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Abstract 
In the literature that estimates discrete games with incomplete information, researchers usually 
impose two assumptions. First, either the payoff function or the distribution of private 
information or both are restricted to follow some parametric functional forms. Second, players’ 
behaviors are assumed to be consistent with the Bayesian Nash equilibrium. This paper jointly 
relaxes both assumptions. The framework non-parametrically specifies both the payoff function 
and the distribution of private information. In addition, each player’s belief about other players’ 
behaviors is also modeled as a nonparametric function. I allow this belief function to be any 
probability distribution over other players’ action sets. This specification nests the equilibrium 
assumption when each player’s belief corresponds to other players’ actual choice probabilities. 
It also allows non-equilibrium behaviors when some players’ beliefs are biased or incorrect. 
Under the above framework, this paper first derives a testable implication of the equilibrium 
condition. It then obtains the identification results for the payoff function, the belief function 
and the distribution of private information. 

Topic: Econometric and statistical methods  
JEL code: C57 

Résumé 
Dans les travaux d’estimation des jeux discrets en information incomplète, les chercheurs 
formulent généralement deux hypothèses. D’abord, des contraintes sont imposées à la fonction 
de gains ou à la fonction de distribution des informations privées, ou aux deux à la fois, pour 
que celles-ci suivent des formes paramétriques. Ensuite, les comportements des joueurs sont 
considérés comme étant conformes au modèle d’équilibre de Nash bayésien. Dans cette étude, 
ces deux hypothèses sont écartées conjointement. Le cadre définit la fonction de gains et la 
fonction de distribution des informations privées de façon non paramétrique. De plus, la 
croyance de chaque joueur à l’égard des comportements des autres joueurs est modélisée sous 
la forme d’une fonction non paramétrique. La fonction des croyances peut correspondre à 
n’importe laquelle des distributions de probabilités qui représentent les ensembles d’actions 
des autres joueurs. Cette spécification intègre l’hypothèse d’équilibre lorsque la croyance de 
chaque joueur correspond aux probabilités réelles des choix des autres joueurs. Elle autorise 
aussi des comportements hors équilibre lorsque les croyances de certains joueurs sont biaisées 
ou erronées. De ce cadre, notre étude déduit d’abord l’implication vérifiable de la condition 
d’équilibre. Elle obtient ensuite les résultats d’identification pour la fonction de gains, la 
fonction des croyances et la fonction de distribution des informations privées. 

Sujet : Méthodes économétriques et statistiques  
Code JEL : C57 



1 Introduction

Over the past two decades, econometric methods of incomplete information discrete games have been

developed to estimate players’ strategic interactions when they have asymmetric information.1 In this

literature, there are two common assumptions. First, the player’s payoff function and/or the distribution of

private information are assumed to be some parametric functions (henceforth, the parametric assumption).

Second, players’ observed choices are assumed to be consistent with the Bayesian Nash Equilibrium

(henceforth, the equilibrium assumption). Under these two assumptions, researchers then estimate players’

payoff functions and conduct counterfactual analysis.

Both the parametric assumption and the equilibrium assumption facilitate the identification and estima-

tion of players’ payoff functions. However, each assumption places strong restrictions on the econometric

model and are potentially misspecified. For instance, the usual parametric restrictions include the linear

payoff function and a Gumbelly (i.e., Logit model) or normally (i.e., Probit model) distributed private

information. These restrictions are imposed for their statistical convenience but are difficult to justify

by economic theories. In addition, the equilibrium assumption restricts each player to have an equilib-

rium/unbiased belief about other players’ behaviors. However, games in the real world are often com-

plicated. This complexity poses difficulties for a player to correctly predict others’ strategies. Moreover,

many games have multiple equilibria. This feature further complicates the construction of the unbiased

belief. In these games, a player could be uncertain about which equilibrium strategy will be chosen by

other players. Such a strategic uncertainty is first defined and studied by Van Huyck et al. (1990) and

Crawford and Haller (1990) and could be prevalent in many applications of games. On the empirical

side, economists have rejected the equilibrium condition in different types of games using both field and

experimental data (Goeree and Holt, 2001; Goldfarb and Xiao, 2011; Aguirregabiria and Magesan, 2020).

Suppose that researchers incorrectly impose the parametric restriction and/or the equilibrium assump-

tion: this could lead to incorrect estimates of players’ payoff functions and counterfactual predictions. To

address such an issue, this paper jointly relaxes both assumptions. In particular, the econometric model

specifies both the payoff and the distribution of private information to be nonparametric functions. More-

1Examples include firm entry (Seim, 2006; Gowrisankaran and Krainer, 2011; Aradillas-López and Gandhi, 2016), product
choice (Augereau et al., 2006; Sweeting, 2009), and social interaction (Brock and Durlauf, 2001; Bajari et al., 2010), among
others. See a recent survey by Aradillas-López (2020).
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over, each player’s belief about other players’ behaviors is also modeled as a nonparametric function. This

belief function is allowed to be any probability distribution over other players’ action sets. Intuitively, such

a specification of belief nests the equilibrium assumption as a special case, when each player’s belief cor-

responds to other players’ actual conditional choice probabilities (CCPs). It also allows non-equilibrium

behaviors, where some players have biased beliefs such that their beliefs differ from other players’ true

CCPs. Under the above-mentioned framework, I study the joint identification of the payoff function, the

belief function, and the distribution of private information.

The identification results rely on an exclusion restriction that is commonly imposed in the existing

literature. Specifically, I assume that there exists a player-specific payoff variable/shifter. This shifter

affects only one player’s payoff and has no impact on any other player’s payoff. Importantly, almost

every existing empirical application of incomplete information games exploits the identification power

of the payoff shifter.2 As shown by Aradillas-López (2010) and Bajari et al. (2010), such a shifter is

usually necessary to identify the payoff function even under the parametric restriction and the equilibrium

assumption. Given the exclusion restriction described above, this paper first considers a general binary

choice game with N ≥ 2 players. Suppose that the CCP of an arbitrary player, denoted by player i,

remains constant across some realizations of the payoff shifters. For these realizations that satisfy the

above condition of equal CCPs, this paper derives a model restriction imposed on player i’s belief. Under

the equilibrium assumption, player i’s belief equals other players’ actual CCPs; therefore, the CCPs of

other players must satisfy the same restriction. Since the CCPs can be consistently estimated, the above

restriction turns out to be a testable implication of the equilibrium assumption. In particular, such an

implication holds under nonparametric specifications of all model primitives. Importantly, when each

player’s payoff function and payoff shifter are continuous, there exist infinite realizations of the payoff

shifters that satisfy the condition of equal CCPs. Consequently, the equilibrium assumption can be tested

nonparametrically in a wide range of empirical applications. In the existing literature, this condition

of equal CCPs has been exploited for both identification (Liu et al., 2017; Aguirregabiria, 2021) and

estimation (Aradillas-López, 2012). Next, suppose that players’ beliefs are unbiased/in equilibrium under

a finite number of realizations of the payoff shifters, while they are allowed to be biased under all other

2A few exceptions exploit the identification power of multiple equilibria instead of the payoff shifter. See Sweeting (2009),
de Paula and Tang (2012), and Aradillas-López and Gandhi (2016).
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realizations. This restriction, referred to as the local unbiased belief assumption, further achieves the

nonparametric point identification of the payoff function and the distribution of private information. It

also obtains an identified set for each player’s belief function. When there are only N = 2 players, the

identified set turns out to be a singleton so that each player’s belief function is nonparametrically point

identified.

The above local unbiased belief assumption may seem to be a little disappointing given the motivation

to relax the equilibrium restriction. However, it is important to emphasize three points. First, the local

unbiased belief assumption is imposed only on a finite number of realizations of the control variables.

When some control variables are continuous, the region with the local unbiased belief assumption has

a measure of zero. Therefore, it is a substantially weaker restriction than the equilibrium assumption in

the existing literature which imposes a global unbiased belief restriction for every player. Specifically,

each player’s belief is assumed to be unbiased under every realization of the control variables. Second, in

the real world, players could be familiar with some realizations of payoffs but are unfamiliar with others.

Consider an example of firm competition. There could exist some values of the payoff shifter such that

firms have experienced identical or similar realizations in the past or in other geographic markets. The

learning process could lead firms to form unbiased beliefs under these familiar realizations; in contrast,

firms may have biased beliefs under other, less familiar realizations. Such a phenomenon is also supported

by experimental evidence (Goeree and Holt, 2001). Finally, this paper also derives a testable implication

of the local unbiased belief assumption under an arbitrary realization of the payoff shifter. This test

provides an empirical guidance for researchers on the choice of realizations to impose the condition of

unbiased/correct beliefs.

This paper then extends the above results in binary choice games to a general game with N ≥ 2 players,

where each player has more than two actions. This multinomial choice game imposes two obstacles for

the identification. Each obstacle is addressed by imposing an additional restriction on the econometric

model. First, the condition of equal CCPs—required for the identification of model primitives—does not

always hold in a multinomial choice game. To guarantee the equal CCPs condition, I impose an additional

technical restriction. Second, in a binary choice game and under an appropriate location normalization,

if two actions are chosen with equal probability, they must have the same deterministic expected payoff

(i.e., the part of the expected payoff that excludes the private information). This relationship is the key to

3



identifying the payoff function, the belief function, and the distribution of private information. However,

it is not necessarily satisfied in a multinomial choice game. To address such an obstacle, I impose a rank

ordering property on the distribution of private information. This property is first introduced by Manski

(1975) and is subsequently applied by Goeree et al. (2005) and Fox (2007). It can be satisfied in a wide

range of distributions of private information. Under the technical restriction and the rank ordering property,

the identification results of all model primitives are generalized to multinomial choice games. At last, it

is important to emphasize that the equilibrium condition and the local unbiased belief assumption can be

tested under much weaker conditions and do not require the technical restriction and the rank ordering

property.

Researchers have recognized the potential misspecifications of both the parametric restriction and the

equilibrium assumption. However, recent literature usually relaxes one assumption but maintains the other

one. For instance, under the equilibrium condition, Lewbel and Tang (2015) and Liu et al. (2017) relax the

parametric assumption in a binary choice game. This paper extends their results in two major directions.

First, the identification results are generalized to a game with more than two actions. Second, I show that

the equilibrium assumption in their papers is more than sufficient for the identification results. Instead, a

substantially weaker local unbiased belief assumption is enough to identify all model primitives. It further

implies that the equilibrium assumption is testable, and this paper derives a testable implication. This

second extension is closely related to another strand of literature that studies non-equilibrium behaviors

in incomplete information games (Aradillas-López and Tamer, 2008; Aguirregabiria and Magesan, 2020;

Aguirregabiria and Xie, 2021; Xie, forthcoming). Under the assumption that the distribution of private

information is known by researchers, the above papers study the identification without the equilibrium as-

sumption. Their results could be used to test the equilibrium restriction. However, when the distributional

assumption on the private information is misspecified, the payoff function could be incorrectly estimated

and the equilibrium behavior could be falsely rejected. In contrast, this paper avoids such issues of in-

correct estimates and over-rejection. Specifically, I identify the payoff function and provide a test of the

equilibrium assumption: both are robust to any distribution function.

To the best of my knowledge, Aguirregabiria (2021) is the only existing paper that also relaxes both

assumptions. In the context of firm competition, he derives a testable implication of the equilibrium

assumption that is robust to nonparametric specifications of both the payoff function and the distribution
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of private information (see his Proposition 5). This paper makes three major extensions. First, in addition

to the data on firms’ choices, Aguirregabiria assumes that researchers can also observe or estimate each

firm’s ex-post revenue. In contrast, the identification results obtained in this paper rely only on the choice

data and do not require the revenue information. Consequently, this paper’s results can be particularly

useful when the data on revenue is limited. Second, the testable implication in Aguirregabiria (2021) is

for binary choice games, while this paper extends it to multinomial choice games. Finally, Aguirregabiria

shows only that the equilibrium assumption is testable, while he does not derive the identification of

other model primitives. As a comparison, this paper further achieves the point identification of the payoff

function, the distribution of private information, and the partial identification of the belief function.

In the context of discrete games with complete information, the equilibrium restriction and the para-

metric assumption have been relaxed by Kline (2015, 2016, 2018) and Kashaev and Salcedo (2021). In-

stead, this paper focuses on incomplete information games and complements the above studies on games

with complete information.

The rest of this paper is organized as follows. Section 2 describes the empirical model of a static dis-

crete game with incomplete information. This game consists of N ≥ 2 players and each player has (K+1)

possible actions. Section 3 presents the identification conditions and model restrictions. I derive the iden-

tification results in a binary choice game (i.e., K = 1) in Section 4 and extend them to a multinomial choice

game (i.e., K > 1) in Section 5. It also highlights the additional assumptions required for identification

when the action space expands. Finally, I conclude in Section 6. All proofs are left to the Appendix.

2 A Simultaneous Discrete Game with Incomplete Information

This section describes the empirical framework of a discrete choice game with incomplete information.

This framework has been extensively applied in the existing literature. There are N ≥ 2 players. Letters i

and j denote two arbitrary players. Letter−i indexes all players other than i. Each player i simultaneously

chooses an action, denoted by Yi, from her action set {0,1, · · · ,K}. This set consists of (K + 1) possible

alternatives. Moreover, let the vector Y−i = (Y1, · · · ,Yi−1,Yi+1, · · · ,YN)
′ represent the action profile chosen
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by all players other than i. The utility/payoff function of player i is described by the following equation:

Ũi(X,Zi,Yi,Y−i,εi) =Ui(X,Zi,Yi,Y−i)+ εi(Yi), (1)

where X ∈RLx is a vector of control variables that could affect every player’s payoff. Vector Zi ∈RLz is

specific to player i. It affects only player i’s payoff but has no impact on the payoffs of other players. In

the existing literature, Zi is referred to as the player-specific payoff shifter, and its existence is commonly

assumed. As shown by Aradillas-López (2010) and Bajari et al. (2010), without such a shifter, the model is

usually non-identified even under the parametric restriction and the equilibrium assumption. In addition,

X, Zi, and Z−i = (Z′1, · · · ,Z′i−1,Z
′
i+1, · · · ,Z′N)′ are common knowledge among players. As shown by

Equation (1), player i’s utility function Ui(·) depends on the common control variables X, her payoff

shifter Zi, her own action Yi, and other players’ choices Y−i. Importantly, this paper specifies Ui(·) as

a nonparametric function. In contrast to (X,Zi,Z−i), vector εi = (εi(0),εi(1), · · · ,εi(K))′ is player i’s

private information and is unknown by any of other players. An arbitrary variable εi(k) in this vector

affects player i’s payoff of action Yi = k. Finally, throughout this paper, bold letters (e.g., X and x) denote

vectors, italic letters (e.g., Yi and yi) denote scalars, capital letters (e.g., X and Yi) denote random variables,

and small letters (e.g., x and yi) denote their realizations.

Without loss of generality, let us define πi(X,Zi,Yi) = Ui(X,Zi,Yi,Y−i = 0) and δi(X,Zi,Yi,Y−i) =

Ui(X,Zi,Yi,Y−i)−Ui(X,Zi,Yi,Y−i = 0), where 0 is an (N− 1)× 1 vector whose elements are all zeros.

Function πi(·) represents player i’s payoff when all other players choose the base action, labelled as action

0. Consequently, πi(·) is referred to as the base return. When some players deviate from their base action,

they will have an impact on player i’s payoff. This impact is captured by function δi(·) and it is referred

to as the strategic effect. By construction, δi(X,Zi,Yi,Y−i = 0) = 0. With the above definitions, player i’s

payoff function can be represented by the following Equation (2) without loss of generality:

Ũi(X,Zi,Yi,Y−i,εi) = πi(X,Zi,Yi)︸ ︷︷ ︸
Base Return

+δi(X,Zi,Yi,Y−i)︸ ︷︷ ︸
Strategic Effect

·1(Y−i 6= 0)+ εi(Yi). (2)

Even though πi(·) and δi(·) are additively separable; by construction, Equation (2) actually specifies a

nonparametric payoff function without additional restrictions and is equivalent to Equation (1). The rest
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of this paper then mainly considers the representation by Equation (2). Note that a game theoretic model

implies that δi(·,Yi = yi,Y−i = y−i) 6= 0 for some (yi,y−i); for instance, the strategic effect is non-zero for

some action profile. Otherwise, the economic environment could be described by a single-agent model,

not necessarily by a game theoretic model. This paper further focuses on the regular game such that any

of the other players could impose a non-zero strategic effect on player i. Equivalently, for each j 6= i, there

exists at least one profile (yi,y j) such that δi(·,Yi = yi,Yj = y j,Y−i,− j = 0) 6= 0. Suppose instead that player

i’s payoff is unaffected by player j’s behaviors; then player j is redundant and could be excluded from the

econometric model of player i’s decision. Finally, given the identification conditions in this paper, the null

hypothesis that player j has a non-zero strategic impact on player i is testable.

I study an incomplete information game where εi is player i’s private information and all other model

primitives are common knowledge among players. Assumption 1 states the restrictions imposed on the

private information εi.

Assumption 1. (a) For each player i, εi and ε−i = (ε′1, · · · ,ε′i−1,ε
′
i+1, · · · ,ε′N)′ are independent condi-

tional on (X,Zi,Z−i).

(b) For each player i, let Γi,X(εi) denote the cumulative distribution function (C.D.F.) of εi. Function

Γi,X(εi) is absolutely continuous with respect to the Lebesgue measure. That is, Γi,X(·) has a density with

respect to the Lebesgue measure.

Assumption 1(a) restricts the private information to be independent across players conditional on

common observables. This restriction has been imposed in many empirical applications of incomplete

information games (Seim, 2006; Aradillas-López and Tamer, 2008; Sweeting, 2009; Bajari et al., 2010;

Aradillas-López and Gandhi, 2016). Assumption 1(b) only restricts εi to have a well-defined density func-

tion over its support. As shown by Hotz and Miller (1993) and Norets and Takahashi (2013), it implies that

the mapping between a player’s conditional choice probabilities and her deterministic expected payoffs is

bijective. This bijectivity plays a crucial role to establish the identification results. Importantly, Γi,X(εi) is

nonparametrically specified. Moreover, I allow this C.D.F. to depend on the common knowledge X, but

restrict it to be independent of Zi. The support of εi could be either bounded or unbounded.

Let Zi,l denote an arbitrary variable in Zi. Moreover, Zi,−l = (Zi,1, · · · ,Zi,l−1,Zi,l+1, · · · ,Zi,Lz)
′ repre-

sents all variables in player i’s payoff shifters other than Zi,l . Assumption 2 states the exclusion restriction
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that is commonly imposed in the existing literature.

Assumption 2. For each player i and each l ≤ Lz, Zi,l is a continuous variable. Moreover, Zi,l has

exogenous variation over its support, conditional on (X,Zi,−l,Z−i).

Since the private information εi is continuous, the continuity of Zi is required to trace out the distribu-

tion Γi,X(·).3 Most of the identification results hold when only a single payoff shifter exists (i.e., Lz = 1

and Zi reduces to a scalar Zi), while a few other results require the existence of more shifters (i.e., Lz > 1).

The support of Zi could be either bounded or unbounded.

Given the game structure described above, define σi(X,Zi,Z−i,εi) :RLx+N·Lz+K+1→{0,1, · · · ,K} as

a strategy function of player i. It maps from all information observed by player i to one of her actions in

{0, · · · ,K}. Note that this paper focuses on the pure strategy. Since εi is continuously distributed, player i

would have a unique optimal action with probability 1. Therefore, the focus on the pure strategy function

is innocuous. Furthermore, define Bi(Y−i|X,Zi,Z−i) as player i’s belief function. In particular, Bi(Y−i =

y−i|X,Zi,Z−i) represents player i’s believed probability that other players will choose the action profile

Y−i = y−i, conditional on (X,Zi,Z−i). This belief function depends on all variables that are common

knowledge. Importantly, Bi(Y−i|X,Zi,Z−i) is a nonparametric function with the restriction that it is a

valid probability distribution (i.e., 0 ≤ Bi(Y−i|X,Zi,Z−i) ≤ 1, and ∑y−i Bi(Y−i = y−i|X,Zi,Z−i) = 1).

More details about the micro-foundation of this belief function are left to the Appendix.

Given the strategy function σi(·) and Assumption 1(a), each player’s behavior would be indepen-

dent conditional on (X,Zi,Z−i). If player i correctly figures out this conditional independence, there

exists a dimension reduction of the belief function to facilitate the identification. Specifically, let B j
i (Yj =

y j|X,Zi,Z−i) denote player i’s belief about the probability that player j will choose Yj = y j. The con-

ditional independence implies that Bi(Y−i|·) could be replaced by B j
i (Y j|·); for instance, Bi(Y−i|·) =

∏
N
j 6=i B j

i (Yj|·). This replacement will reduce the dimension of player i’s belief from (K + 1)N−1− 1 to

(N−1) ·K and could ease the identification. In this paper, I do not impose the conditional independence

on player i’s belief. Instead, I study the identification of the belief function Bi(Y−i|·) that permits arbitrary

correlation among the actions of all players other than i. Such a specification allows two aspects of biased

beliefs. First, player i could have incorrect expectation about any single player’s CCP. Second, player i

3The identification results would also hold when some discrete variables are included in Zi. The key condition is that Zi
contains at least Lz continuous variables. For notation simplicity, this paper suppresses discrete variables in Zi.
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could also falsely believe that other players’ behaviors are correlated, while they are actually independent.

With the payoff and belief functions defined above, player i’s expected payoff of action Yi is represented

by the following equation:

E[Ui(X,Zi,Z−i,Yi,εi)] = πi(X,Zi,Yi)+ ∑
y−i 6=0

δi(X,Zi,Yi,Y−i = y−i) ·Bi(Y−i = y−i|X,Zi,Z−i)︸ ︷︷ ︸
=EUi(X,Zi,Z−i,Yi)

+εi(Yi).

(3)

To simplify the notation, Equation (3) defines a deterministic expected payoff function EUi(·,Yi) = πi(·,Yi)

+∑y−i 6=0 δi(·,Yi,Y−i = y−i) ·Bi(Y−i = y−i|·). It represents the part of the expected payoff of action Yi that

depends on the common knowledge (X,Zi,Z−i) but is independent of the private information εi. Under

the equilibrium assumption, EUi(·) would be common knowledge and is deterministic. Specifically, it

is a composite function of both the payoff and the belief. Note that player −i’s payoff shifter Z−i will

affect player i’s EUi(·) by indirectly affecting player i’s belief. In addition, let Pi(Yi|X,Zi,Z−i) denote

the probability that player i will choose action Yi conditional on (X,Zi,Z−i). This conditional choice

probability (CCP) takes the following form:

Pi(Yi = k|·) =
∫
1
[
EUi(·,Yi = k)+ εi(k)≥ EUi(·,Yi = k′)+ εi(k′), ∀k′ 6= k

]
dΓi,X(εi)

= Γ̃
k
i,X
[
EUi(·,Yi = k)−EUi(·,Yi = 0), · · · ,EUi(·,Yi = k)−EUi(·,Yi = K)

]
, (4)

where Γ̃k
i,X(·) denotes the C.D.F. of the differences of private information; i.e., (εi(0)− εi(k), · · · ,εi(k−

1)− εi(k),εi(k+1)− εi(k), · · · ,εi(K)− εi(k))′. Note that Γ̃k
i,X(·) can be derived from Γi,X(·).

In the literature that estimates discrete games with incomplete information, researchers usually assume

that players’ behaviors are consistent with the Bayesian Nash Equilibrium. This equilibrium assumption

restricts each player to be perfectly rational in the sense that player i could correctly predict other play-

ers’ CCPs given the available information. This corresponds to the restriction that Bi(·) = P−i(·) and is

summarized by Remark 1.

Remark 1. The behaviors of Bayesian Nash Equilibrium are described by the following restriction:

Bi(Y−i|X,Zi,Z−i) = P−i(Y−i|X,Zi,Z−i) = ∏
N
j 6=i Pj(Yj|X,Zi,Z−i), ∀1≤ i≤ N.

Remark 1 emphasizes how this paper relaxes the Bayesian Nash Equilibrium. In particular, the frame-
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work nests the equilibrium assumption when each player has an unbiased belief (i.e., Bi(·) = P−i(·), ∀i). It

also allows non-equilibrium behaviors if at least one player’s belief is biased (i.e., Bi(·) 6= P−i(·) for some

i). One of this paper’s objectives is to identify Bi(·) and test the equilibrium assumption Bi(·) = P−i(·).

3 Identification Objectives, Conditions, and Model Restrictions

This paper considers the following identification problem. Given each player i’s CCP Pi(Yi|X,Zi,Z−i),4

can we identify this player’s payoff functions πi(·), δi(·), belief function Bi(·), the C.D.F. of the differences

of private information denoted by Γ̃i,X(·), and test the restriction of equilibrium beliefs Bi(·) = P−i(·)?5

This paper derives identification results using the variation of (Zi,Z−i). These results hold true for each

realization of X. Therefore, X is suppressed for the rest of this paper for notation simplicity.

First, consider the following two transformations of the payoff function and/or the private information:

(1) Ûi(·) = Ui(·)+ c for some c 6= 0; (2) π̂i(·) = c ·πi(·), δ̂i(·) = c · δi(·), and ε̂i = c · εi for some c > 0

(Recall Equations (1) and (2) for the equivalency between Ui(·) and πi(·), δi(·)). Equation (4) implies

that any of these two transformations would preserve the same CCP for player i and are indistinguishable

from each other. As in discrete choice models, a location and a scale normalization are required for the

identification; they are summarized in Assumption 3.

Assumption 3. (a) πi(Zi,Yi = 0) = 0 and δi(Zi,Yi = 0,Y−i) = 0.

(b) For an arbitrary action profile (yi,y−i) where y−i 6= 0 and an arbitrary realization of Zi denoted

by zi,
∣∣δi(Zi = zi,Yi = yi,Y−i = y−i)

∣∣= 1.

Assumption 3(a) normalizes player i’s payoff of action 0 to be zero and is standard in discrete choice

models. Assumption 3(b) normalizes the strategic effect of an arbitrary action profile under one arbitrary

realization of Zi to be 1. In contrast, the strategic effects of other action profiles and/or under other

realizations of Zi are unrestricted. This type of scale normalization is also imposed in Liu et al. (2017).

4Even though each player i’s CCP Pi(·) is not directly observed by researchers, it could be consistently estimated. Consider
a cross-sectional dataset of M independent games/observations. For each game m, researchers observe the common knowledge
control variables (xm,zi,m,z−i,m) and each player’s choice (yi,m,y−i,m). With this dataset, the CCP Pi(·) can be consistently
estimated when M→ ∞. Therefore, for the identification purpose, Pi(·) is assumed to be known by researchers.

5As in Train (2009), there are infinite distribution functions Γi,X(·) that imply the same distribution of the difference of
private information; i.e., ε̃i = (εi(1)− εi(0), · · · ,εi(K)− εi(0))′. Since only the difference matters in discrete choice models,
Γi,X(·) cannot be identified and we can at most identify the distribution of ε̃i. Such a distribution is denoted by Γ̃i,X(·).

10



In the literature that estimates discrete games, another practice is to normalize the marginal effect of a

control variable on the payoff function; for instance, ∂πi(Zi=zi,Yi=yi)
∂Zi,l

= 1 for an arbitrary variable Zi,l and

arbitrary realizations zi, yi 6= 0 (Lewbel and Tang, 2015; Kline, 2015). As will be shown in the proof of

my identification results, πi(·) and ∂πi(·)
∂Zi,l

are identified as functions that are linear in δi(·). Consequently,

the scale normalization πi(·)
∂Zi,l

= 1 is equivalent to Assumption 3(b). This paper chooses to normalize the

scale of the strategic effect for notation convenience. In more detail, Lewbel and Tang (2015) and Kline

(2015) specify Zi to enter player i’s payoff additively and linearly. Consequently, the marginal impact

is a constant, and it is convenient to normalize such a constant to be 1. In contrast, I allow Zi to enter

nonparametrically and interactively into player i’s payoff function. Therefore, more notations are required

to emphasize that the marginal effect is evaluated at a particular realization of the control variables and

action profiles. In addition, some of this paper’s identification results exploit the variation of Z−i, but with

a fixed value of Zi. Assumption 3(b) is convenient to prove these results. In contrast, with normalization
πi(·)
∂Zi,l

= 1, the proofs turn out to be cumbersome, as a notation intense transformation from πi(·)
∂Zi,l

to δi(·) is

required. See Liu et al. (2017) for a detailed discussion about the equivalent normalizations in discrete

games.

Denote Pi(Zi,Z−i)=
(
Pi(Yi = 1|Zi,Z−i), · · · ,Pi(Yi =K|Zi,Z−i)

)′ and EUi(Zi,Z−i)=
(
EUi(Zi,Z−i,Yi =

1), · · · ,EUi(Zi,Z−i,Yi = K)
)′ as two K×1 vectors of player i’s CCPs and deterministic expected payoffs,

respectively. Note that since ∑yi Pi(Yi = yi|·) = 1 and πi(·,Yi = 0) = 0, δi(·,Yi = 0,Y−i) = 0 by Assumption

3(a), Pi(Yi = 0|·) and EUi(·,Yi = 0) contain no additional information and they are suppressed from vectors

Pi(·) and EUi(·). Moreover, let P−i(Zi,Z−i) be a
(
(K+1)N−1−1

)
×1 vector; each element in this vector

represents the CCP of one particular action profile chosen by all players other than i. Again, the probabil-

ity of the profile Y−i = 0 is excluded from the vector P−i. This paper studies the identification under the

regular case where both the payoff function and the belief function are bounded and continuous in their

arguments. Moreover, the elements in the random vector P−i(·) are linearly independent. Assumption 4

summarizes the above regularity conditions.

Assumption 4. (a) Each player i’s payoff functions πi(·), δi(·), and belief function Bi(·) are bounded and

continuous in their arguments.

(b) For a fixed realization Zi = zi, P−i(Y−i|Zi = zi,Z−i) can be seen as a random variable with the
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variation of Z−i. Then, the elements in the random vector P−i(Zi = zi,Z−i) are linearly independent.

Under Assumption 4(a), the value of the deterministic expected payoff function EUi(Zi,Z−i,Yi) could

remain constant across some realizations of (Zi,Z−i). Consequently, player i’s CCP would hold fixed

across these realizations. As described in the Introduction, this condition of equal CCPs is the key to

my identification results. Assumption 4(b) states that Z−i should have sufficient impact on other players’

CCPs. This assumption is also imposed in the existing literature that establishes the identification results

under the equilibrium restriction (Bajari et al., 2010; Liu et al., 2017). In more details, Assumption 4(b)

implies that ∂P−i(Zi,Z−i)
∂Z′−i

6= 0. Under the equilibrium restriction, it further implies that ∂Pi(Zi,Z−i)
∂Z′−i

6= 0. In-

tuitively, Z−i affects player i’s CCPs but does not affect her payoff function. Naturally, the variation of

Z−i would provide identification power. In particular, the equation to identify the payoff function mimics

the structure of a linear regression. In this regression, other players’ CCPs P−i(Y−i|·) act as regressors,

and the strategic effects δi(·) represent the coefficients of these regressors. Analogously, the linear inde-

pendence restriction by Assumption 4(b) could be interpreted as the non-multicollinearity condition in the

linear regression model. Note that such a condition will be always satisfied in a two-player binary choice

game, provided that Z−i affects player −i’s CCPs. Finally, since P−i(·) can be consistently estimated,

Assumption 4(b) is testable.

This paper’s identification results focus on the range of function values such that each player’s CCP

satisfies 0 < Pi(Yi|·)< 1. Given Assumption 4(a), the condition 0 < Pi(Yi|·)< 1 always holds when εi has

unbounded support. This unbounded support is satisfied in most of the existing literature, as researchers

usually consider the Logit or Probit specifications. When εi has bounded support and consider an arbitrary

action k, then any sufficiently negative payoffs of this action would imply Pi(Yi = k|·) = 0. Equivalently, if

an action’s choice probability is zero, it is impossible to identify this action’s payoff. Therefore, when εi

has bounded support, the identification results are obtained in the range of function values such that each

action of player i is chosen with strictly positive probability.

I now describe the restrictions imposed by the model in Section 2. With the vector representations

Pi(Zi,Z−i) and EUi(Zi,Z−i), Equation (4) could be expressed in the following matrix form:

Pi(Zi,Z−i) = Gi
[
EUi(Zi,Z−i)

]
, (5)
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where Gi(·) denotes the mapping from player i’s deterministic expected payoffs to her CCPs. Under

Assumption 1(b) and the condition 0 < Pi(Yi|·) < 1, Hotz and Miller (1993) and Norets and Takahashi

(2013) prove that this mapping is bijective. Therefore, function Gi(·) is invertible, and its inversion is

represented by the following equation:

EUi(Zi,Z−i) = Fi
[
Pi(Zi,Z−i)

]
or

Π(Zi)+∆i(Zi) ·Bi(Zi,Z−i) = Fi
[
Pi(Zi,Z−i)

]
, (6)

where Fi(·) represents the inverse of function Gi(·). Letter Πi(·) =
(
πi(·,Yi = 1), · · · ,πi(·,Yi = K)

)′ is a

K×1 vector of player i’s base returns. Term ∆i is a K×
(
(K +1)N−1−1

)
matrix. Its kth row represents

the strategic effect that each action profile Y−i imposes on player i’s payoff of action Yi = k. Letter Bi(·) is

a
(
(K+1)N−1−1

)
×1 vector; each element in this vector represents player i’s belief about the probability

of one particular action profile chosen by other players. Note that the belief about the profile Y−i = 0 is

excluded from the vector Bi(·).

Equation (6) contains all model restrictions. It is the key equation for all identification results in this

paper. Moreover, due to the bijectivity result by Hotz and Miller (1993) and Norets and Takahashi (2013),

the identification of function Fi(·) implies the identification of Gi(·) and the C.D.F. of the difference of

private information denoted by Γ̃i(·). Therefore, the rest of this paper focuses on the identification of Fi(·).

One implication of Equation (6) is that the payoff functions can be canceled out. It leaves a relation-

ship between player i’s belief and her inverted choice probability function Fi(·). To see such a relation-

ship, define B̃i(Zi,z1,2
−i ) = Bi(Zi,Z−i = z2

−i)−Bi(Zi,Z−i = z1
−i) and F̃i(Zi,z1,2

−i ) = Fi[Pi(Zi,Z−i = z2
−i)]−

Fi[Pi(Zi,Z−i = z1
−i)] as the differences of player i’s beliefs and inverted functions between two realizations

of Z−i, denoted by z1
−i and z2

−i. Moreover, let B̃i(Zi,z
1:(K+1)N−1

−i ) =
(
B̃i(Zi,z1,2

−i ), · · · , B̃i(Zi,z
1,(K+1)N−1

−i )
)

and F̃i(Zi,z
1:(K+1)N−1

−i ) =
(
F̃i(Zi,z1,2

−i ), · · · , F̃i(Zi,z
1,(K+1)N−1

−i )
)

be the corresponding matrices. Lemma 1

presents the relationship between player i’s belief and her inverted choice probability function.

Lemma 1. Under Assumptions 1–2 and consider any (K + 1)N−1 + 1 realizations of Z−i, denoted by

z1
−i to z(K+1)N−1+1

−i . Suppose further that the matrices B̃i(Zi,z
1:(K+1)N−1

−i ) and B̃i(Zi,z
2:(K+1)N−1+1
−i ) are

invertible, we then have the following relationship between player i’s belief function and her inverted
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choice probability function:

F̃i(Zi,z
1:(K+1)N−1

−i ) · B̃−1
i (Zi,z

1:(K+1)N−1

−i ) = F̃i(Zi,z
2:(K+1)N−1+1
−i ) · B̃−1

i (Zi,z
2:(K+1)N−1+1
−i ). (7)

Proof. In the Appendix.

Equation (7) obtains a relationship between Bi(·) and Fi(·) that is independent of player i’s payoff

function. Aguirregabiria and Magesan (2020) and Aguirregabiria and Xie (2021) derive a similar relation-

ship in games with two players; Lemma 1 extends their results to games with N ≥ 2 players. To better

interpret this lemma, consider a simple 2×2 game. Equation (7) then turns to the following:

Fi
[
Pi(Yi = 1|Zi,z2

−i)
]
−Fi

[
Pi(Yi = 1|Zi,z1

−i)
]

Bi(Y−i|Zi,z2
−i)−Bi(Y−i|Zi,z1

−i)
=

Fi
[
Pi(Yi = 1|Zi,z3

−i)
]
−Fi

[
Pi(Yi = 1|Zi,z2

−i)
]

Bi(Y−i|Zi,z3
−i)−Bi(Y−i|Zi,z2

−i)
. (8)

In this two-player binary choice game, Fi(·) reduces to the inverse function of the C.D.F. of (εi(0)−εi(1)).

Equation (8) would hold for any three realizations of Z−i, denoted by z1
−i to z3

−i. Moreover, the invertibility

condition of the matrix B̃i(·) in Lemma 1 turns to a non-zero condition of the denominator in Equation

(8). This condition holds true as long as Z−i could affect player i’s belief Bi(Y−i|·).

In Aguirregabiria and Magesan (2020) and Aguirregabiria and Xie (2021), the distribution of private

information is assumed to be known by researchers. As a result, the inverted choice probability function

Fi(·) is also known. Naturally, Equation (7) characterizes an identified set of the belief function Bi(Y−i|·).

This identified set could be used to test the equilibrium condition Bi(·) = P−i(·). However, the above

argument is not applicable in this paper since I nonparametrically specify the distribution of private in-

formation. The first contribution of this paper is to extend Lemma 1. In particular, I derive a testable

implication of the equilibrium assumption that is robust to the nonparametric specification of the distribu-

tion of private information. The next two sections present this testable implication and other identification

results.
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4 Identification in Binary Choice Games

This section establishes the identification results in binary choice games. Since each player has two ac-

tions, and the payoff of action 0 is normalized to zero, the argument Yi could be removed from πi(·) and

δi(·) in this section for notation simplicity. In particular, πi(Zi) and δi(Zi,Y−i) represent player i’s base

return and strategic effect of action Yi = 1. In this game with binary choice, Equation (6) then turns to:

πi(Zi)+ ∑
y−i 6=0

δi(Zi,Y−i = y−i) ·Bi(Y−i = y−i|Zi,Z−i) = Fi
[
Pi(Yi = 1|Zi,Z−i)

]
. (9)

As described above, Fi(·) reduces to the inverse function of the C.D.F. of the difference of private infor-

mation; i.e., ε̃i = εi(0)− εi(1). Assumption 5 normalizes the location of ε̃i.

Assumption 5. Let ε̃i = εi(0)− εi(1), then Median(ε̃i) = 0.

Consider the transformation such that π̂i(·) = πi(·)+ c and ˆ̃εi = ε̃i + c for some c 6= 0. Any of these

transformations would preserve the same CCP of player i, given Equation (4). Therefore, the locations of

πi(·) and ε̃i are indistinguishable. Assumption 5 normalizes the location of ε̃i by imposing a zero median

restriction.

To explain the intuition, Subsection 4.1 first sketches the identification results in a simple two-player

binary choice game. Subsection 4.2 then formally establishes these results in a general binary choice game

with N ≥ 2 players.

4.1 Sketch of Identification Results

In a 2×2 game,−i indexes the only player other than i. Therefore, in this subsection, other players’ action

profile Y−i reduces to a scalar, denoted by Y−i. In this binary choice game with two players, Equation (9)

turns to the following:

πi(Zi)+δi(Zi,Y−i = 1) ·Bi(Y−i = 1|Zi,Z−i) = Fi
[
Pi(Yi = 1|Zi,Z−i)

]
. (10)

I first describe a testable implication of the equilibrium assumption. Consider three pairs of realizations

of (Zi,Z−i), denoted by (z1
i ,z

1(l)
−i ) and (z2

i ,z
2(l)
−i ) for l = 1,2,3. Each pair satisfies the condition Pi(Yi =
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1|z1
i ,z

1(l)
−i ) = Pi(Yi = 1|z2

i ,z
2(l)
−i ). Equivalently, player i’s CCP is fixed across some variations of (Zi,Z−i).

This condition, referred to as the condition of equal CCPs, is satisfied for infinite pairs of (Zi,Z−i) given

Assumption 4(a). In particular, consider an entry game where the strategic effect δi(·) < 0. Moreover,

suppose that Zi is a single variable denoted by Zi. It strictly reduces firm i’s entry cost and therefore strictly

increases its entry probability. Naturally, when Z−i increases, player i would anticipate a higher entry

probability P−i(Y−i = 1|·) by the other firm. Since δi(·)< 0, firm i would then lower its own Pi(Yi = 1|·).

Therefore, in this entry game, Pi(Yi = 1|Zi,Z−i) is increasing in Zi but decreasing in Z−i and continuous

in both arguments. Intuitively, for values z2
i > z1

i , we can always find values z2
−i > z1

−i such that Pi(Yi =

1|z1
i ,z

1
−i) = Pi(Yi = 1|z2

i ,z
2
−i), provided that (z2

i − z1
i ) is not too large.6 Given the continuity condition in

Assumption 4(a), there exist infinite pairs of realizations that could hold Pi(Yi = 1|·) constant. A similar

argument applies to other types of games when δi(·)> 0. Under these three pairs of realizations, there is

a testable implication of the equilibrium assumption described by the following equation:

P−i(Y−i|z1
i ,z

1(3)
−i )−P−i(Y−i|z1

i ,z
1(2)
−i )

P−i(Y−i|z1
i ,z

1(2)
−i )−P−i(Y−i|z1

i ,z
1(1)
−i )

=
P−i(Y−i|z2

i ,z
2(3)
−i )−P−i(Y−i|z2

i ,z
2(2)
−i )

P−i(Y−i|z2
i ,z

2(2)
−i )−P−i(Y−i|z2

i ,z
2(1)
−i )

. (11)

Equation (11) states that the equilibrium assumption imposes a restriction on the other player’s CCP

P−i(Y−i|·). The proof of this result follows a simple extension of Lemma 1 and is described below:

P−i(Y−i|z1
i ,z

1(3)
−i )−P−i(Y−i|z1

i ,z
1(2)
−i )

P−i(Y−i|z1
i ,z

1(2)
−i )−P−i(Y−i|z1

i ,z
1(1)
−i )

=
Bi(Y−i|z1

i ,z
1(3)
−i )−Bi(Y−i|z1

i ,z
1(2)
−i )

Bi(Y−i|z1
i ,z

1(2)
−i )−Bi(Y−i|z1

i ,z
1(1)
−i )

=
Fi
[
Pi(Yi = 1|z1

i ,z
1(3)
−i )

]
−Fi

[
Pi(Yi = 1|z1

i ,z
1(2)
−i )

]
Fi
[
Pi(Yi = 1|z1

i ,z
1(2)
−i )

]
−Fi

[
Pi(Yi = 1|z1

i ,z
1(1)
−i )

]
=

Fi
[
Pi(Yi = 1|z2

i ,z
2(3)
−i )

]
−Fi

[
Pi(Yi = 1|z2

i ,z
2(2)
−i )

]
Fi
[
Pi(Yi = 1|z2

i ,z
2(2)
−i )

]
−Fi

[
Pi(Yi = 1|z2

i ,z
2(1)
−i )

]
=

Bi(Y−i|z2
i ,z

2(3)
−i )−Bi(Y−i|z2

i ,z
2(2)
−i )

Bi(Y−i|z2
i ,z

2(2)
−i )−Bi(Y−i|z2

i ,z
2(1)
−i )

=
P−i(Y−i|z2

i ,z
2(3)
−i )−P−i(Y−i|z2

i ,z
2(2)
−i )

P−i(Y−i|z2
i ,z

2(2)
−i )−P−i(Y−i|z2

i ,z
2(1)
−i )

.

6Note that this argument does not require player i to have unbiased beliefs. It just requires player i to understand that
P−i(Y−i = 1|·) is increasing in Z−i, but allows her to incorrectly predict the magnitude. Moreover, in the case that player i
incorrectly predicts the direction so that she believes P−i(Y−i = 1|·) is decreasing in Z−i. For values z2

i > z1
i , we can still find

z2
−i < z1

−i, not z2
−i > z1

−i, such that Pi(Yi = 1|z1
i ,z

1
−i) = Pi(Yi = 1|z2

i ,z
2
−i).
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The first and fifth lines follow the restriction of the equilibrium belief such that Bi(·) = P−i(·). The second

and fourth lines follow a simple transformation of the results in Lemma 1 (see Equation (8)). The third

line follows the conditions that Pi(Yi = 1|z1
i ,z

1(l)
−i ) = Pi(Yi = 1|z2

i ,z
2(l)
−i ) for l = 1,2,3.

Equation (11) derives a testable restriction of the equilibrium assumption under the condition of equal

choice probability. This equal CCP condition has been exploited for both identification (Liu et al., 2017;

Aguirregabiria, 2021) and estimation (Aradillas-López, 2012). When there are N > 2 players, the testable

implication by Equation (11) turns to a rank restriction on a matrix of player −i’s CCPs.

In the context of firm competition, Proposition 5 in Aguirregabiria (2021) also provides a nonpara-

metric test of the equilibrium assumption. However, in addition to the data on players’ actual choices,

Aguirregabiria (2021) also assumes that each firm’s revenue can be observed by researchers. As a com-

parison, Equation (11) only requires observations of players’ choices and is particularly useful when the

information on revenue is unavailable or limited.

The second result establishes the point identification of the inverted choice probability function Fi(·).

Note that the identification of Fi(·) implies that the C.D.F. of ε̃i, denoted by Γ̃i(·), is also identified. To

identify Fi(·), it requires an additional assumption such that player i always has unbiased beliefs under one

particular realization of Zi, say z1
i . For instance, Bi(Y−i|Zi = z1

i ,Z−i) = P−i(Y−i|Zi = z1
i ,Z−i). In contrast,

player i’s belief is allowed to be biased under any other realizations of Zi. This assumption is referred to

as the local unbiased belief restriction. It contrasts with the equilibrium condition in the existing literature

that restricts each player to have unbiased belief at every realization of the control variables.

At first glance, the local unbiased belief assumption may seem to be against the motivation to relax

the equilibrium restriction. However, a few notes should be emphasized. First, since variables in Zi are

continuous, the region with the unbiased belief restriction (i.e., only one realization z1
i ) has a zero measure

in the support of the payoff shifters. Therefore, the local unbiased belief assumption is a substantially

weaker condition than the existing equilibrium restriction. Second, as described in the Introduction, re-

alization z1
i could represent the state that players are most familiar with. Therefore, the learning process

could lead to a correct/unbiased belief. In contrast, beliefs could be potentially biased under other less fa-

miliar realizations. Third, Goeree and Holt (2001) conduct an experimental study with 10 different types

of games, ranging from simple matching pennies, to coordination games, to complicated dynamic games

with incomplete information. For each type of game, they find that the equilibrium condition holds for a
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particular realization of the payoffs. However, when they perturb the payoffs, players’ behaviors substan-

tially deviate from the equilibrium predictions. Their experimental evidence supports the local unbiased

belief assumption in some states and justifies the potential biased beliefs under other states. Fourth, this

paper also derives a testable implication of the unbiased belief restriction at any realization of Zi. This

test could guide researchers to choose the realization that the local unbiased belief assumption holds. Note

that such an assumption has also been exploited in the identification of incomplete information discrete

games (Aguirregabiria and Magesan, 2020; Aguirregabiria and Xie, 2021; Xie, forthcoming).

Under the local unbiased belief assumption at z1
i , Equation (10) then turns to:

πi(Zi = z1
i )+δi(Zi = z1

i ,Y−i = 1) ·P−i(Y−i = 1|Zi = z1
i ,Z−i) = Fi

[
Pi(Yi = 1|Zi = z1

i ,Z−i)
]
, (12)

where Bi(Y−i|Zi = z1
i ,Z−i) is replaced by P−i(Y−i|Zi = z1

i ,Z−i) due to the local unbiased belief assump-

tion. Equation (12) first identifies the sign of the strategic effect. In particular, consider the variation

of Z−i while holding Zi fixed at z1
i . Then δi(z1

i ,Yi = 1) would be positive (negative) if an increase of

P−i(Y−i = 1|z1
i ,Z−i) causes an increase (decrease) of Pi(Yi = 1|z1

i ,Z−i). In addition, Assumption 3(b) nor-

malizes the absolute value of the strategic effect to be one. Together with the identified sign, the value of

δi(z1
i ,Y−i = 1) is identified. Next, since Pi(·) is continuous in Z−i, there would exist a realization Z−i = z−i

such that Pi(Yi = 1|z1
i ,z−i) =

1
2 . Under this particular realization, Equation (12) becomes:

πi(z1
i )+δi(z1

i ,Y−i = 1) ·P−i(Y−i = 1|z1
i ,z−i) = Fi

[
Pi(Yi = 1|z1

i ,z−i) =
1
2
]
= 0.

Note that Fi(
1
2) = 0 is due to the zero median condition by Assumption 5. The above equation would

identify πi(z1
i ) since δi(z1

i ,Y−i = 1) has been identified and P−i(·) is known by researchers. Given the

identification of πi(z1
i ) and δi(z1

i ,Y−i = 1), Equation (12) then traces out the function Fi(·) with the varia-

tion of Z−i.

In single-agent static discrete choice models, Lewbel (2000) pioneers the approach of special regressor

(i.e., an observed variable that enters additively and linearly into an agent’s utility function). As shown

by Lewbel (2000), this special regressor is required for the nonparametric identification of the distribution

of the error term. Recently, Chen (2017) applies this approach to single-agent dynamic discrete choice
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models. In the context of discrete games with incomplete information, Lewbel and Tang (2015) introduce

a player-specific special regressor. In particular, they assume that Zi enters into player i’s payoff function

additively and linearly. Under this specification and the equilibrium assumption, Lewbel and Tang (2015)

establish the nonparametric identification of all model primitives. As a comparison, this paper allows Zi to

enter nonparametrically and interactively into player i’s payoff function. Consequently, my identification

results do not require the special regressor. The reason is shown by Equation (12), where player −i’s

CCP P−i(·) can be seen as an observed variable. It enters additively and linearly into player i’s expected

payoff, with δi(·) as its coefficient. Moreover, with a fixed Zi, P−i(·) has exogenous variation provided by

Z−i. This structure of incomplete information discrete games suggests that player −i’s CCP has already

played the role of the special regressor. Therefore, introducing an additional special regressor into player

i’s payoff function is not required for the nonparametric identification of model primitives.

There exists a testable implication of the local unbiased belief assumption at realization Zi = z1
i . The

test is simple based on the variation of Z−i. Specifically, suppose there are two realizations of Z−i, denoted

by z1
−i and z2

−i, such that player i has equal CCPs; for instance, Pi(Yi|z1
i ,z1
−i)=Pi(Yi|z1

i ,z2
−i). This condition

of equal CCPs implies that player i would have the same deterministic expected payoffs under these two

realizations. Since player i has the same value of the payoff function (i.e., Zi is fixed at zi), the equality

of deterministic expected payoffs further implies that player i’s beliefs at z1
−i and z2

−i must be equal. For

instance, Bi(Y−i = 1|z1
i ,z1
−i) = Bi(Y−i = 1|z1

i ,z2
−i). Under the local unbiased belief assumption such that

Bi(·) = P−i(·) when Zi = z1
i , the above condition of equal beliefs turns to be a testable restriction imposed

on player −i’s CCPs; for instance, P−i(Y−i = 1|z1
i ,z1
−i) = P−i(Y−i = 1|z1

i ,z2
−i). To test such a restriction of

the local unbiased belief assumption, there must exist two realizations, z1
i and z2

i , such that the equal CCPs

condition Pi(Yi|z1
i ,z1
−i) = Pi(Yi|z1

i ,z2
−i) holds. These realizations always exist when Z−i contains multiple

variables (i.e., Lz > 1) or when Z−i is a single variable, denoted by Z−i (i.e., Lz = 1), but Pi(Yi = 1|z1
i ,Z−i)

is non-monotone in Z−i. The only case that the condition of equal CCPs cannot hold is when Z−i is a single

variable and Pi(Yi = 1|z1
i ,Z−i) is strictly monotone in Z−i. Under such a case, Pi(Yi|z1

i ,z
1
−i) 6= Pi(Yi|z1

i ,z
2
−i)

for any z1
−i 6= z2

−i, and the equal CCPs condition is never satisfied. Next, consider a game with N > 2

players: the testable restriction of the local unbiased belief assumption is a rank condition on a matrix of

player −i’s CCPs. Unlike the case of two players, such a restriction in games with N > 2 players can be

always tested, regardless of the dimension of Z−i and the monotonicity of Pi(·). Subsection 4.2 formally
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establishes these results.

The last result of this paper deals with the identification of player i’s payoff and belief functions.

Rearrange Equation (8) and it yields:

Bi(Y−i|Zi,Z−i)=Bi(Y−i|Zi,z2
−i)+

Fi
[
Pi(Yi = 1|Zi,Z−i)

]
−Fi

[
Pi(Yi = 1|Zi,z2

−i)
]

Fi
[
Pi(Yi = 1|Zi,z2

−i)
]
−Fi

[
Pi(Yi = 1|Zi,z1

−i)
] ·[Bi(Y−i|Zi,z2

−i)−Bi(Y−i|Zi,z1
−i)
]
.

Since Fi(·) has been identified, the above equation suggests that the belief function Bi(·) is identified up

to its values at only two realizations Z−i = z1
−i, z2

−i. Suppose that we further impose the local unbiased

belief assumption at z1
−i, z2

−i, but allow player i to have biased beliefs under any other realizations of Z−i.

It will identify Bi(Y−i|Zi,z1
−i) = P−i(Y−i|Zi,z1

−i) and Bi(Y−i|Zi,z2
−i) = P−i(Y−i|Zi,z2

−i). Consequently,

Bi(Yi|Zi,Z−i) is then identified under any other realizations of Z−i. Next, consider Equation (10), the

exogenous variation of Z−i affects Bi(Y−i = 1|·) but has no impact on player i’s payoff function. Given

the identification of Bi(·) and Fi(·), this exogenous variation of Z−i implies that the base return πi(·) and

the strategic effect δi(·) are identified (Aradillas-López, 2010; Bajari et al., 2010). In games with N > 2

players, the payoff function is point identified while the belief function would be partially identified.

4.2 Identification Results

Based on the intuition described above, this subsection formally establishes the identification results in a

general binary choice game with N ≥ 2 players. First, I derive a testable implication of the equilibrium

assumption. To see such an implication, similar to B̃i(·), define P̃−i(Zi,z1,2
−i ) = P−i(Zi,Z−i = z2

−i)−

P−i(Zi,Z−i = z1
−i) as the difference of other players’ CCPs between two realizations Z−i = z1

−i, z2
−i, and

let P̃−i(Zi,z1:l
−i) =

(
P̃−i(Zi,z1,2

−i ), · · · , P̃−i(Zi,z1,l
−i)
)

be the corresponding (2N−1− 1)× (l− 1) matrix for

any l ≥ 2. Proposition 1 presents the testable implication of the equilibrium assumption.

Proposition 1. Under Assumptions 1–4 and consider any 2N−1 + 1 pairs of realizations of (Zi,Z−i),

denoted by (z1
i ,z

1(l)
−i ) and (z2

i ,z
2(l)
−i ) ∀l ≤ 2N−1 +1, such that the following conditions hold:

Pi(Yi = 1|Zi = z1
i ,Z−i = z1(l)

−i ) 6= Pi(Yi = 1|Zi = z1
i ,Z−i = z1(l′)

−i ), ∀l 6= l′,

Pi(Yi = 1|Zi = z1
i ,Z−i = z1(l)

−i ) = Pi(Yi = 1|Zi = z2
i ,Z−i = z2(l)

−i ), ∀l ≤ 2N−1 +1.
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Then the assumption that player i has unbiased/equilibrium beliefs implies the following testable restric-

tion:

(a) If N = 2, then
P−i(Y−i|z1

i ,z
1(3)
−i )−P−i(Y−i|z1

i ,z
1(2)
−i )

P−i(Y−i|z1
i ,z

1(2)
−i )−P−i(Y−i|z1

i ,z
1(1)
−i )

=
P−i(Y−i|z2

i ,z
2(3)
−i )−P−i(Y−i|z2

i ,z
2(2)
−i )

P−i(Y−i|z2
i ,z

2(2)
−i )−P−i(Y−i|z2

i ,z
2(1)
−i )

.

(b) If N > 2, then the rank of
[
P̃−1
−i (z

1
i ,z

1(1:2N−1)
−i )·P̃−i(z1

i ,z
1(2:2N−1+1)
−i )−P̃−1

−i (z
2
i ,z

2(1:2N−1)
−i )·P̃−i(z2

i ,z
2(2:2N−1+1)
−i )

]
is at most 2N−1−2, note that this is a (2N−1−1)× (2N−1−1) matrix.

Proof. In the Appendix.

Proposition 1 considers 2N−1 + 1 pairs of realizations of (Zi,Z−i) that satisfy two conditions. These

conditions require no further restrictions on the model and can be easily satisfied. Specifically, the first

one, that Pi(Yi = 1|z1
i ,z

1(l)
−i ) 6= Pi(Yi = 1|z1

i ,z
1(l′)
−i ), can easily hold because Z−i has an impact on Pi(Yi|·).

Moreover, as described in Subsection 4.1, there exist infinite pairs of realizations such that the second con-

dition of equal CCPs Pi(Yi = 1|z1
i ,z

1(l)
−i ) = Pi(Yi = 1|z2

i ,z
2(l)
−i ) holds. With any 2N−1+1 pairs of realizations

that satisfy the above two conditions, Proposition 1 establishes a testable implication of the equilibrium

assumption. Furthermore, the implication in Proposition 1(b) requires the matrix P̃−i(·) to be invertible.

Such an invertibility condition would hold given the linear independence by Assumption 4(b). In addition,

to test the above implication, one needs to estimate and test the rank of a matrix. This technique has been

well developed in the econometrics literature: see Robin and Smith (2000), Kleibergen and Paap (2006),

and Camba-Mendez and Kapetanios (2009). Finally, the testable implication in Proposition 1(b) suggests

that a matrix of other players’ CCPs is less than full rank and is therefore singular. Since the set of singular

matrices has a zero measure in the space of random matrices, it suggests that the equilibrium condition

imposes a strong restriction on the data, even under the nonparametric specification.

The second result of this paper establishes the point identification of the inverted choice probability

function Fi(·). As described in Subsection 4.1, this result requires a local unbiased belief restriction as

stated in Assumption 6. Note that this assumption is testable; the test will be described later.

Assumption 6. There exists one realization of Zi, say z1
i , such that player i always has unbiased beliefs

when Zi = z1
i . For instance, Bi(Y−i|Zi = z1

i ,Z−i) = P−i(Y−i|Zi = z1
i ,Z−i). Moreover, player i’s belief is

allowed to be biased under any other realizations of Zi.
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Let Pi(zi) denote the image of player i’s probability function Pi(Yi = 1|Zi = zi,Z−i) when we only

vary Z−i but fix Zi at zi. In particular, given the continuity condition by Assumption 4(a), Pi(zi) =[
minZ−i Pi(Yi = 1|zi,Z−i),maxZ−i Pi(Yi = 1|zi,Z−i)

]
. Furthermore, denote int[Pi(z1

i )] as the set of all in-

terior points in Pi(z1
i ). Proposition 2 establishes the point identification of the inverted choice probability

function Fi(·).

Proposition 2. Under Assumptions 1–6 and suppose that 1
2 ∈ int[Pi(z1

i )], then the inverted choice proba-

bility function Fi(p) is point identified ∀p ∈ Pi(z1
i ).

Proof. In the Appendix.

As described in Subsection 4.1, the identification of Fi(·) requires player i’s CCP Pi(Yi = 1|z1
i ,Z−i) to

go through the point of 1
2 . At this point, the deterministic expected payoff of action 1 equals the one of

action 0, which is normalized to zero by Assumption 3(a). This equality is the key for the identification.

Moreover, Proposition 2 identifies Fi(p) in the region where p∈Pi(z1
i ). When p lies outside of this region,

some additional assumptions have to be imposed to identify Fi(p). A simple one is to extend Assumption

6 to a finite number of other realizations of Zi. In particular, consider L realizations of Zi, denoted by

z1
i up to zL

i . With an appropriate choice of these L realizations, ∪L
l=1Pi(zl

i) could well approximate the

image of player i’s CCP Pi(Yi = 1|Zi,Z−i) when considering variations of both Zi and Z−i. Therefore, if

we assume that player i has unbiased beliefs when her payoff shifter equals any of these L realizations but

allow her belief to be biased otherwise, the inverted choice probability function Fi
[
Pi(Yi = 1|Zi,Z−i)

]
can

be point identified for (almost) the entire image of player i’s CCP Pi(Yi = 1|·). The number of L required

for identification depends on the impact of Z−i on Pi(·) and is application specific. The important lesson

is that we only need the local unbiased belief condition for a finite number of realizations. As described

above, since variables in Zi are all continuous, the region with the unbiased belief restriction has a zero

measure in the space of control variables. Therefore, the local unbiased belief assumption is a substantially

weaker condition than the equilibrium restriction in the existing literature. Importantly, the local unbiased

belief assumption is testable, and Proposition 3 presents an implication of Assumption 6.

Proposition 3. Suppose that Assumptions 1–4 hold. Consider any 2N−1 realizations of Z−i, denoted by

zl
−i for l ≤ 2N−1, such that Pi(Yi|z1

i ,zl
−i) = Pi(Yi|z1

i ,zl′
−i) ∀l 6= l′. Then, the assumption that player i has

unbiased beliefs at realization Zi = z1
i implies the following testable restriction:
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(a) If N = 2, then P−i(Y−i|z1
i ,z1
−i) = P−i(Y−i|z1

i ,z2
−i).

(b) If N > 2, then the rank of the matrix P̃−i(z1
i ,z1:2N−1

−i ) is at most 2N−1−2. Note that P̃−i(z1
i ,z1:2N−1

−i ) is

a (2N−1−1)× (2N−1−1) matrix.

Proof. In the Appendix.

Similar to Proposition 1, the testable implication of the local unbiased belief assumption in Proposition

3 also requires the condition of equal CCPs. However, it is important to note that the condition in Propo-

sition 3 is slightly stronger than the one in Proposition 1. Specifically, a player’s CCP holds fixed under

some variations of both Zi and Z−i in Proposition 1. In contrast, the equal CCPs condition is required to

hold with only the variation of Z−i in Proposition 3. This stronger condition can be always satisfied in

games with N > 2 players. To see this point, consider an entry game with 3 firms. For simplicity, suppose

that Zi is a single variable denoted by Zi. Moreover, assume that a higher Zi strictly reduces firm i’s entry

cost and strictly raises its entry probability. Due to strategic substitutability in the entry game, player i’s

entry probability Pi(Yi = 1|Zi,Z j,Z j′) is strictly increasing in its own Zi but is strictly decreasing in the

two other firms’ Z j, Z j′ . Due to continuity, we can find a pair of realizations (z1
j ,z

1
j′) and (z2

j ,z
2
j′), where

z1
j > z2

j and z1
j′ < z2

j′ , such that Pi(Yi = 1|Zi,z1
j ,z

1
j′) = Pi(Yi = 1|Zi,z2

j ,z
2
j′). Essentially, we can find infinite

pairs that hold firm i’s entry probability fixed. In this game with N > 2 players, Assumption 6 implies a

rank restriction on a matrix of other players’ CCPs, as stated in Proposition 3(b). In contrast, in games

with two players, the testable implication is an equality restriction as in Proposition 3(a). Cautiously, as

described in Subsection 4.1, in this two-player game, it is not always possible to find a pair of realizations

such that the equal CCPs condition holds. Such a condition could hold when Z−i is a vector of multiple

variables or when Z−i is a single variable and Pi(Yi|·) is non-monotone in Z−i. However, the equal CCPs

condition cannot hold when Pi(·) is strictly monotone in Z−i.

Given the identification of Fi(·), the last result of this section establishes the identification of player i’s

payoff function and belief function. This identification result requires an additional assumption such that

player i’s belief is unbiased under 2N−1 realizations of other players’ payoff shifters Z−i. This restriction,

summarized by Assumption 7, is also imposed in Aguirregabiria and Magesan (2020), Aguirregabiria and

Xie (2021), and Xie (forthcoming).

Assumption 7. There exist 2N−1 realizations of Z−i, each denoted by zl
−i, such that player i always has
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unbiased beliefs when Z−i = zl
−i ∀l ≤ 2N−1. Moreover, Pi(Yi|Zi,Z−i = zl

−i) 6= Pi(Yi|Zi,Z−i = zl′
−i) ∀l 6= l′.

In contrast, player i’s belief is allowed to be biased under any other realizations of Z−i.

Proposition 4. Suppose that the conditions met in Proposition 2 hold so that Fi(·) is point identified.

Assumption 7 implies the following:

(a) Player i’s base return πi(Zi) and strategic effect δi(Zi,Y−i) are point identified.

(b) When N = 2, player i’s belief function Bi(Y−i|Zi,Z−i) is point identified.

(c) When N > 2, Player i’s belief function, represented by the (2N−1−1)×1 vector Bi(Zi,Z−i), is partially

identified on a hyperplane with a dimension of 2N−1−2.

Proof. In the Appendix.

Under the assumption that the distribution of private information is known by researchers, Aguirre-

gabiria and Magesan (2020) and Aguirregabiria and Xie (2021) obtain a special result of Proposition 4 in

games with two players. This paper extends their results in two directions. First, the distribution of private

information is nonparametrically specified and is first identified in Proposition 2. Second, Proposition

4 extends the result to games with N > 2 players. In these games, player i’s behavior depends on her

believed probabilities of multiple events (i.e., the action of each of the other players and their potential

correlation). There exist infinite transformations of beliefs that could hold player i’s deterministic expected

payoff constant (i.e., mean-preserving transformation). These transformations are indistinguishable, and

therefore the entire belief vector Bi(Zi,Z−i) cannot be point identified. However, this vector could be

partially identified on a hyperplane with a lower dimension, as in Proposition 4(c). In contrast, player i’s

belief in a two-player game is a scalar and can be point identified.

5 Identification in Multinomial Choice Games

This section extends the identification results in binary choice games as presented in Section 4 (i.e.,

K = 1) to games with more actions (i.e., K > 1). Specifically, player i’s CCP is represented by a scalar

Pi(Yi = 1|Zi,Z−i) when K = 1, but expands to a K×1 vector Pi(Zi,Z−i) when K > 1. Such a difference in

the dimensions of CCPs introduces two obstacles in the extension to multinomial choice games. Each one
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requires an additional assumption to establish the identification results. The first obstacle is the construc-

tion of the equal CCPs condition. As described in Section 4, when K = 1, the continuity condition by As-

sumption 4 directly implies that Pi(Yi = 1|z1
i ,z1
−i) = Pi(Yi = 1|z2

i ,z2
−i) for some pairs (z1

i ,z1
−i) and (z2

i ,z2
−i).

This condition of equal CCPs is the key to identifying all model primitives. In more details, the local un-

biased belief assumption at z1
i would first identify the value of the inverted choice probability function

Fi[Pi(Yi = 1|z1
i ,z1

i )]. In the second step, the equal CCPs condition implies that Fi[Pi(Yi = 1|z2
i ,z2

i )] equals

Fi[Pi(Yi = 1|z1
i ,z1

i )] and is therefore identified. In the last step, the identification of Fi[Pi(Yi = 1|z2
i ,z2
−i)] is

exploited to identify player i’s payoff function and belief function at realization (z2
i ,z2
−i). Unfortunately,

when K > 1, Assumption 4 does not necessarily imply the equal CCPs condition. Specifically, there could

exist no pairs of realizations such that the vector Pi(z1
i ,z1
−i) = Pi(z2

i ,z2
−i). This obstacle is addressed by

extending Assumption 4 and imposing an additional technical restriction on player i’s CCP. This restric-

tion is summarized by Assumption 4’ and guarantees that the equal CCPs condition could also hold in

multinomial choice games.

Assumption 4’. (a) Assumption 4 holds.

(b) For each player i, the rank of the matrix ∂Pi(Zi,Z−i)
∂Z′−i

is K. Recall that the dimension of Zi is Lz and

therefore, ∂Pi(Zi,Z−i)
∂Z′−i

is a K× (N−1)Lz matrix.

Assumption 4’(b) requires the matrix ∂Pi(Zi,Z−i)
∂Z′−i

to be full rank. First, recall that Pi represents the image

of the function Pi(Zi,Z−i), with variations of both Zi and Z−i. Next, consider an arbitrary value of CCP

Pi(z1
i ,z1
−i) that lies in the interior of Pi. Together with the continuity assumption, the full rank condition

of ∂Pi(Zi,Z−i)
∂Z′−i

implies that there exist infinite realizations, denoted by (z2
i ,z2
−i), such that Pi(z1

i ,z1
−i) =

Pi(z2
i ,z2
−i). Therefore, the condition of equal CCPs can be always satisfied. Importantly, since Pi(·) can

be consistently estimated, the full rank condition by Assumption 4’(b) is testable.

A necessary order condition for ∂Pi(Zi,Z−i)
∂Z′−i

to have full rank is that (N−1)Lz ≥ K⇒ Lz ≥ K
N−1 . This

relationship implies that, in a game with weakly more players than actions (i.e., N ≥ K + 1), the model

can be identified with a single variable payoff shifter (i.e., Lz = 1). In contrast, when a game has strictly

more actions (i.e., N < K+1), the identification requires multiple variables as each player’s payoff shifter

(i.e., Lz > 1). Importantly, when the matrix ∂Pi(Zi,Z−i)
∂Z′−i

does not have full rank, the equilibrium assumption

is still testable but with a different implication. The Appendix presents such a testable restriction. As a
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comparison, without Assumption 4’(b), I fail to obtain the identification of the payoff function, the belief

function, and the distribution of private information.

Since ∂Pi(Zi,Z−i)
∂Z′−i

can be seen as a random matrix given random variables (Zi,Z−i), the full rank con-

dition by Assumption 4’(b) is likely to be satisfied in the data. Unfortunately, Assumption 4’(b) also

excludes an important class of payoff structures in empirical games. To see this point, first note that by

the chain rule, ∂Pi(Zi,Z−i)
∂Z′−i

= ∂Gi[EUi(Zi,Z−i)]
∂EUi(Zi,Z−i)′

·∆i(Zi) · ∂Bi(Zi,Z−i)
∂Z′−i

. Consequently, a necessary condition for
∂Pi(Zi,Z−i)

∂Z′−i
to have full rank is that the matrix of strategic effects ∆i(Zi) is also full rank. This full rank

condition of ∆i contrasts the structure of multiplicatively separable strategic effects considered by Sweet-

ing (2009), and Aradillas-López and Gandhi (2016), among others. In more details, these papers specify

δi(Zi,Yi,Y−i) = δ̂i(Zi,Yi) ·hi(Zi,Y−i) for some functions δ̂i(·) and hi(·). This specification implies that the

rank of ∆i(Zi) is one and consequently violates Assumption 4’(b). However, it is important to emphasize

two points. First, as described above, the equilibrium assumption is still testable even when Assumption

4’(b) fails. The Appendix presents such a testable restriction. Second, under the multiplicatively separable

strategic effects, even though the model primitives are non-identified without the equilibrium restriction,

this paper’s identification arguments could still be useful to establish the identification results under the

equilibrium condition.

Proposition 1’. Suppose that Assumptions 1–3 and Assumption 4’ hold. Consider any (K + 1)N−1 + 1

pairs of realizations of (Zi,Z−i), denoted by (z1
i ,z

1(l)
−i ) and (z2

i ,z
2(l)
−i ) ∀l ≤ (K + 1)N−1 + 1, such that the

following conditions hold:

Pi(Zi = z1
i ,Z−i = z1(l)

−i ) 6= Pi(Zi = z1
i ,Z−i = z1(l′)

−i ), ∀l 6= l′

Pi(Zi = z1
i ,Z−i = z1(l)

−i ) = Pi(Zi = z2
i ,Z−i = z2(l)

−i ), ∀l ≤ (K +1)N−1 +1.

Then the assumption that player i has unbiased/equilibrium beliefs implies the following testable restric-

tion:

(a) If N = 2, then P̃−1
−i (z

1
i ,z

1(1:K+1)
−i ) · P̃−i(z1

i ,z
1(2:K+2)
−i ) = P̃−1

−i (z
2
i ,z

2(1:K+1)
−i ) · P̃−i(z2

i ,z
2(2:K+2)
−i ).

(b) If N > 2, then
[
P̃−1
−i (z

1
i ,z

1(1:(K+1)N−1)
−i )·P̃−i(z1

i ,z
1(2:(K+1)N−1+1)
−i )−P̃−1

−i (z
2
i ,z

2(1:(K+1)N−1)
−i )·P̃−i(z2

i ,z
2(2:(K+1)N−1+1)
−i )

]
has a rank of at most (K +1)N−1−K−1. Note that the above is a

(
(K +1)N−1−1

)
×
(
(K +1)N−1−1

)
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matrix.

Proof. In the Appendix.

Proposition 1’ extends Proposition 1 to games with more than two actions. In particular, Proposition 1

can be seen as a special case of Proposition 1’ when a game has binary choice (i.e., K = 1).

To see the second obstacle in multinomial choice games, consider a binary choice game first. The zero

median condition of the private information (e.g., which is essentially a normalization) by Assumption 5

implies that EUi(·,Yi = 1) = EUi(·,Yi = 0) if and only if Pi(Yi = 1|·) = Pi(Yi = 0|·). This relationship is the

key to identifying the inverted choice probability function Fi(·) and other model primitives thereafter. In

contrast, in a multinomial choice game, Pi(Yi = k|·) = Pi(Yi = k′|·) does not necessarily imply EUi(·,Yi =

k) = EUi(·,Yi = k′) and vice versa. Therefore, it is substantially difficult to retrieve information from each

player’s CCP and establish the identification results. To address such an obstacle, this section imposes an

additional restriction, as stated in Assumption 5’. Under this assumption, if two actions are chosen with

equal probability, these two actions must have the same deterministic expected payoff.

Assumption 5’. For any two actions, denoted by k and k′, we have EUi(Zi,Z−i,Yi = k)>EUi(Zi,Z−i,Yi =

k′) if and only if Pi(Yi = k|Zi,Z−i)> Pi(Yi = k′|Zi,Z−i).

In discrete choice models, Assumption 5’ is referred to as the rank ordering property. This property

is first introduced by Manski (1975) and is subsequently applied by Goeree et al. (2005) and Fox (2007),

among others. Specifically, the rank ordering property restricts an action to be chosen more frequently

if and only if it has a higher deterministic expected payoff. This property can be satisfied for many

distributions of private information. The simplest case is that εi(Yi) follows an identical nonparametric

distribution over the real line and is independent across each action. In a slightly more complicated sce-

nario, Assumption 5’ could also be satisfied when the private information is correlated among actions.

Consider that εi follows a multivariate normal distribution with the restrictions Var(εi(k)) = σ2 ∀k and

Cov(εi(k),εi(k′)) = ρσ2 ∀k 6= k′. This error structure with fixed variance and covariance across actions

satisfies the rank ordering property. Furthermore, Goeree et al. (2005) provide a weaker sufficient con-

dition, referred to as the exchangeability, for Assumption 5’. In more details, exchangeability requires

the distribution function Γi(·) to be fixed for any permutation of εi. Unfortunately, not all distribution
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functions Γi(·) are consistent with the rank ordering property. Two important classes of discrete choice

models that do not satisfy Assumption 5’ are the nested Logit model and the random coefficient model

(Berry et al., 1995).7 It is also important to emphasize that the rank ordering property is always satisfied

in binary choice games. Finally, Assumption 5’ implies that Pi(Yi = k|·) = Pi(Yi = k′|·) if and only if

EUi(·,Yi = k) = EUi(·,Yi = k′). This condition is the key to establishing the identification of the model

primitives.

Similar to the binary choice game in Section 4, the identification of the inverted choice probability

function Fi(·) requires Assumption 6 such that player i has unbiased beliefs under just one realization

Zi = z1
i . Furthermore, in multinomial choice games, this assumption needs to be extended slightly such

that two actions could be chosen with equal probability at Zi = z1
i . The following definition introduces

two terminologies that facilitate the expression of this extension.

Definition 1. (a) For each player i, a pair of actions k and k′ is called directly connected at Zi = zi if there

exists a realization of Z−i, say z−i, such that Pi(Yi = k|Zi = zi,Z−i = z−i) = Pi(Yi = k′|Zi = zi,Zi = z−i).

(b) For each player i, a pair of actions k and k′ is called indirectly connected at Zi = zi if these two actions

are not directly connected. However, there exists a sequence of actions {k, l, l′, l′′, · · · , l′′′,k′} where each

pair of adjacent actions in this sequence is directly connected.

Assumption 6’. (a) Assumption 6 holds. For instance, player i always has unbiased beliefs when Zi = z1
i ;

while her belief is allowed to be biased under any other realizations of Zi.

(b) For any two actions k 6= k′ of player i, they are either directly connected or indirectly connected at

Zi = z1
i .

In binary choice games described in Section 4, the identification result in Proposition 2 requires player

i’s CCP Pi(Yi = 1|·) to go through the point of 1
2 . At this point, Pi(Yi = 0|·) = Pi(Yi = 1|·) so that actions 0

and 1 are directly connected. Assumption 6’(b) imposes a similar restriction in multinomial choice games.

Since this restriction is imposed on player i’s CCP, it is testable. Proposition 2’ then establishes the point

identification of the inverted choice probability function Fi(·).

Proposition 2’. Under Assumptions 1–3, 4’–6’, the inverted choice probability function Fi(p) is point

identified ∀p ∈ Pi(z1
i ).

7Since the nested Logit is a parametric model, it faces less identification burden than the nonparametric problem considered
in this paper. Therefore, even though the error structure of the nested Logit does not satisfy Assumption 5’, it could be identified.
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Proof. In the Appendix.

Similar to Section 4, when the local unbiased belief assumption is imposed on sufficiently many but

a finite number of realizations of Zi, the inverted choice probability function Fi
[
Pi(Zi,Z−i)

]
can be point

identified for (almost) the entire image of player i’s CCP Pi(Zi,Z−i). Finally, the assumption that player i

has unbiased belief when Zi = z1
i is testable. Proposition 3’ describes the testable implication.

Proposition 3’. Suppose that Assumptions 1–3 and Assumption 4’ hold. Consider any (K + 1)N−1 re-

alizations of Z−i, denoted by zl
−i ∀l ≤ (K + 1)N−1, such that Pi(z1

i ,zl
−i) = Pi(z1

i ,zl′
−i) ∀l 6= l′. Then, the

assumption that player i has unbiased beliefs at realization Zi = z1
i implies the following testable restric-

tion:

(a) If N = 2, then the matrix P̃−i(z1
i ,z

1:K+1
−i ) = 0.

(b) If N > 2, then the rank of the matrix P̃−i(z1
i ,z

1:(K+1)N−1

−i ) is at most (K + 1)N−1−K− 1. Note that

P̃−i(z1
i ,z

1:(K+1)N−1

−i ) is a
(
(K +1)N−1−1

)
×
(
(K +1)N−1−1

)
matrix.

Proof. In the Appendix.

In particular, Proposition 3 in Section 4 can be seen as a special case of Proposition 3’ when each

player has binary choice (i.e., K = 1). Moreover, similar to the comparison in Section 4, the condition of

equal CCPs required in Proposition 3’ is slightly stronger than the one in Proposition 1’. Specifically, an

order condition (N−1) ·Lz > K is sufficient for the equal CCPs condition in Proposition 3’ to hold. Note

that the order condition (N− 1) · Lz > K is slightly stronger than the one implied by Assumption 4’(b)

(i.e., (N−1) ·Lz ≥ K).

Given the identification of Fi(·), the last result of this paper establishes the identification of player i’s

payoff function and belief function. Compared with Assumption 7 in Section 4, the identification results

require the local unbiased belief assumption under more realizations of Z−i. This is because multinomial

choice games introduce additional action profiles and more unknown payoffs associated with these pro-

files. Consequently, more restrictions are needed for the identification. Assumption 7’ summarizes these

restrictions.

Assumption 7’. There exist (K + 1)N−1 realizations of Z−i, denoted by zl
−i ∀l ≤ (K + 1)N−1, such that

player i always has unbiased beliefs when Z−i = zl
−i ∀l. Moreover, Pi(Zi,Z−i = zl

−i) 6= Pi(Zi,Z−i =

zl′
−i) ∀l 6= l′. In contrast, player i’s belief is allowed to be biased under any other realizations of Z−i.
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Proposition 4’. Suppose that the conditions met in Proposition 2’ hold so that Fi(·) is point identified.

Assumption 7’ implies the following:

(a) Player i’s base return πi(Zi,Yi) and strategic effect δi(Zi,Yi,Y−i) are point identified.

(b) When N = 2, player i’s belief function Bi(Y−i|Zi,Z−i) is point identified.

(c) When N > 2, player i’s belief function, represented by the
(
(K +1)N−1−1

)
×1 vector Bi(Zi,Z−i), is

partially identified on a hyperplane with a dimension of (K +1)N−1−K−1.

Proof. In the Appendix.

In particular, Assumption 7 and Proposition 4 in Section 4 can be seen as special cases of Assumption

7’ and Proposition 4’ when each player has binary choice (i.e., K = 1).

6 Conclusion

This paper jointly relaxes two restrictions—the parametric assumption and the equilibrium assumption—

that are commonly imposed in the literature of empirical discrete choice games with incomplete infor-

mation. The model nonparametrically specifies both the payoff function and the distribution of private

information. In addition, each player’s belief function is allowed to be any probability distribution over

other players’ action sets. Under this framework, I first derive a testable implication of the equilibrium

restriction. When players’ beliefs are unbiased in a small subset of the space of the control variables, this

paper further achieves the point identification of the payoff function and the distribution of private infor-

mation. The belief function is partially identified in games with N > 2 players and is point identified in

games with N = 2 players. Importantly, the subset with the unbiased belief restriction has a zero measure

in the support of control variables. The null hypothesis of the unbiased belief assumption at any realization

of the payoff shifter is also testable.

This paper derives a set of identification results but leaves the estimation method as a future topic.

Deriving a consistent estimator based on this paper’s identification results and testing the equilibrium

restriction in a relevant empirical application are important areas for future research.
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A Appendix

Proof of Lemma 1: Consider the realizations z1
−i and z2

−i of Z−i and plug them into Equation (6). We

then obtain the following expressions:

Π(Zi)+∆i(Zi) ·Bi(Zi,z1
−i) = Fi

[
Pi(Zi,z1

−i)
]
,

Π(Zi)+∆i(Zi) ·Bi(Zi,z2
−i) = Fi

[
Pi(Zi,z2

−i)
]
.

For notation simplicity, I exclude the random variable Z−i as the argument of CCP and belief function

but keep its realizations z1
−i, z2

−i in the expression. This notation also applies to the rest of this Appendix.

Subtracting the above two equations yields the following difference of deterministic expected payoffs:

∆i(Zi) · B̃i(Zi,z1,2
−i ) = F̃i(Zi,z1,2

−i ). (13)

Next, consider realizations z1
−i to z(K+1)N−1

−i of Z−i. Equation (13) then turns to the following matrix form:

∆i(Zi) · B̃i(Zi,z
1:(K+1)N−1

−i ) = F̃i(Zi,z
1:(K+1)N−1

−i ) ⇒ ∆i(Zi) = F̃i(Zi,z
1:(K+1)N−1

−i ) · B̃−1
i (Zi,z

1:(K+1)N−1

−i ).

(14)

Equation (14) holds since B̃i(Zi,z
1:(K+1)N−1

−i ) is invertible as required in Lemma 1. Similarly, for realiza-

tions z2
−i to z(K+1)N−1+1

−i of Z−i, we have the following relationship:

∆i(Zi) = F̃i(Zi,z
2:(K+1)N−1+1
−i ) · B̃−1

i (Zi,z
2:(K+1)N−1+1
−i ). (15)

Since ∆i(Zi) on the left-hand sides of Equations (14) and (15) is the same, we can equate these two

equations and obtain the following:

F̃i(Zi,z
1:(K+1)N−1

−i ) · B̃−1
i (Zi,z

1:(K+1)N−1

−i ) = F̃i(Zi,z
2:(K+1)N−1+1
−i ) · B̃−1

i (Zi,z
2:(K+1)N−1+1
−i ).

This corresponds to Equation (7) in Lemma 1 and completes the proof.

Proof of Proposition 1: Under the condition that player i has unbiased beliefs, we have Bi(·) = P−i(·)
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when Zi = z1
i . Plug this relationship into Equation (7) in Lemma 1 and obtain the following relationship:

F̃i(z1
i ,z

1(1:2N−1)
−i ) · P̃−1

−i (z
1
i ,z

1(1:2N−1)
−i ) = F̃i(z1

i ,z
1(2:2N−1+1)
−i ) · P̃−1

−i (z
1
i ,z

1(2:2N−1+1)
−i )

⇒ F̃i(z1
i ,z

1(1:2N−1)
−i ) · P̃−1

−i (z
1
i ,z

1(1:2N−1)
−i ) · P̃−i(z1

i ,z
1(2:2N−1+1)
−i ) = F̃i(z1

i ,z
1(2:2N−1+1)
−i ). (16)

Similarly, for realizations (z2
i ,z

2(1)
−i ) to (z2

i ,z
2(2N−1+1)
−i ), we can get the following equation:

F̃i(z2
i ,z

2(1:2N−1)
−i ) · P̃−1

−i (z
2
i ,z

2(1:2N−1)
−i ) · P̃−i(z2

i ,z
2(2:2N−1+1)
−i ) = F̃i(z2

i ,z
2(2:2N−1+1)
−i ). (17)

Due to the condition of equal CCPs, we have F̃i(z1
i ,z

1(1:2N−1)
−i )= F̃i(z2

i ,z
2(1:2N−1)
−i ) and F̃i(z1

i ,z
1(2:2N−1+1)
−i )=

F̃i(z2
i ,z

2(2:2N−1+1)
−i ). Plug these conditions into Equations (16) and (17) and equate these two equations. It

will yield the following relationship:

F̃i(z1
i ,z

1(1:2N−1)
−i ) ·

[
P̃−1
−i (z

1
i ,z

1(1:2N−1)
−i ) · P̃−i(z1

i ,z
1(2:2N−1+1)
−i )− P̃−1

−i (z
2
i ,z

2(1:2N−1)
−i ) · P̃−i(z2

i ,z
2(2:2N−1+1)
−i )

]
= 0.

(18)

In binary choice games, F̃i(z1
i ,z

1(1:2N−1)
−i ) is a 1× (2N−1− 1) vector. Moreover, the condition Pi(Yi =

1|z1
i ,z

1(l)
−i ) 6= Pi(Yi = 1|z1

i ,z
1(l′)
−i ) ∀l 6= l′ implies that all elements in F̃i(z1

i ,z
1(1:2N−1)
−i ) are non-zeros. There-

fore, when N > 2, Equation (18) implies that any one row of the matrix
[
P̃−1
−i (z

1
i ,z

1(1:2N−1)
−i )·P̃−i(z1

i ,z
1(2:2N−1+1)
−i )−

P̃−1
−i (z

2
i ,z

2(1:2N−1)
−i ) · P̃−i(z2

i ,z
2(2:2N−1+1)
−i )

]
is a linear combination of other rows. Consequently, the rank of

such a (2N−1− 1)× (2N−1− 1) matrix is at most 2N−1− 2. The testable implication of the equilibrium

belief when N = 2 has been proved in Subsection 4.1. This completes the proof.

Proof of Proposition 2: This part proves the result in games with N > 2 players. The result when N = 2

is described in Subsection 4.1. Consider (2N−1− 1) realizations of Z−i, denoted by z1
−i to z2N−1−1

−i , such

that Pi(Yi = 1|z1
i ,zl
−i) =

1
2 for all 1≤ l ≤ 2N−1−1. As discussed in the main text (see the discussion after

Proposition 3), there are infinite pairs of realizations that satisfy the above condition. Under Assumptions

5 and 6, the inverted choice probability Equation (9) turns to the following equation system:

πi(z1
i )+ ∑

y−i 6=0
δi(z1

i ,y−i) ·P−i(y−i|z1
i ,z

l
−i) = Fi

[
Pi(1|z1

i ,z
l
−i) =

1
2
]
= 0, ∀l ≤ 2N−1−1. (19)
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Note that Bi(·) is replaced by P−i(·) due to the local unbiased belief assumption at Zi = z1
i . Consider an

arbitrary action profile y1
−i 6= 0 and move this term to the right-hand side of the above equation. It would

yield the following one:

πi(z1
i )+ ∑

y−i 6=0,y1
−i

δi(z1
i ,y−i) ·P−i(y−i|z1

i ,z
l
−i) =−δi(z1

i ,y
1
−i) ·P−i(y1

−i|z1
i ,z

l
−i), ∀l ≤ 2N−1−1. (20)

Suppose the terms on the right-hand side are known. Equation system (20) then consists of (2N−1− 1)

equations and (2N−1−1) unknowns (i.e., πi(z1
i ) and δi(z1

i ,y−i) ∀y−i 6= 0,y1
−i). Given the linear indepen-

dence condition by Assumption 4(b), the rank condition is satisfied. Therefore, all payoffs πi(z1
i ) and

δi(zi,Y−i 6= y1
−i) could be written as linear transformations of the strategic effect of the action profile y1

−i,

denoted by δi(z1
i ,y1
−i).

Next, consider the inverted choice probability with the random variables Z−i as the arguments:

πi(z1
i )+ ∑

y−i 6=0
δi(z1

i ,y−i)P−i(y−i|z1
i ,Z−i) = Fi

[
Pi(1|z1

i ,Z−i)
]
. (21)

Since all payoffs are linear transformations of δi(z1
i ,y1
−i), Equation (21) is equivalent to:

T (Z−i) ·δi(z1
i ,y

1
−i) = Fi

[
Pi(1|z1

i ,Z−i)
]
, (22)

where T (Z−i) represents the linear transformation that has been identified. Equation (22) would iden-

tify the sign of δi(z1
i ,y1
−i). In addition, Assumption 3(b) normalizes the scale of this term to be 1; it

consequently identifies the value of δi(z1
i ,y1
−i). As a consequence, all payoffs πi(z1

i ) and δi(z1
i ,Y−i) are

identified. Given the identification of these payoffs, Equation (21) implies that the variation of Z−i would

identify the value of Fi(p) ∀p ∈ Pi(zi). This completes the proof.

Proof of Proposition 3: This part proves the result in games with N > 2. The result when N = 2 is de-

scribed in Subsection 4.1. Consider any 2N−1 realizations of Z−i such that Pi(Yi|z1
i ,zl
−i)=Pi(Yi|z1

i ,zl′
−i) ∀l 6=

l′. For these realizations, Equation (13) turns to

∆i(z1
i ) · P̃−i(z1

i ,z
1:2N−1

−i ) = F̃i(z1
i ,z

1:2N−1

−i ) = 0. (23)
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Note that Bi(·) is replaced by P−i(·) when Zi = z1
i , due to the local unbiased belief condition by Assump-

tion 6. F̃i(z1
i ,z1:2N−1

−i ) = 0 is due to the condition of equal CCPs. In this binary choice game, ∆i(z1
i ) is

a 1× (2N−1− 1) vector who has at least two non-zero elements (i.e., each of other players will have an

impact on player i’s payoff). Therefore, Equation (23) implies that the matrix P̃−i(z1
i ,z1:2N−1

−i ) has a rank

at most 2N−1−2. It corresponds to the result in Proposition 3(b) and completes the proof.

Proof of Proposition 4: Under Assumption 7, for a fixed Zi, Equation (14) implies that the strategic effect

is point identified as:

∆i(Zi) = F̃i(Zi,z1:2N−1

−i ) · P̃−1
−i (Zi,z1:2N−1

−i ).

On the right-hand side of this equation, player i’s belief Bi(·) is replaced by other players’ CCPs P−i(·)

when Z−i = zl
i ∀l ≤ 2N−1, due to Assumption 7. The matrix P̃−i(·) is invertible given the linear indepen-

dence condition by Assumption 4(b). Moreover, the inverted choice probability function Fi(·) is identified

in Proposition 2. Consequently, all terms on the right-hand side are known and the strategic effect ∆i(Zi)

is identified.

Given the identification of δi(·), the base return πi(Zi) for any value of Zi can be identified as:

πi(Zi) = Fi
[
Pi(Yi = 1|Zi,z1

−i)
]
− ∑

y−i 6=0
δi(Zi,y−i) ·P−i(y−i|Zi,z1

−i).

For values of (Zi,Z−i) where player i is allowed to have biased beliefs, her belief function must satisfy

the following inverted choice probability equation:

πi(Zi)+ ∑
y−i 6=0

δi(Zi,y−i) ·Bi(y−i|Zi,Z−i) = Fi
[
Pi(1|Zi,Z−i)

]
.

Given the identification of πi(·), δi(·), and Fi(·), the above equation implies that the (2N−1−1)×1 vector

of player i’s belief Bi(Zi,Z−i) is identified on a hyperplane with a dimension of 2N−1−2. In games with

N = 2 players, the belief vector turns to be a scalar and is point identified. This completes the proof.

Proof of Proposition 1’: Consider Equation (18) in the proof of Proposition 1. In games with K > 1,

F̃i(z1
i ,z

1(1:(K+1)N−1)
−i ) is a K×

(
(K + 1)N−1− 1

)
matrix. This matrix has a rank of K as implied by As-

sumption 4’(b). Therefore, when N = 2, Equation (18) implies that P̃−1
−i (z

1
i ,z

1(1:K+1)
−i ) · P̃−i(z1

i ,z
1(2:K+2)
−i )−
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P̃−1
−i (z

2
i ,z

2(1:K+1)
−i ) · P̃−i(z2

i ,z
2(2:K+2)
−i ) = 0. It yields Proposition 1’(a).

In games with N > 2 players, Equation (18) implies that any K rows of the matrix P̃−1
−i (z

1
i ,z

1(1:(K+1)N−1)
−i )·

P̃−i(z1
i ,z

1(2:(K+1)N−1+1)
−i )− P̃−1

−i (z
2
i ,z

2(1:(K+1)N−1)
−i ) · P̃−i(z2

i ,z
2(2:(K+1)N−1+1)
−i ) can be written as linear com-

binations of other (K + 1)N−1− 1−K rows. Therefore, the above matrix has a rank of at most (K +

1)N−1−1−K. This is the result in Proposition 1’(b) and completes the proof.

Proof of Proposition 2’: Without loss of generality, consider that action 0 is directly connected with ac-

tion 1 at Zi = z1
i . Therefore, Pi(Yi = 0|z1

i ,z−i) = Pi(Yi = 1|z1
i ,z−i) for some realization Z−i = z−i. More-

over, given Assumption 4’, there exist infinite realizations of Z−i that equate these two actions’ CCPs.

Consider (K +1)N−1−1 such realizations, denoted by z1
−i to z(K+1)N−1−1

−i . Under Assumption 6’(a) such

that player i has unbiased beliefs when Zi = z1
i , the above realizations imply the following equation sys-

tem:

πi(z1
i ,Yi = 1)+ ∑

y−i 6=0
δi(z1

i ,Yi = 1,y−i)P−i(y−i|z1
i ,z

l
−i) = EUi(z1

i ,z
l
−i,Yi = 0) = 0, ∀l ≤ (K +1)N−1−1.

(24)

The above system has the same mathematical structure as Equation (19) in the proof of Proposition 2.

Therefore, the same argument in binary choice games trivially applies, and πi(zi,Yi = 1) and δi(z1
i ,Yi =

1,y−i) are identified ∀y−i 6= 0. Given Assumption 6’(b), each action k is either directly or indirectly

connected to action 1 at Zi = z1
i . Through these connections and by the same argument, πi(zi,Yi = k) and

δi(z1
i ,Yi = k,y−i) are identified for any k.

Finally, note that Assumption 6’(a) implies the following:

Πi(z1
i )+∆i(z1

i ) ·P−i(z1
i ,Z−i) = Fi

[
Pi(z1

i ,Z−i)
]
.

Given the identification of Πi(z1
i ) and ∆i(z1

i ) and with the variation of Z−i, the above equation identifies

the inverted choice probability Fi(p) ∀p ∈ Pi(z1
i ). It completes the proof.

Proof of Proposition 3’: Consider any (K+1)N−1 realizations of Z−i such that Pi(z1
i ,zl
−i)=Pi(z1

i ,zl′
−i) ∀l 6=

l′. For these realizations, Equation (13) turns to

∆i(z1
i ) · P̃−i(z1

i ,z
1:(K+1)N−1

−i ) = F̃i(z1
i ,z

1:(K+1)N−1

−i ) = 0. (25)
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Note that Bi(·) is replaced by P−i(·) when Zi = z1
i due to Assumption 6’(a). F̃i(z1

i ,z
1:(K+1)N−1

−i ) = 0 is

due to the condition of equal CCPs such that Pi(z1
i ,zl
−i) = Pi(z1

i ,zl′
−i) ∀l 6= l′. In this multinomial choice

game, ∆i(z1
i ) is a K×

(
(K + 1)N−1− 1

)
matrix with rank K (see the main text for the proof of full rank

of ∆i(·)). Therefore, when N = 2, Equation (25) implies that P̃−i(z1
i ,z

1:K+1
−i ) = 0, which corresponds to

Proposition 3’(a). When N > 2, Equation (25) implies that the matrix P̃−i(z1
i ,z

1:(K+1)N−1

−i ) has a rank of at

most (K +1)N−1−1−K, which corresponds to Proposition 3’(b). It completes the proof.

Proof of Proposition 4’: Under Assumption 7’, for a fixed Zi, Equation (14) implies that the strategic

effect is point identified as:

∆i(Zi) = F̃i(Zi,z
1:(K+1)N−1

−i ) · P̃−1
−i (Zi,z

1:(K+1)N−1

−i ).

On the right-hand side of this equation, player i’s belief Bi(·) is replaced by other players’ CCPs P−i(·)

when Z−i = zl
−i ∀l≤ (K+1)N−1 due to Assumption 7’. Moreover, the inverted choice probability function

Fi(·) is identified in Proposition 2’. Consequently, all terms on the right-hand side are known and the

strategic effect ∆i(Zi) is identified.

Given the identification of ∆i(·), the vector of base returns Πi(Zi) is identified as:

Πi(Zi) = Fi
[
Pi(Zi,z1

−i)
]
−∆i(Zi) ·P−i(Zi,z1

−i).

For values of (Zi,Z−i) where player i is allowed to have biased beliefs, her belief function must satisfy

the following inverted choice probability equation:

Πi(Zi)+∆i(Zi) ·Bi(Zi,Z−i) = Fi
[
Pi(Zi,Z−i)

]
.

The above equation contains K restrictions. Note that Πi(·), ∆i(·), and Fi(·) have been identified. More-

over, the rank of ∆i(·) is K. Therefore, the above equation system implies that the
(
(K +1)N−1−1

)
×1

vector of player i’s belief Bi(Zi,Z−i) is identified on a hyperplane with a dimension of (K+1)N−1−K−1.

In games with N = 2 players, the belief vector has a dimension of K and is therefore point identified. This

completes the proof.
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Micro-Foundation of the Belief Function: First, consider the case that player i correctly anticipates

that all other players’ behaviors are independent conditional on (X,Zi,Z−i). Let σ
Bi
j (X,Zi,Z−i,ε j) :

R
Lx+N·Lz+K+1 → {0,1, · · · ,K} denote player i’s belief about the strategy function that will be used by

player j. In particular, given (X,Zi,Z−i,ε j), function σ
Bi
j (·) generates the realization of Yj that player i

believes player j will choose. Due to simultaneity and incomplete information, player i’s actual strategy

function σi(·), actual choice Yi, and private information εi, are unobserved by player j. Consequently, none

of these variables has an impact on player j’s behaviors and they are excluded from player i’s believed

strategy function σ
Bi
j (·). In addition, since player i does not observe ε j, she needs to integrate her believed

strategy function over player j’s private information to obtain an estimate of player j’s CCP. Specifically,

B j
i (Yj = y j|X,Zi,Z−i) =

∫
1
[
σ

Bi
j (X,Zi,Z−i,ε j) = y j

]
dΓ j,X(ε j). Moreover, because player i correctly

anticipates that all other players’ behaviors are conditionally independent, her belief about other players’

CCPs is represented by Bi(Y−i|X,Zi,Z−i) = ∏
N
j 6=i B j

i (Y j|X,Zi,Z−i).

A slight modification of the above structure could allow player i to incorrectly believe that other play-

ers’ behaviors are conditionally correlated. In particular, let σ
Bi
−i(X,Zi,Z−i,ε−i) :RLx+N·Lz+(N−1)·(K+1)→

{0,1 · · · ,K}N−1 denote player i’s believed strategy function that will be used by all other players. Specif-

ically, given (X,Zi,Z−i,ε−i), function σ
Bi
−i(·) generates the realization of Y−i that player i believes other

players will choose. Importantly, this believed strategy function allows arbitrary correlation among the

actions chosen by all players other than i. Again, σ
Bi
−i(·) has to be integrated to form player i’s belief

function Bi(·). For instance, Bi(Y−i = y−i|X,Zi,Z−i) =
∫
1[σBi
−i(X,Zi,Z−i,ε−i) = y−i]dΓ−i,X(ε−i). Note

that since I impose no restrictions on σ
Bi
−i(·), the above micro-foundation is consistent with and nests many

concepts other than the Bayesian Nash Equilibrium, for instance, the rationalizability proposed by Bern-

heim (1984) and Pearce (1984). Finally, by construction, Bi(·) is a nonparametric function without any

restrictions except that it is a valid probability distribution.

Testable Restriction of the Equilibrium Assumption when ∂Pi(Zi,Z−i)
∂Z′−i

Is Rank-Deficient: The rest of this

Appendix derives an testable implication of the equilibrium assumption in multinomial choice games, but

without Assumption 4’(b). Specifically, it is a restriction of the equilibrium condition when the matrix
∂Pi(Zi,Z−i)

∂Z′−i
has less than full rank. In the rest of this Appendix, Assumption 4’ is replaced by the following

Assumption 4’’.
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Assumption 4’’. (a) Assumption 4 holds.

(b) For each player i, the K×(N−1)Lz matrix ∂Pi(Zi,Z−i)
∂Z′−i

has less than full rank. Moreover, (N−1)Lz≥K.

Assumption 4’’(b) considers the same order condition (i.e., (N− 1)Lz ≥ K) as in Assumption 4’(b)

but focuses on the case when ∂Pi(Zi,Z−i)
∂Z′−i

has less than full rank. Together with Proposition 1’, the results

in this Appendix indicate that the equilibrium restriction can be tested in any games as long as researchers

observe sufficiently many variables as each player’s specific payoff shifter.

Since the rank of ∂Pi(Zi,Z−i)
∂Z′−i

is less than K, there are infinite non-zero vectors of change of Z−i—

denoted by dZ−i—such that ∂Pi(Zi,Z−i)
∂Z′−i

·dZ−i = 0. Equivalently, there are infinite pairs of zl
−i and zl′

−i such

that Pi(Zi,zl
−i) = Pi(Zi,zl′

−i). Note that this condition of equal CCPs considers the variation of Z−i but

with a fixed value of Zi. Similar to the proof in Proposition 3’, we can consider any (K+1)N−1 realizations

of Z−i such that the above equal CCPs condition holds. It then yields the following equation, similar as

Equation (25).

∆i(Zi) · P̃i(Zi,z
1:(K+1)N−1

−i ) = 0. (26)

Note that P̃i(Zi,z
1:(K+1)N−1

−i ) is a
(
(K +1)N−1−1

)
×
(
(K +1)N−1−1

)
matrix. Therefore, Equation (26)

implies that rank[P̃i(Zi,z
1:(K+1)N−1

−i )]≤ (K +1)N−1−1− rank[∆i(Zi)].

The next step is to determine the rank of ∆i(·). Note that in the main text, ∆i(·) has full rank given

Assumption 4’(b). In contrast, it is likely to be rank deficient given Assumption 4’’(b). By the chain rule,

we have the following relationship:

∂Pi(Zi,Z−i)

∂Z′−i
=

∂Gi[EUi(Zi,Z−i)]

∂EUi(Zi,Z−i)′
·∆i(Zi) ·

∂Bi(Zi,Z−i)

∂Z′−i
. (27)

Equation (27) identifies a lower bound of the rank of ∆i(·). For instance, rank[∆i(Zi)]≥ rank[∂Pi(Zi,Z−i)
∂Z′−i

].

Together with the result in Equation (26), it implies the following Proposition 1’’.

Proposition 1’’. Suppose that Assumptions 1–3 and Assumption 4’’ hold. Consider any (K + 1)N−1

realizations of Z−i, denoted by zl
−i ∀l ≤ (K + 1)N−1, such that Pi(Zi,zl

−i) = Pi(Zi,zl′
−i) ∀l 6= l′. Then

the assumption that player i has unbiased/equilibrium beliefs implies the following testable restriction for
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each Zi:

rank[P̃i(Zi,z
1:(K+1)N−1

−i )]≤ (K +1)N−1−1− rank[
∂Pi(Zi,Z−i)

∂Z′−i
].

Note that since ∂Pi(Zi,Z−i)
∂Z′−i

contains non-zero elements, its rank is at least 1. Therefore, the restriction

by Proposition 1’’ is non-trivial. In fact, the region that satisfies such a restriction has a measure of zero.
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