially

grown over time, today making up approximately 40 % of final electricity prices depend-

ing on the consumption band. This strong increase is mostly rooted in the development of
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the Renewable Energy Surcharge imposed at the national level. Network charges – while

varying at the network level – account for up to 30 % of final electricity prices and also

tend to increase over time. In contrast, the generation and supply component is gradually

decreasing. This decline in wholesale prices is likely driven at least in parts by the ex-

pansion of renewable energies. Due to exemptions and lower charges for large electricity

users, prices generally are the lower the higher the consumption. Variation in electricity

prices among users stems from customers choosing different electricity providers,1 from

exemptions and reduced rates applicable to specific groups (e.g. in the case of the Re-

newable Energy Surcharge), and from variation in network charges and concession fees

at the regional level.

2.2 Electricity networks and the exogeneity of network charges

The German electricity market has undergone notable changes over time. Prior to 2005, it

was characterized by vertically integrated utilities (generation, transmission and distribu-

tion as well as retail and supply) with regional monopolies. Through the 2005 amendment

to the Energy Act, electricity generation and network operation were unbundled. In this

context, the Federal Network Agency was established to regulate network charges so as

to reduce monopoly profits and inefficiencies in network operation.

Network operations take place at different voltage levels. In Germany, there are four

Transmission System operators (TSOs) operating the extra high voltage networks and

transporting electricity around the country, and up to 900 Distribution System Operators

(DSOs) running the low, medium and high voltage networks, connecting final customers

to the electricity grid. Both transmission and distribution networks are natural monop-

olies and therefore subject to the regulation of the Federal Network Agency.

While in the initial years of regulation, network operators were allowed to recover

their costs plus a regulated markup through network charges (the cost plus regulation),

since 2009, they are subject to the incentive regulation. Due to the regulatory change, our

analysis is limited to the years from 2009 onwards. Under the incentive regulation, the

1The German retail market for electricity is characterised by competition. In 2011 approximately 1,100

different electricity suppliers were active in Germany and 54% of the customers had chosen a supplier

other than the incumbent (Federal Network Agency (BNetzA) and Federal Cartel Agency (BKartA),

2013).
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Source: Eurostat time series nrg pc 205 and nrg pc 205 c.

Figure 1: The development of electricity prices for different consumption bands
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Federal Network Agency benchmarks different network operators against each other. The

result of this procedure in combination with the network operators’ levels of unalterable

(in the short-run) costs serves as a basis for assigning a revenue cap to each individual

network operator. Revenue caps are set for regulatory periods of five years, but adjusted

annually to take into account price developments or unexpected infrastructure invest-

ments and restructuring of the grids. Network operators can only set network charges in

accordance with their revenue cap. The translation of revenue caps into marginal and

peak load price components is regulated and leaves little leeway for network operators.2

The incentive regulation leads to network charges varying over time, where prices

that will apply in the next year are published in October; and over space due to different

DSOs.3 The spatial variation is depicted in Figure 2 which shows the average network

charges that a hypothetical chemical plant connected to the medium voltage level would

have had to pay in different areas in Germany in 2017.4 Higher network charges apply

to many of the states belonging to the former Eastern Germany. However, there is

substantial variation at a small spatial scale.

Figure 3 shows density plots of average network charges for the same hypothetical

chemical plant over time. Clearly, there is substantial variation both over time and cross-

sectionally. Network charges have increased and become more heterogeneous. In other

voltage levels, the development is similar.

Drivers of variation in network charges across DSOs include grid-level variation in

a variety of cost components, among them costs for network operation (maintenance,

infrastructure investments and connection of new plants and installations), system sup-

port services (such as re-dispatch), and transmission losses. von Graevenitz and Rottner

(2022) study drivers of network charges and find that much of the variation both across

and within DSOs can be explained by the renewable energy expansion that likely in-

creased both the level of system support services required and the costs for connecting

new generation sources to the grid.

2The setting of revenue caps and individual network charges price components across different voltage

levels is described in more detail in the Appendix.
3There are 8-900 DSOs at the low voltage level and a bit fewer at the medium voltage level. At

the high voltage level the number of DSOs declines to 60-70 DSOs across Germany and correspondingly

there is less spatial variation in network charges at the high voltage level.
4The hypothetical chemical plant consumes 950 MWh of electricity per year with a peak load of 152

kW and shift work (operating hours in excess of 2,500 hours)
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Figure 2: Average network charges of a hypothetical chemical plant in 2017
Source: Own calculations. The map shows average network charges in cents per kWh for a hypothetical chemical plant consuming 950 MWh per

year with a peak load of 152 kW and shift work (annual operating hours > 2, 500) in different network areas of Germany in 2017. The plant is

connected to the medium voltage level.
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Figure 3: Density of average network charges of a hypothetical chemical plant over time
Source: Own calculations. The figure shows the distribution of average network charges in cents per kWh for a hypothetical chemical plant over

time. The exemplary plant consumes 950 MWh per year with a peak load of 152 kW, conducts shift work (annual operating hours > 2, 500), and

is connected to the medium voltage level.
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Against this background, we can treat network charges as exogenous to manufac-

turing plants. This claim warrants a more detailed discussion given its importance in

the empirical analysis. The reasons for the exogeneity of network charges are threefold:

First, for each electricity consumer in Germany, the location completely determines the

relevant DSO. Hence, contrary to, e.g., electricity retail markets, consumers cannot pick

and choose between different suppliers. Once they are located in a certain area, the net-

work operator is fixed. While manufacturing plants in principle could actively select into

cheaper network areas, we make use of plant fixed effects and hence use the within-plant

variation in network charges over time for identification; therefore, endogeneity concerns

due to selection should be minimal.5

Second, the local DSO is not free to set network charges due to the regulation through

the Federal Network Agency. DSOs cannot strategically set network charges in a way

as to attract and keep industry and production. Regulation both for a DSO’s revenue

cap and its translation into individual price components is very detailed and leaves little

scope for strategic action.

These two facts do not rule out the possibility of reverse causality, i.e. network charges

being affected by the demand behaviour of manufacturing plants, e.g., because a higher

utilization of the grid leads to the revenue cap being split among more users, or because

higher industrial activity impacts re-dispatch tasks. However, we are identifying effects

based on within-plant variation in network charges. In our analyses, only the change in

network charges needs to be exogenous. This is a much weaker requirement: Network

charges depend, as discussed, on a variety of factors and the consumption behaviour of

lots of (large) electricity users aside from manufacturing plants (like, e.g., warehouses,

hospitals, movie theatres, and households). As a consequence, changes in demand be-

haviour have to be large in order to have a significant effect on the development of network

charges. In general, the German system (which does not involve nodal pricing) makes the

link between individual plant behaviour and network charges much weaker than it is, e.g.,

in the US case. Additionally, the timing of network charge determination and demand

responses implies that there is no scope for simultaneity. Network charges for a given

5Additionally, Janser et al. (2022) do not find any evidence that municipalities with decreasing network

charges experience an increase in plant entries (or a decrease in plant exits) which also speaks against

selection effects playing a major role.

10



year based on the (adjusted) revenue cap of a regulatory period are set and published in

October of the previous year. Hence, they are fixed prior to potential demand responses

of the industrial sector which therefore cannot have immediate effects on network charges.

Network charges consist of a marginal and a fixed price component, where the latter

depends on the peak load for those customers with registered load metering (RLM) but

not for standard load profile (SLP) customers. Both price components depend on the

local DSO and on the voltage level at which the user is connected. For RLM customers,

tariffs differ depending on whether operating hours exceed 2,500 hours per year. Due

to the way in which marginal and fixed price components are derived from the revenue

caps, they are negatively correlated within a voltage level. For this reason, we base

our analysis on average network charges faced by a plant. More discussion on how we

calculate average network charges and on the network charge data can be found in the

data section. SLP customers typically pay network charges to their electricity provider

(who then transmits them to the respective DSO) as part of their electricity bill. RLM

customers in contrast pay network charges directly to their DSO. The development of

network charges therefore, at least for RLM customers, should be quite salient. The

Appendix gives further information on the billing procedure.

This exogeneity of (changes in) network charges allows us to recover causal effects. In

different reduced form regressions, we proxy unknown and endogenous electricity prices

by the exogenously given electricity network charges faced by manufacturing plants. Un-

der the reasonable assumption that industrial users respond in the same way to rising

electricity prices in general and rising network charges, our findings extend to electricity

prices.6

3 Conceptual Framework

At this point, it is worthwhile to take a step back and conceptually outline the expected

consequences of electricity price increases and how this response may change over time.

When electricity prices increase, e.g., because network charges rise, standard eco-

nomic theory predicts that, all else equal, manufacturing plants reduce their electricity

6While a natural approach to estimating the causal effects of electricity prices would consist in an

IV regressor with network charges as instruments for plant-level electricity prices, the lack of data on

plant-level electricity prices renders such an analysis impossible.
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procurement. To do so, they have different options available. They may reduce their

electricity use by improving energy efficiency. Another option is to substitute away from

procurement through onsite electricity generation or by outsourcing the production of

electricity intensive intermediates. Electricity use can also be reduced by decreasing pro-

duction output or by switching towards producing less electricity intensive goods. Each

of these options comes with (opportunity) costs. Ranking the adjustment options by

their marginal cost creates the plant’s marginal abatement cost curve. Textbook eco-

nomics then shows that in a static framework it is optimal for plants to reduce electricity

procurement up to the point where marginal abatement cost equal the current electricity

price.

What about effect dynamics over a longer time period, such as our sample ranging

from 2009 to 2017? Will the response to rising electricity prices be constant over time?

This is not a priori clear and depends on the slope of the marginal abatement cost curve

(MACC), as depicted in Figure 4. It also depends on expectations about how prices (and

abatement costs) will change over time.

The left side of the figure depicts the textbook case of a firm with a linear MACC (see

e.g. Phaneuf and Requate 2017). In that scenario, depicted in the solid line, a one cent

electricity price increase will always lead to the same amount of electricity procurement

being abated. Identical price increases from p0 to p1 and then p2 lead to abatements

∆E1 and ∆E2 of the same magnitude. The response is constant over time as long as the

MACC does not shift.

Figure 4: Different marginal abatement cost curves
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Suppose now that the firm benefits from technical progress, and has new, more elec-

tricity efficient machinery available. This will pivot the MACC downwards as shown in

the line MACC ′. Intuitively, as the new machinery is more electricity efficient, forgone

output to abate one additional kWh of electricity is lower than before. If the firm switches

from MACC to MACC ′, in this case, the response to a similar increase in electricity

prices could grow over time (see ∆E
′
2).

Contrast that case with the convex MACC depicted in the right panel of the figure.

Consider again a price increase first from p0 to p1 and then to p2. Because the slope of the

MACC is increasing, the second (equivalent) price increase will raise abatement by less

than the price change from p0 to p1. Intuitively, since the costs for reducing electricity

consumption by one additional kWh become increasingly high, manufacturing plants will

require a larger change in electricity prices for the same amount of abatement.

Note that the MACCs depicted in Figure 4 constitute simplifications in several re-

gards. First, they present examples for single firms. MACCs might differ across firms,

and importantly across sectors: Specifically, manufacturing sectors for which electricity

is an important production input (i.e. with a high electricity intensity) might in general

have steeper MACCs as it might be harder to substitute away from electricity. Second, in

reality, MACCs are likely to be step-wise instead of smooth functions. As such, marginal

abatement costs might be constant until a point of discontinuity is reached.

Aside from the MACC, in a dynamic context, expectations of future price develop-

ments play a major role, in particular if investments are irreversible. This is formally

shown by Viscusi (1983) in the context of uncertain future environmental regulation. In

his example, a firm in each of two periods,chooses (irreversible) investment in abatement

(quality) and production quantities. In this setting a firm may overinvest in abatement

due to stricter expected regulation (in our case higher prices) in the future than what

in fact is realized. In consequence, the firm produces more than originally planned in

the second period. Responses to increasing electricity costs therefore depend also on the

development of (expected) electricity prices over time.7

7We mention this channel here because plants in Germany have experienced several changes in elec-

tricity pricing due to regulation. In particular, over the study period, the exemption options for the

renewable energy surcharge were amended resulting in a substantial increase in exempt plants which is

studied in Gerster and Lamp (2020). In addition, the EU ETS prices were much lower than most people
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Summarizing, there are good reasons to believe that the response to rising electricity

prices is not constant over time. IWhether the responsiveness increases or decreases

depends on the MACC and how it evolves over time, as well as how expectations about

electricity prices compare to realized electricity prices. We test empirically whether in

German manufacturing, abatement elasticities get larger, smaller or remain constant

in the period from 2009 to 2017. We also examine which abatement options German

manufacturing plants use in response to increasing network charges, by looking at effects

of electricity network charges on output-related measures (revenues and employment), on

investments, and on onsite electricity generation. The sectoral differences in MACCs are

taken into account by analysing heterogeneities across subsectors of manufacturing.

4 Empirical Strategy

4.1 Research design

Given that we treat changes in network charges over time as exogenous to manufacturing

plants, our regression analysis is very straightforward. In a first step, we estimate panel

regressions as shown in equation 1, implicitly assuming a constant elasticity of response to

rising network charges. Due to the use of plant fixed effects µi, identification is achieved

by using the within-plant variation in network charges over time.

yit = β × avgncijt + πst + µi +RESit + τ × CTijt + ϵijst (1)

yit denotes the log outcome variable of plant i in year t. Our main explanatory vari-

able of interest is denoted avgncijt: the average network charges per kWh of electricity

procured applying to plant i at time t given its location in network area j.89 Potential

had expected at below 15 Euro per tonne of CO2 for much of the study period. In consequence, for some

plants prices may not have increased as much as anticipated in the beginning of the period.
8We use current and not lagged network charges because network fees for the next year are already

published in October of a given year. Hence, the development of network charges is already known to

manufacturing plants prior to the actual change so that an immediate instead of delayed response can be

expected. However, Figure 11 in the Appendix contains additional results from estimating distributed

lag-models showing that, while network charges tend to have an effect also in the following year, most

of the effect unfolds immediately in year t.
9Average network charges are calculated by adding up the product of peak load price and peak load

(for RLM customers; for SLP customers, this expression simplifies to the fixed price component itself)
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confounders are controlled for by using different fixed effects and control variables: First,

µi controls for all time-invariant plant-specific factors that might affect dependent vari-

ables, like the location. πst represents sector by year fixed effects at the four-digit level.

Among others, these trends capture sector-specific demand shocks, or the development

of electricity wholesale prices and national levies and surcharges. Moreover, we control

for plants being exempt from paying the full Renewable Energy Surcharge (RESit). This

surcharge is an important component of electricity prices in Germany which accounts for

up to 30 % of electricity prices, as discussed in Section 2. Becoming exempt therefore

leads to a substantial drop in electricity prices which we do not want to confound our

estimates. Finally, as network charges differ on a spatial scale similar to the level at which

commercial tax rates vary – which have been found to have an effect on plant behaviour

(Fuest et al., 2018) – we also control for the commercial tax rate at the plant location,

CTijt.

A few clarifications might be in order here. Note that we use average network charges

as an explanatory variable. Hence, plant behaviour is explained by a weighted average

of changes in the fixed and marginal price component. We abstain from using the price

components themselves as regressors for two reasons. First, they exhibit strong negative

correlation, i.e. if marginal prices increase, peak load prices tend to decrease. This

correlation is grounded in the way in which the revenue cap is translated into price

components as explained in further detail in the Appendix. The strong correlation makes

it difficult to back out separate effects of marginal and peak load prices. Second, the

weight on marginal and fixed price components in the plant’s total network charges

differs substantially across manufacturing plants. For users with high peak loads, the

fixed price component constitutes the lion’s share of total network charges, while it is the

other way round for smaller customers. Due to this heterogeneity even among plants for

which the same tariff structure applies, estimating average effects of each of the different

price components does not properly take into account their relative importance. This is

naturally achieved by looking at average prices instead.10

with the product of marginal price and electricity procurement, and then dividing this total of network

charges by electricity procurement. Average network charges are measured in cents per kWh of electricity

procured.
10Standard neoclassical theory would suggest that plants optimize on marginal prices. Ito (2014)

however shows empirically that households in the US respond to average rather than marginal prices.
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Identification is achieved by using the year to year variation in network charges.

Regression results can hence be interpreted as short-run responses. Given that a single

elasticity of response is estimated for the whole time period, the coefficient β constitutes

a weighted average of the potentially varying responses over time. As discussed by Burke

and Emerick (2016), the weights depend on how long a given elasticity is valid and when

adjustments occur that lead to changes in the elasticity.

We follow Burke and Emerick (2016) in obtaining long-run effects by estimating the

same regression in long differences, as shown in equation 2.

∆yi = β ×∆avgncij + πs +∆RESi + τ ×∆CTij + ϵijs (2)

In this approach, we explain the change in the log dependent variable over a longer

time period, ∆yi, by the change in average network charges, ∆avgncij over the same time

period. By using first differences, we still control for plant-invariant factors that might

affect outcome variables. The coefficient of interest, β, is estimated from a combination

of short- and long-run variation. To recover true long-run effects, we take two steps:

First, we do not use the first year available, 2009, as a starting point, since that year was

characterized by a strong recession in German industry. Second, as suggested by Burke

and Emerick (2016), we use average values from several years over which differences are

taken. Considering the length of our panel, we use average values from 2010 and 2011 as

a starting and values from 2016 and 2017 as an end point.

In both equations 1 and 2, the coefficient of interest, β, is assumed to be constant over

time. If this is not the case, as suggested by the considerations in Section 3, β represents

an average of different elasticities. To obtain estimates of whether and in which direction

elasticities of response towards rising network charges have changed over our estimation

period, we additionally estimate equation 3:

We empirically test the importance of the fixed price component by additionally running regressions in

which we include marginal network prices instead of average network charges. Results are reported in

Table 12 in the Appendix. As in Ito (2014), we find that responses to marginal prices are weaker than

to average prices.
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∆yij = βt1NCijt1 − βt0NCijt0 + ...

= βt1NCijt1 − βt0NCijt0 + βt1NCijt0 − βt1NCijt0 + ...

= βt1 (NCijt1 −NCijt0) + (βt0 − βt1)NCijt0 + ...

= βt1∆NCij +∆β NCijt0 + ...

(3)

As in equation 2, we take long differences, but allow β to change across start and

end period. Adding and subtracting the product of end period elasticity and start period

network charges and rearranging yields that the change in the log outcome variable is a

function of the change in network charges over the observation period and the change in

the elasticity of response to changing network charges. As we observe both the change in

network charges over time as well as baseline period network charges, we can get estimates

both for βt1 and for ∆β and thereby learn about direction and size of a potential change

in manufacturing plants’ response to rising electricity prices.

Note that in all three regressions, standard errors are clustered at the county-level to

account for spatial correlation of observations.11

4.2 Data

To estimate these regressions, we combine several data sources. For information about

plant-level economic indicators as well as electricity usage behaviour, we refer to the Ger-

man Manufacturing Census. This confidential administrative data set contains different

modules and, for several of these, covers all German manufacturing plants with more than

20 employees. Other modules are only available for stratified subsets of manufacturing

plants. Participation in the respective surveys is mandatory. Responses are back-checked

by the Federal Statistical Offices of the Bund and the Länder, so that data overall are re-

liable. Still, we drop some observations with implausible reporting. Details can be found

in the Appendix. We have data available for the period from 2003 to 2017 – however, our

11In principle, it would be most appropriate to cluster standard errors at the level of grid areas. As

these frequently change over time, e.g. due to mergers or acquisitions of DSOs, we refer to the more

stable counties as an approximation of grid areas. These are also more similar in size and thus more

likely to capture shared regional shocks than the grid areas, which can vary from a neighborhood in a

city to an area spanning almost an entire federal state.
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analysis is limited to the time period from 2009 onwards due to the regulatory change in

network charges from cost-plus to incentive regulation.

The Manufacturing Census contains information on manufacturing plants’ locations

(i.e., counties and postal codes) as well as their sector affiliation. We also use infor-

mation on their electricity consumption and procurement, both measured in kWh per

year. Furthermore, the Census covers manufacturing plants’ revenues, hours worked,

total investments and investments into energy efficiency. These variables are available

for the full sample of plants with more than 20 employees. Additionally, as a proxy for

annual operating hours, we make use of information on whether manufacturing plants

are conducting shift work. This variable is only available every four years for a stratified

sample of manufacturing plants and hence defines our estimation sample.12 Specifically,

our estimation sample consists of all German manufacturing plants that report about

shift work at least once in 2006, 2010, or 2014. For the remaining years, we use linear

extrapolation.13 Lastly, for a subsample and the same select years, we exploit firm-level

data on electricity expenditures from an additional Census module to check whether de-

velopments in average network charges are reflected in firms’ electricity expenditures.

This is indeed the case.

We combine the German Manufacturing Census with data on electricity network

charges purchased from the ene’t GmbH. This data provider compiles the information

that DSOs are legally required to publish annually. We use data from 2009 onwards.

The data set contains information on the network charges price components in different

voltage levels and tariff groups for each DSO. We merge that information to the Manufac-

turing Census via spatial identifiers, namely county and postal codes. In certain years,

some county-postal code areas are divided between multiple DSOs. Since we do not

know a manufacturing plant’s exact location within a county-postal code and hence can-

12Strata are given by federal states, sectors and employee size classes. Plants with more employees are

more likely to be sampled, and plants with more than 1,000 employees are always in the sample.
13To keep the burden for manufacturing plants as small as possible, participation in the survey is

rotated. The deliberate rotation leads to the samples of two years overlapping only to a small degree.

Since all plants with more than 1,000 employees have to participate in the survey, this rotation partic-

ularly affects plants with fewer employees. Owing to the small overlap, we cannot confine ourselves to

manufacturing plants for which we observe shift work multiple times. The extrapolation might induce

some measurement error. However, from plants observed multiple times in the survey, it seems that the

decision (not) to conduct shift work is quite stable so that the error should be small.
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not identify the exact DSO to which it is connected, we drop those observations from our

estimation sample. The ambiguities frequently occur in cities so that our final estimation

sample somewhat underrepresents manufacturing plants in urban areas.14

As discussed in Section 4.1, we use information on commercial tax rates and exemp-

tions from the Renewable Energy Surcharge as controls and therefore merge commercial

tax rates from the Federal Statistical Office and RES exemption information from the

Federal Office of Economics and Export Control.15

While the dependent variables for our analysis – electricity procurement and consump-

tion, revenues, hours worked, investments and capital stocks – are directly contained in

the manufacturing Census,16 the construction of our explanatory variable warrants fur-

ther discussion.

Average network charges depend on the grid operator, the voltage level at which it

is connected to the grid, its peak load, its operating hours and which customer group

applies. Table 1 again summarizes the different tariff structures.

Table 1: Structure of network charges

Customer group Standard load profile (SLP) Interval-metered (RLM) Individual charges (§19)

Annual procurement ≤ 100 MWh > 100 MWh > 10 GWh,

min. 7,000 hours of use

or off-peak usage of the grid

Transmission level Low voltage Low, medium and high voltage Low, medium and high voltage

Tariff structure Two-part tariff Three-part tariff Eligible for reduced

”Arbeitspreis” Price per unit (EUR/MWh) Price per unit (EUR/MWh) network charges

”Grund-/Leistungspreis” Base price per year (EUR) Peak load price (EUR/MW)

Tariff varies by hours of use:

≤ or > 2,500 hours/a

Notes: Based on the Electricity Network Charge Regulation.

We classify plants as SLP customers connected to the low voltage level (column (1)

of Table 1) if their electricity procurement is below 100 MWh throughout the study

14Figure 9 in the Appendix depicts the grid areas that are contained in our estimation sample in 2017

(“unique”) and the areas we lose due to an ambiguous DSO assignment. Overall, we lose roughly 30 %

of observations in the sample due to the ambiguous network assignment in certain areas.
15We thank Andreas Gerster for generously sharing his list of exempt plants with us.
16Capital stock information are not included in the Census surveys, but is computed by the Perpetual

Inventory Method following Lutz (2016).
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period.17 All other plants are classified as RLM customers. We assume no manufacturing

plant in our sample is exempt from paying full network charges (column (3) of Table

1). While this leads to some error, we believe it to be small. Each year, there are only

around 4,000 to 5,000 exemptions at most across all sectors of the economy, less than half

of which are in manufacturing. Most of these exemptions are granted based on atypical

usage which does not systematically vary with procurement levels. Plants exempt due

to their procurement levels are very likely to be exempt from the RES as well as the

criteria overlap to a large extent. Therefore the RES dummy controls for these plants to

some extent. In sum, we expect this to lead to classical measurement error biasing our

estimates towards zero.

For all RLM customers (column (2) of Table 1), we use information on shift work to

distinguish plants above or below the 2,500 threshold in annual operating hours. Note

that 2,500 hours of use are achieved by plants operating 6 days a week and 8 hours a day

all year round (52 weeks), so that manufacturing plants with regular double shifts (16

hour work days) will exceed 2,500 annual operating hours, whereas plants with a single

shift and a 40 hours work week will not.

The voltage level at which manufacturing plants are connected to the grid and their

annual peak loads are not observed. We therefore make additional assumptions to cal-

culate average network charges at the plant-level which are described in detail in the

Appendix. Here we briefly summarize them for convenience. For assigning manufac-

turing plants to voltage levels, we approximate peak loads by average loads based on

an assumption about the plant’s operating hours. In personal conversation with sev-

eral DSOs we gathered threshold values in peak loads for assignment to different voltage

levels. The average loads are also used to approximate peak loads in the calculation of

average network charges.

This assignment of manufacturing plants to different tariff groups and voltage levels

involves some measurement error. Assuming classical measurement error, our estimates

are subject to attenuation bias and should be considered a lower bound on a possible

effect.

17There are a number of manufacturing plants that fluctuate around the threshold of 100 MWh. To

prevent any bias resulting from a misclassification of these plants, we remove them from our sample.
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4.3 Sample statistics

Due to areas in which the DSO cannot be determined unambiguously and due to the

fact that our estimation sample is constrained to manufacturing plants on which we have

information about their shift work at least once, the estimation sample is substantially

smaller than the full sample of manufacturing plants represented in the Census data.

Table 2 and Figure 5 contrast our estimation sample and the full sample from the Ger-

man Manufacturing Census with respect to sector composition, full time equivalents and

electricity consumption.

Table 2: Sector composition in % in the full sample versus the estimation sample in 2016

Sector Full Estimation Long differences

sample sample sample

10 Food products 12.27 11.56 11.55

11 Beverages 1.24 2.39 2.51

12 Tobacco products 0.06 0.14 x

13 Textiles 1.64 3.71 3.71

14 Wearing apparel 0.56 1.41 1.44

15 Leather and related products 0.29 0.68 0.66

16 Wood and products of wood and cork, except furniture 2.56 2.99 2.94

17 Pulp, paper and paper products 2.09 4.06 4.18

18 Printing and reproduction of recorded media 2.96 3.90 3.81

19 Coke and refined petroleum products 0.15 0.46 x

20 Chemical products 3.55 5.30 5.23

21 Basic pharmaceutical products and pharmaceutical preparations 0.8 1.75 1.64

22 Rubber and plastic products 7.38 6.13 6.29

23 Other non-metallic mineral products 6.51 5.74 5.85

24 Metal production and processing 2.43 4.36 4.45

25 Fabricated metal products 17.76 8.32 8.22

26 Computer, electronic and optical products 4.33 5.41 5.39

27 Electrical equipment 4.96 5.32 5.37

28 Machine manufacturing 13.99 8.87 9.15

29 Motor vehicles 3.01 4.69 4.74

30 Other transport equipment 0.73 1.74 1.67

31 Furniture 2.33 3.03 2.99

32 Other manufacturing 3.77 4.14 4.09

33 Repair and installation of machinery and equipment 4.7 3.88 3.53

Total number of plants 44,853 9,061 8,330

The “x” denote cases in which the number of observations is too small to be released for confidentiality reasons.
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Overall, our estimation sample is similar to the complete Manufacturing Census with

respect to sector composition, even though some subsectors show larger deviations. De-

spite the fact that the estimation sample contains less than 20 % of manufacturing plants

from the Manufacturing Census, it covers 30-50 % of the Census’ full-time equivalents,

employees, energy consumption and electricity consumption, indicating that large plants

are overrepresented in the estimation sample. Still, as can be seen in Figure 6, our

study captures a lot of small manufacturing plants that have not been part of previous

analyses.18

Table 3 contains summary statistics on calculated average network charges, electricity

consumption and electricity procurement for the estimation sample. Energy and electric-

ity consumption have increased over time across the 10th, 50th and 90th percentile of

the plant distribution between 2010 and 2016. Average network charges for most manu-

facturing plants in our estimation sample do not exceed 6-7 Cents per kWh and too have

generally increased. These numbers are well in line with averages from the Federal Net-

work Agency’s monitoring report (Federal Network Agency (BNetzA) and Federal Cartel

Agency (BKartA), 2021) for commercial (50 MWh) and industrial (24 GWh) users that

range between 4.99-5.85 and 1.43-2.06 cents per kWh in the time period from 2009 to

2017, respectively.

Table 3: Summary statistics of key variables in 2016 (top panel) and 2010 (bottom panel)

energy use electricity use employees average network

(MW) (MW) charges (Ct/kWh)

2016

p10 317 140 31 1.55

p50 2,742 1,375 109 2.60

mean 50,000 13,600 295 3.11

p90 42,200 19,100 559 5.37

N 8,875 8,875 9,009

2010

p10 291 135 29 1.06

p50 2,438 1,245 96 2.05

mean 43,100 12,500 257 2.36

p90 38,400 17,500 502 4.31

N 9,791 9,791 9,922

18Figure 10 in the Appendix displays the according histogram for the full sample for comparison.
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In the Appendix, we report additional statistics on the relationship between network

charges and firm-level electricity expenditures for single-plant firms in the years 2010 and

2014 (see Tables 9 and 11). Calculated network charges account for 10-18 % of total

electricity expenditures for single-plant firms between 25th and 75th percentile of the

distribution in our sample. This fares well with the statistics from Eurostat displayed

in Figure 1. Running within-firm regressions of electricity expenditures on total network

charges (controlling for year fixed effects and RES exemptions), we find evidence that

increases in network charges are associated with statistically significantly rising electricity

expenditures.

Table 4 shows that our estimation sample is dominated by plants connected to the low

to medium voltage levels. Generally, there are more manufacturing plants exceeding 2,500

annual operating hours, especially at higher voltage levels. Assignments at the sector level

are available from the authors upon request. While there is substantial heterogeneity

across sectors, energy intensive industries like chemicals or coke and petroleum tend to

be connected to higher voltage levels, whereas less energy intensive industries like repair

and installation of machineries are often connected to the low voltage level.

Table 4: Number of manufacturing plants assigned to different tariff groups and voltage

levels in 2016

Voltage level Tariff group Number

Low SLP 740

Low RLM 1 487

Low RLM 2 1,137

Low to medium RLM 1 963

Low to medium RLM 2 1,430

Medium RLM 1 753

Medium RLM 2 2,862

Medium to high RLM 1 16

Medium to high RLM 2 128

High RLM 1 57

High RLM 2 480

Source: The Table shows the assignment of manufacturing plants in the estimation sample for the year 2016 to different network charges

tariff structures and voltage levels described above. Tariff groups are SLP (less than 100 MW of annual procurement), RLM 1 (RLM, less

than 2,500 hours of annual use of the grid) and RLM 2 (RLM, more than 2,500 hours of annual use of the grid).
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5 Results

5.1 The effects of network charges

Table 5 summarizes the results on the effects of average network charges on electricity

usage and different competitiveness indicators, obtained by estimating equations 1 to

3. Panel A contains short-run effects from the panel regression, panel B shows results

from the long-differences design, while panel C decomposes long-differences effects into

a change in network charges and a change in the elasticity of response. The different

columns show results on various dependent variables.

Table 5: The effects of average network charges on German manufacturing plants

Electricity procurement Hours worked Revenues Investments Capital stocks

(1) (2) (3) (4) (5)

Panel A: panel regression

Average network charges -0.033∗∗∗ 0.011∗∗ 0.004 -0.004 -0.001

(0.011) (0.005) (0.005) (0.021) (0.007)

N 57,382 42,899 56,360 52,084 56,863

number plants 7,626 5,975 7,523 7,404 7,597

R2 0.084 0.150 0.180 0.055 0.091

Panel B: long-differences

Delta network charges -0.012 0.023∗∗∗ 0.012 0.005 -0.005

(0.011) (0.009) (0.008) (0.032) (0.010)

N 5,682 4,239 5,576 5,174 5,600

number plants 5,682 4,239 5,576 5,174 5,600

R2 0.062 0.092 0.096 0.054 0.080

Panel C: long-differences extended

Delta network charges (βt1) -0.022∗ 0.017∗ 0.012 0.033 0.002

(0.011) (0.009) (0.008) (0.034) (0.011)

Lagged network charges (∆β) 0.023∗∗∗ 0.009 0.002 -0.059∗∗ -0.015∗∗

(0.006) (0.006) (0.005) (0.023) (0.006)

Implied βt0 -0.045∗∗∗ 0.008 0.010 0.092∗ 0.017

(0.014) (0.013) (0.011) (0.047) (0.014)

N 5,682 4,239 5,576 5,174 5,600

number plants 5,682 4,239 5,576 5,174 5,600

R2 0.065 0.093 0.096 0.056 0.080

Notes: The regressions include observations from 2009–2017. Dependent variables are log-transformed. All regressions are run within-plant

and with 4-digit sector time trends. Standard errors are clustered at the county-level and displayed in parentheses. ∗, ∗∗ and ∗∗∗ indicate

significance at 10%, 5% and 1%, respectively.
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First, focus on the direct impact of network charges on electricity procurement (col-

umn (1)). As can be seen in Panel A, we find highly statistically significant negative

effects of average network charges on electricity procurement in the short-run. A one

cent increase in average network charges on average reduces manufacturing plants’ elec-

tricity procurement by 3.3 percent in the short-run.19 To put this effect into perspective,

note that a one cent increase is substantial given the mean of average network charges of

around 3 cents per kWh in our sample. In terms of overall electricity costs, a one cent

increase amounts to a change of about 5-7 %.20 Assuming that manufacturing plants

respond in the same way to electricity price increases in general, our results imply an

own-price elasticity of electricity of -0.4 to -0.6. This estimate lies comfortably within

the range of estimates from other quasi-experimental studies on more specific subsets of

manufacturing firms: Gerster and Lamp (2020) find an elasticity of -0.2 for (electricity-

intensive) German manufacturing plants consuming between 1 GW and 10 GW of elec-

tricity, while Martin et al. (2014) report a substantially higher (tax-induced) elasticity of

between -0.84 and -1.51 for UK plants in selected energy intensive industries.21

Panel B in contrast depicts the effects estimated from the long-differences design

as specified in equation 2. In long-differences, we identify negative, but insignificant

effects of average network charges on electricity procurement. One potential explanation

for the smaller effects compared to the short-run estimates could lie in a decrease in

manufacturing plants’ responsiveness to electricity price changes. As discussed in Burke

and Emerick (2016), panel estimates will be larger than long-differences estimates if a

decline in responsiveness occurs towards the end of the panel.

19Note that this effect actually constitutes an average of the effects of a given price shock over multiple

periods. Figure 11 in the Appendix shows results from estimating a distributed lag model. It can be

seen that in the year of the price change, the effect is actually somewhat larger, followed by a weaker

response in the following year.
20Table 10 in the Appendix shows average electricity costs in our estimation sample for the years 2010

and 2014, calculated by dividing total electricity expenditures by electricity consumption. As electricity

expenditures are available only at the firm-level while electricity consumption is available at the plant-

level, statistics include single-plant firms only.
21Note that reassuringly, the RES exemption studied by Gerster and Lamp (2020), which is included

as a control variable in our analysis, enters with a statistically significant positive coefficient into the

regression of electricity procurement, in line with the results of Gerster and Lamp (2020).
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The results in Panel C on the decomposition into changing network charges and

changing elasticity of response are in line with the elasticity of response decreasing over

time, and provide an additional explanation for the insignificant long-differences effects

in Panel B. The elasticity of response towards rising network charges takes on negative

values both in the base period 2010/2011 and the end period 2016/2017. However, the

statistically significant effect of base period network charges implies that the response

is getting weaker over time. The fact that base period network charges and the change

in network charges are positively correlated (i.e., absolute increases in network charges

tend to be stronger for plants with already high network charges in 2010/2011, with a

correlation coefficient of roughly 0.3) means that omitting base period network charges

in the pure long-differences design will result in estimates being biased towards zero.

Point estimates suggest that a one cent increase in average network charges lead to

a decrease in electricity procurement of approximately 4.5 % on average in 2010/2011,

but only of 2.3 % in 2016/2017. The implied own-price elasticity hence is decreasing

from -0.7 – -0.9 to -0.3 – -0.5. Relating back to the conceptual framework presented in

Section 3, this result would be in line with marginal abatement costs increasing more

than linearly, so that manufacturing plants are requiring larger increases in electricity

prices to take the next abatement step than they did in earlier years. Note however that

while the coefficient on base year network charges is statistically significant, the implied

elasticities at base and end period are not statistically different from each other so that

this evidence should be taken as suggestive.22

The three different specifications show that rising network charges – and in extension

rising electricity prices – lead manufacturing plants to reduce their electricity procurement

substantially. In contrast, we find no significant effect of network charges on revenues

in any of the specifications. This finding in itself doesn’t rule out a potential adverse

effect of electricity prices on output: Manufacturing plants could reduce output and at

the same time increase prices such that revenues remain unaffected. Hintermann et al.

(2020) indeed find evidence for German manufacturing plants passing on energy costs to

their customers (even though pass-through is incomplete). However, we also generally do

22Running the panel regression from equation 1 with an interaction term between network charges

and regulatory period also leads to the conclusion that the response elasticity has been higher in the

regulatory period from 2009 to 2013 as compared to the regulatory period from 2014 onwards. Results

are reported in Table 13 in the Appendix.
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not find significant negative effects of network charges on hours worked as a measure of

employment.23 On the contrary, effects tend to be significantly positive. Together, those

results suggest that electricity price increases in the order of magnitude of past changes

in network charges do not lead to negative competitiveness effects. There is no strong

evidence that manufacturing plants reduce electricity use in response to rising prices by

reducing output.

The evidence with regard to investments and capital stock is mixed. In the short

run we find no statistically or economically significant effects of network charges (panel

A, columns (4) and (5)). However, the extended long-run estimates (panel C) suggest

a sizeable positive impact on investments in the beginning of the period, though this

coefficient is only significant at the 10 %-level. For the capital stock there is also some

evidence that responsiveness (β) has declined, but the coefficients from the early and late

period (though positive) are not statistically significant at conventional levels.

5.2 Discussion of potential channels

The fact that rising electricity prices lead to a response with respect to electricity pro-

curement, but not competitiveness indicators is broadly in line with previous research.

Gerster and Lamp (2020) too find significant effects of the RES exemption on electricity

usage in German manufacturing, but generally not on competitiveness indicators. Lehr

et al. (2020) find no negative effects of the EU ETS on the competitiveness of German

manufacturing firms. Still, the question remains how the reduction in electricity pro-

curement we find is achieved, if there are neither indications for a decrease in output

nor for an increase in investments. In this section, we analyse three potential channels

by which electricity procurement might be reduced, specifically the redirection of invest-

ments towards electricity efficiency, the substitution of electricity procurement by onsite

generation, and within-firm leakage effects.

While we find insignificant effects of network charges on the total sum invested by man-

ufacturing plants, rising electricity prices could induce manufacturing plants to redirect

their investments towards more electricity efficiency. Table 6 shows the sum invested by

23We look at hours worked instead of the number of employees since this variable exhibits more

variation. Labour laws in Germany render it difficult to lay off employees in the short-run while it is

potentially easier to reduce working hours.
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our estimation sample into machinery in general and energy efficiency specifically. Invest-

ments in energy efficiency include, e.g., the installation of heat pumps, heat exchangers

for heat recovery, CHP, efficient grids, thermal insulation or new, more environmentally

friendly heating technologies. Note that most of these relate rather to heat generation

and use, but could also have important implications for electricity use (through e.g. CHP

or grids). At the plant-level, investments into energy efficiency are extremely lumpy and

do not lend themselves for an analysis in a regression framework which is why we resort

to the indicative summary statistics shown in Table 6.

Table 6: Sum of investments by the estimation sample into machinery and energy effi-

ciency

Year Sum Investments Sum Investments Mean Investments Mean Investments Number of observations Number of observations

(Machinery) (Energy Efficiency) (Machinery) (Energy Efficiency) (Total) (Energy Efficiency)

2009 17.8 0.162 2,462 363 7,229 446

2010 19.9 0.140 2,795 270 7,124 518

2011 24.0 0.241 3,407 394 7,051 612

2012 24.0 0.272 3,526 434 6,817 626

2013 21.8 0.227 3,280 317 6,654 717

2014 22.9 0.243 3,569 310 6,404 783

2015 20.8 0.297 3,377 349 6,155 851

2016 22.7 0.294 3,823 358 5,939 821

2017 23.0 0.234 3,974 284 5,776 825

Notes: Only for plants in the estimation sample. Values in billion (except for mean investments which are in thousands) EUR at deflated

2015 EURs.

The sum invested by our sample into energy efficiency has increased quite substantially

over time – despite the fact that the estimation sample is getting smaller. In contrast,

average sums invested into energy efficiency – conditional on conducting such investments

– do not exhibit such a clear trend. The increase in investments results from an extensive

margin effect: There is a growing number of manufacturing plants investing into energy

efficiency. If such types of investments are induced by rising electricity prices, this could

be an explanation for the reductions in electricity usage we observe. Note however that

the table also shows a general increase in investments into machinery in our estimation

sample. Average investments into machinery are also growing. To the extent that new

capital stock is more efficient than old capital stock, this may also be a channel through

which plants reduce electricity use by replacing old capital stock sooner when network

charges increase.
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A further explanation for the reduction in electricity procurement in response to ris-

ing network charges may lie in onsite generation. von Graevenitz and Rottner (2020)

document an increase of 50 % in the amount of electricity generated onsite from 2005 to

2014 in German industry. Rising network charges could play a role in that development

since electricity generated onsite is largely exempt from network charges. We test em-

pirically whether manufacturing plants that are generating their own electricity at some

point (roughly 1,300 in our sample) respond differently to rising network charges than

other industrial users. Results from a panel regression including an interaction of network

charges with an indicator for onsite-generating plants are reported in Table 7. Indeed, we

find manufacturing plants with own electricity generation responding to rising electricity

prices more strongly with respect to their electricity procurement. At the same time,

they reduce electricity consumption (i.e., procurement plus self-generated electricity) by

less as compared to other industrial consumers. This suggests that indeed, rising electric-

ity prices induce manufacturing plants to replace electricity bought from the grid with

electricity generated onsite.

Table 7: Effect heterogeneities: Self-generators and multi-plant firms

Electricity procurement Electricity consumption

(1) (2) (3) (4)

Average network charges -0.019∗ -0.065∗∗∗ -0.036∗∗∗ -0.071∗∗∗

(0.012) (0.020) (0.011) (0.020)

Network charges*self-generator -0.076∗∗∗ 0.022∗∗

(0.013) (0.010)

Network charges*single-plant firm 0.041∗∗ 0.048∗∗∗

(0.017) (0.017)

Implied aggregate effect -0.095∗∗∗ -0.025∗∗ -0.014 -0.023∗∗

(0.014) (0.010) (0.011) (0.009)

N 57,074 57,074 57,074 57,074

number plants 7,396 7,396 7,396 7,396

R2 0.006 0.004 0.003 0.004

Notes: The regressions include observations from 2009–2017. Dependent variables are log-transformed. All regressions are run within-plant

and with 4-digit sector time trends. Standard errors are clustered at the county-level and displayed in parentheses. ∗, ∗∗ and ∗∗∗ indicate

significance at 10%, 5% and 1%, respectively.

Table 7 also shows effect heterogeneities across single- and multi-plant firms. Multi-

plant firms that have production sites in different grid areas of Germany are able to

shift production and electricity procurement across plants. This adjustment possibility
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to rising electricity prices is not available to single-plant firms. In fact, we find that single-

plant firms respond less strongly to rising network charges as compared to multi-plant

firms which could indicate production shifting within firm. Note however that the stronger

response of multi-plant firms is purely descriptive in nature and not to be interpreted in

a causal way. The differing effects are not necessarily grounded in within-firm shifts and

could also result from structural differences between single- and multi-plant firms.

These three channels – investments into electricity efficiency, onsite electricity gen-

eration, and within-firm leakage – are three potential explanations for the reductions in

electricity procurement caused by rising network charges. There is some suggestive evi-

dence for each of them. The list of potential channels however goes on: Manufacturing

plants, e.g., could also be induced by rising electricity prices to switch the products they

produce. Abeberese (2017) finds evidence for electricity prices inducing product switch-

ing in Indian manufacturing. As for Germany, in a statistical decomposition Rottner

and von Graevenitz (2021) present descriptive evidence that manufacturing is shifting

towards a less emission intensive production composition from 2011 onwards. Since, due

to conversion and transportation losses, electricity is a very emission intensive energy

carrier, this could be equivalent to a switch to less electricity intensive goods and also

explain the patterns we observe. Another explanation could lie in manufacturing plants

outsourcing the production of electricity intensive intermediate inputs. Lastly, the abate-

ment options mentioned in Löschel et al. (2017), and in particular management practices

like target setting or regular efficiency improvement assessments could play a role. The

extent to which such practices are induced by rising network charges is beyond the scope

of this paper.

5.3 Effect heterogeneities

Manufacturing is very heterogeneous. Subsectors differ strongly in their production pro-

cesses, the associated energy and electricity intensities, and arguably in consequence also

in their MACCs. These differences are also reflected in the responsiveness towards rising

network charges, as shown in Table 8.

The Table shows results from running equation 1 separately for different 2-digit sec-

tors.24

24Only sectors with at least 150 distinct plants are shown.
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Table 8: Sector-level results of the main specification

Sector Average network charges Standard errors Number observations

10 Food products -0.029 (0.020) 6,541

11 Beverages 0.001 (0.027) 1,391

13 Textiles 0.021 (0.026) 2,042

16 Wood and wood products -0.077 (0.068) 1,919

17 Pulp, paper and paper products 0.023 (0.026) 2,503

18 Printing and reproduction 0.006 (0.026) 2,368

20 Chemical products -0.019 (0.030) 2,909

22 Rubber and plastic products 0.004 (0.019) 3,545

23 Other non-metallic mineral products -0.050∗∗∗ (0.019) 3,343

24 Metal production and processing 0.049 (0.046) 2,506

25 Fabricated metal products -0.024 (0.019) 4,626

26 Computer, electronic and optical products -0.094∗∗ (0.041) 3,064

27 Electrical equipment -0.026 (0.021) 3,106

28 Machine manufacturing 0.023 (0.021) 4,838

29 Motor vehicles -0.046 (0.029) 2,782

31 Furniture -0.006 (0.028) 1,914

32 Other manufacturing -0.122 (0.084) 2,336

33 Repair and installation -0.069 (0.048) 1,915

Notes: The regressions include observations from 2009–2017. The dependent variable is the logarithm of electricity procurement per plant.

Regressions are run separately for different sectors that contain at least 150 distinct manufacturing plants. All regressions are run with

plant and 4-digit sector-by-time fixed effects. Standard errors are clustered at the county-level and displayed in parentheses. ∗, ∗∗ and ∗∗∗

indicate significance at 10%, 5% and 1%, respectively.
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Results on electricity procurement appear to be mostly driven by the other non-

metallic mineral products and the electrical equipment industries. Point estimates in

most subsectors are negative however, and the insignificant effects could also stem from

low power due to smaller samples.

Interestingly, however, the sectors for which we can identify significant negative effects

on electricity procurement are not the ones for which we find significant effects on revenues

or hours worked.25 While results for the manufacturing sector as a whole might hide

important heterogeneity, the sector-level results do not indicate reductions in electricity

procurement in response to rising network charges coming at the expense of a reduction

in output. On the contrary, network charges tend to have significant positive effects on

labour input (in the textiles, printing and engineering industries). We also find a positive

effect of network charges on revenues in the chemical industry which might hint at the

occurrence of cost pass-through. Only in the pulp & paper and in the metal product

sectors, do we find evidence of significant negative effects of network charges on revenues

(without identifying effects on electricity procurement or consumption, though). Overall,

the results underline the importance of taking into account the heterogeneity of different

industrial users in assessing the effects of electricity prices.

5.4 Robustness

We test the robustness of our estimates in several ways. First, we run regressions in less

demanding specifications by reducing the set of fixed effects included. Specifically, we use

broader break-downs for the sector time trends on the three- or two-digit level. Results

are virtually unchanged.

Conversely, we check for robustness by adding additional fixed effects: Controlling for

tariff group- and voltage level-specific time trend does not substantially alter results.

Adding federal state time trends into the regression increases the estimated effects

slightly (both the panel and the long-differences ones), but does not affect their signifi-

cance.

Next, we change the sample underlying the regressions by dropping all plants which

at some point are located in areas with an ambiguous network assignment (instead of just

25Results on dependent variables other than electricity procurement at the sector-level are available

from the authors upon request.
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dropping them in the specific years where assignment is unclear). This neither affects

panel- nor long-differences results.

Conversely, we try expanding our sample to include all manufacturing plants that are

always located in ambiguous network areas. For these plants, we calculate an average of

the network tariffs charged by the DSOs in that area. While this induces some additional

measurement error, it alleviates concerns about the sample composition in case the am-

biguous network areas (among them, many cities) differ structurally from the areas we

include in our main specification. With this sample we cover 80 % of electricity used in

manufacturing and 60 % of the full-time equivalents. These analyses lead to the same

conclusions.

Moreover, to ensure our panel results do not confound intensive with extensive margin

effects (e.g., because network charges lead to plants completely closing down), we run

regressions on a sample of manufacturing plants that appears in the data both in 2009

and 2017. The results barely change.

Lastly, we alter our sample by including all manufacturing plants with an electricity

procurement always below 100 MW. For these SLP plants, there is no differentiation

in network tariffs according to their operating hours. Therefore, we can use the whole

universe of small manufacturing plants, instead of the stratified sample for which infor-

mation on shift work is available. While the effects differ quantitatively and tend to be

larger, they qualitatively remain identical. The exact estimation results are reported in

Tables 14, 15 and 16 in the Appendix.

6 Conclusion and Discussion

Climate policies like the European Union Emission Trading Scheme or the Renewable

Energy Surcharge in Germany tend to result in increasing electricity prices. Given that

climate change regulation does not apply worldwide but remains a largely unilateral issue,

concerns about job losses and decreases in international competitiveness have been raised.

As the German manufacturing sector is both an important pillar of the German economy

and export-dependent, it is of crucial interest to policy makers how manufacturing plants

react to increasing electricity prices. In this paper, we shed light on the responses of

German manufacturing plants to changes in exogenous variation in electricity prices using
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a unique combination of administrative micro-level data and information on electricity

network charges. Causal effects are obtained through the use of panel-estimation as well

as long-differences designs.

Exploiting the within-plant variation over time, we generally find negative effects of

average network charges on manufacturing plants’ electricity procurement. The estimates

from our preferred panel regression imply a short-run own-price elasticity of electricity

of roughly -0.4 to -0.6 on average. Evidence is suggestive that manufacturing’s respon-

siveness towards rising electricity prices declines over the period from 2009 to 2017. This

is in line with marginal abatement costs increasing more than linearly such that larger

price increases are necessary to induce the same absolute abatement response, but it is

also in line with firms responding to overinvestments in abatement as realized electricity

price increases were lower than anticipated.

While manufacturing plants respond to the price signal induced by network charges

with respect to their electricity consumption, we generally find no significant negative

responses on revenues and employment as competitiveness indicators. Evidence of posi-

tive effects investments and capital stocks is weak. In this regard, our paper mirrors the

findings from Gerster and Lamp (2020) and Lehr et al. (2020) on the direct effects of the

RES and the EU ETS. Hence, also among the smaller, less electricity intensive industrial

users which are not directly subject to different climate policy (exemptions), we find no

adverse effects on competitiveness.

It is however noteworthy that the results display a large degree of heterogeneity:

Different subsectors of manufacturing respond differently to changing network charges.

While we cannot identify negative employment effects in any subsector, there is some

evidence of revenues decreasing in the paper and metal products industries in response

to rising network charges – while the effect goes in the opposite direction in the case of

the chemicals sector, potentially due to cost pass-through. Policies aiming at protecting

industries exposed to high electricity costs like the indirect cost compensation under

the EU ETS, under which the chemicals industry receives large compensation shares in

Germany, therefore should be especially targeted to limit the costs of climate policies.

We also find evidence that rising electricity prices in Germany have contributed to

increase onsite generation in manufacturing. The consequence of this trend on carbon

emissions is not clear and depends on the fuels used for self-generation, the size of trans-
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mission losses avoided, and the coverage of industrial electricity generation under the EU

ETS. We leave analysis of these aspects for future work.
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7 Appendix

How electricity network charges in Germany are set

All information from the following paragraphs are based on the report from the Federal

Network Agency (BNetzA) (2015).

The regulatory system: costs, revenue caps and fee system

Broadly speaking, network charges are based on a network operators’ costs for oper-

ation, maintenance and expansion of electricity grids. Network charges (since January 1,
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2009) are determined by the Incentive Regulation Ordinance which divides the regula-

tory regime into 5-year periods. Before each 5-year period, the cost basis of each network

operator is newly determined. To do so, regulatory authorities review the audited annual

accounts (made according to the rules of the Electricity Network Charges Ordinance –

StromNEV) of network operators.

This cost basis then serves as the starting point for determining the revenue cap of

network operators. The revenue cap constitutes the budget available to each network

operator for the operation and maintenance of the grid during the 5-year period; how-

ever, it is annually reviewed and adjusted to take into account the development of costs

that cannot be influenced on a permanent basis, consumer price indices, and the costs

for network expansion. The revenue cap defines the maximum admissible revenues for

network operators.

Following the rules of the StromNEV, the fee system determines how these admis-

sible revenues are split onto different consumer groups (see next subsection). Network

operators have to send their calculated network charges each year to the regulatory au-

thorities. Potential differences between revenue cap and actual revenues are recorded in

the so-called adjustment account. Excess or shortfall revenues compared to the revenue

cap then are distributed at the beginning of the next regulatory period, so that network

operators to not bear a volume risk: Planned and actual quantities are balanced.

Distributing network operators’ costs on the users of different voltage levels

The costs of network operators are split onto users of the different voltage levels

by means of cost type, cost centre and cost unit accounting (in accordance with the

StromNEV): First, the costs incurred by a network operator in a specific period are

assigned to different cost types (cost type accounting); then, the cost types are allocated

to their sources, i.e. voltage levels (cost centre accounting); lastly, given this division of

costs onto different voltage levels, it can be determined which part of total costs has to

be covered by users of the different voltage levels (cost unit accounting).

This last step follows a top-down approach: Starting at the highest operating grid or

transformation level, the specific annual costs (the “stamp”) are calculated. These are

given by dividing costs of the highest network level by its simultaneous annual peak load.

This normalization is conducted because the peak load is considered the central cost

driver determining the size of the grid. By means of the simultaneity function (also: G-
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function), these specific annual costs are converted into different price components (see

next subsection). Given these network prices, direct revenues in the highest operated

voltage level can be calculated and subtracted from the costs of this level. Remaining

costs not covered by revenues are taken over to the next lower network level and added

to the genuine costs of this level. Thus, total costs in the lower network level consist of

the total original costs of this level plus the costs not covered by revenues from the higher

network level(s) (see Figure 7). The lowest network level has to bear all remaining costs.

Getting from the stamp to actual network charges: marginal prices, peak

load prices and the simultaneity function

The annual peak load of the electricity grid is a central cost driver for network opera-

tors since it determines the sizing of the electricity grid. The network charges fee system

is designed to take this factor into account to fairly allocate costs onto different users of

the electricity grid. Thus, individual users who have a high chance to contribute with

their individual peak load to the annual peak load of the grid are supposed to pay a

higher share of the peak load costs (by being charged higher peak load prices). This idea

is captured by the G-function.

With the simultaneity or G-function, the network operator assigns each grid user a

probability (the simultaneity degree) that the user’s peak load contributes to the annual

peak load of the whole network level. The G-function is modelled as a function of the

number of hours of use of the grid with a kink at 2,500 hours. The kink defines the

switching point between two different network tariffs. Hence, network charges differ

depending on whether or not the number of hours of use of the grid exceeds 2,500 hours.

To derive marginal and peak load prices, the network operator calculates a simultane-

ity degree for each user of the grid. Grid users in this sense are both final consumers and

downstream network operators. Simultaneity degrees are given by a user’s ratio of load

to individual peak load at the time of the simultaneous annual peak load of the grid. The

single simultaneity degrees are then plotted in a scatter plot as a function of the number

of hours of use of the grid and approximated by two straight lines which constitute the

G-function. This is schematically depicted in Figure 8.

The G-function needs to satisfy the following properties:

� It has a kink at 2,500 hours of use of the grid.
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Figure 7: The structure of network charges

Figure 8: The simultaneity function
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� The simultaneity degree for zero hours of use of the grid has to lie in between 0 and

0.2.

� At a number of annual hours of use of the grid of 8,760, the simultaneity degree

has to be equal to 1.

Multiplying slopes and intersects of the G-function with the stamp yields marginal

and peak load prices that differ for users with more or less than 2,500 annual hours of

use. The specification of the G-function thereby ensures that users with low numbers of

hours of use of the grid pay a relatively low peak load price and a relatively high marginal

price, while it is the other way round for users with high numbers of hours of use of the

grid. For users without registered load metering (SLP customers), base and marginal

price must be in an appropriate balance.

What does this imply for our analysis? This setting of network charges leads to

a negative correlation in the developments of marginal and peak load prices: Because the

G-function has to satisfy the requirements mentioned above, there is limited potential

to shift the whole curve up- or downwards. This generates the tendency for one price

component to decrease if the other one increases: If the slope gets higher and the curve

steeper, the intersection is likely to decrease, and the other way round.

How electricity network charges in Germany are paid

The invoicing of network charges differs among different types of customers. Small elec-

tricity users generally have integrated “all-inclusive” contracts with their electricity sup-

pliers. As such, they pay network charges as part of their general electricity bill to their

respective electricity providers. These providers then transmit the network charges col-

lected by their customers to the relevant DSOs under the framework of a grid usage

contract between electricity provider and network operator. While integrated contracts

are the default for users of the standard load profile (SLP, less than 100,000 kWh an-

nual electricity procurement), in principle, these small customers can also choose to enter

into their own contract with the respective DSO and pay network charges directly (and

separately from the rest of the electricity bill) to the network operator.

For SLP customers, payments are customarily made on a monthly basis as advance

payments, while the billing period comprises 12 months. Note that billing periods do
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not have to coincide with the calendar year; the respective begin of the billing period is

set by the network operator. Potential differences between the sum of advance payments

made and actual invoice amount after 12 months are balanced after the end of the billing

period.

Larger (industrial and commercial) customers with registered load-metering (RLM)

generally have their own grid usage contracts with their network operators and pay net-

work charges directly to them. However, these users too can choose to rather pay network

charges to their electricity suppliers under the scope of the framework contracts of the

suppliers (where suppliers then pass the network charges on to the DSOs, as for SLP

customers).

For RLM customers, billing approaches have been quite heterogeneous across network

operators until 2016. As of January 2016, a standardized grid usage contract by the

Federal Network Agency has to be used, which was developed in a determination process

starting in 2013. This standardized contract specifies that the billing period for RLM

customers uniformly starts on January 1st. Customers are billed every month. Since

network charges for RLM-customers depend on their annual peak-load – which is a priori

unknown and can change in the course of the year –, retroactive billing becomes necessary

in case a higher peak-load is reached in a given month as compared to the peak reached

in the previous months of the billing cycle. This has been the customary procedure also

before the standardization through the Federal Network Agency.

What does this imply for our analysis? This billing procedure of network charges

has several implications for our analysis. First, it might introduce some measurement

error into our analysis if billing cycles do not coincide with calendar years in the case

of RLM customers before 2016. In these cases, we calculate an approximated peak-load

based on electricity procurement information of a different period (the calendar year)

than the billing period (which spans two calendar years). As long as there is no extreme

variation in electricity procurement over the years, this is however unlikely to drastically

affect approximated peak-loads and results.

Second, the fact that many manufacturing plants pay network charges directly to their

DSO (RLM customers by default, SLP customers if they opt in) suggests that network

charges are indeed sufficiently salient to induce manufacturing plants to adjust. Contrary

to e.g. households for whom network charges just constitute one block of an aggregate
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bill, most manufacturing plants will be aware of price developments by virtue of paying

them in a separate bill.

Data cleaning for the Manufacturing Census

While the research data centres and the statistical offices conduct various quality controls

with the data, the large amount of data makes it impossible to check every data point

for inconsistencies and to correct all inaccuracies. Therefore, we adopt a separate data

cleaning procedure:

We exclude all observations that report a negative energetic fuel use and those observa-

tions where our calculated measure of total energy use is below zero. We calculate energy

use correcting fuel consumption for the occurrence of conversion losses, as in Rottner

and von Graevenitz (2021). Moreover, we drop all firms in which one plant reports the

energy statistics for several plants within the firm. While we can identify these cases

at the firm-level, we cannot properly allocate these firm’s fuel and electricity use across

the associated plants. Furthermore, we drop all observations where the electricity share

from our calculated measure of total energy use exceeds unity, and all observations that

report electricity self-generation from fossil fuels while at the same time reporting no

consumption of fossil fuels. Lastly, we drop outliers in terms of fuel and electricity use,

which are defined as plants where one standard deviation of fuel or electricity use within

the plant, respectively, is bigger than 100 times the median fuel use of the plant.

Unique and ambiguous network areas
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Network areas in the low voltage level in 2017
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no data

Source: Low voltage networks as defined by merging ene’t data to municipality shape files.

Figure 9: Unique assignment of low voltage level network areas to municipalities in 2017

47



Distribution of manufacturing plants with respect to

their electricity consumption
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Figure 10: Distribution of manufacturing plants in the full sample with respect to their

electricity consumption in 2017
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Calculating average network charges

To calculate average network charges we must make assumptions about 1) the voltage

level of the plant, 2) the peak load of the plant, and 3) the operating hours of the

plant. These assumptions are interconnected. To assign plants to voltage levels we rely

on threshold values for peak loads retrieved from communications with DSOs. These

threshold values are grounded in technical standards of transformer and cable capacity,

that lead to users with higher peak loads having to be connected to the grid at higher

voltage levels. Users with an annual peak load of less than 100 kW, e.g., tend to be

connected to the low voltage level, while users with an annual peak load of more than 5

MW tend to be connected to the high voltage level, etc. Specifically, we use the following

thresholds: ≤ 100 kW: low voltage level; > 100 and ≤ 300 kW: transformation level

low to medium voltage; > 300 kW and ≤ 4 MW: medium voltage level; > 4 MW and

≤ 5 MW: transformation level medium to high voltage; > 5 MW: high voltage level.

This assignment is prone to some degree of error: The decision on which voltage level

to connect a user to is subject to the individual situation of the DSO and the respective

user, projections about future developments and the technical equipment of the DSO.

However, using the aforementioned thresholds yields a reasonable approximation given

our data. Our assignment procedure leads to patterns very similar to what we can observe

in the applications for reduced network charges (column (3) of Table 1) which is the only

data source we have on manufacturing users’ voltage levels. More information is available

from the authors upon request.

Unobserved peak loads are approximated by average loads. This is a reasonable

assumption since high peak loads are associated with substantial costs so that there is a

strong incentive to flatten load profiles. Average loads in turn are calculated by dividing

annual electricity procurement by assumed operating hours where the assumption on

operating hours differs for plants with or without shift work: For plants without shift

work, we assume annual operating hours of 2,288 (which is the average between operating

the full year 8 hours per day and 5 or 6 days per week, respectively). For plants with

shift work, we use an expected value of operating hours. This expected value is calculated

using more detailed information on working modes available in the year 2001. In this

year, the surveyed plants are asked whether they are conducting any of the following work

modes: night work, Sunday work, and shift work. The distinction into these different
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work modes (instead of just one aggregate measure, as in later years) allows a more

narrow determination of plants’ and sectors’ operating hours. We calculate expected

operating hours for all plants with more than a single shift by the product of the share

of plants that are conducting shift work, night work, Sunday work or any combination

of these in 2001 and the implied annual operating hours of these different options. We

calculate different expected values for sectors that in general exhibit higher operating

hours (more than 7,000 in the median) and the remaining sectors. This yields expected

operating hours of 7,064 and 6,419, respectively. Since the connection to a voltage level is

physical in nature and does not change over time, we use a manufacturing plant’s median

electricity procurement over our complete observation period, and drop plants that are

switching into/out of shift work for the calculation of the (hence time-invariant) average

loads that are underlying the assignment to voltage levels. Annual peak loads necessary

to calculate the fixed price component for RLM customers are approximated by the same

procedure. However, for this purpose, we calculate time-varying peak loads, i.e. based

on annual electricity procurement.

Electricity costs and electricity expenditures in the

estimation sample

Table 9: The effects of network charges on electricity expenditures

Electricity expenditures Total network charges BesAR year=2014

0.507∗∗∗ -729,094∗∗∗ 103,608∗

(0.090) (242,463) (61,775)

N 5,481

number plants 4,176

R2 0.032

Notes: The table depicts results from a regression of single-plant firms’ electricity expenditures on their network charges. The regression is

run with firm fixed effects and year fixed effects. It includes observations from 2010 and 2014. ∗, ∗∗ and ∗∗∗ indicate significance at 10%,

5% and 1%, respectively.
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Table 10: Average electricity costs for single-plant firms in 2014 (column (1)) and 2010

(column (2))

Average electricity cost (Ct/kWh) 2014 2010

(1) (2)

p10 10.59 9.27

p50 16.94 12.71

mean 20.32 26.84

p90 24.39 19.66

N 3,033 3,339

Table 11: Share of network charges from electricity expenditures for single-plant firms in

2014 (column (1)) and 2010 (column (2))

Share of network charges from electricity costs (%) 2014 2010

(1) (2)

p10 7.6 7.5

p25 9.9 10.1

p50 12.9 13.6

p75 18.3 18.4

p90 24.5 25.0

N 3,021 3,324
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Distributed lag model

Figure 11 shows event-study results from estimating the following distributed lag model:

yit = βt × avgncijt + βt−1 × avgncijt−1 + βt−2 × avgncijt−2 + βt−3 × avgncijt−3

+πst + µi +RESit + τ × CTijt + ϵijst

(4)

The displayed numbers are obtained by summing up current and lagged effects, as

described in Schmidheiny and Siegloch (2020). As can be seen, the effects of a shock in

network charges on electricity consumption tend to phase out over time and lose their

statistical significance after two years. In the context of price shocks occurring on an

annual basis, it makes sense that manufacturing plants are responding to the current

(and one-year lagged) price changes and not to price shocks way back.
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Figure 11: Distributed lag model

54



Marginal prices

Table 12: Short-run effects of marginal network charges on electricity procurement and

consumption

Electricity procurement Electricity consumption

(1) (2) (3) (4)

Marginal network charges -0.006 -0.007 -0.011∗∗ -0.010∗

(0.006) (0.006) (0.006) (0.005)

RES 0.057∗∗∗ 0.046∗ 0.008 -0.001

(0.020) (0.024) (0.013) (0.016)

Commercial taxes -0.000 -0.000∗ -0.000 -0.000

(0.000) (0.000) (0.000) (0.000)

N 57,382 43,980 57,382 43,980

number plants 7,626 6,036 7,626 6,036

R2 0.083 0.103 0.090 0.111

Notes: The regressions include observations from 2009–2017. The dependent variable is the logarithm of electricity procurement (columns

(1) and (2)) or electricity use (columns (3) and (4)) per plant. All regressions are run with plant and 4-digit sector-by-time fixed effects.

Standard errors are clustered at the county-level and displayed in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance at 10%, 5% and 1%,

respectively. Columns (1) and (3) contain results using the full estimation sample; in columns (2) and (4), regressions are run only using

single-plant firms.

Effects in different regulatory periods
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Table 13: Short-run effects of average network charges in the period 2009–2013 versus

2014–2017

Electricity procurement Electricity consumption

(1) (2)

Average network charges -0.046∗∗∗ -0.040∗∗∗

(0.013) (0.012)

Average network charges ∗ 2nd regulatory period 0.012∗∗∗ 0.007∗

(0.004) (0.004)

RES 0.058∗∗∗ 0.009

(0.021) (0.013)

Commercial taxes -0.000 -0.000

(0.000) (0.000)

N 57,074 57,074

number plants 7,396 7,396

R2 0.003 0.003

Notes: The regressions include observations from 2009–2017. The dependent variable is the logarithm of electricity procurement (column

(1)) or electricity use (column (2)) per plant. The regressions are run with plant and 4-digit sector-by-time fixed effects. The second

regulatory period constitutes an indicator for the years from 2014 onwards. Standard errors are clustered at the county-level and displayed

in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance at 10%, 5% and 1%, respectively.
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Robustness checks

Table 14: Short-run effects of average network charges on electricity procurement and

consumption

Electricity procurement

(1) (2) (3) (4) (5) (6) (7) (8)

Average network charges -0.027∗∗ -0.031∗∗∗ -0.041∗∗∗ -0.036∗∗∗ -0.036∗∗∗ -0.033∗∗∗ -0.032∗∗∗ -0.063∗∗∗

(0.011) (0.011) (0.013) (0.013) (0.012) (0.010) (0.012) (0.012)

RES 0.033∗∗ 0.049∗∗ 0.077∗∗∗ 0.053∗∗∗ 0.047∗∗ 0.047∗∗∗ 0.051∗∗ 0.053∗∗∗

(0.017) (0.019) (0.021) (0.020) (0.021) (0.017) (0.022) (0.020)

Commercial taxes -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 57,382 57,382 57,382 57,074 49,696 72,428 52,376 75,170

number plants 7,626 7,626 7,626 7,396 6,009 9,531 6,510 10,347

R2 0.026 0.047 0.089 0.002 0.092 0.073 0.094 0.071

Notes: The regressions include observations from 2009–2017. The dependent variable is the logarithm of electricity procurement per plant.

All regressions are run with plant, and sector-by-time (column (1) on the 2-digit level, column (2) on the 3-digit level, all other on the

4-digit level) fixed effects. Standard errors are clustered at the county-level and displayed in parentheses. ∗, ∗∗ and ∗∗∗ indicate

significance at 10%, 5% and 1%, respectively. Column (3) additionally includes tariff group-by-year and voltage-by-year fixed effects.

Column (4) adds federal state-by-year fixed effects. In column (5), all plants are dropped from the sample that at some point are located in

an ambiguous network area. Column (6) adds all plants to the sample that are always located in ambiguous network areas. In column (7),

the sample is restricted to those plants that were in operation both in 2009 and 2017. Column (8) extends the sample to additionally cover

all plants with an electricity procurement always below 100 MW.
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Table 15: Long-run effects of average network charges on electricity procurement and

consumption

Electricity procurement

(1) (2) (3) (4) (5) (6) (7) (8)

Delta Average network charges -0.005 -0.011 -0.024∗ -0.013 -0.010 -0.019 -0.017 -0.027∗∗∗

(0.011) (0.011) (0.013) (0.012) (0.011) (0.011) (0.011) (0.010)

Delta RES 0.023 0.041 0.095∗∗∗ 0.049 0.047 0.045 0.043 0.049

(0.029) (0.031) (0.033) (0.031) (0.032) (0.033) (0.027) (0.031)

Delta commercial taxes -0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 5,682 5,678 5,670 5,682 5,690 5,161 7,206 7,217

number plants 5,682 5,678 5,670 5,682 5,690 5,161 7,206 7,217

R2 0.011 0.050 0.071 0.070 0.062 0.065 0.050 0.049

Notes: The regressions include observations from 2010–2017. The dependent variable is the change in the logarithm of electricity

procurement per plant. All regressions are run with plant, and sector (column (1) on the 2-digit level, column (2) on the 3-digit level, all

other on the 4-digit level) fixed effects. Standard errors are clustered at the county-level and displayed in parentheses. ∗, ∗∗ and ∗∗∗

indicate significance at 10%, 5% and 1%, respectively. Column (3) additionally includes tariff group and voltage fixed effects. Column (4)

adds federal state fixed effects. In column (5), averages for for start and end period are taken over three years instead of two (i.e. difference

between 2010-2012 and 2015-2017). In column (6), all plants are dropped from the sample that at some point are located in an ambiguous

network area. Column (7) adds all plants to the sample that are always located in ambiguous network areas. Column (8) extends the

sample to additionally cover all plants with an electricity procurement always below 100 MW.
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Table 16: Decomposing: Changing network charges and changing elasticities

Electricity procurement

(1) (2) (3) (4) (5) (6) (7) (8)

Delta network charges (βt1) -0.019∗ -0.021∗ -0.024∗ -0.021∗ -0.021 -0.029∗∗ -0.025∗∗ -0.029∗∗∗

(0.011) (0.011) (0.013) (0.013) (0.014) (0.012) (0.012) (0.010)

Lagged network charges (∆β) 0.023∗∗∗ 0.021∗∗∗ 0.014 0.017∗∗ 0.021∗∗∗ 0.020∗∗∗ 0.017∗∗∗ 0.015∗∗∗

(0.006) (0.006) (0.013) (0.007) (0.006) (0.007) (0.005) (0.005)

Implied βt0 -0.045∗∗∗ -0.042∗∗∗ -0.038∗∗ -0.038∗∗ -0.042∗∗∗ -0.046∗∗∗ -0.042∗∗∗ -0.044∗∗∗

(0.014) (0.014) (0.018) (0.016) (0.016) (0.015) (0.014) (0.012)

N 5,682 5,678 5,670 5,670 5,674 5,161 7,206 7,217

number plants 5,682 5,678 5,670 5,670 5,674 5,161 7,206 7,217

R2 0.016 0.034 0.071 0.070 0.063 0.068 0.051 0.051

Notes: The regressions include observations from 2010–2017. The dependent variable is the change in the logarithm of electricity

procurement per plant. All regressions are run with plant, and sector (column (1) on the 2-digit level, column (2) on the 3-digit level, all

other on the 4-digit level) fixed effects. Standard errors are clustered at the county-level and displayed in parentheses. ∗, ∗∗ and ∗∗∗

indicate significance at 10%, 5% and 1%, respectively. Column (3) additionally includes tariff group and voltage fixed effects. Column (4)

adds federal state fixed effects. In column (5), averages for for start and end period are taken over three years instead of two (i.e. difference

between 2010-2012 and 2015-2017). In column (6), all plants are dropped from the sample that at some point are located in an ambiguous

network area. Column (7) adds all plants to the sample that are always located in ambiguous network areas. Column (8) extends the

sample to additionally cover all plants with an electricity procurement always below 100 MW.
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