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Abstract. This paper proposes new centrality measures to characterise the ‘key class’,

when agents in a network are sorted into role-equivalent classes, such that its removal

results in an optimal change in the network activity. The notion of role-equivalence is

defined through the graph-theoretical concept of equitable partition of networks, which

finds wide empirical and theoretical applicability. Players in the network engage in a

non-cooperative game with local payoff complementarities. We establish a link between

the generic network and its partitioned or quotient graph, and use it to relate the Nash

equilibrium activity of classes with their position within the partitioned network. The

result informs two class-based centrality measures that geometrically characterise the key

class for an optimal reduction (or increase) in the aggregate and the per-capita network

activity, respectively.
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1. Introduction

A central feature of social networks is the prevalence of groups based on similarities

in the structural positions and patterns of links or relationships among the individual

network agents. Various types of equivalence classes in networks, also called sub-graphs,

blocks or communities, have been proposed depending on how the notion of similar pattern

of ties amongst the actors is visualised.1 Grouping actors into classes that are equivalent

or comparable relates not only to the structural position they occupy in the network, but

also to the dual notion of their network role (see Wasserman and Faust (1994), Lerner

(2005) or Baur, Brandes, Lerner, and Wagner (2009), among others, for a survey of

equivalence classes and role analysis in networks).

In this paper, we consider networks where agents are sorted into role equivalent classes

wherein class refers to an equitable partition of the network. As defined in Powers and

Sulaiman (1982), equitable partition, which generalises the idea of structural equivalence

of actors, requires that all players in a class have the same number of links amongst

themselves, and with members of other classes. An equivalent definition is in terms of

role assignment in networks2. As noted in Lerner (2005), equitable partition is associated

with exact role assignment, such that individuals that have the same role are equivalent

and they must have same number of each of the other roles in their neighbourhood, thus

creating a society divided along roles. Furthermore, players in a class have the same value

of Bonacich centrality, which is a measure of their network embeddedness. In the context

of network games, the Bonacich-Nash linkage obtained in the seminal work of Ballester,

Calvó-Armengol, and Zenou (2006) assumes importance: studying network games with

pay-off externalities due to interaction among players, they prove that players’ Bonacich

centrality is directly proportional to their equilibrium strategic behaviour. Hence, an

equitable partitioned network envisions a society that is divided along the lines of the

network roles of individuals such that members of a class enjoy the same influence in the

society and adopt similar actions in equilibrium.

1Equivalence classes is often visualised by ‘coloration’ of nodes in a graph; equivalent nodes have the
same coloring.
2Role assignment refers to a surjective mapping from the set of nodes (individuals) in the network to a
set of network roles.
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In this setting of a role-based society, we address the following question: what is the

most important class in a network where players are sorted into role-equivalent classes,

when the planner’s objective is to minimize (or maximize) the aggregate or per capita net-

work outcome. Identifying the key class in role-based networks holds both practical and

theoretical relevance. Among its empirical applications, equitable partition finds wide

applicability for modelling community structure for studying information or epidemics

diffusion in networks (see, for instance, Bonaccorsi, Ottaviano, Mugnolo, and Pellegri-

ni (2015) or Ottaviano, De Pellegrini, Bonaccorsi, Mugnolo, and Van Mieghem (2019)).

Indeed, a pervasive empirical observation of economic and social networks is the prop-

erty of ‘homophily’, meaning that people tend to have ties with individuals similar to

themselves, measured broadly by indicators like profession, religion, age, or gender. The

resulting ‘segregation’ in networks is critical in determining agents’ behaviour and fea-

tures like information diffusion in the network, such that it is of interest to identify what

is the most important class in such a segregated network.3 In the context of epidemic

outbreaks in networks divided into local communities, such that there is more interaction

within a community than across communities, a natural question that arises is which

community should be targeted in order to cause maximum disruption in the spread of

the disease. This is particularly useful for very large and complex networks, as epidemic

diffusion networks typically tend to be: characterising the importance of nodes on an

aggregate role-based level, instead of an individual level, may have more appeal from a

practically implementable policy perspective. Similarly, there has been a significant inter-

est in studying criminal networks, including in identifying its key players. The presence

of community structure in criminal networks is well accepted, as noted by Calderoni,

Brunetto, and Piccardi (2017). Modelling criminal networks according to network roles,

so as to identify which subgroup to target in order to maximally lower criminal activity,

is of interest to the social planner. Moreover, while particular individuals in a criminal

network may change, the roles in the criminal network is likely to be more stable, such

that it is optimal to target role-based classes than individual players, for reducing overall

criminal activity.

3See, for instance, Currarini, Jackson, and Pin (2009) or Golub and Jackson (2012) for the role of
homophily and segregation in modelling friendship networks, and in examining speed of learning in
networks, respectively.
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Key class identification in equitable partitioned network can be significant for various

theoretical applications as well. Examples include Allouch (2017), who consider segregat-

ed group membership-based interaction in studying welfare effects of income redistribution

by private provision of public goods in social networks. It can also be useful in studying

theoretical properties of networks, as in Rahmani, Ji, Mesbahi, and Egerstedt (2009) who

use equitable partition to analyse controllability of multi-agent networks where a set of

agents take on leadership roles. Also, it is to be noted that while a significant literature in

group-level network analysis concerns with identifying the subgroup or equivalence struc-

ture through techniques such as block modeling or role-assignment, this paper takes the

network structure as ex-ante given in order to identify the key class. This can, in a back-

ward sense, contribute to the planner’s problem of optimal network formation, similar to

Belhaj, Bervoets, and Deroıan (2013)’s search for efficient networks, by suggesting which

class to target so as to optimally alter the group-based structure for attaining desired

network outcome.

This paper brings together the graph-theoretic notion of equitable partition as associat-

ed with positional/role analysis in networks, with its game-theoretic analysis to study the

equilibrium behaviour of agents, in order to characterise the key class in role-equivalent

networks for causing an optimal change in the network outcome. The network game is

modelled using linear-quadratic utilities with linear bilateral externalities, as introduced in

Ballester et al. (2006), such that there exists strategic complementarity of efforts between

pairs of players.4 We establish and exploit a relationship between the graph representing

the overall network with the quotient graph of its equitable partitioning to show that the

aggregate equilibrium activity of classes is related to their position within the network.

This result is the class analogue of the key Bonacich-Nash linkage established in Ballester

et al. (2006) and forms the basis for two class-based centrality measures proposed in this

paper. The first is the class-centrality index to identify the most important class whose

removal results in maximal disruption in the overall network outcome. At first glance,

it may seem intuitive to think that this measure would select the class with the most

4Linear-quadratic utilities are used to model various social and economic phenomena. See e.g., Calvó-
Armengol, Patacchini, and Zenou (2009) who study effect of peer influence on education outcomes in
friendship network, Liu, Patacchini, Zenou, and Lee (2012) for criminal networks, or Goyal and Moraga-
Gonzalez (2001) for R & D collaboration among Cournot competitors.
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members as the key class. However, this is not always the case, since the class-centrality

index reflects two kinds of effects that removing a class has on the aggregate network

outcome. The first is the direct effect due to lesser contributing members in the resulting

network after removing a class. But in addition, there is also the indirect effect due a

change in the network architecture which alters the peer influences and their intensity,

as the links get altered within and across classes. For instance, if the largest class has

few direct links with other classes and most indirect links in the network do not pass

through it, then it may not be the key class, especially if the indirect links in the network

are strong (high attenuation factor). Moreover, the index is relevant if there are more

than one class of the largest size. The second measure is the per-capita class-centrality

which characterises the class whose removal reduces the per capita network activity by

the most. This allows to target the class which may be smaller in size than the class

with highest class-centrality index, but results in maximal per capita reduction of overall

activity. Hence, this measure provides a cost-sensitive characterisation of removing the

optimal class, which can be informative in presence of budget constraints for the policy

planner.

The rest of the paper is organized as follows. Section 2 presents an overview of related

literature on centrality measures in networks. Section 3 describes the network model and

the corresponding equitable partition, while Section 4 carries out the Nash equilibrium

analysis for class activity. Section 5 presents the class-based centrality measures, which

are illustrated through examples in Section 6. Section 7 concludes the paper. All proofs

are presented in Appendix.

2. Related Literature

The problem of developing measures of network centrality to determine which are the

most influential, powerful, or important agents in a network has been a key area of focus

in network analysis, owing to the ubiquity of social networks and their central role in

influencing agents’ behaviour.5 Bonacich (1972)’s eigenvector centrality, which gives more

importance to agents that have ‘important’ neighbours, is a key measure in this regard

5Wasserman and Faust (1994) or Jackson (2008) present a comprehensive overview of common centrality
amd prestige measures.
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and finds wide application in a range of fields.6 Specifically, Bonacich centrality counts

the total number of paths in the network originating from a node, discounted by their

length. However, it does not consider the payoff interdependence among agents, which

is crucial in analysing the aggregate network outcome in equilibrium. Ballester et al.

(2006) propose the intercentrality measure which, unlike Bonacich centrality, is derived

from the planner’s optimality concerns. It characterises the key player whose removal

results in maximum disruption to overall network activity in a network game with local

complementarities in efforts among agents. The problem of identifying key player has

further evolved to determining group-level centrality measures. Everett and Borgatti

(1999, 2005) point out that group centrality measures are different from choosing a set of

highest individual centralities, since they also depend upon members’ connections and the

group structure, and propose group version of common centrality measures like degree,

closeness and betweenness. Borgatti (2006) distinguishes between ‘key player problem-

negative’ and a ‘key player problem-positive’ for selecting a set of key nodes, arguing

that situation decides which measure of centrality to use. Temurshoev (2008) generalises

Ballester et al. (2006)’s intercentrality measure to search for the key collection of players

of a particular size whose removal together can result in an optimal change in the overall

network activity, without considering their underlying equivalence structure.

The above measures of centrality either focus on node or individual-level properties, or

are derived from players’ individual considerations without considering the pay-off exter-

nalities among agents. To the best of our knowledge, centrality measures that characterise

the key class, removing which causes optimal change in network outcome, by considering

the equivalence among players in role-based networks do not currently exist.

3. The network model

We consider a network g of n players. The associated (0, 1)-adjacency matrix is denoted

by G = [gij], where gij represents unweighted and undirected connection between agents

i and j; for i 6= j, it takes value of 1 if there is a link between the corresponding two

nodes in the network, and 0 otherwise. Further, gii = 0, meaning there are no loops in

g, and multiple links between any two nodes are ruled out by construction. Note that

6One of its most well-known applications is the “PageRank” algorithm of Google search engine for ranking
webpages.
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Gk represents the number of paths of length k between any two nodes in the network; its

elements are denoted by g
[k]
ij .

3.1. Equitable partition

Consider an equitable partition of the network g into m ≤ n classes {V1, ..., Vm}: for

every i, j ∈ 1, ...,m there is a non-negative integer πij such that each node in Vi has

exactly πij neighbours in Vj. An equitable partition results in a quotient graph π and the

corresponding m-square quotient matrix is represented by Π = [πij]. Note that unlike G,

the quotient matrix Π need not be symmetric. Denote the (n ×m) indicator matrix by

X = [Xij], such that Xij = 1 if vertex i is in the class Vj, and 0 otherwise. Let the number

of members in a class Vi be denoted by ri, such that, denoting the (n× 1) vector of ones

by 1n, the vector r = XT .1n lists the number of members in each class. The following

property holds by definition:

GX = XΠ (3.1)

Also, the adjacency matrix G and the quotient matrix of its equitable partition, Π,

have the same spectral radius.7 That is, if ρ(A) denotes the largest absolute value of the

eigenvalues of square matrix A, then

ρ(G) = ρ(Π) = ρ.

Finally, denote Πk =
[
π
[k]
ij

]
where π

[k]
ij denotes the total paths of length k for any node in

class Vi with its neighbours in class Vj.

3.2. Bonacich centrality

Here, we provide the definition of Bonacich centrality measure which is relevant to our

purpose. Bonacich centrality counts the total number of paths starting from node i in

the network g, weighted down by their length. The vector of Bonacich centralities, with

a decay parameter a, in g is given by:

b(g, a) = [In − aG]−1.1n =
+∞∑
k=0

akGk.1n (3.2)

7See Van Mieghem (2010), page 62, art. 62.
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where In denotes an n-square identity matrix. Note that the above expression is well-

defined for small values of a, specifically, if a is less than inverse of the largest absolute

eigenvalue of G.

4. Network game: Nash equilibrium class activity

We consider the network game with local payoff complementarities as in Belhaj et al.

(2013), which is simplified version of the linear-quadratic utility function of Ballester et

al. (2006). Players {1, ..., n} in a network engage in a non-cooperative game, where the

strategy of each player is to decide the extent of efforts they exert. The utility of player

i is given by

ui(x1, ..., xn) = xi −
1

2
x2i + λ

n∑
j=1

gijxixj

where xi ≥ 0 denotes the effort of player i, and λ > 0 measures the intensity of linear in-

teractions among pairs of players. Hence, the utility function consists of two components:

an idiosyncratic component made up of own efforts and an interaction component reflect-

ing strategic complementarities among connected players. Further, the linear-quadratic

form implies that utility is strictly concave in one’s own efforts.

In this setting of network game with linear-quadratic utility and payoff complementari-

ties, Ballester et al. (2006) establish the proportionality between players’ Nash equilibrium

outcome and their Bonacich centrality. This is a key result which establishes the intu-

itive link between players’ equilibrium behaviour with their positions within the network.

Indeed, it can be shown that player i’s unique Nash equilibrium outcome for the game

described above, x∗i , equals their Bonacich centrality bi(g, λ).

We are interested in equilibrium analysis for determining class activity when the net-

work of relative payoff complementarities has a partition structure as conceptualised by

the role-based notion of equitable partition. We first present the following Lemma. Let

AT denote the transpose of matrix A. Note that in what follows, in the Lemmas and

Definitions that pertain to any general network structure and its equitable partition, we

use the symbol ‘a’ to denote the attenuation factor, which plays the role of ‘λ’ for the

results obtained in the context of the network game explained above.
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Lemma 1. Let 0 < a ≤ 1/ρ such that [In − aG]−1 and [Im − aΠ]−1 are well-defined and

nonnegative. Then, [In − aG]−1X = X[Im − aΠ]−1.

Lemma 1 relates the overall network structure with its equitable partition. It enables

applying the Nash-Bonacich linkage result of Ballester et al. (2006) to our network game

and to express the equilibrium activity of classes in relation to the network’s partition

structure. For this purpose, define the following matrix,

N(π, λ) =
[
Im − λΠT

]−1
=
∞∑
p=0

λp(Πp)T

which is well-defined and nonnegative for λ ≤ 1/ρ . Its elements Nij(π, λ) =
∑∞

p=0 λ
pπ

[p]
ji

count the total number of paths of length p for any node in class Vj with the members

in Vi, weighted down by λp. Let y∗(π) = [y∗i ] denote the outcome vector for classes

at equilibrium, where y∗i is the sum of equilibrium outcomes of all players of class Vi,

i = 1, . . . ,m. Also, for a vector z ∈ Rp, we denote the sum of its entries as z = z1+· · ·+zp.

Theorem 1. The matrix N(π, λ) =
[
Im − λΠT

]−1
is well-defined and nonnegative when

λ ≤ 1/ρ. Then, the unique and interior Nash equilibrium class activity for the network

game characterised by ui, i = 1, . . . , n, played over the quotient graph π, is given by

y∗(π) = N(π, λ).r ≡ t(π, λ). (4.1)

In the above, N(π, λ).r is the vector of sum of Bonacich centralities of members in

a class. That the contribution of a class to the overall network activity is proportional

to the sum of its members’ Bonacich centralities is expected. But more importantly,

equation (4.1) links the equilibrium activity of a class with its position in the network,

as represented by the equitable partition network structure through the matrix N(π, λ).

Hence, it can be considered as the class analogue of the Bonacich-Nash linkage of Ballester

et al. (2006).

5. The key class: two measures

The above analysis shows that the class outcome at equilibrium is related to its position

within the network when there exists payoff externalities among agents. Removing a class

alters the network structure of bilinear influences, in addition to reducing the number
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of agents who contribute to the overall network activity, thus altering the equilibrium

network outcome. In this section, we propose two geometric measures to characterise

equilibrium outcome, in aggregate and in per-capita terms, upon removing classes. This

informs simple criteria for targeting the optimal class if the planner wants to minimise

(or maximise) the aggregate or the per-capita network activity, respectively.

Consider the game of Section 4 being played over the network g with symmetric square

adjacency matrix G = [gij], where gij ∈ {0, 1} for i 6= j and gii is set to 0; its corresponding

quotient network is π with quotient matrix Π = [πij]. Let a class j be removed from the

network. The corresponding partition matrix is denoted by Π−j, by setting the jth row

and jth column of Π to zero. Also, r−j is the class size vector associated with removing

class j by setting j-th coordinate of r to 0. The overall network activity is the sum of

the activities due to all remaining classes y∗(π−j) =
m∑

i=1, i6=j

y∗i (π−j). The derivation of

the class-based centrality measure makes use of the following Lemma, which characterises

changes in the structure of links among players of remaining class when a class is removed.

Lemma 2. Let 0 ≤ a ≤ 1/ρ such that N(π, a) =
[
Im − aΠT

]−1
is well-defined and

non-negative. Let N(π−j, a) = [Im − a(Π−j)T ]−1. Then:

Nik(π, a)−Nik(π−j, a) =
Nij(π, a).Njk(π, a)

Njj(π, a)
. (5.1)

5.1. Class-centrality

The class-centrality index is concerned with identifying the class removing which results

in an optimal reduction in the aggregate network outcome.8 Formally, the planner’s

objective is to:

min
{
y∗(π−j)

}
or max

{
y∗(π)− y∗(π−j)

}
, j = 1, . . . ,m. (5.2)

Definition 1. Let there be a quotient network π that divides the network g intom classes,

with the associated partition matrix Π and a decay factor a > 0 such that [Im − aΠ]−1

is well-defined and non-negative. The class-centrality measure of class j is given by:

ej(π, a) =
tj(π, a).sj(π, a)

Njj(π, a)
, (5.3)

8The planner may, equivalently, wish to increase overall network activity.
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where N(π, a) =
[
Im − aΠT

]−1
, s(π, a) = 1T

m.N(π, a), and t(π, a) = N(π, a).r.

The above index informs a simple criterion to characterise the key class j∗ to optimally

reduce (or increase) network outcome, as presented in the following Theorem.

Theorem 2. If λ ≤ 1/ρ, the class that solves max {y∗(π)− y∗(π−j)} is the j∗ for which

the class-centrality measure is the highest, that is, ej∗(π, λ) ≥ ej(π, λ) for all j = 1, ...,m.

Note that removing a class has a direct and an indirect effect on network activity.

Direct effect is by virtue of a reduction in the number of players who contribute to network

activity. Indirect effect is due to the fact that removing a class alters the network structure

such that the remaining classes adopt different equilibrium actions, thereby again altering

the aggregate (or per-capita) network activity. Hence, the class with the most players need

not be the key class for reducing the aggregate network activity.

5.2. Per-capita class-centrality

Other than bilinear influences, the size of a class plays a significant, and sometimes,

indeed, the deciding role in determining the key class using the class-centrality index.

Targeting large classes can prove to be restrictive in presence of budget constraints for

the planner. The per-capita class centrality index addresses this limitation by providing a

geometric measure for the class removing which results in maximum per-capita reduction

(or increase) in network activity. The planner’s objective, therefore, is:

min

{
y∗(π−j)

n− rj

}
or max

{
y∗(π)

n
− y∗(π−j)

n− rj

}
, j = 1, . . . ,m. (5.4)

Definition 2. For the quotient network and decay factor a as specified in Definition 1,

the per-capita class-centrality measure of class j is given by:

hj(π, a) =
n. (tj(π, a)/Njj(π, a)) .sj(π, a)− rj.t(π, a)

n(n− rj)
, (5.5)

where N(π, a) =
[
Im − aΠT

]−1
, s(π, a) = 1T

m.N(π, a), t(π, a) = N(π, a).r, and t(π, a)

denotes the sum of the coordinates of t(π, a).

Per-capita class-centrality hj(π, a) characterises the per-capita network activity upon

removing class j, in terms of the position that its players occupy within the partitioned
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network. This informs a simple criterion for selecting the key class for optimally lowering

per-capita network activity from the planner’s perspective, as given by the following

Theorem.

Theorem 3. If λ ≤ 1/ρ, the class that solves max
{

y∗(π)
n
− y∗(π−j)

n−rj

}
is the j∗ for which

the per-capita class-centrality measure is the highest, that is, hj∗(π, λ) ≥ hj(π, λ) for all

j = 1, ...,m.

Similar to class-centrality, the per-capita measure also reflects the dual effects of lesser

contributing members as well changes in the network structure of peer-effects, in deter-

mining the network activity of the resultant network. Note that the key class in the above

Theorem refers to one whose removal reduces per capita network activity by the most.

This is not the same as the class which contributes the most in per capita terms. The

reason is as previously explained: when a class j is removed, the equilibrium activity

of others without class j will no longer be the same if j had been there, due to alter-

ations in the network structure of bilateral influences. The same argument applies to the

class-centrality measure as well, such that removing the corresponding key class optimally

reduces the aggregate network activity but does not have the interpretation of being the

class that contributes the most in terms of its share in overall network activity.

Remark 1. Both the class-based centrality measures are generic indices applicable to any

network structure. At the extreme case when a network does not have an equitable parti-

tion structure, ‘class’ simply refers to individual players. In that case, it is straightforward

to notice for the class-centrality index that the planner’s problem (5.2) translates to the

key player problem of Ballester et al. (2006); the class-centrality, then, is the same as

their intercentrality measure.

Remark 2. The notion of equitable partition for specifying classes is also applicable to

nested split graph structures in networks which postulates neighbourhoods of agents of

lower degree to be contained in the neighbourhoods of higher degree agents.9 In presence of

such a hierarchical structure, the nested split graph is the same as the equitable partition.

However, the latter is general enough to include other types of grouping structure for

other role-based networks, whether hierarchical or not.
9See, for instance, König, Tessone, and Zenou (2014) for discussion on nestedness in networks.
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6. Examples and discussion

In this section, we illustrate the two proposed class-based centrality measures on some

example networks, and compare them with other common centrality measures. Three

example networks are considered.

6.1. Example 1: class-based centrality vs intercentrality

Figure 1 considers the 11-player network g with three classes, as used in Ballester et al.

(2006), and compares the proposed centrality measures with their intercentrality index,

another centrality metric from planner’s optimality concerns to identify the key player

type. Table 1 computes centralities for two values of the decay factor a.10 We find that

Class 1

Class 2

Class 3

7

11

10

1

2

3

4

5

6

8

9

Figure 1. Example network: class-based centrality vs intercentrality

Table 1. Class-based centrality vs intercentrality

a = 0.1 a = 0.2

Class type ei hi ci ei hi ci
1 2.92 0.11 2.92 41.67 3.33 41.67∗
2 11.09 0.57∗ 3.28∗ 80.67 6.76∗ 40.33
3 12.96∗ 0.46 2.79 81.67∗ 6.33 32.67

ei and hi denote class-centrality and per-capita class-centrality, respectively.
ci denotes intercentrality measure of Ballester, Calvó-Armengol, and Zenou
(2006). The highest values are indicated by ‘∗’.

10Here, the maximum value of a in line with our centrality definitions is 0.227.
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the largest class (class 3) is also the key class for reducing overall equilibrium activity, for

both values of a. This is because along with having most members, this class is also quite

well-connected. It has direct links with class 2 (which, by being the link between the other

two classes, is the most central class - it’s players have the highest Bonacich centrality),

and indirect links with class 1. Hence, removing class 3 alters the network structure

in a way to cause maximal disruption in equilibrium contribution by remaining players.

However, in terms of per-capita network activity, class 2 becomes the most important one

since it is smaller than class 3 but has direct links with both classes 1 and 3, removing

which causes most damage to the network activity of the altered network, measured in

per-capita terms.

We also note that the key class, both for total and per-capita outcome reduction, mostly

differs from the player type with the highest intercentrality value. This is expected as

intercentrality depends on an individual level analysis of peer-effects between pairs of

players for characterising their importance, while class-based centrality internalises the

group-level dynamics among the members within a class as well, in addition to studying

the peer-effects across members of different classes. For the class with only one member

(class 1), there is no such intra-group dynamics per se, and the intercentrality as well as

class-centrality are the same, as also noted in Remark 1.

6.2. Example 2: class-based centrality vs Bonacich centrality

In the above example, the class which was most central was also the key class for opti-

mally reducing per-capita activity. It is, however, not necessary that removing the most

central class in terms of position alone, that is, whose players have the highest Bonacich

centrality, will result in an optimal change in the structure of bilinear influences so as to

minimise the per-capita network activity. This is evident in the example considered in

Figure 2, borrowed from Allouch (2017) who considers segregation in social networks.

The class-based centrality values for the three classes, along with the Bonacich centrality

for players in those classes is reported in Table 2, for two different values of a.11 For this

simple network where two of the classes are of same size, the key class for total and

per-capita activity reductions comes out to be the same (class 2). Note that while class

1 is most centrally located, since its players, who have the highest Bonacich centrality,

11The largest value for a compatible with our definitions is 0.427.
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Figure 2. Example network: class-based centrality vs Bonacich centrality

Table 2. Class-based centrality vs Bonacich centrality

a = 0.1 a = 0.2

Class type ei hi bi ei hi bi
1 3.41 0.14 1.39∗ 6.50 0.47 2.13∗
2 6.13∗ 0.24∗ 1.26 10.26∗ 0.72∗ 1.77
3 3.08 0.08 1.25 5.31 0.27 1.71

ei, hi and bi denote class-centrality, per-capita class-centrality and Bonacich
centrality, respectively. The highest values are indicated by ‘∗’.

form a bridge through which the other players are connected, it is not the key class,

for either optimally reducing total or per-capita network activity. This is because for

network activity, how removing a class alters the peer-effects within and across classes

matter. Taking this into account makes class 2 the key class.

6.3. Example 3: Class-centrality need not be highest for the largest

class

In the above two examples, we find that the key class for inducing maximal disruption

in total network activity is the one that has most members. While this was true for the

simplistic network structures considered in Figures 1-2, it will not, in general, be the case.

We consider the example in Figure 3, from Bonaccorsi et al. (2015)’s study of epidemic

outbreaks in networks with equitable partitions. Unlike the previous examples, this net-

work is more complex and displays asymmetry in the indirect links between members of

various classes (features which are likely to be present in realistic networks) - it can be

seen that even though all players in class 4 have same number of links amongst themselves

14



and with class 2, the indirect links for players 8 and 11 are different from others in their

class.

1

2

3

4

5

6

7

8

9

10

11
12

13

Class 1

Class 2

Class 3

Class 4

Figure 3. Example network: analysing class-centrality

Table 3 reports the centrality values for the aggregate and per-capita indices, for a = 0.1

and 0.2.12

Table 3. Analysing class-centrality

a = 0.1 a = 0.2

Class type ei hi ei hi
1 4.40 0.21 514.35 39.08
2 8.81 0.45∗ 561.62∗ 42.79∗
3 9.59 0.22 540 39.80
4 12.40∗ 0.14 535.71 37.85

We focus on the class-centrality ei which is informative for our purpose. Notice that

for the lower value of a, the largest class (class 4) is also the key class, while with a = 0.2,

class 2 (which is much smaller in size than class 4) becomes key for optimally decreasing

overall network activity. This is because, with smaller value of a, the direct effect due to

class size is the dominant factor in determining the key class. But when the indirect links

become stronger, removing class 2, through which most of the indirect links are formed,

12For this example, the maximum permissible value of a to satisfy our centrality definitions is 0.204.
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has the highest combined direct and indirect effects in determining the aggregate network

activity.

7. Concluding remarks

This paper considers equitable partitioning of networks where players engage in a net-

work game with local payoff complementarities, and proposes centrality measures to ge-

ometrically characterise the key class for the social planner who wishes to minimize (or

maximize) the aggregate or the per-capita network activity. The measures derive from

establishing a relationship between the Nash equilibrium activity of classes and their posi-

tion within the network, in a result that can be considered the Bonacich-Nash equivalent

of Ballester et al. (2006) for class-based networks. The work assumes importance in light

of numerous examples of role-based stratification or hierarchy in networks, so that study-

ing the direct and indirect effect of classes to the overall or per-capita economic activity

in the network is critical for policy decisions.

While class, here, has been defined through the notion of equitable partition, an in-

teresting and challenging future work would be to consider any general partitioning of

networks, as defined in Van Mieghem (2010), in order to find the key class for any general

grouping structure in networks.
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Appendix: Proof section

Proof of Lemma 1. Both the inverse matrices are well-defined and non-negative for 0 ≤
a ≤ 1/ρ. Then, since from (3.1) GkX = XΠk, we have

[In − aG]−1X =

[
∞∑
k=0

akGk

]
X =

∞∑
k=0

akXΠk = X

[
∞∑
k=0

akΠk

]
which proves the Lemma.

Proof of Theorem 1. The pure Nash equilibrium strategies x∗ ∈ Rn
+ for the network game

in Section 4 solves ∂ui/∂xi(x
∗) = 0, such that it satisfies the first order conditions:

[In − λG] x∗ = 1n

As shown in Ballester et al. (2006), the Nash equilibrium exists and is unique if the inverse

[In − λG]−1 exists, that is, when λ ≤ 1/ρ. Then, from definition of b(g, λ) in (3.2),

x∗ = b(g, λ).

Hence, from Lemma 1, we have

y∗(π) = XT .x∗ =
[
Im − aΠT

]−1
.XT .1n

Noting that XT .1n = r then proves the Theorem.

Proof of Lemma 2. Recall that the elements of Πp, π
[p]
ik , denotes the total paths of length

p for any v in class Vi with its neighbours in Vj. Let π
[p]

i(j0)k denote the total number of such

paths not containing the class j. Similarly, π
[p]
i(j)k denotes only such p-length paths that

contain class j. Then, denoting the ik-th element of (Πp)T as π
[p,T ]
ik and setting π

[0]
jj = 1,

for 0 ≤ a ≤ 1/ρ, we have

Nik(π, a)−Nik(π−j, a) =
∞∑
p=1

ap(π
[p,T ]
ik − π[p,T ]

i(j0)k)

Noting that,

π
[p,T ]
ik − π[p,T ]

i(j0)k = π
[p,T ]
i(j)k = π

[p,T ]
i(j)k.π

[0,T ]
jj =

∑
r′+s′=p

r′≥1, s′≥1

π
[r′,T ]
ij .π

[s′,T ]
jk −

∑
r+s=p

r≥2, s≥1

π
[r,T ]
i(j)k.π

[s,T ]
jj ,
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we have

ap
∑

r+s=p
r≥2, s≥0

π
[r,T ]
i(j)k.π

[s,T ]
jj = ap

∑
r′+s′=p

r′≥1, s′≥1

π
[r′,T ]
ij .π

[s′,T ]
jk .

This equates to [Nik(π, a)−Nik(π−j, a)].Njj(π, a) = Nij(π, a).Njk(π, a) which proves the

Lemma.

Proof of Theorem 2. Note that from Theorem 1, y∗(π) and y∗(π−j) are increasing in

t(π, λ) and t(π−j, λ), respectively. Hence, the planner’s objective function (5.2) can be

re-written as follows:

m∑
i=1, i6=j

(ti(π, λ)− ti(π−j, λ)) + tj(π, λ).

In what follows, we drop arguments in function for simplicity of notation wherever con-

venient, and write ik-th element of N(π−j, λ) as N−jik . Since t(π, λ) = N(π, λ).r, we

re-write the above expression as:

m∑
i=1, i6=j

[
m∑
k=1

Nikrk −
m∑

k=1, k 6=j

N−jik rk

]
+

m∑
k=1

Njkrk

=
m∑

i=1, i6=j

[
Nijrj +

m∑
k=1, k 6=j

{
(Nik −N−jik )rk

}]
+

m∑
k=1

Njkrk.

Using Lemma 2, this becomes

m∑
i=1, i6=j

[
Nijrj +

m∑
k=1, k 6=j

{
Nij.Njk

Njj

rk

}]
+

m∑
k=1

Njkrk

=
m∑

i=1, i6=j

[
m∑
k=1

Nij.Njk

Njj

rk

]
+

m∑
k=1

Njkrk =
m∑

i=1, i6=j

[
Nij

Njj

tj

]
+ tj

Njj

Njj

=
tj
Njj

m∑
i=1

Nij

where the last line uses the equality tj =
m∑
k=1

Njkrk. Noting that
m∑
i=1

Nij = sj proves the

Theorem.
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Proof of Theorem 3. As in proof for Theorem 2, the problem statement translates to:

max


∑m

i=1(ti(π, λ)

n
−

m∑
i=1, i6=j

ti(π
−j, λ))

n− rj
≡ hj(π, λ)

 , j = 1, . . . ,m.

Dropping arguments in function for simplicity of notation and denoting the ik-th ele-

ment of N(π−j, λ) as N−jik , from t(π, λ) = N(π, λ).r such that ti =
m∑
k=1

Nikrk, we have

hj =
m∑

i=1, i6=j

{
(n− rj)

∑m
k=1Nikrk − n

∑m
k=1, k 6=j N

−j
ik rk

n(n− rj)

}
+

∑m
k=1Njkrk
n

=
m∑

i=1, i6=j

{
nNijrj − rj

∑m
k=1Nikrk + n

∑m
k=1, k 6=j

(
Nik −N−jik

)
rk

n(n− rj)

}
+

∑m
k=1Njkrk
n

Using Lemma 2, this becomes

hj =
m∑

i=1, i6=j

nNijrj − rjti + n
∑m

k=1, k 6=j

(
Nij .Njk

Njj

)
rk

n(n− rj)

+
tj
n

=
m∑

i=1, i6=j

nNijrj − rjti + n
{∑m

k=1

(
Nij .Njk

Njj

)
rk −Nijrj

}
n(n− rj)

+
tj
n

=
m∑

i=1, i6=j

{
n(Nij/Njj)tj − rjti

n(n− rj)

}
+
tj
n

=
m∑
i=1

{
n(Nij/Njj)tj − rjti

n(n− rj)

}
.

Noting that
m∑
i=1

Nij = sj, then, proves the Theorem.
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