
Raykov, Radoslav; Silva-Buston, Consuelo

Working Paper

Asymmetric systemic risk

Bank of Canada Staff Working Paper, No. 2022-19

Provided in Cooperation with:
Bank of Canada, Ottawa

Suggested Citation: Raykov, Radoslav; Silva-Buston, Consuelo (2022) : Asymmetric systemic risk, Bank
of Canada Staff Working Paper, No. 2022-19, Bank of Canada, Ottawa,
https://doi.org/10.34989/swp-2022-19

This Version is available at:
https://hdl.handle.net/10419/265213

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.34989/swp-2022-19%0A
https://hdl.handle.net/10419/265213
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Bank of Canada staff working papers provide a forum for staff to publish work-in-progress research independently 
from the Bank’s Governing Council. This research may support or challenge prevailing policy orthodoxy. Therefore, the 
views expressed in this paper are solely those of the authors and may differ from official Bank of Canada views. No 
responsibility for them should be attributed to the Bank.  
   

DOI: https://doi.org/10.34989/swp-2022-19 | ISSN 1701-9397 ©2022 Bank of Canada 

Staff Working Paper/Document de travail du personnel—2022-19 

 

Last updated: May 2, 2022 

Asymmetric Systemic Risk 
by Radoslav Raykov1 and Consuelo Silva-Buston2 

 

 

 

 

 

 
 

 

 

 

 

 

1 Financial Stability Department 
  Bank of Canada 
 
2 School of Management 
  Pontificia Universidad Católica de Chile 
 
rraykov@bankofcanada.ca, consuelosilva@uc.cl  

 

 

mailto:rraykov@bankofcanada.ca
mailto:consuelosilva@uc.cl


i 

Acknowledgements 
 
The authors would like to thank Charlie Kahn, Haelim Anderson, Carlos Madeira, and seminar 
participants in workshops at the Bank of Canada, the Board of Governors of the Federal Reserve, 
and the Comisión de Mercado Financiero for useful comments. Alex Chaudhry, Juan Ortega, 
Lavender Liu, and James Cabral provided excellent research assistance.  



ii 

Abstract 
 
Bank regulation is based on the premise that risks spill over more easily from large banks to 
the banking system than vice versa. On the contrary, we document that risk transmission is 
stronger in the system-to-bank direction. We term this  asymmetric systemic risk, measure it 
with net exposure metrics, and explore the consequences and channels behind it. We show 
that banks with positive net exposure to the system had higher default risk during the 2008 
crisis, and that bank size and trading activities were the main determinants of this net exposure, 
which increased default risk through trading income volatility and overall profit volatility. We 
argue that the current bank supervision objectives can be achieved more efficiently if regulation 
focuses on reducing such net exposures, rather than buffering the default risks arising from 
them. 
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“...Supervision of large financial institutions is designed to: (i) enhance the resiliency

of these firms, in order to lower probability of failure or inability to serve as a financial

intermediary, and (ii) to reduce the impact on the financial system and the broader

economy in the event of a firm’s failure or material weakness.” Board of Governors of

the Federal Reserve System (2020)

1 Introduction

Large US banks are regulated with the explicit intention to limit their risk impact on the

rest of the banking system. This impact is often termed systemic risk contribution (Adrian

and Brunnermeier, 2016), reflecting the systemic risk transmission from the bank to the

system. Regulations implemented through the Dodd-Frank Act and the Basel III standard

explicitly make large banks face more complex regulations, meet higher capital requirements,

and face more regulatory scrutiny than smaller banks to reduce this transmission.1 At the

same time, interconnectedness in the modern financial system also exposes large banks to

shocks emanating from the rest of the banking system, creating systemic risk exposures in the

system-to-bank direction. This paper investigates what these directional risk linkages mean

when interconnectedness is stronger in one direction than in the other and what the effect

of this asymmetry is on bank soundness. Furthermore, we explore the mechanisms behind

this relation. We hypothesize that banks with different business models can undertake

activities that affect their systemic contributions and exposures differently, thereby creating

asymmetric (directional) linkages with the rest of the system that matter for individual bank

stability.

The recent literature has developed systemic exposure and contribution metrics, permit-

ting researchers to quantify the flow of systemic risk between the bank and the system in

each direction. For example, one common metric of systemic risk contribution is Adrian and

Brunnermeier’s ∆CoVaR, while Acharya et al.’s (2017) marginal expected shortfall (MES)

and Adrian and Brunnermeier’s Exposure ∆CoVaR are examples of metrics of systemic risk

exposure. However, the literature has not yet considered what the directionality of such sys-

temic risk linkages implies if the linkage in one direction is stronger than in the other one. To

find this out, we compare banks’ systemic exposures and contributions with a net exposure

1The Dodd-Frank Act of 2012 strengthened existing measures and introduced new ones aimed at large
banks, such as countercyclical capital buffers, DSIB capital surcharges, and annual stress tests, in order to
increase solvency and prevent default risks from spilling over to the rest of the system.
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metric, and study the effect of asymmetric systemic risk transmission on bank stability.

The importance of examining banks’ systemic exposures versus contributions can be

illustrated with simple, but telling facts. Based on how large US banks are regulated,

one would expect that their systemic risk contributions ought to exceed their systemic risk

exposures, i.e., that their risks ought to spill over to other banks more easily rather than

vice versa. More importantly, one would also expect that risk externalities generated by

important banks are more detrimental to financial stability than their exposure to such

risks. Interestingly, however, we observe this is not the case. Figure 1 shows the average

exposure and contribution for the 200 largest publicly traded US bank holding companies

around the 2007–09 financial crisis.2 The figure shows that the average systemic exposure

(the blue line) is consistently higher than the average contribution (the red line), especially

during the crisis. In addition, Figures 2 and 3 reveal that banks that experienced high

insolvency risk during the crisis3 (colored in red) had consistently larger exposures than

contributions, therefore appearing to the right of each chart’s 45º line.

Motivated by these facts, we hypothesize systemic risk directionality matters for banks’

individual stability. The variety of activities that banks can perform is likely to impact a

bank’s contribution differently compared to its exposure, and more importantly, activities

affecting exposure versus contribution may have opposite effects on bank soundness, some-

times offsetting each other. For instance, significant involvement in traditional lending (e.g.,

real estate, household, and C&I loans), which is known to increase a bank’s contribution

to systemic risk, may still benefit bank stability due to a better risk-return trade-off than

alternative non-traditional activities, which are likely to increase a bank’s exposure through

counterparty risk. In other words, banks with high systemic exposure may not necessarily

face higher insolvency risk if this exposure is accompanied by a high systemic contribu-

tion driven by activities that improve bank soundness. The balance between these types of

activities strongly depends on the bank’s business model (traditional versus modern).

We confirm our hypothesis and document that this asymmetry matters in practice. We

use a variety of default risk measures (distance to default, Z-scores, and an indicator for

insolvency based on banks’ default or cease-and-desist orders) to establish that the net

2Systemic risk measures in this figure are computed using Adrian and Brunnermeier’s (2016) ∆CoVaR
and Exposure ∆CoVaR, defined rigorously in Section 3.

3These are banks that failed, received an enforcement action by the FDIC, or were acquired to prevent
failure.

2



exposure of large banks before the global financial crisis meaningfully correlates with their

default risk during the crisis. This effect is economically significant. For example, one

standard deviation increase in net exposure deteriorates a bank’s distance to default by

0.11 standard deviations, its log(Z-Score) by 0.34 standard deviations, and increases its

probability of insolvency by 3 percentage points.

Furthermore, we examine the channels behind this relation. To this end, we decompose

a bank’s net exposure into two components: (1) the net simulated shock to the bank, that

is, the difference between the losses to be transmitted to the bank when the system is in

distress and the losses to be transmitted to the system when the bank is in distress, and

(2) the net transmission factor, that is, the difference between the fraction of the simulated

shock transmitted from the system to the bank and the fraction transmitted from the bank

to the system. We show that the effect on bank default risk is driven by the net transmission

factor rather than the net losses, and that the link between this factor and insolvency runs

through asset risk, increasing the volatility of trading income and profits.

Next, we analyze the balance sheet determinants of a bank’s net exposure. Interestingly,

we find that some variables that have been identified as a source of systemic risk (such as

some non-interest income activities and the share of real estate loans) do not matter much

for banks’ net exposures, whereas size, which has also been identified as a source of systemic

risk, shows to be positively related to it. We also find that the use of credit default swaps and

trading activities increase a bank’s net exposure. However, this exposure decreases if banks

offload more risk than they gain by maintaining larger positions on net protection bought

on credit derivatives. The analysis suggests that the effect of size, trading activities, and the

use of credit default swaps on net exposure is due to their impact on the net transmission

factor, increasing the net fraction of losses transmitted in the system-to-bank direction.

Taken together, the evidence in this paper suggests high-net exposure banks engaged

in activities that increased systemic exposure, such as derivatives trading, leaving banks

exposed to the soundness of other counterparties. With the extensive involvement in these

activities, banks suffered from increased income volatility during the crisis, increasing default

risk. Trading activities were carried out at the cost of performing other activities that would

have increased banks’ systemic contribution but would have contained default risk, such as

traditional lending activities.

Our findings offer two important policy implications. First, interconnectedness in the
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financial system is directional, and future bank regulation will increasingly need to reflect

this. Regulation should focus on containing and imposing buffers on high-net exposure banks,

rather than just large banks or banks displaying high systemic contributions. Second, de-

fault risk increases as the net transmission factor increases, which is positively related to size

and the use of credit derivatives. We argue that current bank supervision objectives can be

achieved more efficiently if regulation focuses on reducing such net exposures, rather than

buffering the default risks arising from them. Therefore, regulators should focus on mon-

itoring banks’ size and further reducing banks’ interconnectedness through the derivatives

market.

Our paper contributes to three distinct strands of literature. First, it contributes to

the literature studying systemic risk measurement. Most of these papers have focused on

measuring systemic risk exposure. Acharya et al. (2017) propose to measure systemic risk

through the marginal expected shortfall (MES), which is the expected loss of a financial in-

stitution conditional on the banking sector performing poorly. The SRISK (Brownlees and

Engle, 2017) calculates the expected capital shortfall of a financial institution conditional

on a severe market decline. Finally, van Oordt and Zhou’s (2019a) tail beta is an exposure

metric estimating the sensitivity of a bank’s stock return to extremely adverse shocks in the

financial system based on a few tail observations. There are also a few measures proposed

to capture a bank’s contribution to systemic risk. Huang, Zhou, and Zhu (2011) combine

default probabilities from CDS with stock returns correlations to calculate a Distressed In-

surance Premium (DIP), which is the insurance premium required to cover distressed losses

in the banking system. Thus, a bank’s systemic contribution corresponds to its marginal

contribution to the hypothetical distress insurance premium of the whole banking system.

Some measures are defined to capture both a bank’s systemic risk exposure and its con-

tribution. Billio et al. (2012) characterize systemic risk by studying comovement through

principal component analysis, thus capturing both a bank’s contribution and its exposure.

Diebold and Yilmaz (2014) develop directional connectedness measures based on variance de-

compositions. Adrian and Brunnermeier (2016) also propose a measure that can be adapted

to measure systemic risk in both directions. The Exposure ∆CoVaR and ∆CoVaR estimate

the change in value at risk of a bank (or the banking sector, respectively) conditional on

the banking sector (or the bank) experiencing a tail event. The results in our paper suggest

that one must distinguish between systemic risk measures of exposure, contribution, and the
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difference between the two, as net exposure is what matters for individual bank stability.

A few papers have distinguished between banks’ systemic exposure and contribution

when studying aspects of systemic risk. For instance, Pagano and Sedunov (2016) investigate

systemic risk exposure and sovereign debt; Bostandzic and Weiss (2018) compare systemic

risk contributions and exposures of US versus European banks; and Sedunov (2016) studies

the determinants of banks’ exposure and performance for high-exposure banks during the

crisis. However, despite distinguishing exposures from contributions, these papers neither

measure them in comparable units nor study the implications of their difference and, hence,

of the asymmetry in the directionality of systemic risk. One exception is Diebold and Yilmaz

(2014), who measure the net systemic contribution for US financial firms. They perform a

descriptive univariate analysis of the net contribution of six troubled banks during the global

financial crisis and find inconclusive results about the relationship between banks’ solvency

and net contribution. To the best of our knowledge, ours is the first paper to comprehensively

study the relation between net systemic risk and bank soundness.

Second, our paper also contributes to the literature studying the relationship between

banks’ default risk and pre-crisis systemic risk. These papers have found mixed or insignifi-

cant results about this relationship when using a bank’s exposure (e.g., Acharya et al., 2017;

Fahlenbrach et al., 2012) or contribution (e.g., Sedunov, 2016). We extend this literature by

showing that a bank’s net exposure predicts the bank’s insolvency during the crisis better

than its pre-crisis exposure or contribution.

Third, our paper also relates to the extant work on the determinants of systemic risk.

This literature has focused on the effects of bank characteristics (e.g., Davydov et al., 2021;

Brunnermeier et al., 2020; Bostandzic and Weiss, 2018; Laeven et al., 2016), banking sector

competition levels (e.g., Anginer et al., 2014; Silva-Buston, 2019), and country-level char-

acteristics (De Jonghe et al., 2015; Anginer et al., 2014). Our study extends this work by

taking into account the directionality of systemic risk when studying its determinants and

thus, examining the determinants of a bank’s net exposure. Furthermore, we also investigate

the determinants of its components, of the net transmission factor, and of the net losses.

The rest of the paper is organized as follows. Section 2 describes some stylized facts.

Section 3 describes the data and our risk measures. Section 4 shows the empirical strategy

and lays out results from the regression analysis. Section 5 concludes.
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2 Stylized Facts

Based on how large US banks are regulated, one would expect that their systemic contribu-

tion is larger and more important for systemic stability than the exposure they face from 

remaining banks. The Federal Reserve explicitly states that the supervision of large finan-

cial institutions has two goals: to “enhance the resiliency of these firms” and “reduce the 

impact on the financial system and the broader economy in the event of a firm’s failure or 

material weakness” (Board of Governors of the Federal Reserve System, 2020). In line with 

this, the Dodd-Frank Act and Basel III regulations introduced additional capital surcharges 

for globally systemically important banks, a new capital conservation buffer (CCB), coun-

tercyclical capital buffers (CCyB), and annual stress testing exercises (DFAST and CCAR) 

targeting banks and bank holding companies with assets above $ 1 billion (Haubrich, 2020). 

The intention of these regulations is to shield the system from these large, “too big to fail” 

banks by making them more resilient.

It is therefore surprising to find that large US banks consistently face larger exposures 

from the rest of the system than they pose to it, resulting in positive net exposures. Figure 

1 shows the average exposure and contribution of the top 200 US bank holding companies 

around the 2007–08 financial crisis, as measured by Adrian and Brunnermeier’s (2016) Ex-

posure ∆CoVaR and ∆CoVaR.4 As the figure shows, large banks’ exposure (the blue line) 

is consistently higher than their systemic risk contribution (the red line).5 This is especially 

pronounced from 2007:Q3 on. Thus, the notion that large banks pose higher systemic risk 

than they face is not borne out by the data.

Moreover, banks with high net exposures appear to systematically differ from the rest 

on a number of dimensions. One such dimension is size. The left and right panels of Figure 

2 plot contribution versus exposure for the 20 smallest and 20 largest banks in our sample, 

with the diagonal line indicating the locus where contribution equals exposure. While the 

small banks are evenly split by the diagonal in a 10:10 ratio, 17 out of the 20 top banks 

appear below the diagonal with a positive net exposure. As evidenced by the dispersion of 

points in the figure, contribution alone or exposure alone are not very good correlates of 

bank size; net exposure, however, is.
4All systemic risk measures are defined and discussed in Section 3.
5A similar pattern is found in Diebold and Yilmaz (2014) when measuring banks’ exposure, contribution 

and net contribution based on variance decompositions.
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Figure 3 shows that banks with high net exposure performed worse during the crisis.

Figure 3’s two panels show contribution versus exposure for the 20 safest and 20 riskiest

banks in our sample, ranked according to their distance to default. While the safe banks in

the left panel overwhelmingly feature negative net exposure, the risky banks to the right are

mostly to the right of the main diagonal, featuring positive net exposure. In both Figures 2

and 3, banks with high insolvency risk6 (colored in red) appear to the right of the diagonal

line. However, high contribution alone appears uncorrelated with default risk, as some of

the safest among the top 200 banks feature contributions higher than those of the riskier

ones. Net exposure, by contrast, correlates well with both size and risk.

These preliminary facts highlight a source of heterogeneity in the banking system that

could be important for better understanding systemic risk. The rest of the paper explores

the reasons behind it and its implications.

3 Data and Risk Measures

To measure both systemic risk exposures and contributions, we rely on the observation of

Adrian and Brunnermeier (2016) that one can compute both the comovement of an individ-

ual bank against a system-wide shock as well as the comovement of the system in response to

a bank-specific shock using different conditioning on the same data. The interchangeability

of the individual bank and the system in the ∆CoVaR and Exposure ∆CoVaR calculations

ensures these two systemic risk metrics measure systemic risk contribution and exposure in

a methodologically consistent way. We extend this approach by creating consistent expo-

sure and contribution risk metrics from other market-based systemic and systematic risk

measures, such as Acharya et al.’s (2017) MES and van Oordt and Zhou’s (2019a) tail beta.

To compute systemic risk measures and study their relationship to default risk and bank-

specific covariates, we combine data from several sources. We obtain quarterly bank-level

data from the Federal Reserve’s Form FR-Y9C, containing the balance sheets of US bank

holding companies. Since systemic risk asymmetries are surprising only for large banks, we

focus our analysis on the top 200 US commercial bank holding companies as of Q4:2006.

We combine this data with daily share-price information from Bloomberg. This database

provides daily stock price information and stock market indices for listed companies, which

6See Section 3.3 for how we define banks with high insolvency risk.
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are some of the inputs for the calculation of the individual and systemic risk measures.

To match the frequency of the balance sheets, our bank-level risk measures are computed

quarterly from the daily Bloomberg data over the relevant time window for each measure.

We also compute discrete default risk measures from FDIC enforcement actions, known as

cease-and-desist orders, sourced from the FDIC’s enforcement decisions and orders (ED&O)

database, as well as from public information on bank defaults (see the Insolvency dummy

subsection below). To control for government aid received, we identify banks aided by

the Troubled Assets Relief Program (TARP) using the TARP recipient list from the US

Department of the Treasury. The latter two discrete measures are time-invariant.

Following Bertrand et al. (2004), we collapse the time series information in the data and

convert it to a panel with two periods: pre-crisis and crisis, containing the period’s average

for each bank.7 As in Fahlenbrach et al. (2012), we define the crisis as Q3:2007–Q4:2008, and

the pre-crisis period, symmetrically, as Q1:2006–Q2:2007, including the endpoints. However,

our results are robust to the choice of period length.8

The data we thus assemble, therefore, contains a cross-section of the top 200 US bank

holding companies observed during the crisis, with lagged controls from the pre-crisis period.9

The summary statistics for the sample are provided in Table 1.

3.1 Systemic risk measures

3.1.1 ∆CoVaR and exposure ∆CoVaR

As our main systemic risk measures, we adopt Adrian and Brunnermeier’s (2016) ∆CoVaR

and Exposure ∆CoVaR. These two measures evaluate the extent to which a shock to a

bank’s return (system’s return, respectively) moves the system’s (bank’s) return. The shock

is simulated as a drop from the median to the bottom q% quantile of the relevant return

distribution. The regular (i.e., contribution) ∆CoVaR shocks the bank’s return to determine

7Bertrand et al. (2002) show that collapsing the times series information into pre-crisis and crisis periods
corrects standard errors that are otherwise inconsistent when running difference in difference estimations
with serially correlated outcomes.

8We also explore other definitions. For example, Cornett et al. (2011) define the crisis as Q3:2007–
Q2:2009, and Huang et al. (2012), as Q3:2007–Q4:2009. Our results remain qualitatively very similar using
these alternative periodizations.

9Not every bank has a valid value for every balance sheet variable, thus some robustness regressions
feature slightly fewer than 200 banks. For our baseline regressions, we select the sample as the top 200 US
BHCs with nonmissing CoVaR and Exposure CoVaR as of the last quarter before the crisis (2007:Q2), so
these regressions always have 200 banks.
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its effect on the system, while Exposure CoVaR shocks the financial system’s return to

determine the effect on the bank.

Adrian and Brunnermeier (2016) define a bank i’s contribution ∆CoVaRC as follows. If

q is a specific quantile of the stock return distribution (e.g. q = 5), Ri the stock market

return of financial institution i, and Rs that of the system, then the impact of institution i

on the system equals the change of the system’s value at risk conditional on a shock moving

bank i from its median state to its q-percent quantile. More formally,

∆CoV aRC
i,q = CoV aR

s|Ri=V aRi
q

q − CoV aRs|Ri=V aRi
50

q , (1)

where CoVaR is the value at risk of the system’s return conditional on the state of bank

i (corresponding to the bank’s q-th percentile in the first term and its median state in the

second one).10 Exposure ∆CoVaR, which captures the system’s influence on the bank, is

defined by interchanging the place of the bank and the system in equation (1) to obtain:

∆CoV aRE
i,q = CoV aR

i|Rs=V aRs
q

q − CoV aRi|Rs=V aRs
50

q . (2)

Adrian and Brunnermeier (2016) show that ∆CoVaR and Exposure ∆CoVaR can be equiv-

alently expressed as the product of a risk transmission factor β times a shock to the relevant

entity’s return from the median to the q-th percentile:

∆CoV aRC
i,q = βCi (V aRi

q − V aRi
50) (3)

∆CoV aRE
i,q = βEi (V aRs

q − V aRs
50), (4)

where ∆CoV aRC
i,q and ∆CoV aRE

i,q respectively denote Contribution and Exposure ∆CoVaR

for bank i, calculated at q%; V aRq and V aR50 are the q% and median value at risk, indexed

with i for the individual bank and with s for the system, and the β coefficients capture what

fraction of the simulated shock transmits from the bank to the system (βC) and vice versa

(βE). The CoVaR is the first mainstream, market-based family of measures evaluating the

flow of risk in either direction. This is done in a methodologically consistent way because

the place of the bank and the system is interchangeable in the risk calculation, shocking

10The conditional value at risk for the system, CoV aRs
q, is implicitly defined by the equation

Pr
(
Rs|C(Ri) ≤ CoV aRs|C(Ri)

q

)
= q% , where C(Ri) is some event affecting bank i’s return Ri.

9



each respective entity to make it equally worse off (at its 5% VaR).11 More importantly, the

risk transmission factors β are inherently comparable by design: β’s simply measure the rate

of risk transmission in the relevant direction (system-to-bank and vice versa) completely

independent of the shock component. CoVaR betas thus consistently measure the individual

bank’s and the system’s sensitivity to each other. We follow Adrian and Brunnermeier’s

(2016) approach in estimating equations (3) and (4) with quantile regressions using q set to

5.12 For ease of interpretation, we take the negatives of CoVaR and Exposure CoVaR, so

higher values indicate larger systemic risk.

Table 1 shows that Exposure ∆CoVaR consistently exceeds ∆CoVaR both before and

during the crisis, resulting in a positive Net∆CoVaR (this is also shown graphically in Figure

1). This indicates that as a whole, the large US banks forming our sample were more exposed

to spillovers from the system than vice versa. Before the crisis, the average exposure and

contribution were 0.013 and 0.012, respectively. Both figures increase during the crisis,

rising to 0.044 and 0.027, respectively, and maintaining the positive difference. The standard

deviations of both measures also increase during the crisis, rising from 0.008 and 0.007 before

the crisis (for the exposure and the contribution, respectively), to 0.027 and 0.016 during

the crisis.

3.1.2 Exposure tail beta and contribution tail beta

Systemic risk metrics differ in their ability to capture comovements under extreme stress.

To robustify our analysis, we use the systemic risk measure of van Oordt and Zhou (2019a),

known as tail beta, which captures the sensitivity of a bank’s stock market return to ex-

tremely adverse shocks to the financial system, based on just a few observations. In its

original form, the tail beta is an exposure metric.13 It is based on a regression of bank

returns Ri on system-wide returns Rs, restricted to the q%-tail of the system’s return distri-

11It is reasonable to ask whether the system shock (the 5% VaR of the banking index) is comparable to
the 5% VaR shocks of the individual banks. The summary statistics show no evidence that the two shocks
operate on a different scale, but nonetheless, we explicitly test for this in a series of unreported robustness
tests. In them, we construct the system shock for Exposure CoVaR as the cross-sectional average of the
sampled banks’ individual shocks. This did not change our results, which remained quantitatively and
qualitatively similar.

12Following Adrian and Brunnermeier (2016), we require banks to have at least 260 weeks of equity return
data to be included in the sample, and estimate this model over a long time period, from 1999 to 2016, thus
allowing reasonable inference.

13Hence we superscript it with an “E.”
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bution (Rs < −V aRs
q). This regression can be expressed as:

Ri,t = βET,iRs,t + εi,t for Rs,t < −V aRs
q. (5)

This regression cannot be estimated with OLS due to the low number of tail observations,

and is instead estimated with extreme value theory methods (EVT) as in van Oordt and

Zhou (2019a). These authors show that for a tail of k observations in a moving window

totaling n observations, βET can be estimated as

βET,i = τi(k/n)1/ξs
V aRi

k/n

V aRs
k/n

, (6)

where k/n = q% is the size of the tail, ξs is a tail index estimated separately with the Hill

(1975) EVT estimator, and the q% values at risk for the bank and the system (V aRi
k/n and

V aRs
k/n) are estimated from the lowest k daily returns of the relevant return distribution.

The parameter τ is a measure of the tail dependence between the bank and the market,

defined as

τi(q) = Pr
(
Ri < −V aRi

q | Rs < −V aRs
q

)
, (7)

and is estimated non-parametrically as in Embrechts, De Haan and Huang (2000). The

estimation approach and its applications are developed in van Oordt and Zhou (2016) and

van Oordt and Zhou (2019b), based on EVT methods as in De Haan and Ferreira (2006).

We set the size of the tail at 4% as in van Oordt and Zhou (2016),14 and the estimation

period at two years (about 500 daily observations) following Davydov et al. (2021).15 Based

on the reasoning in van Oordt and Zhou (2019a), we also construct a contribution tail beta

(βCT ), capturing the effect of the bank on the system in the tail regression

Rs,t = βCT,iRi,t + εi,t for Ri,t < −V aRi
q, (8)

14However, our results are robust to tail sizes anywhere from 2.5% to 5%.
15The intention is to provide a time window closer to the one used by ∆CoVaR while still meeting the

minimum sample requirement for EVT estimation.
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restricted to observations when individual bank i’s returns drop within the worst q% of the

return distribution. The contribution tail beta βCT is similarly estimated by EVT as:

βCT,i = τi(k/n)1/ξi
V aRs

k/n

V aRi
k/n

, (9)

where ξi is the tail index of individual bank i’s return distribution, estimated with the Hill

(1975) estimator. For convenience, we transform βET and βCT in log form, denoting them as

Log(βET ) and Log(βCT ), noting that since the estimated βCT is between 0 and 1, its logarithm

is negative. This does not indicate a negative contribution to systemic risk.

Table 1 shows that, in line with our remaining measures, contribution consistently ex-

ceeded exposure both before and during the crisis, resulting in a large positive net beta

averaging at 1.61 before and 1.31 during the crisis. The average log exposure tail beta re-

mained similar before and during the crisis, averaging at 0.33 and 0.22, respectively, with

the change being statistically insignificant. The log contribution tail beta increased from

-1.27 to -1.08. The variance of these measures did not change significantly, since they are

slow-moving by construction. This family of metrics confirms our earlier CoVaR findings.

3.1.3 Exposure MES and contribution MES

Acharya et al.’s (2017) MES (marginal expected shortfall) is a reduced-form exposure metric

aiming to capture the expected capital shortfall of individual bank i, conditional on stress

in the rest of the system. By definition, this is an exposure metric, so we superscript it

as MESE. The MESE for a bank i is constructed quarterly (the standard frequency in the

literature) as the average of i’s daily returns, taken over the days where the remaining banks’

returns are within their worst 5% for each quarter. If Ri,d is the return of bank i on day d,

then this bank’s exposure MES for quarter t is defined as

MESEi,t =
1

|I|
∑
d∈I

Ri,d, where I = {worst 5% of days for the system return Rs,d}, (10)

where Rs,d is the return of the S&P Banking Index. This measure has been shown to be a

powerful tool to identify systemically important banks (Acharya et al., 2017). We create the

contribution version of this metric, MESC , by interchanging the place of the bank versus the

system while conditioning on the stress event. Thus, MESC is the average of the system’s
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returns conditional on bank i experiencing tail returns within their worst 5% for the quarter:

MESCi,t =
1

|I|
∑
d∈I

Rs,d, where I = {worst 5% of days for i’s return Ri,d}. (11)

Since stressed returns are negative, we take the negative values of MESE and MESC for ease

of interpretation. Thus, higher exposure MES values indicate a higher exposure, and higher

contribution MES values indicate a higher impact on the system by bank i.

Consistent with ∆CoVaR and tail beta, Table 1 shows that the exposures of large banks

to shocks from the system exceeded their systemic risk contributions. Table 1 shows that

both the average exposure and contribution MES increase after the crisis, from 0.012 to 0.043

and from 0.006 to 0.039, respectively, with a positive Net MES both before and during the

crisis. The standard deviations of both measures also increase after the crisis, rising from

0.007 to 0.022 and from 0.004 to 0.022.

3.2 Net systemic risk measures

We have hypothesized that banks’ contributions and exposures have offsetting effects on

bank soundness. Hence, a natural metric to capture whether a bank’s linkage to the system

is stronger in the system-to-bank direction is its net exposure (the difference between its

exposure and contribution). Banks with positive net exposures feature a stronger system-

to-bank risk transmission, whereas banks with negative net exposures feature a stronger

bank-to-system transmission. Since we can measure the risk in each direction for each of

the three bidirectional measures ∆CoVaR, βT , or MES discussed above, we define the

corresponding net measure as follows:

Net Measurei,t = MeasureEi,t −MeasureCi,t, (12)

where Measure equals ∆CoVaR, βT , or MES, and the superscripts E and C index the

exposure and contribution version of the metric, respectively.

The three systemic risk measures complement each other by capturing different systemic

risk aspects. For example, ∆CoVaR’s components give a 100% weighting to the bottom q%

quantile; MES, on the contrary, gives equal weight to all quantiles below the q% quantile and

zero weight to remaining quantiles (Hull, 2006); and tail beta uses all observations below
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the q% quantile. Therefore, they produce similar, but not identical results.

Table 2 shows that ∆CoVaR, MES, and tail beta are positively correlated in all of their

versions – exposure, contribution, and net. Being equally weighted below the cutoff, MES

correlates strongly with both tail beta and ∆CoVaR (28%–59% with ∆CoVaR, and 30–38%

with tail beta). Regardless of their different construction, ∆CoVaR and tail beta are also

positively correlated everywhere, only less consistently across different versions (4%–47%).

This is likely because ∆CoVaR focuses solely on the location of the q% quantile, while tail

beta uses information from all observations within the q% tail. However, when applied to

the data, all three measures paint a similar picture; as before, we use Net ∆CoVaR as our

principal measure and the other two for robustness.

Table 3 shows the top 50 banks with the largest net systemic exposure in the pre-crisis

period acording to Net ∆CoVaR. The table reveals the presence of large important banks,

such as Bank of America and Citigroup, as well as banks that later faced insolvency problems,

such as Wachovia, Irwin Financial, and Nexity Financial.

Banks with large net exposures differ systematically from the rest. Table 4 presents the

standardized differences of bank characteristics for banks with above- and below-median

values of Net ∆CoVaR before and during the crisis. High net exposure banks differ from

the rest on a number of dimensions, the most important of which are higher involvement in

trading and the CDS market, combined with high risk on the asset side through the extension

of risky loans.

For instance, Table 4 shows that pre-crisis, banks with high net exposures gave out more

loans relative to assets and generated higher loan loss provisions than the rest, despite being

larger and less leveraged; they also featured different loan portfolio composition. High net

exposure banks also featured a larger involvement in trading activities and CDS markets,

offloading risk via larger net purchases of CDS protection, and lower involvement in mortgage

back securities held for hedging. These differences, taken together, point to a departure from

the traditional business model that generates substantial linkages with the rest of the system

through trading and the CDS market, combined with high risk on the assets side through

the extension of risky loans. We therefore hypothesize, and subsequently verify, that these

banks feature higher net exposures because of undertaking activities that affect exposure

and contribution differently.

Table 1 shows the descriptive statistics for the net exposure measures. Our main net
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measure, Net ∆CoVaR, has an average value of 0.001 before the crisis, which increases to

0.018 after the crisis. The table also shows that there is significant variation in this variable:

the 25th and 75th percentiles, respectively, are -0.003 and 0.006 before the crisis, and 0.009

and 0.027 during the crisis.

3.3 Individual risk metrics

To study the relation between systemic risk asymmetries and bank default risk, we measure

individual bank risk with metrics such as distance to default, accounting Z-scores, and a

dummy variable for insolvent or risky banks.

Distance to default. As a default risk metric, we use the classic distance to default

based on the Merton bond pricing model (Merton, 1974). The Merton model uses two

nonlinear equations to translate the value and volatility of a firm’s equity into a Z-score-like

metric often dubbed distance to default (DD), calculated as:

DD =
ln(V/F ) + (µ− 0.5σ2

V )T

σV
√
T

, (13)

where V is the firm’s total value, F is the face value of the firm’s debt, µ is an estimate

of the expected annual return of the firm’s assets, σ2
V is the variance of firm value, and T

is the forecast horizon, usually taken as 1 year. The main idea behind this calculation is

to subtract the face value of the firm’s debt from an estimate of the firm’s market value

and then divide this difference by an estimate of the firm’s volatility, scaled to the forecast

horizon. The more market value exceeds debt given the volatility, the more stable the firm

is.

Since the volatility of firm value V is unknown, Merton’s (1974) bond pricing model

is usually invoked to represent firm equity as a call option on the underlying firm value

with a strike price equal to the face value of the firm’s debt and a time-to-maturity of T .

Merton’s model links observed firm equity E, the face value of debt F , and firm value V

in a nonlinear equation that can be solved numerically conditional on a few distributional

assumptions, making it possible to calculate the distance in equation (13). We refer the

reader to Merton (1974) and Bharath and Shumway (2008) for further details.

The distance to default is a measure of distance to insolvency; a higher value of this

variable indicates better bank soundness. Table 1 shows this measure substantially decreases
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during the crisis, indicating higher default risk, as expected. The pre-crisis average equals 8

and decreases to 2.9 in the crisis period.

Z-Scores. As an alternative measure of individual default risk, we compute each bank’s

pre-crisis and crisis accounting Z-Score (Roy, 1952). Z-Score is widely used in the literature

examining banks’ stability (e.g., Demirguc-Kunt and Huizinga, 2010; Houston et al., 2010,

and many others). This measure captures banks’ buffers, measured by their returns, and

their risks, measured by the returns’ standard deviations. It is calculated as

Z-Scorei,t =
ROAi,t + (Total equity capitali,t/Total Assetsi,t)

σROAi,t

, (14)

where ROA is a bank’s return on assets (ROA) and σROA is the standard deviation of ROA,

calculated over the relevant period (pre-crisis and crisis). In separate regressions, we also

split this measure into its numerator and its denominator.

As the distance to default, the Z-Score is also a measure of distance to insolvency; thus,

higher values indicate lower default risk. The average Z-Score decreases from 3.4 to 3.1

during the crisis.

Insolvency dummy. As a third measure of individual default risk, we construct a

dummy variable called Insolvency, flagging the banks with high risk of insolvency during

the crisis. We manually compile data from the FDIC’s list of failed banks, the FDIC’s

enforcement decisions and orders (ED&O) database, and publicly available information on

banks acquired as a result of financial trouble. We set the Insolvency dummy equal to 1

for banks that failed, were acquired to prevent failure, had a direct subsidiary fail, or had

an enforcement action known as a cease-and-desist order issued by the FDIC during the

crisis.16 The purpose of a cease-and-desist order is “to remedy unsafe or unsound practices

or violations and to correct conditions resulting from such practices or violations” (FDIC,

2019). Such an order can be issued if a bank engages in unsafe and unsound practices or

violates a law, rule, or regulation, a condition imposed in writing by the FDIC, or a written

agreement with the FDIC. Thus, this is a regulatory enforcement action meant to bring

an institution identified by the FDIC as risky back into compliance with the supervisory

standard. Table 1 shows that 11% of the banks in the sample faced such insolvency risk

during the crisis.

16To reduce the results’ sensitivity to the specific definition of the crisis period in this risk measure we
include banks that failed all the way up to Q4:2010.
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4 Empirical Strategy and Results

4.1 Systemic risk exposure versus contribution and default risk

We first examine the relation between a bank’s systemic risk exposure or contribution versus

its default risk. To this end, we estimate the following cross-section model at the bank level:

yi,crisis = β1Systemic risk i,pre + β2Xi,pre + εi, (15)

where yi,crisis is a measure of default risk measured in the crisis period, proxied by distance

to default, the Log(Z-Score), and a dummy variable indicating whether the bank faced insol-

vency risk during that time. Systemic risk i,pre is a bank’s systemic risk exposure, systemic

risk contribution, or its systemic net exposure (the difference between the two). Xi,pre is a

set of bank controls. All systemic risk measures and controls reflect the pre-crisis period.

As bank controls, we include a bank’s log assets as an indicator of size, deposits over total

assets as a proxy for the funding structure, non-interest income over total income and loans

over total assets to proxy for the bank business model, and loan loss provisions over total

loans as indicator of lending quality and asset growth. This follows the literature explor-

ing the relationship between bank characteristics and bank stability (see, e.g., Beck et al.,

2013). Furthermore, since banks’ insolvency during the crisis was affected by government

interventions, we also control for whether the bank received TARP aid by including a dummy

variable flagging such banks.

The results of these models are shown in Table 5. We examine the relationship between

a bank’s pre-crisis systemic risk exposure and its crisis default risk in the first three columns

of this table. All three models show no significant relationship between systemic risk ex-

posure and insolvency risk. This result is in line with the previous literature, which has

documented mixed results about the relationship between pre-crisis systemic exposure and

bank performance during the crisis (see, e.g., Acharya et al., 2017; Fahlenbrach et al., 2012).

We then examine the relationship between a bank’s systemic contribution and default risk.

In these models, the coefficients for distance to default and the Z-Score enter with a positive

sign, but only the Z-Score shows to be significant. This evidence is again in line with the

previous literature, which finds a mixed or an insignificant relationship between a bank’s

pre-crisis contribution CoVaR and its performance during the crisis (Sedunov, 2016). The
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model in column (6), which studies the probability of failure, shows a negative and significant

marginal effect indicating that a higher systemic risk contribution before the crisis reduces

the probability of default in the crisis period. This might be the result of some banks under-

taking activities with a better risk-return trade-off, but a higher systemic risk contribution,

such as traditional activities.

We allow for the possibility that both measures may be correlated and, at the same time,

affect bank soundness independently. Hence, we include exposure and contribution measures

together in the next three columns, (7) to (9). The results remain similar to those in previous

regressions. Systemic exposure enters with an insignificant coefficient in all three models,

and systemic contribution coefficients suggest a positive relationship with bank soundness in

the Z-Score and insolvency models. However, the coefficient is insignificant in the distance

to default model.

Finally, we investigate the net systemic risk exposure in the last three columns of this

table. Thus, we test whether it is the variation in the difference between both measures

that affects stability. Results confirm this is the case; the net systemic risk measure now

enters significantly in all three models. Furthermore, the adjusted R-squared in the distance

to default and Z-Score models in columns (10) and (11) (not reported) are higher when

the net measure, rather than both measures independently, are included in columns (7) and

(8) (0.07 versus 0.06 and 0.23 versus 0.20, respectively), suggesting net measure variation

better predicts default risk. Both the distance to default and the Z-Score models display a

negative and significant coefficient, and the insolvency probability model shows a positive

and significant marginal effect. This evidence suggests higher systemic net exposure pre-

crisis is related to higher default risk in the crisis period. The coefficients in these models

indicate economic significance. One standard deviation increase in the net exposure (0.007)

reduces a bank’s distance to default by 0.11 standard deviations, the Log(Z-Score) by 0.34

standard deviations, and increases the probability of default by 3 percentage points. Among

the control variables, we find that larger banks (as measured pre-crisis) experienced higher

insolvency risk during the crisis.17 Banks with higher non-interest income as a share of total

income in the pre-crisis period had lower default risk in the crisis, which could be explained

by their higher diversification levels. Finally, receiving TARP aid is related to lower default

risk during the crisis, as measured by the Z-Score and the insolvency dummy, consistent with

17This has also been documented in e.g., Fahlenbrach et al. (2012).
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Berger et al. (2020), but related to higher default risk when measured by distance to default.

This latter result could be explained by the market’s negative expectations regarding these

banks.

The results in Table 5 suggest that it is not high systemic exposures or high contributions

alone that increase banks’ default risk, but rather, it is the net systemic risk exposure that

matters. As in Figure 3, banks with both high exposure and high contribution pre-crisis were

not the ones that experienced heightened default risk during the crisis; the riskiest banks

were those with the largest systemic risk asymmetry. This strongly suggests that not just

systemic risk, but also its directionality matter for financial stability. To our knowledge, this

paper is the first to demonstrate this result. Thus, high systemic exposure alone may not be

detrimental for individual bank stability if also accompanied by high systemic contribution.

This suggests that high-contribution banks might engage in activities that mitigate individual

default risk.

We confirm our results with a couple of additional tests. First, we run an instrumental

variable model to address potential endogeneity concerns. In our baseline regressions, we lag

net systemic risk measures, which reduces reverse causality concerns. However, unobserved

confounding factors affecting both systemic risk in the pre-crisis period and default risk

during the crisis could still bias our results. To address this concern, we instrument for

Net ∆CoVaR in a series of instrumental variable regressions. The instrument is a dummy

variable indicating whether the bank is located in a reserve city as established by the National

Banking Acts (NBAs) of 1863 and 1864. The NBAs designated specific reserve cities where

all country banks had to deposit their reserve requirements.18 Anderson et al. (2019) show

the NBAs changed the banking network structure, transforming these cities (and their banks)

into important nodes. We argue these cities have remained important nodes in the banking

network, and banks in these cities display higher net exposures, as they are more exposed to

shocks from the rest of the banking system. At the same time, the NBAs established these

cities more than 140 years before the 2008 crisis. Thus, the characteristics that influenced

this decision are unlikely to correlate with bank-level soundness during the crisis. Moreover,

any threat to instrument exogeneity would need to coincide in these 18 cities to invalidate

our instrument. A threat that satisfies this criterion is unlikely to exist.

18These reserve cities were: Albany, Baltimore, Boston, Chicago, Cincinnati, Cleveland, Detroit, Leav-
enworth, Louisville, Milwaukee, New Orleans, New York City, Philadelphia, Pittsburgh, Providence, San
Francisco, St. Louis, and Washington.
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We present the results of these models in Panel A of Table 6. The first stage of these

models shown in columns (1), (3), and (5) show a positive and significant relationship between

the reserve city dummy and net exposure, confirming banks in these cities display higher net

exposure to systemic risk. The F-statistics in these models are close to 10, which suggests

the instrument is relevant.19 The second stage of these models presented in columns (2), (4),

and (6) confirm our previous results. The coefficients in the distance to default and the Z-

Score models remain statistically significant and are larger in absolute terms, which suggests

the presence of bias in the previous OLS estimation. The estimate for the insolvency model

displays a positive coefficient and is marginally significant (p-value 11%). Hence, higher net

exposure before the crisis increases default risk during the crisis.

Second, we confirm our findings using two alternative net systemic risk exposure mea-

sures: the net tail beta (after van Oordt and Zhou, 2019a) and the net marginal expected

shortfall (after Acharya et al., 2017), computed as described in section 2.1. The results in

Panel B of Table 6 confirm the findings obtained from the CoVaR, showing negative and

significant coefficients for distance to default, and positive and significant marginal effects

for the failure model for the net exposure as measured by net tail beta and net MES. The

coefficient for the Z-Score is not significant in either model. This evidence suggests that

insolvency risk during the crisis increased with net pre-crisis exposure.

4.2 Systemic risk components and default risk

Next, we examine which component of net exposure drives default risk – the net shock or the

net transmission factor. The net shock is the difference between the losses transmitted to

the bank when the system is in distress and the losses to be transmitted to the system when

the bank is in distress. It is defined as (V aRs
q − V aRs

50)− (V aRi
q − V aRi

50), from equations

(4) and (3). The net transmission is the difference between the fraction of the simulated

shock transmitted from the system to the bank (βE) and the fraction transmitted from the

bank to the system (βC). Thus, we define net transmission as βEi − βCi = Net βi.

The results of this study are shown in Table 7. Columns (1) to (3) in this table show

the effect of the net transmission factor (Net β), and columns (4) to (6) show the effects

19Because the F-statistics are slightly smaller than 10, we confirm our results using the Anderson Rubin
Wald test, which allows for robust inference in the case of weak instruments. Overall, the results suggest we
can reject the null that the net systemic risk coefficients are equal to zero in these models.
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of the net shock. Since these two components could be correlated (banks with higher net

losses might also display a larger net transmission factor), we include both components

together in columns (7) to (9). This table suggests the effect is driven by the transmission

component, as shown by the positive and significant relationship between the net β and

all the three insolvency measures in the first three columns of this table. The evidence

in these models then suggests a higher net fraction transmitted from the system to the

bank pre-crisis is related to increased insolvency risk during the crisis period. Thus, banks

face higher insolvency risk when the fraction of shock transmitted in the system-to-bank

direction is larger than the fraction of shock transmitted in the bank-to-system direction.

In contrast, the results for the shock component suggest a negative and significant relation

with insolvency risk, as shown by the next three columns in this table.

These results remain unchanged when including both risk components in the default risk

models in columns (7) to (9). The net β is significant and positively related, and the net

losses are negatively related to insolvency risk. The effect is also economically relevant.

Taking the coefficients in the last three columns of this table, a one standard deviation

increase in the net β (0.24) decreases a bank’s distance to default and the Log(Z-Score) by

0.17 and 0.31 standard deviations, respectively, and increases the probability of failure by 2

percentage points.

The results in the previous tables do not answer the question through which channel net

systemic exposure increases bank default risk. Banks can become riskier in two non-mutually

exclusive dimensions: (1) by taking riskier activities or reducing risk management, thus

increasing the variance of returns, or (2) by increasing leverage or taking up less profitable

activities, thus reducing the buffer to avoid default. We investigate these dimensions in Table

8 and study the numerator and the denominator of the Z-Score separately.20 We split the

Z-score into the capital equity ratio plus ROA (numerator) and the standard deviation of

ROA over the relevant period (the denominator). The evidence in this table suggests the

net transmission effect operates through increasing the volatility of profits, rather than by

reducing leverage or profit levels (columns (1) and (2)). Further disaggregating profits into

interest income and non-interest income, columns (3) and (4) show that the main channel

through which net systemic exposure affects default risk is the volatility of non-interest

income, and of derivatives trading income in particular (column 5). Other sources of non-

20We focus on the Z-Score for this study since our sample is reduced when calculating distance to default.
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interest income, such as securitization or fiduciary income, do not enter the model with

significant coefficients (columns (6) and (7)). We interpret this as banks undertaking trading

activities pre-crisis that increased their net linkages to the system (net betas). Once the

crisis began, volatility in financial markets increased significantly, resulting in more volatile

trading income, and therefore lower Z-scores for those high net exposure banks. Hence, Table

8 shows a positive relationship between net betas and the volatility of profits, and a negative

relationship between net betas and Z-scores. This result further reinforces the view that

non-interest income activities are a source of increased risk (Stiroh, 2004; Demirgüç-Kunt

and Huizinga, 2010).

4.3 Determinants of net systemic risk exposure

We argue that banks with different business models can undertake activities that affect their

systemic contributions and exposures differently, thereby creating asymmetric (directional)

linkages with the rest of the system. We examine in this section the balance sheet deter-

minants of a bank’s systemic risk exposure, contribution and net exposure. For this, we

relate the systemic risk measures averaged in the crisis period to lagged bank balance sheet

variables averaged in the pre-crisis period, using a cross-section model.

We first investigate banks’ business models. For this purpose, we split non-interest income

into three components: securitization revenue, fiduciary income and trading income. We

include all three variables measured as a fraction of total income. We also include loan loss

provisions over total loans, and ROA. Non-interest income activities have been shown to be

more volatile than traditional sources of income (DeYoung and Roland, 2001), and banks

would earn income in the same correlated non-interest income activities, thus increasing

banks’ systemic risk exposure and contribution (Brunnermeier et al., 2020). At the same

time, lower portfolio quality has been documented to positively relate to banks’ systemic

exposure and contribution (see, e.g., Brunnermeier et al., 2020). On the other hand, as

documented in the previous literature (e.g., Davydov et al., 2021; van Oordt and Zhou,

2019a), profitability is associated with lower levels of systemic risk exposure and contribution.

The results of this analysis are displayed in Table 9. The model in column (1) shows higher

securitization income is related to higher systemic risk exposure, but only weakly; whereas

it is not significantly related to a bank’s systemic risk contribution, as shown in column

(6). In line with the previous literature, fiduciary activities also enter with a positive and
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significant sign in this model, suggesting a higher share of this particular non-traditional

activity is related to a higher bank contribution to systemic risk. In line with intuition,

trading increases exposure, and might reduce contribution, but the effect’s significance on the

individual exposure and contribution measures is harder to detect than on the net measure.

Lower loan loss provisions and higher ROA do not enter significantly in column (1), whereas

they show to be positively related to systemic contribution in column (6). By contrast, when

we investigate the net systemic risk exposure in column (11), we find trading activities in

the pre-crisis period to be related to higher net systemic risk exposure during the crisis,

whereas securitization revenue is negatively related to net exposure. Loan loss provisions

and profitability are insignificant in this model. Results remain similar when including all

controls in columns (5), (10), and (15). However, among the non-interest income variables,

only trading activities remain positive and highly significant in column (15). Moreover, this

effect in column (15) equals almost exactly the net difference of the separate exposure and

contribution coefficients in columns (5) and (10), suggesting that both play a role.

Second, we study the relationship between banks’ systemic risk and funding structure,

which has also been pointed out as a source of systemic risk. To this end, we include leverage

and deposits over loans in our regressions. The previous literature, however, shows mixed

results on the relationship between funding structure and systemic risk – both exposure and

contribution (see, e.g., Brunnermeier et al., 2020; Bostandzic and Weiss, 2018; Beltratti and

Stulz, 2012). In line with these mixed results, columns (2) and (7) suggest no significant

relationship between a bank’s funding structure and a bank’s systemic exposure or contribu-

tion. This remains unchanged when we look at a bank’s net exposure. Column (12) suggests

no relationship between a bank’s funding structure and its net systemic exposure, as shown

by the insignificant coefficients in this model. Results remain similar when including all

controls in columns (5), (10), and (15).

Third, we consider loan portfolio composition. To this end, we include loans over total

assets and the share of real estate loans, commercial loans, and household loans over total

loans. This allows us to examine a bank’s exposure to traditional activities, which has

been shown to reduce systemic risk exposure and contribution (Brunnermeier et al., 2020),

and its portfolio mix, which has been identified as a key driver of systemic risk during

the crisis (in particular, the share of real estate loans). Column (3) suggests no significant

relationship between a bank’s loan portfolio composition and its systemic exposure, whereas,
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when we study a bank’s contribution (column (8)), we find a higher proportion of real estate,

commercial and household loans to be related to higher contribution to systemic risk. Results

remain similar when including all controls in columns (5) and (10). On the other hand, when

we look at the relationship between loan portfolio composition and net exposure in column

(13), we find a higher proportion of commercial and household loans to be related to lower

net exposure. The proportion of real estate loans also enters with a negative sign but

is not significant. Results are similar when we include all controls in column (15). Thus,

significant involvement in traditional loan types, which may increase a bank’s contribution to

systemic risk, may still benefit bank stability due to a better risk-return trade-off compared to

alternative non-traditional activities, which are likely to increase a bank’s exposure through

counterparty risk.

Fourth, we consider derivatives usage to proxy for interconnectedness and complexity. For

this, we study gross and net CDS positions over total assets,21 and mortgage back securities

(MBS) held until maturity over total assets. Derivatives can be used for risk management

purposes, thus containing losses in crisis periods (Silva-Buston, 2016). However, they also

increase interbank linkages as banks act as counterparts of each other. Therefore, the effect

on systemic risk is ambiguous. Column (4) suggests no significant relationship between a

bank’s interconnectedness and systemic exposure, while the model for bank contribution

shows that higher MBS held to maturity are related to higher systemic contribution. By

contrast, higher gross CDS positions are related to a lower systemic risk contribution. Results

remain similar when including all controls in columns (5) and (10). When we study net

systemic exposure in column (14), we find the opposite result: a higher MBS held until

maturity is related to a lower net systemic exposure. The net CDS protection bought also

enters with a (weakly) significant and negative sign when we include all controls in column

(15), while the gross CDS position turns significant and positively related to the net exposure

in this model. The MBS are not significant in this model.

Finally, we include bank size, measured by the logarithm of assets, in all models since bank

size is documented to be one of the main drivers of systemic risk exposure and contribution

(e.g., Brunnermeier et al., 2020; Bostandzic and Weiss, 2018). In line with this literature,

the logarithm of assets enters with a positive and significant sign in all models, including the

21Unfortunately, FR-Y9C data does not report the amount of credit derivatives held for risk management
purposes versus trading. Thus, we include in our models the aggregate amount of credit derivatives.
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net systemic exposure models, suggesting that large banks display not only high exposure 

and contribution, but also high net systemic exposure. This confirms the intuition conveyed 

by Figure 2.

The effects on net systemic exposure are also economically significant. Considering the 

coefficients in the last column of Table 9, a one standard deviation increase in size (1.52) 

is related to a rise of 0.29 standard deviations in net exposure CoVaR. By contrast, a one 

standard deviation increase in commercial loans (0.1) and household loans (0.07) is related 

to a reduction by 0.31 and 0.38 standard deviations in net exposure CoVaR, respectively. In 

addition, a one standard deviation increase in derivatives trading income (0.01) and gross 

CDS positions (0.006) is related to a respective rise of 0.20 and 0.18 standard deviations in 

net CoVaR during the crisis. We obtain similar results in unreported robustness tests using 

the alternative systemic risk measures MES and tail beta.

In Table 10, we investigate the determinants of the components of the net CoVar exposure. 

Columns (1) to (5) examine the net transmission component (net β CoVaR), and columns (6) 

to (10) examine the net losses component (net shock CoVaR). We find that the proportion 

of commercial loans and household loans are strongly negatively related to the net fraction 

transmitted from the system to the bank. Taking the coefficients in column (5), a one 

standard deviation increase in commercial loans and household loans is related to a reduction 

of 0.30 and 0.44 standard deviations in the net β, respectively. Conversely, bank size, trading 

activities, and gross CDS positions are positively related to the transmission component. A 

one standard deviation increase in size, trading income, and gross CDS positions is related 

to an increase of 0.32, 0.17 and 0.20 standard deviations, respectively, in net β during the 

crisis.

When we examine the net losses in the next five columns, we find that trading activities 

reduce the net losses to be transmitted to the bank when the system is in distress. In contrast, 

fiduciary income, leverage, and the proportion of commercial loans and household loans are 

related to higher net losses to be transmitted to the bank, as shown by the models in columns 

(6) to (10). When considering the coefficients in column (10), a one standard deviation 

increase in fiduciary income, leverage, commercial loans, and household loans is associated 

with a respective increase of 0.18, 0.19, 0.35, and 0.40 standard deviations in the net shock. By 

contrast, a one standard deviation increase in trading income is related to a reduction of 0.18 

standard deviations in the net shock.
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The analysis in this section offers several lessons. It confirms the idea that banks with

different business models undertake activities that affect their systemic contributions and

exposures differently. It shows that even though some balance sheet variables, such as

non-interest income and the share of real estate loans, have been previously identified as a

source of systemic risk, they do not significantly increase and can even decrease net systemic

exposure, which is what matters for bank stability (as shown in the previous section). At

the same time, size, which has also been identified as a key determinant of both exposure

and contribution, increases net systemic exposure and hence the default risk of large banks.

Furthermore, the use of credit default swaps and trading activities also increase net systemic

exposure, but this exposure is reduced if banks offload more risk than they gain, thus having

larger net positions on protection bought. The analysis suggests that the effect of size,

trading activities, and credit default swaps on net exposure is due to their effect on the net

transmission factor, thereby increasing the net fraction of losses transmitted from the system

to the bank.

Taken together, the evidence in this paper suggests high-net exposure banks engaged

in activities that increased systemic exposure, such as derivatives trading, leaving banks

exposed to the soundness of other counterparties. With the extensive involvement in these

activities, banks suffered from increased income volatility during the crisis, increasing default

risk. Trading activities were carried out at the cost of performing other activities that would

have increased banks’ systemic contribution but would have also contained default risk, such

as traditional lending activities.

5 Conclusion

The regulatory treatment of large banks poses unique challenges to regulators. Existing

regulatory regimes, such as the Dodd-Frank Act of 2012 and the Basel III framework, have

focused on reinforcing the capital buffers of large banks to improve systemic stability through

reducing these banks’ default risk and their impact on the rest of the system. This systemic

impact has typically been considered excessive, as evidenced by the “too big to fail” label

so frequently applied to them. The apparent intention behind these regulations is to shield

the system from the “too big to fail” banks by making them more resilient.

In contrast to the philosophy behind these regulations, we extensively document that the
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largest US bank holding companies are consistently more vulnerable to shocks originating

from the rest of the banking system than vice versa. Moreover, we show that the larger this

asymmetry, i.e., the more exposed a large bank is to the system relative to its impact on it,

the riskier it becomes. Examining the channels behind this relation, we find that the effect

on bank default risk is driven by the net transmission factor of shocks rather than the size of

net shocks, and that the link between this factor and insolvency risk runs through activities

such as trading, increasing the volatility of profits.

To understand the underpinnings of this phenomenon, we examine the determinants of a

bank’s net exposure to the financial system, that is, its exposure net of its impact. We find

that bank size and derivatives trading increase a bank’s net exposure; however, this exposure

decreases if banks offload more risk than they gain by maintaining larger positions on net

protection bought on CDS. The analysis suggests that the effect of size, trading activities,

and the use of credit default swaps on net exposure is due to their impact on the net

transmission factor, increasing the net fraction of losses transmitted in the system-to-bank

direction. Overall, the evidence shows that high-net exposure banks engaged in activities

that increased the transmission of adverse shocks to the banks, such as derivatives trading,

which exposed banks to the healthiness of other bank counterparties. With an extensive

portfolio invested in these derivatives, banks suffered increased income volatility during the

crisis, increasing default risk. Banks carried out these activities at the cost of investing in

other assets that would have increased their contribution but also contained default risk,

such as traditional lending activities.

Our findings offer two important policy implications. First, interconnectedness in the

financial system can be directional, and bank regulation will increasingly need to reflect

this to stay ahead of future risks to systemic stability. It might be beneficial for regulation

to focus on containing and imposing buffers on high net exposure banks, rather than just

large banks or banks displaying a high systemic contribution. Second, default risk increases

with the net system-to-bank shock transmission factor, which in turn is positively related

to bank size and the use of credit derivatives. An efficient regulation should therefore focus

first on reducing such net exposures, rather than subsequently buffering the default risks

arising from them. Therefore, regulators should put their efforts on containing banks’ size,

and monitoring banks’ connections through the CDS market. Such regulation would help

address more efficiently not only the challenges of size and complexity, but also of directional
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interconnectedness making some banks more vulnerable than others.
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6 Figures

Figure 1. Evolution of banks’ average systemic risk exposure and contribution
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The figure shows the evolution of banks’ average systemic risk exposure and contribution
as measured by Adrian and Brunnermeier’s (2016) Exposure ∆CoVaR and ∆CoVaR
metrics, respectively. The graph displays the cross-sectional average across the top 200
US bank holding companies by assets as measured at Q4:2006. The time frame shown is
from Q1:2004 to Q4:2012.

33



Figure 2. Banks’ net exposure and size
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The figure shows a plot of the systemic risk exposures versus systemic risk contributions for two sets of banks, as measured by
Adrian and Brunnermeier’s (2016) Exposure ∆CoVaR and ∆CoVaR metrics. Panel A shows the 20 smallest banks in the sample,
and Panel B – the 20 largest banks. Banks with an Insolvency dummy equal to 1 are flagged in red. The full sample consists of the
200 top US bank holding companies by assets as measured at Q4:2006.

Figure 3. Banks’ net exposure and risk
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The figure shows a plot of the systemic risk exposures versus systemic risk contributions for two sets of banks, as measured by
Adrian and Brunnermeier’s (2016) Exposure ∆CoVaR and ∆CoVaR metrics. Panel A shows the 20 safest banks in the sample, and
Panel B, the 20 riskiest banks, as ranked by their distance to default (DD). Banks with an Insolvency dummy equal to 1 are flagged
in red. The full sample consists of the 200 top US bank holding companies by assets as measured at Q4:2006.
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7 Tables

Table 1: Descriptive Statistics

N mean sd p25 p50 p75 N mean sd p25 p50 p75

Pre-crisis period Crisis period

∆CoVaRE 200 0.013 0.008 0.010 0.013 0.017 200 0.044 0.027 0.034 0.044 0.057

∆CoVaRC 200 0.012 0.007 0.007 0.014 0.018 200 0.027 0.016 0.013 0.028 0.037

Net ∆CoVaR 200 0.001 0.007 -0.003 -0.000 0.006 200 0.018 0.013 0.009 0.017 0.027

βE 200 0.537 0.326 0.405 0.534 0.689 200 0.537 0.326 0.405 0.534 0.689

βC 200 0.336 0.209 0.176 0.344 0.487 200 0.336 0.209 0.176 0.344 0.487

Net β CoVaR 200 0.210 0.243 0.044 0.186 0.377 200 0.210 0.243 0.044 0.186 0.377

ShockE 200 0.025 0.000 0.025 0.025 0.025 200 0.083 0.003 0.083 0.083 0.083

ShockC 200 0.050 0.038 0.034 0.040 0.046 200 0.093 0.041 0.070 0.081 0.105

Net shock CoVaR 200 -0.025 0.036 -0.022 -0.015 -0.009 200 -0.013 0.044 -0.022 0.002 0.013

Log(βE
T ) 172 0.332 0.522 0.111 0.507 0.634 176 0.221 0.379 0.129 0.327 0.443

Log(βC
T ) 172 -1.274 0.376 -1.502 -1.268 -1.052 176 -1.081 0.323 -1.262 -1.051 -0.858

Net Log(βT ) 172 1.611 0.607 1.224 1.738 2.040 176 1.305 0.427 1.031 1.299 1.581

MESE 197 0.012 0.007 0.009 0.013 0.016 199 0.043 0.022 0.031 0.047 0.056

MESC 198 0.006 0.004 0.004 0.008 0.009 199 0.039 0.022 0.027 0.043 0.055

Net MES 197 0.005 0.005 0.003 0.005 0.008 199 0.004 0.013 -0.004 0.002 0.011

DD 190 7.956 2.579 5.965 7.532 9.235 190 2.890 1.584 2.174 2.590 3.128

Log(Z-Score) 200 3.408 0.366 3.184 3.352 3.585 199 3.052 0.845 2.708 3.324 3.588

Log(ROA+Equity/TA) 200 -2.349 0.211 -2.490 -2.350 -2.229 200 -2.396 0.235 -2.520 -2.382 -2.224

Log(SD(ROA)) 200 -5.756 0.376 -5.915 -5.709 -5.499 199 -5.450 0.749 -5.924 -5.672 -5.203

Log(SD(Interest)) 200 -4.693 0.215 -4.831 -4.692 -4.548 199 -4.597 0.202 -4.699 -4.602 -4.473

Log(SD(Non-interest)) 200 -5.480 0.416 -5.637 -5.412 -5.219 199 -5.197 0.492 -5.426 -5.227 -4.961

Log(SD(Trading)) 200 0.00007 0.0002 0 0 0 199 0.0001 0.0003 0 0 0.00002

Log(SD(Securitization)) 200 0.00002 0.0001 0 0 0 199 0.00002 0.00009 0 0 0

Log(SD(Fiduciary)) 200 0.0005 0.0008 0 0.0002 0.0006 199 0.0005 0.0009 0 0.0003 0.0006

Insolvency 200 0.110 0.314 0 0 0

Log(Assets) 200 15.210 1.516 14.113 14.714 15.682 200 15.352 1.515 14.281 14.861 15.874

Deposits/TA 200 0.754 0.079 0.709 0.771 0.812 200 0.728 0.081 0.682 0.742 0.785

Non-IntInc/TI 200 0.167 0.094 0.105 0.154 0.215 200 0.167 0.092 0.109 0.155 0.222

Fiduciary/TI 200 0.022 0.039 0 0.010 0.029 200 0.022 0.039 0 0.011 0.029

Securitization/TI 200 0.001 0.004 0 0 0 200 0.001 0.003 0 0 0

Trading/TI 200 0.003 0.011 0 0 0 200 0.002 0.011 0 0 0

Loans/TA 200 0.697 0.110 0.656 0.714 0.767 200 0.714 0.105 0.670 0.731 0.782

LLP/TL 200 0.001 0.001 0.001 0.001 0.001 200 0.007 0.006 0.003 0.004 0.008

Asset growth 200 0.025 0.026 0.009 0.021 0.035 200 0.023 0.024 0.008 0.021 0.036

TARP 200 0.425 0.496 0 0 1

ROA 200 0.006 0.002 0.005 0.006 0.007 200 0.003 0.007 0.001 0.005 0.007

Leverage 200 0.908 0.020 0.898 0.911 0.922 200 0.909 0.019 0.895 0.911 0.921

Deposits/TL 200 0.831 0.087 0.787 0.853 0.892 200 0.802 0.090 0.754 0.816 0.867

RE/TL 200 0.726 0.145 0.647 0.747 0.818 200 0.727 0.145 0.640 0.747 0.832

C&I/TL 200 0.165 0.096 0.099 0.158 0.215 200 0.168 0.096 0.097 0.155 0.221

HH/TL 200 0.065 0.068 0.014 0.041 0.094 200 0.060 0.067 0.012 0.033 0.079

GrossCDS/TA 200 0.001 0.006 0 0 0 200 0.001 0.006 0 0 0

NetCDS/TA 200 0.00008 0.0004 0 0 0 200 0.00009 0.0004 0 0 0

MBSheld/TA 200 0.008 0.025 0 0 0 200 0.006 0.022 0 0 0

This table reports summary statistics of the main regression variables. The statistics are based on averaged

data for the pre-crisis and crisis periods. The pre-crisis period spans from Q1:2006 to Q2:2007, and the crisis

period spans from Q3:2007 to Q4:2008. Definitions and sources of variables are listed in Appendix A.
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Table 2: Correlations of Systemic Risk Metrics

Panel A: Exposure measures

∆CoVaRE Log(βET ) MESE

∆CoVaRE 1

Log(βET ) 0.04 1

MESE 0.55 0.30 1

Panel B: Contribution measures

∆CoVaRC Log(βCT ) MESC

∆CoVaRC 1

Log(βCT ) 0.47 1

MESC 0.59 0.33 1

Panel C: Net exposure measures

Net ∆CoVaR Net Log(βT ) Net MES

Net ∆CoVaR 1

Net Log(βT ) 0.07 1

Net MES 0.28 0.38 1

This table reports correlations between the systemic risk variables.

The statistics are based on quarterly data for the pre-crisis period

which spans from Q1:2006 to Q2:2007. Definitions and sources of

variables are listed in Appendix A.
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Table 3: BHCs Ranked According to Net CoVaR Exposure (Pre-Crisis)
Name Total Assets Net CoVaR exposure

1 SILVER STATE BANCORP 1,180 0.02365

2 RELIANCE BANCSHARES, INC. 869 0.02024

3 UCBH HOLDINGS, INC. 9,322 0.02015

4 CORUS BANKSHARES, INC. 9,688 0.01932

5 CAPITAL CORP OF THE WEST 1,870 0.01879

6 BANNER CORPORATION 3,551 0.01600

7 BANK OF AMERICA CORPORATION 1,464,009 0.01575

8 CENTRAL PACIFIC FINANCIAL CORP. 5,413 0.01523

9 SECURITY BANK CORPORATION 2,320 0.01432

10 UNITED COMMUNITY BANKS, INC. 6,872 0.01409

11 CITIGROUP INC. 1,847,525 0.01409

12 WACHOVIA CORPORATION 631,471 0.01314

13 FIFTH THIRD BANCORP 103,144 0.01267

14 SVB FINANCIAL GROUP 5,700 0.01227

15 HUNTINGTON BANCSHARES INCORPORATED 35,739 0.01158

16 PAB BANKSHARES, INC. 1,113 0.01110

17 OLD SECOND BANCORP, INC. 2,443 0.01105

18 MARSHALL & ILSLEY CORPORATION 54,781 0.01087

19 HORIZON FINANCIAL CORP. 1,228 0.01067

20 MBT FINANCIAL CORP. 1,572 0.01061

21 WESTERN ALLIANCE BANCORPORATION 4,186 0.01058

22 ZIONS BANCORPORATION 46,411 0.01057

23 PORTER BANCORP, INC. 1,061 0.01055

24 FNB CORP. 1,713 0.01050

25 CASCADE BANCORP 2,107 0.01008

26 REGIONS FINANCIAL CORPORATION 112,784 0.00976

27 INDEPENDENT BANK CORPORATION 3,395 0.00965

28 WELLS FARGO & COMPANY 497,191 0.00924

29 FIDELITY SOUTHERN CORPORATION 1,565 0.00913

30 DEARBORN BANCORP, INC. 876 0.00890

31 BANCTRUST FINANCIAL GROUP, INC. 1,350 0.00838

32 STATE STREET CORPORATION 108,156 0.00815

33 INTERVEST BANCSHARES CORPORATION 1,936 0.00809

34 PRINCETON NATIONAL BANCORP, INC. 992 0.00802

35 IRWIN FINANCIAL CORPORATION 6,291 0.00800

36 NEXITY FINANCIAL CORPORATION 864 0.00798

37 SUNTRUST BANKS, INC. 181,998 0.00797

38 EAST WEST BANCORP, INC. 10,405 0.00789

39 CENTERSTATE BANKS OF FLORIDA, INC. 1,077 0.00773

40 HERITAGE COMMERCE CORP 1,122 0.00772

41 BEVERLY HILLS BANCORP INC. 1,535 0.00707

42 GREENE COUNTY BANCSHARES, INC. 1,921 0.00701

43 U.S. BANCORP 217,230 0.00697

44 TEMECULA VALLEY BANCORP INC. 1,159 0.00694

45 KEYCORP 93,660 0.00675

46 BOSTON PRIVATE FINANCIAL HOLDINGS, INC. 5,595 0.00670

47 WEST COAST BANCORP 2,372 0.00633

48 SYNOVUS FINANCIAL CORP. 31,502 0.00630

49 PINNACLE FINANCIAL PARTNERS, INC. 2,091 0.00587

50 MACATAWA BANK CORPORATION 2,043 0.00581

This table shows the 50 US banks with highest net CoVaR exposure in our sample, ranked in descending

order as of the pre-crisis period (Q1:2006-Q2:2007). Average assets are shown in millions of US dollars.

37



T
ab

le
4:

S
el

ec
te

d
S

u
m

m
ar

y
S

ta
ti

st
ic

s
b
y

N
et

∆
C

oV
aR

E
x
p

os
u

re
an

d
P

er
io

d

P
re

-C
ri

si
s

C
ri

si
s

A
b

ov
e-

m
ed

ia
n

B
el

ow
-M

ed
ia

n
A

b
ov

e-
m

ed
ia

n
B

el
ow

-M
ed

ia
n

M
ea

n
S

td
.

D
ev

.
M

ea
n

S
td

.
D

ev
.

S
td

.
D

iff
M

ea
n

S
td

.
D

ev
.

M
ea

n
S

td
.

D
ev

.
S

td
.

D
iff

N
et

∆
C

oV
aR

0.
00

7
0.

00
5

-0
.0

04
0.

00
3

2.
49

2*
**

0.
03

1
0.

01
7

0.
00

4
0
.0

0
6

2
.1

6
8
*
*
*

L
og

(Z
-S

co
re

)
3.

41
6

0.
38

0
3.

40
0

0.
35

4
0.

04
5

2.
80

9
0.

90
8

3.
29

2
0
.7

0
2

-0
.5

9
6
*
*
*

D
D

8.
07

2.
22

2
7.

84
2

2.
90

0
0.

08
8

2.
58

3
1.

11
5

3.
21

7
1
.9

1
7

-0
.4

0
4
*
*
*

L
og

(a
ss

et
s)

15
.4

70
1.

91
9

14
.9

50
0.

89
4

0.
35

1*
**

15
.5

00
1.

76
8

15
.2

00
1
.2

0
1

0
.1

9
6
*

F
id

u
ci

ar
y
/T

I
.0

20
.0

41
6

.0
24

3
.0

35
6

-0
.1

17
.0

19
5

.0
41

.0
25

.0
3
7

-0
.1

5
0

S
ec

u
ri

ti
za

ti
on

/T
I

0.
00

1
0.

00
5

0.
00

04
0.

00
3

0.
16

5
.0

19
5

.0
41

.0
25

.0
3
7

-0
.1

5
0

T
ra

d
in

g/
T

I
0.

00
5

0.
01

5
0.

00
1

0.
00

4
0.

39
0*

**
0.

00
3

0.
01

4
0.

00
1

0
.0

0
5

0
.2

1
0
*

L
L

P
/T

L
0.

00
14

0.
00

15
0.

00
09

0.
00

07
0.

42
9*

**
0.

00
83

0.
00

64
0.

00
47

0
.0

0
4
6

0
.6

5
3
*
*
*

R
O

A
0.

00
61

0.
00

21
0.

00
58

0.
00

22
0.

12
2

0.
00

09
0.

00
75

0.
00

47
0
.0

0
6
1

-0
.5

6
9
*
*
*

L
ev

er
ag

e
0.

90
4

0.
02

1
0.

91
2

0.
01

9
-0

.3
79

**
*

0.
90

8
0.

01
8

0.
91

0
0
.0

1
9

-0
.0

8
3

D
ep

os
it

s/
T

L
0.

82
6

0.
10

2
0.

83
6

0.
07

0
-0

.1
07

0.
80

1
0.

10
4

0.
80

4
0
.0

7
4

-0
.0

3
3

L
oa

n
s/

T
A

0.
71

3
0.

11
9

0.
68

1
0.

09
9

0.
29

4*
*

0.
73

1
0.

11
3

0.
69

8
0
.0

9
5

0
.3

1
8
*
*

R
E

/T
L

0.
73

6
0.

15
9

0.
71

5
0.

12
9

0.
14

5
0.

74
1

0.
15

4
0.

71
4

0
.1

3
6

0
.1

8
6
*

C
&

I/
T

L
0.

16
3

0.
09

5
0.

16
8

0.
09

7
-0

.0
62

0.
16

3
0.

09
3

0.
17

4
0
.0

9
9

-0
.1

1
1

H
H

/T
L

0.
05

3
0.

06
7

0.
07

7
0.

06
8

-0
.3

46
**

*
0.

05
0

0.
06

3
0.

07
0

0
.0

6
9

-0
.2

9
7
*
*

G
ro

ss
C

D
S

/T
A

0.
00

2
0.

00
9

0
0

0.
39

8
0.

00
2

0.
00

8
0.

00
1

0
.0

0
4

0
.2

4
0
*
*

N
et

C
D

S
/T

A
0.

00
02

0.
00

1
0

0
0.

44
2*

**
1.

28
e-

04
4.

86
e-

04
4.

32
e-

0
4

2
.9

0
e-

0
4

0
.2

1
3
*

M
B

S
h

el
d

/T
A

0.
00

3
0.

00
9

0.
01

2
0.

03
3

-0
.3

99
**

*
0.

00
4

0.
01

3
0.

00
8

0
.0

2
7

-0
.2

2
3
*

S
u

m
m

a
ry

st
a
ti

st
ic

s
fo

r
b

a
n

k
s

w
it

h
d

iff
er

en
t

N
et

∆
C

o
V

a
R

ex
p

o
su

re
s

o
v
er

tw
o

ti
m

e
p

er
io

d
s.

T
h

e
ta

b
le

d
is

p
la

y
s

co
v
a
ri

a
te

m
ea

n
s

a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s
fo

r
b

a
n

k
s

w
it

h
a
b

o
v
e-

m
ed

ia
n

a
n

d
b

el
o
w

-m
ed

ia
n

N
et

C
o
V

a
R

ex
p

o
su

re
s

b
ef

o
re

a
n

d
d

u
ri

n
g

th
e

cr
is

is
.

T
h

e
le

ft
p

a
n

el
sh

o
w

s
st

a
ti

st
ic

s

fo
r

th
e

p
re

-c
ri

si
s

p
er

io
d

(2
0
0
6
:Q

1
-2

0
0
7
:Q

2
),

a
n

d
th

e
ri

g
h
t

p
a
n

el
–

fo
r

th
e

cr
is

is
p

er
io

d
(2

0
0
7
:Q

3
-2

0
0
8
:Q

4
).

T
h

e
n

o
rm

a
li
ze

d
d

iff
er

en
ce

s
in

m
ea

n
s

a
re

a
ls

o
d

is
p

la
y
ed

,
w

it
h

a
st

er
is

k
s

(*
)

sh
o
w

in
g

th
e

si
g
n

ifi
ca

n
ce

le
v
el

o
f

th
e

o
n

e-
si

d
ed

t-
te

st
fo

r
th

e
co

rr
es

p
o
n
d

in
g

n
o
n

-n
o
rm

a
li
ze

d

d
iff

er
en

ce
.

D
efi

n
it

io
n

s
a
n

d
so

u
rc

es
o
f

co
n
tr

o
l

v
a
ri

a
b

le
s

a
re

li
st

ed
in

A
p

p
en

d
ix

A
.

38



T
a
b

le
5
:

D
ef

a
u

lt
R

is
k

a
n

d
S

y
st

em
ic

R
is

k

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

V
A

R
IA

B
L

E
S

D
D

L
o
g
(Z

-S
co

re
)

In
so

lv
en

cy
D

D
L

o
g
(Z

-S
co

re
)

In
so

lv
en

cy
D

D
L

o
g
(Z

-S
co

re
)

In
so

lv
en

cy
D

D
L

o
g
(Z

-S
co

re
)

In
so

lv
en

cy

∆
C

o
V

a
R

E t−
1

-2
1
.2

5
-7

.5
9
3

-1
.3

0
9

-2
3
.1

1
-1

4
.1

0
0
.1

3
3

(1
4
.2

1
)

(1
3
.1

0
)

(2
.0

9
0
)

(1
4
.3

8
)

(1
5
.0

5
)

(1
.7

0
5
)

∆
C

o
V

a
R

C t−
1

9
.0

1
5

3
9
.1

8
*
*
*

-1
1
.5

1
*
*
*

1
3
.6

8
4
2
.2

9
*
*
*

-1
1
.5

5
*
*
*

(2
2
.2

3
)

(1
3
.0

8
)

(2
.9

2
9
)

(2
2
.0

9
)

(1
3
.4

6
)

(2
.9

9
4
)

N
et

∆
C

o
V

a
R

t−
1

-2
6
.3

2
*

-4
1
.5

3
*
*
*

6
.4

6
9
*
*

(1
5
.5

4
)

(1
1
.2

5
)

(2
.6

1
4
)

L
o
g
(a

ss
et

s)
t−

1
-0

.0
8
8
6

-0
.1

0
6

0
.0

4
4
9
*
*

-0
.1

8
1
*
*

-0
.1

9
3
*
*
*

0
.0

5
2
8
*
*
*

-0
.1

0
5

-0
.1

4
9
*

0
.0

5
2
3
*
*
*

-0
.1

1
7

-0
.0

5
3
1

0
.0

2
2
2

(0
.0

9
3
0
)

(0
.0

7
4
6
)

(0
.0

1
9
4
)

(0
.0

8
9
9
)

(0
.0

6
1
5
)

(0
.0

1
5
8
)

(0
.0

9
7
8
)

(0
.0

7
5
8
)

(0
.0

1
6
4
)

(0
.0

8
8
9
)

(0
.0

5
8
0
)

(0
.0

1
7
2
)

D
ep

o
si

ts
/
T

A
t−

1
2
.8

5
9

0
.7

7
2

-0
.2

9
6

2
.6

7
8

0
.5

7
6

-0
.3

2
3

2
.8

0
5

0
.6

3
5

-0
.3

2
4

2
.7

1
6

0
.6

8
8

-0
.3

6
2

(1
.9

9
0
)

(1
.0

5
4
)

(0
.2

9
2
)

(2
.0

2
0
)

(1
.0

1
1
)

(0
.2

6
2
)

(2
.0

1
8
)

(0
.9

7
6
)

(0
.2

6
5
)

(1
.9

8
3
)

(0
.9

2
1
)

(0
.2

7
1
)

N
o
n

-I
n
tI

n
c/

T
I t
−

1
3
.0

6
2
*
*

2
.7

7
3
*
*

-1
.0

3
3
*
*
*

2
.9

9
9
*
*

2
.1

6
0
*
*

-0
.6

8
7
*
*
*

2
.8

2
1
*
*

2
.0

1
3
*
*

-0
.6

8
5
*
*
*

2
.5

2
5
*
*

1
.7

4
6
*

-0
.7

6
2
*
*
*

(1
.3

3
7
)

(1
.0

6
7
)

(0
.3

0
3
)

(1
.3

3
5
)

(0
.9

8
9
)

(0
.2

3
7
)

(1
.2

9
2
)

(0
.9

8
1
)

(0
.2

3
4
)

(1
.2

3
6
)

(0
.9

5
0
)

(0
.2

6
8
)

L
o
a
n

s/
T

A
t−

1
-1

.5
5
8

-0
.7

2
0

0
.2

4
7

-1
.6

0
4

-0
.6

6
5

0
.2

1
9

-1
.5

2
2

-0
.6

1
6

0
.2

1
9

-1
.4

9
1

-0
.5

3
8

0
.2

2
0

(1
.0

3
5
)

(0
.7

2
8
)

(0
.1

9
9
)

(1
.0

4
7
)

(0
.6

7
6
)

(0
.1

9
3
)

(1
.0

3
6
)

(0
.6

7
0
)

(0
.1

9
3
)

(1
.0

2
8
)

(0
.6

6
4
)

(0
.1

9
7
)

L
L

P
/
T

L
t−

1
-1

6
8
.4

*
-1

1
8
.8

*
*

7
.7

5
6

-1
3
5
.3

-6
0
.3

4
-4

.3
2
0

-1
4
3
.8

-6
4
.1

6
-4

.2
8
0

-1
1
8
.7

-8
0
.1

7
4
.3

0
3

(9
6
.3

2
)

(5
5
.7

1
)

(9
.2

5
2
)

(9
0
.8

6
)

(6
3
.9

2
)

(1
0
.4

9
)

(9
4
.9

3
)

(6
4
.6

9
)

(1
0
.4

3
)

(8
7
.2

4
)

(6
4
.1

3
)

(9
.5

2
2
)

A
ss

et
g
ro

w
th

t−
1

0
.4

6
8

-3
.6

6
1

1
.1

2
6
*

1
.0

6
9

-2
.1

8
1

0
.7

3
0

0
.9

9
5

-2
.1

8
4

0
.7

3
1

2
.0

7
5

-1
.5

3
4

0
.8

4
7

(3
.8

5
1
)

(3
.0

2
7
)

(0
.6

8
0
)

(3
.9

4
2
)

(2
.9

3
9
)

(0
.5

7
5
)

(4
.1

0
0
)

(2
.9

6
7
)

(0
.5

7
7
)

(3
.7

4
5
)

(2
.9

9
8
)

(0
.7

0
8
)

T
A

R
P

-0
.4

0
1
*
*

0
.2

8
1
*
*

-0
.1

9
0
*
*
*

-0
.4

7
8
*
*

0
.1

7
9

-0
.1

6
6
*
*
*

-0
.4

2
0
*
*

0
.2

1
8
*

-0
.1

6
6
*
*
*

-0
.4

4
1
*
*

0
.2

9
5
*
*
*

-0
.2

0
5
*
*
*

(0
.2

0
0
)

(0
.1

1
9
)

(0
.0

5
6
5
)

(0
.2

0
8
)

(0
.1

1
8
)

(0
.0

6
1
3
)

(0
.2

0
4
)

(0
.1

2
0
)

(0
.0

5
9
1
)

(0
.2

0
4
)

(0
.1

0
8
)

(0
.0

5
8
5
)

O
b

se
rv

a
ti

o
n

s
1
9
0

1
9
9

2
0
0

1
9
0

1
9
9

2
0
0

1
9
0

1
9
9

2
0
0

1
9
0

1
9
9

2
0
0

(p
se
u
d
o

)
R

-s
q
u

a
re

d
0
.1

1
0
.1

8
0
.3

3
0
.1

0
0
.2

3
0
.4

1
0
.1

1
0
.2

4
0
.4

0
0
.1

1
0
.2

6
0
.3

7

T
h

is
ta

b
le

p
re

se
n
ts

th
e

re
su

lt
s

o
f

cr
o
ss

-s
ec

ti
o
n

re
g
re

ss
io

n
s

o
f

d
ef

a
u

lt
ri

sk
in

d
ic

a
to

rs
o
n

sy
st

em
ic

ri
sk

m
ea

su
re

s.
T

h
e

d
ep

en
d

en
t

v
a
ri

a
b

le
is

a
b

a
n

k
’s

M
er

to
n

D
D

in
co

lu
m

n
s

(1
),

(4
),

(7
),

a
n

d
(1

0
)
L
og
(Z

-S
co
re
)

in
co

lu
m

n
s

(2
),

(5
),

(8
),

a
n

d
(1

1
)

a
n

d
In

so
lv
en

cy
in

co
lu

m
n

s
(3

),
(6

),
(9

),
a
n

d
(1

2
).

∆
C
o
V
a
R

E
is

th
e

d
iff

er
en

ce
b

et
w

ee
n

th
e

v
a
lu

e
a
t

ri
sk

o
f

th
e

b
a
n

k
co

n
d

it
io

n
a
l

o
n

th
e

st
re

ss
ed

a
n

d
th

e
m

ed
ia

n
st

a
te

o
f

th
e

fi
n

a
n

ci
a
l

sy
st

em
.

∆
C
o
V
a
R

C
is

th
e

d
iff

er
en

ce

b
et

w
ee

n
th

e
v
a
lu

e
a
t

ri
sk

o
f

th
e

fi
n

a
n

ci
a
l

sy
st

em
co

n
d

it
io

n
a
l

o
n

th
e

st
re

ss
ed

a
n

d
th

e
m

ed
ia

n
st

a
te

o
f

th
e

b
a
n

k
.
N
et

∆
C
o
V
a
R

is
th

e
d

iff
er

en
ce

b
et

w
ee

n
th

e

∆
C
o
V
a
R

E
a
n

d
th

e
∆
C
o
V
a
R

C
.

A
ll

re
g
re

ss
io

n
s

co
n
ta

in
th

e
sa

m
p

le
o
f

th
e

2
0
0

la
rg

es
t

b
a
n

k
s

in
Q

4
:2

0
0
6
.

T
h

e
d

a
ta

is
a
v
er

a
g
ed

w
it

h
in

ea
ch

p
er

io
d

(p
re

-c
ri

si
s

a
n

d
cr

is
is

),
w

h
er

e
th

e
p

re
-c

ri
si

s
p

er
io

d
sp

a
n

s
fr

o
m

Q
1
:2

0
0
6

to
Q

2
:2

0
0
7

a
n

d
th

e
cr

is
is

p
er

io
d

sp
a
n

s
fr

o
m

Q
3
:2

0
0
7

to
Q

4
:2

0
0
8
.

C
o
lu

m
n

s
(3

),
(6

),
(9

)
a
n

d

(1
2
)

re
p

o
rt

m
a
rg

in
a
l

eff
ec

ts
.

D
efi

n
it

io
n

s
a
n

d
so

u
rc

es
o
f

co
n
tr

o
l

v
a
ri

a
b

le
s

a
re

li
st

ed
in

A
p

p
en

d
ix

A
.

A
ll

m
o
d

el
s

a
re

es
ti

m
a
te

d
u

si
n

g
ro

b
u
st

st
a
n

d
a
rd

er
ro

rs

(i
n

p
a
re

n
th

es
es

).
*
*
*
,

*
*
,

a
n

d
*

d
en

o
te

si
g
n

ifi
ca

n
ce

a
t

th
e

1
%

,
5
%

,
a
n

d
1
0
%

le
v
el

,
re

sp
ec

ti
v
el

y.

39



Table 6: Additional Tests

Panel A: Instrumental Variables

(1) (2) (3) (4) (5) (6)

DD Log(Z-Score) Insolvency

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

Reserve city 0.004*** 0.005*** 0.004**

(0.0017) (0.0015) (0.0015)

Net ∆ CoVaRt−1 -103.6** -95.67* 32.63

(45.88) (54.81) (20.72)

F - test 6.33 9.01 8.10

Controls Y Y Y Y Y Y

Observations 190 190 199 199 200 200

R-squared 0.023 0.11 0.02

Panel B: Alternative Net Systemic Risk Measures

(1) (2) (3) (4) (5) (6)

DD Log(Z-Score) Insolvency DD Log(Z-Score) Insolvency

Net Log(βT )t−1 -0.370** 0.0323 0.107***

(0.182) (0.106) (0.0406)

Net MESt−1 -80.73*** -6.867 11.68***

(27.09) (12.73) (4.057)

Controls Y Y Y Y Y Y

Observations 165 171 172 188 196 197

(Pseudo) R-squared 0.18 0.22 0.39 0.18 0.20 0.42

This table presents the results of cross-section regressions of default risk indicators on systemic risk measures. Panel A shows the results

of IV regressions using as an instrument the dummy variable Reserve city, which indicates whether the bank is located in a reserve city

as defined by the National Banking Acts of 1863–1864. Panel B shows the results of default risk models using as alternative net systemic

risk measures the Net Log(βT ) that corresponds to the difference between log(βE
T ) and log(βC

T ), and the Net MES that corresponds to the

difference between MESE and MESC . Columns (1) and (4) report marginal effects. All regressions contain the sample of the 200 largest

banks in Q4:2006. The data is averaged within each period (pre-crisis and crisis), where the pre-crisis period spans from Q1:2006 to Q2:2007,

and the crisis period spans from Q3:2007 to Q4:2008. Definitions and sources of control variables are listed in Appendix A. All models are

estimated using robust standard errors (in parentheses). ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Appendix A: Variable Definitions

Variable Definition Source

Systemic Risk Measures and Components
∆CoVaRC ∆CoVaR as defined in equation (1) Authors’ calculation with

Bloomberg price data
∆CoVaRE Exposure ∆CoVaR defined in equation (2) Authors’ calculation with

Bloomberg price data
β CoVaRC Estimated βC from equation (3) Authors’ calculation with

Bloomberg price data
β CoVaRE Estimated βE from equation (4) Authors’ calculation with

Bloomberg price data
Shock CoVaRC (V aRi

q − V aRi
50) from equation (3) Authors’ calculation with

Bloomberg price data
Shock CoVaRE (V aRs

q − V aRs
50) from equation (4) Authors’ calculation with

Bloomberg price data
MESE A bank’s average return taken over the days scoring

the 5% worst daily returns of the S&P Banks Index
for each quarter

Authors’ calculation with
Bloomberg price data

MESC The banking sector’s S&P Banks Index average re-
turn taken over the days scoring the 5% worst daily
returns of the individual bank for each quarter

Authors’ calculation with
Bloomberg price data

βE
T,i Bank i’s tail exposure to the rest of the system as in

van Oordt and Zhou (2019a), estimated by EVT
Authors’ calculation with
Bloomberg price data

βC
T,i The system’s tail exposure to bank i obtained by

inverting the conditioning in van Oordt and Zhou
(2019a), estimated by EVT

Authors’ calculation with
Bloomberg price data

Net Exposure Measures
Net ∆CoVaR ∆CoVaRE − ∆CoVaRC Authors’ calculation
Net β CoVaR βE − βC from equations (3) and (4) Authors’ calculation
Net shock CoVaR Shock CoVaRE − Shock CoVaRC Authors’ calculation
Net MES MESE − MESC Authors’ calculation
Net Log(βT ) log(βE

T )− log(βC
T ) Authors’ calculation

Individual Risk measures
Z-Score [ROA + (Total equity capital/Total as-

sets)]/sd(ROA)
Authors’ calculation with
Form FR-Y9C data

DD Merton distance to default as in Merton (1974) Authors’ calculation with
Bloomberg price data and
Form FR-Y9C

Insolvency A dummy equal to 1 if the bank failed, was acquired
due to insolvency risk, had a direct subsidiary fail, or
had a cease-and-desist order from the FDIC during
the crisis up to Q4:2010.

FDIC ED&O database
and FDIC Failed Banks
List

Bank controls
Log(assets) Logarithm of assets Federal Reserve Form FR-

Y9C
Fiduciary/TI Fiduciary income over total income Federal Reserve Form FR-

Y9C
Securitization/TI Securitization income over total income Federal Reserve Form FR-

Y9C
Trading/TI Trading income over total income Federal Reserve Form FR-

Y9C
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Appendix A: Variable Definitions (cont’d)

Variable Definition Source

Bank controls (cont’d)
Loans/TA Total loans as a fraction of total assets Federal Reserve Form FR-

Y9C
LLP/TL Loan loss provisions over total loans Federal Reserve Form FR-

Y9C
Asset growth Quarterly asset growth Federal Reserve Form FR-

Y9C
TARP Equals 1 if bank received TARP government aid, 0

otherwise.
US Dept. of the Treasury

ROA Net income over assets Federal Reserve Form FR-
Y9C

Leverage Debt over assets Federal Reserve Form FR-
Y9C

Deposits/TL Deposits as fraction of total loans Federal Reserve Form FR-
Y9C

RE/TL Real estate loans over total loans Federal Reserve Form FR-
Y9C

C&I/TL C&I loans over total loans Federal Reserve Form FR-
Y9C

HH/TL Household loans over total loans Federal Reserve Form FR-
Y9C

GrossCDS/TA $ of CDS held over total assets Federal Reserve Form FR-
Y9C

NetCDS/TA $ of CDS protection bought minus $ of CDS protec-
tion sold over total assets

Federal Reserve Form FR-
Y9C

MBSheld/TA MBS securities held over total assets Federal Reserve Form FR-
Y9C
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