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Abstract. In this paper, we show that a concept of aggregation can hold in large

network games with linear best replies. Breaking up large networks into smaller sub-

networks, which can be replaced by representative players, leads to a coarse-grained

description of strategic interactions. This method of summarizing complex strategic in-

teractions by simple ones can be applied to compute all Nash equilibria for the special

network structure of cograph. A key finding is that a stable Nash equilibrium of the

large network game can be decomposed into a collection of Nash equilibria of subnet-

work games. Thereby, we establish a systematic relationship between player’s position

in a subnetwork and his equilibrium action in the large network game.
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1. Introduction

The economics of networks, which focuses on modeling and understanding varied eco-

nomic interactions, has recently become one of the most active and dynamic fields in

economics. It has the potential for important and lasting policy implications—see, for

example, Jackson (2016) and Goyal (2017). It is notable that most economic interactions

take place in large networks, whose sheer sizes and complex structures make economic

analysis quite a challenging task. Nevertheless, it is well known that economic networks

have a rich degree of symmetry due to similar linkage patterns for individuals having sim-

ilar economic characteristics such as income, education, and preferences, for firms facing

the same competitors, and for countries having similar bilateral agreement policies.

In this paper, we show that advantage can be taken of the symmetric features of large

economic networks. More specifically, we show that a concept of aggregation that ensures

a group of players behaves like a single player holds for network games with linear best

replies, a subject of ongoing research as in Ballester, Calvó-Armengol, and Zenou (2006)

for externalities, Bramoullé and Kranton (2007) for public good provision, and Bramoullé,

Kranton, and D’Amours (2014) for various economic interactions. For recent related con-

tributions, see also, Zhou and Chen (2015), Acemoglu, Malekian, and Ozdaglar (2016),

Günther and Hellmann (2017), Elliott and Golub (2019), and Parise and Ozdaglar (2020).

It is worth noting that our concept of aggregation holds for players, as in the aggrega-

tive game for pure public goods introduced by Cornes and Hartley (2007), rather than

individual preferences.

A key ingredient of our analysis is a group of players, called a module, such that players

in the group have exactly the same neighbors outside the group.1 In interpretation,

since players in a module are indistinguishable by players outside the module in terms of

their network position, outside players are affected either by their aggregate action or by

nothing and hence one can substitute players in the group with a single representative

player. Modules feature frequently in the economics of networks literature. For instance,

a nested split graph, which has been extensively studied in König, Tessone, and Zenou

(2014), Hiller (2017), Kinateder and Merlino (2017), and Olaizola and Valenciano (2020)

as the outcome of network formation with a strong empirical support, has many modules

formed by the various nested neighborhoods. A concrete example, which arises naturally,

1The notion of a modular set has been rediscovered several times in many fields including cooperative
game theory by Shapley (1967) under the name of committee.
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is a set of firms competing domestically while facing the same overseas competition, which

can then be replaced by just one big firm. Another concrete example is several countries

privately providing a public good, such as cybersecurity, which could be made accessible

via bilateral agreements. Assume that there is a group of countries with identical outside

bilateral agreements. Therefore the group of countries can be represented by a single

country regardless of the group’s architecture of bilateral agreements.

We first consider a partition of players of a network game with linear best replies into

groups that gives rise to two-level nested games—a group game played within each group

and an intergroup game played between representative players of the groups. Then, we

show that each Nash equilibrium of the network game corresponds to a combination of

Nash equilibria of the nested games if and only if the groups are modules. Furthermore,

we show that a network game can be decomposed into a unique hierarchy of nested games.

Key to this are the modules that overlap with no other modules, called strong modules,

which, when ordered by inclusion, define a unique tree, called the modular decomposition

tree, whose root is the set of players and whose leaves are the single players.2 By fitting

nested games into each other along the nodes of the modular decomposition tree, we

obtain a unique hierarchical decomposition of the network game with linear best replies,

which is useful for the analysis of strategic interactions. First, it can be used to carry out a

recursive computation of Nash equilibria, which could be of great algorithmic interest. In

addition, we show that the computation can be especially useful to characterize all stable

Nash equilibria for a special class of networks, called cograph. More specifically, we show

that a stable Nash equilibrium can be decomposed into a collection of Nash equilibria of

module games. Thereby, we establish a systematic relationship between player’s position

in a module, and his Nash equilibrium actions in the large network game.

We also provide an application of our results to the model of public goods in networks

with large direct spillover effects to further illustrate the usefulness of our results. The

key question addressed in Bramoullé and Kranton (2007) is how the network architec-

ture of spillovers influences public goods provision, in the absence of coordination. It is

shown in their analysis that despite the attractive normative feature of sharing the bur-

den of public goods among all players, an equilibrium where all players are active is not

always guaranteed to exist. Our aggregation approach complements the above analysis,

as it provides a necessary condition on the network architecture in order to have a Nash

2The concept of the modular decomposition tree was introduced in Gallai (1967) and a similar decompo-
sition also appeared in Shapley (1967).
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equilibrium with only active players—see also Sun (2012) for a different approach. This

necessary condition for the existence of an equilibrium where all players are active, also

becomes sufficient for the special network class of cograph.

The paper is organized as follows. In Section 2, we present the basic model of network

games. In Section 3, we introduce the concept of aggregation and nested games. In

Section 4, we investigate and relate the stability of the various Nash equilibria. In Section

5, we show that aggregation yields a unique hierarchy of nested games and characterize

Nash equilibria for cograph. In Section 6, we provide an application of our results to

public goods in networks. Section 7 concludes the paper.

2. The model

We consider a strategic form game Γ(g, δ) with N = {1, . . . , n} players embedded on

an undirected and unweighted connected network g of interactions, and where δ ∈ [0, 1]

measures how much player i’s action is affected by his neighbors’ actions. Each player

i chooses an action xi ∈ R+. Given a subset of players S ⊂ N and a profile of actions

x = (x1, . . . , xn), let xS = (xi)i∈S denote the actions of the players in S and xS =
∑

i∈S xi

denote their sum. As usual, let x−i = xN\{i} denote the actions of all other players than i.

The payoffs of player i for the profile of actions x = (x1, . . . , xn) are Ui(x) = Ui(xi,x−i).

Player i seeks to maximize his payoffs and has a best-reply function

xi = fi(x−i)
def
= max{1− δ xNi(g), 0},

where Ni(g) denotes i’s neighbors in g and 1 is the action player i chooses in isolation.

As shown in Bramoullé, Kranton, and D’Amours (2014), this type of game, Γ(g, δ),

can be used to represent various types of economic interactions, including the model of

public goods in networks, introduced in Bramoullé and Kranton (2007), and the model

of negative externalities with linear-quadratic payoffs, introduced in Ballester, Calvó-

Armengol, and Zenou (2006).

At a Nash equilibrium x∗ = (x∗1, . . . , x
∗
n) of the game Γ(g, δ), each player’s action is

a best-reply to his neighbors’ actions, that is, x∗i = fi(x
∗
−i) for each player i ∈ N. The

existence of a Nash equilibrium of Γ(g, δ) is guaranteed by Brouwer’s fixed point theorem

by restricting strategies of players to [0, 1]n.
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Let p = {M1, . . . ,MK} denote a partition of the set of players N into groups. Given

two disjoint groups Mk and Mh either there is a player in Mk adjacent to a player in

Mh or no player in Mk is adjacent to a player in Mh. Thus, the relationship between

two disjoint groups is either adjacent (if they have two adjacent players) or nonadjacent.

Hence the partition p gives rise to a new network, Gp, called the quotient network, whose

vertices are the groups of the partition p and links are the adjacencies of these groups.

Now we define an intergroup game played on the quotient network Gp, denoted by

Γ(Gp, δ; z), where z = (z1, . . . , zK) ∈ RK
+ is a vector of weights determined exogenously.

This set-up means that in the quotient network, players positions are filled by the groups.

For each group Mk, there is a representative player k, who chooses an action rk ∈ [0, 1].

Player k’s payoffs depend on his own action rk and the actions of the other players r−k. We

denote the payoffs of player k by Vk, which are assumed to yield the best-reply function:

rk = Fk(r−k)
def
= max{1− δ

∑
h∈Nk(Gp)

zhrh, 0}.

Finally, an independent set is a set of players in the network, no two of which are adjacent.

A maximal independent set is an independent set that is not a proper subset of any other

independent set.

3. Modular aggregation

We now introduce a network position similarity of a group of players, which ensures

that it can behave like a single player. A group of players M is called a module if they

have exactly the same neighbors outside the module, that is, for any player i ∈ N \M ,

either i is adjacent to every player in M or i is adjacent to no player in M. It is easy to

notice that each single player {1}, . . . , {n} and the entire set of players N = {1, . . . , n}
are always modules, called trivial modules.

While not every network has a non-trivial module, it is well known that economic

networks have a rich degree of symmetry due to similar linkage patterns for individuals

having similar economic characteristics. For instance, a nested split graph, which has been

extensively studied as the outcome of network formation in König, Tessone, and Zenou

(2014), Hiller (2017), Kinateder and Merlino (2017), and Olaizola and Valenciano (2020)

as the outcome of network formation with a strong empirical support, has many modules

formed by the various nested neighborhoods. A partition p = {M1, . . . ,MK} of the set

of players N is called modular if each group Mk of the partition is a module.
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The following result shows that a Nash equilibrium of the network game corresponds

to a combination of Nash equilibria of the nested games provided that the partition is

modular.

Theorem 1. Given a modular partition p = {M1, . . . ,MK}. Then, the following are

equivalent:

(1) x∗ is a Nash equilibrium of Γ(g, δ)

(2) x∗ = (r∗1 y∗M1
, . . . , r∗K y∗MK

) such that

(a) y∗Mk
is a Nash equilibrium of Γ(gMk

, δ), for each k = 1, . . . , K, and

(b) r∗ is a Nash equilibrium of Γ(Gp, δ; y∗M1
, . . . , y∗MK

).

Conversely, given a partition p = {M1, . . . ,MK}. If (1) and (2) are equivalent for any

δ > 0, then p = {M1, . . . ,MK} is modular.

Hence, it follows from Theorem 1 that if the partition is modular, then finding the Nash

equilibria of the nested games could provide significant insights into the Nash equilibria

of the network game. In particular, note that players’ actions in a Nash equilibrium of

the network game are proportional to their actions in a Nash equilibrium of the module

game.

The following example given in Ballester, Calvó-Armengol, and Zenou (2006) illustrates

a network game and the corresponding nested games.

Example 1. Consider the network with eleven players depicted in Figure 1. Clearly,

the partition p = {M1,M2,M3,M4,M5}, where M1 = {1}, M2 = {2, 6}, M3 = {7, 11},
M4 = {3, 4, 5}, and M5 = {8, 9, 10}, is modular. Below, we depict the underlying networks

of the various games.

(1) The network game Γ(g, δ).

2

1

5

6

3

4

11

9

10

7

8

Figure 1: The network g.
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(2) The nested games.

(a) The module game Γ(gMk
, δ), for each k = 1, . . . , 5.

2

1

5

6

3

4

11

9

10

7

8

Figure 2: The module network gMk
, for each k = 1, . . . , 5.

(b) The intergroup game Γ(Gp, δ; y∗M1
, . . . , y∗M5

).

{1}{7, 11} {2, 6}{8, 9, 10} {3, 4, 5}

Figure 3: The quotient network Gp.

3.1. Stable equilibria. We now consider the issue of stability, which is often invoked to

refine the set of Nash equilibria. In this respect, we consider a myopic adjustment process

defined, for each consumer i = 1, . . . , n, by

.
xi = fi(x−i)− xi,

where fi(x−i) is player i’s best-reply function. The Nash equilibrium x∗ is “locally asymp-

totically stable” if there exists a neighborhood of x∗ such that if the above system starts

at any point inside this neighborhood, it converges back to x∗. In interpretation, stable

equilibria are robust to small perturbations in players’ actions.3

The following result relates the stability of the Nash equilibrium to the stability of the

Nash equilibria of the nested games. Since active players induce a modular partition, for

simplicity of notations, we will assume that all players are active.

3See Bervoets and Faure (2019) for a more recent contribution on stability in network games.
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Theorem 2. Given a modular partition p = {M1, . . . ,MK} and a Nash equilibrium

x∗ = (r∗1 y∗M1
, . . . , r∗K y∗MK

) such that for each k = 1, . . . , K, y∗Mk
is a Nash equilib-

rium of the module game Γ(gMk
, δ) and r∗ is a Nash equilibrium of the intergroup game

Γ(Gp, δ; y∗M1
, . . . , y∗MK

). If x∗ is stable, then y∗Mk
, for each k = 1, . . . , K, and r∗ are stable.

Theorem 2 shows that, given a modular partition, the stability of a Nash equilibrium

of the network game implies the stability of the Nash equilibria of the nested games.4

Hence, as we will show later on, a convenient way to check whether a Nash equilibrium of

the network game is unstable is to first check if any Nash equilibrium of the nested games

is unstable.

4. Strong modules

Now, we will further exploit the decomposition of the network game into nested games

by focusing on distinguished modules, called strong modules. A module M is called a

strong module if, for any module M ′ 6= M, it holds that either M ′∩M = ∅ or one module

is included in the other. We say that a strong module M is a descendant of another strong

module M ′ if M ⊂M ′ and there is no other strong module M∗ such that M ⊂M∗ ⊂M ′.

Given a strong module M , let pM = (D1, . . . , DT ) denote the descendants’ partition.

Understandably, as it will become clear later on, the descendants’s partition will provide a

convenient way to organize the various modular partitions. A strong module M is labeled

in three ways: parallel when the descendants are all non-neighbors of each other (that is,

GpM
is empty), series when the descendants are all neighbors of each other (that is, GpM

is complete), and prime otherwise (that is, GpM
is neither empty not complete).

The following two propositions exploit the particular network architectures of parallel

and series modules to compute the Nash equilibria of the intergroup game.

Proposition 1. Given a parallel module M . Then r∗M = (1, . . . , 1) is the unique Nash

equilibrium of the Γ(GpM
, δ; y∗D1

, . . . , y∗DT
).

Let M be a series module, we say that a descendant Dt is over-threshold if y∗Dt
> 1

δ
.

We say that M is separating if the set of over-threshold descendants OM = {Dt | y∗Dt
> 1

δ
}

4Although we don’t have a counterexample for the opposite, we conjecture that it doesn’t generally hold:
the stability of the Nash equilibrium cannot be inferred from the stability of the Nash equilibria of the
nested games since, intuitively, there are fewer possible perturbations in the Nash equilibria of the nested
games.
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is non-empty.5 Let AM denote the set of active descendants at the Nash equilibrium of

the intergroup game played by the descendants.

Proposition 2. Given a series module M . Then, r∗M is a Nash equilibrium of the inter-

group game Γ(GpM
, δ; y∗D1

, . . . , y∗DT
) if and only if, for almost every δ,6 it holds that,

r∗t =

1
1−δy∗Dt

1 +
∑

s∈AM

δy∗Ds

1−δy∗Ds

,

where AM is a subset of OM , if M is separating and AM = {1, . . . , T}, otherwise.

Proposition 2 provides several sharp predictions on equilibrium actions in a Nash equi-

librium, especially, for separating series modules.

Corollary 1. Given a separating series module M . Then it holds that

(i) there exists always a Nash equilibrium with free-riders.

(ii) all players not in an over-threshold descendant are free-riders in any Nash equilib-

rium.

(iii) if xM and x′M are Nash equilibria such that AM ⊂ A′M , then the equilibrium level of

aggregate play is higher for xM than x′M .

Corollary 1 shows that given a separating series module there always exists an equilib-

rium with free-riders (even when all descendants are over-threshold). In particular, players

not in an over-threshold descendant are free-riders in any Nash equilibrium. Moreover,

the equilibrium level of aggregate play is decreasing in terms of inclusion of active descen-

dants. As a consequence, equilibria with just one active over-threshold descendant yield

the highest equilibrium level of aggregate play in terms of inclusion of active players.

In the following, we will show that Nash equilibria with just one active over-threshold

descendant have another remarkable property. More specifically, equilibria with just one

active over-threshold descendant for every separating series module are the only stable

equilibria.

Corollary 2. Given a stable Nash equilibrium. Then for every separating series module

there is just one active over-threshold descendant.

5As it will become clear later on, we call it separating in the sense, it can always separate players into
active players and free-riders.
6We say that a property holds for almost every δ if it holds for every δ except a finite number of values.
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5. Hierarchical decomposition

We now take advantage of the descendant relation and decompose the network game

with linear best replies into a unique hierarchy of nested games. More specifically, the

descendant relation yields a tree on the set of strong modules, called the modular decom-

position tree of the network, where the set of players {1, . . . , n} is the root, the single

players {1}, . . . , {n} are the leaves, and any other strong module is an internal node. The

modular decomposition tree of a network is unique (see Gallai (1967) and Shapley (1967)),

as illustrated i in Figure 4.

a f

b c d e

series

{a, b.c, d, e, f}

prime

{a, b.c, d, e}

parallel

{a, b}

a b

c d e

f

Figure 4: Modular decomposition tree of a network.

Note that the modular decomposition tree constitutes an exact alternative represen-

tation of the network whenever the structure of each prime module is depicted. As a

consequence, nested games can be used to compute Nash equilibria using the bottom-up

technique along the modular decomposition tree.

5.1. Cograph. Now we consider the special class of networks known as cograph, which

consist of networks with only parallel and series modules in their modular decomposition

tree.7

7The class of cographs has been intensively studied since it was discovered independently by several
authors in the 1970s.
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a

b c

d

e

f
series

parallel

a b

parallel

series

c d

e

f

Figure 5: Cograph network with six players.

For cographs, it follows from Propositions 1 and 2 that, for almost every δ, Nash

equilibria can be computed immediately using the bottom-up technique. In the following,

based on the above computation, we will characterize all stable Nash equilibria for a

cograph.

To do so, we say a partition of descendants (Mk)k∈I is independent if every over-

threshold Mk is minimal and not adjacent to any Mh, for each h 6= k. We say an

independent partition is maximal if it is the coarsest and maximal in terms of set in-

clusion among independent partitions.8 A maximal independent partition can be easily

constructed from the modular decomposition tree by following a bottom-top approach if

each minimal over-threshold descendant is replaced by Mk, descendants of all separat-

ing series modules containing Mk are deleted and each descendant of a parallel module

containing Mk is replaced by Mh.
9

The following example illustrates all maximal independent partitions in a cograph.

Example 2. Consider the cograph network with six players depicted in Figure 5. Then

using the computations in Propositions 1 and 2 bottom-up along the modular decompo-

sition tree, it follows that the maximal independent partition is the entire set of players

8That is, there is no independent partition (Mk′)k′∈I′ such that for some k0 and k′0, it holds that
Mk0

(Mk′
0
, or ∪k∈IMk ( ∪k′∈I′Mk′ .

9In interpretation, a maximal independent partition corresponds to the maximal independent set of the
quotient network where each descendant up to a minimal over-threshold descendant is replaced by a
representative player, not over-threshold descendants of all separating series modules are deleted, and
each descendant of parallel modules that contains a minimal over-threshold descendant is replaced by a
representative player.
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({a, b, c, d, e, f}) for low δ ∈ [0, 0.22[ and ({c, d, e}) for intermediate δ ∈ [0.23, 0, 5[. For

high δ ∈ [0.5, 1[ there are two maximal independent partitions ({a, b}) and ({c, d, e}).

The next theorem provides a full characterization of all stable Nash equilibria for a

cograph.

Theorem 3. Consider a cograph g. A profile x∗ is a stable Nash equilibrium of Γ(g, δ)

if and only if there exists a maximal independent partition (Mk)k∈I such that x∗ =

((x∗Mk
)k∈I ,0), where x∗Mk

is the unique Nash equilibrium Γ(gMk
, δ) and all players in

Mk are active.

Note that the Nash equilibria action of each player in Mk in the network game Γ(g, δ) is

identical to his action in the unique Nash equilibrium of Γ(gMk
, δ). Thereby, we establish

a systematic relationship between each player’s network position in a module and his

Nash equilibrium action in the network game. Note also that the multiplicity of Nash

equilibria in the network game arises from the multiplicity of the maximal independent

partitions.

A special case of cographs is a nested split graph, where the neighborhood of every

player is contained in the neighborhoods of the players with higher degrees. The modular

decomposition tree of a nested split graph is a caterpillar, that is, a tree in which the

removal of all terminal nodes yields a path.

a
b

c d

e

f

g

h

series

parallel

series

parallel

a b c d

e

f g

h

Figure 6: Modular decomposition tree of a nested split graph.

Observe that for a nested split graph there is always a unique maximal independent

partition since the modular decomposition tree is a caterpillar. Observe also that players
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who are descendants of parallel modules are always active since they belong to the unique

maximal independent partition. The following example illustrates these points.

Example 3. Consider the nested split graph with eight players depicted in Figure 6. Then

using the computations in Propositions 1 and 2 bottom-up along the caterpillar, it follows

that the maximal independent partition is the entire set of players ({a, b, c, d, e, f, g, h}) for

low δ ∈ [0, 0.12[, ({a, b, c, d, e, f, g}) for intermediate δ ∈]0.12, 0.25[, and ({a, b, c, d}, {f}, {g})
for high δ ∈]0.25, 1[.

In the following, we further link the Nash equilibrium actions to degrees in a nested

split graph.

Proposition 3. Given a nested split graph. If δ ∈ [0, 1[ then in the unique stable Nash

equilibrium the action of the players is decreasing with degree. In particular, there is a

threshold degree (the highest degree of players in the maximal independent partition) such

that players whose degree is below the threshold are active and players above the threshold

are free-riders.

6. An application: public goods in networks

Now, we provide a further application of our results to the public goods in a network

model, introduced in Bramoullé and Kranton (2007), which can be investigated as a

Γ(g, 1) game. Recall that for a profile of contributions to be a Nash equilibrium, it has

to be the case that every player contributes nothing to the public good if the sum of

his neighbors’ contributions exceeds 1 or contributes exactly the difference between 1

and the sum of his neighbors’ contributions. Therefore, at a Nash equilibrium, we may

distinguish three types of players: free-riders, who contribute nothing; experts, who make

full contributions; and the others. Bramoullé and Kranton (2007) insightfully show that

specialized equilibria—that is, equilibria with only experts and free-riders—correspond to

maximal independent sets of the network and therefore are always guaranteed to exist.

Specialized equilibria are of interest as they illustrate in an acute form how the net-

work can lead to specialization. However, beyond specialized equilibria, very little is

known about other equilibria such as distributed equilibria, where all players make pos-

itive contributions, and hybrid equilibria, which are neither specialized nor distributed.

Distributed equilibria can be especially of interest given their normative importance, be-

cause all players share the burden of contributing to the public good, but they are not

always guaranteed to exist. For instance, distributed equilibria are not possible in star



14

networks. Moreover, even when distributed equilibria exist, very little is known about

their properties beyond the symmetric contribution equilibrium in regular networks.

In the following, we will provide a condition on the modular decomposition of the

network that is necessary for the existence of a distributed equilibrium. We say that a

series module is uncentered if all (or none) of its descendants are single players. More

specifically, an uncentered series module rules out the possibility of having both a single

player and a non-single player as descendants, which, as shown below, rules out the

distributed equilibrium.

Proposition 4. If a distributed equilibrium exists, then all series modules are uncentered.

The intuition for the necessary condition of Proposition 4 can be explained as follows.

In a distributed equilibrium, it must be the case that every player makes a strictly positive

contribution. However, the (simultaneous) presence of a single player and a non-single

player as descendants of a series module brings about a mismatch between what these

players contribute and consume of the public goods, leading one of them to become a

free-rider. The next result shows that the necessary condition becomes also sufficient for

the special class of cographs.

Proposition 5. If the network is a cograph, then a distributed equilibrium exists if and

only if all series modules are uncentered.

An example of a cograph where all series modules are uncentered is a nested split graph

such as a star network.

Corollary 3. There is no distributed equilibrium in a nested split graph.

It is worth noting that Sun (2012) also provides a sufficient and necessary condition,

called the Monotonicity Condition, for the existence of a distributed equilibrium for the

games with heterogeneous targets on a general class of networks. While, by following the

proof of Proposition 4, the Monotonicity Condition implies all series modules are uncen-

tered, unfortunately, we were not able to establish that the converse holds for cographs.

Our approach differs from Sun (2012) in at least two key aspects. First, it illustrates the

role particular network architectures play in determining public goods provision. Second,

it provides an algorithm to compute the distributed equilibria for the special class of

cograph. The following example illustrates these points.
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Example 4. Consider again the cograph network with six players depicted in Figure

5. Then using the computations in Propositions 1 and 2 bottom-up along the modular

decomposition tree, we can compute all Nash equilibria as shown in Figure 8. Observe

that there is no distributed equilibrium, which can be explained by the fact that the series

module consisting of the entire set of players has both a single player and a non-single

player as descendants.
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Figure 7: Nash equilibria of a cograph network.

7. Conclusion

Understanding, and making sense of large economic networks is an increasingly im-

portant problem from an economic perspective due to the ever-widening gap between

technological advances in constructing such networks, and our ability to predict and esti-

mate their properties. Our finding shows that, by exploiting network position similarity,

it can be possible to decompose a large network into subnetworks that can be analyzed

independently. This could potentially have empirical applications to many large network
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models in economics, including public goods and targeting/finding the key players policies

as in Galeotti, Golub, and Goyal (2020).

Throughout history, various concepts have been developed to reduce the inherent com-

plexity found in large economic systems, thereby rendering them more amenable to eco-

nomic analysis. One prominent example is aggregation, which aims to devise represen-

tative concepts that can be analyzed in a more tractable manner. For instance, a key

question, which appeared in the seminal contributions of von Neumann and Morgenstern

(1944), Chapter IX, Gorman (1953), and Shapley (1967), is: when does a group of in-

dividuals behave as if it were a single individual? Our investigation of aggregation in

network games is quite similar in motivation. Often, the reason such an argument holds

in the above literature appears to hinge on having identical preferences or accesibility as

in Cornes and Hartley (2007). Our approach suggests that aggregation holds for a similar

reason in network games; however, the homogeneity is brought about by the network

architecture rather than economic characteristics.

Finally, it remains to be seen whether other approaches from the vast and important

literature on network position similarity, across myriad disciplines, ranging from biology

and sociology to computer science—see, for example, Gagneur et al. (2004) and Newman

(2006)—could be useful to further analyze complex economic interactions.

8. Appendix

Proof of Theorem 1. First, we will prove given a modular partition p = {M1, . . . ,MK},
then (1) and (2) are equivalent. Observe that a profile of actions x∗ = (x∗1, . . . , x

∗
n) is a

Nash equilibrium of Γ(g, δ) if and only if for each player i ∈ N

x∗i =

{
1− δx∗Ni(g)

if δx∗Ni(g)
≤ 1

0 if δx∗Ni(g)
> 1.

(8.1)

Since Mk is a module, for each i ∈ Mk and for each h 6= k, it holds that the set of

neighbors of i in Mh, that is, Ni(gMh
), is independent of the choice of i ∈ Mk. Let us

posit

r∗k
def
= max{1− δ

∑
h∈Nk(Gp)

x∗Ni(gMh
), 0}.

Then, since for each i ∈Mk

Ni(g) =
⋃

h∈k∪Nk(Gp)

Ni(gMh
),
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it holds that

δ x∗Ni(g)
=

{
δ x∗Ni(gMk

) − r∗k + 1 if r∗k > 0

0 otherwise.
(8.2)

Also let

y∗Mk

def
=


x∗Mk

r∗k
if r∗k > 0

a Nash equilibrium of Γ(gMk
, δ) otherwise.

Hence, in view of (8.1) and (8.2), x∗ is a Nash equilibrium of Γ(g, δ) if and only if for

each module k = 1, . . . , K

r∗k = max{1− δ
∑

h∈Nh(Gp)

y∗Ni(gMh
)r
∗
h, 0}

and for each player i ∈Mk it holds that

x∗i =

r∗k − δ x∗Ni(gMk
) if δ x∗Ni(gMk

) ≤ r∗k

0 if δ x∗Ni(gMk
) > r∗k

or, equivalently,

y∗i =

1− δ y∗Ni(gMk
) if δ y∗Ni(gMk

) ≤ 1

0 if δ y∗Ni(gMk
) > 1.

Therefore, x∗ is a Nash equilibrium of Γ(g, δ) if and only if x∗ = (r∗1 y∗M1
, . . . , r∗K y∗MK

)

such that r∗ is a Nash equilibrium of Γ(Gp, δ; y∗M1
, . . . , y∗MK

) and y∗Mk
is a Nash equilibrium

of Γ(gMk
, δ), for each k = 1, . . . , K.

Conversely, we will prove that if (1) and (2) are equivalent, then the partition p =

{M1, . . . ,MK} is modular. Let’s consider δ small enough so that all players are active.

Then, from (8.1) it holds that

x∗i = 1− δx∗Ni(g)
= 1− δ x∗Ni(gMk

) − δ
∑

h∈Nk(Gp)

x∗Ni(gMh
).

Suppose that i is not connected in all players in Mh0 for some h0 ∈ Nk(Gp). Then, it

holds that y∗Ni(gMh0
) < y∗Mh0

. Therefore,

x∗i = 1− δx∗Ni(g)
= 1− δ x∗Ni(gMk

) − δ
∑

h∈Nk(Gp)

x∗Ni(gMh
) < r∗k − δ x∗Ni(gMk

),

which implies y∗i < 1− δ y∗Ni(gMk
). This is a contradiction to y∗Mk

is a Nash equilibrium of

Γ(gMk
, δ).�
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Proof of Theorem 2. The proof relies on the Brouwer and Haemers (2011) version of

the generalized interlacing eigenvalue theorem, as stated below.

Theorem. (Brouwer and Haemers). Let S be a real n × m matrix such that STS = I.

Let B be a real symmetric matrix of order n. Define J = STBS. Then the eigenvalues of

J interlace those of B.

Note that the classical interlacing eigenvalue theorem holds as a special case of the

generalized interlacing eigenvalue theorem if one takes S = [I,0]. The Nash equilibrium

x∗ is stable if and only if all eigenvalues of the matrix I + δG have positive real parts,

which is equivalent to λmin(G) > −1
δ

since all the eigenvalues of G are real.

First observe that from the classical interlacing eigenvalue theorem it follows that

λmin(GMk
) ≥ λmin(G) > −1

δ
, for each for each module k = 1, . . . , K. Therefore y∗Mk

is stable, for each module k = 1, . . . , K.

Second observe that rows and columns of G can be partitioned as

G = (Gkh)1≤k,h≤K

where Gkh lists the links connecting players in Mk to players in Mh.
10 Let S be the n×K

matrix defined as follows:

sik
def
=


y∗i
‖y∗Mk

‖ if i ∈Mk

0 otherwise
,

U = diag(
‖y∗Mk

‖√
y∗Mk

)k∈K ,

and

V = diag(
√
y∗Mk

)k∈K .

Since (I + δGkk)y
∗
Mk

= 1 and

Gkhy
∗
Mk

=

{
y∗Mk

1 if Gkh 6= 0,

0 otherwise
,

it follows that

VUST (I + δG)SUV−1 = I + δGp,

where Gp denotes the adjacencies of modules in the Nash equilibrium r∗.

10Observe that Gkk = GMk
.
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Observe that STS = I. Hence, it follows from the generalized interlacing eigenvalue

theorem that the eigenvalues of ST (I + δG)S are positive since they interlace those of

I+δG. From the sharp bounds provided by Ostrowski (1959), it holds that the eigenvalues

of the symmetric matrix UST (I + δG)SU are also positive since they are given by ψiλi,

where λi is an eigenvalue of ST (I + δG)S and ψi lies between the smallest and the largest

eigenvalues of U. Hence, the matrix I + δGp also has positive eigenvalues, being similar

to UST (I + δG)SU. Therefore, r∗ is a stable Nash equilibrium.�

Proof of Proposition 1. If M is parallel, then r∗M is a Nash equilibrium of the intergroup

game Γ(GpM , δ; y∗D1
, . . . , y∗DT

) is equivalent to r∗t = 1 since Nt(GpM ) = ∅.�

Proof of Proposition 2. If M is a series module, then r∗M is a Nash equilibrium of the

intergroup game Γ(GpM , δ; y∗D1
, . . . , y∗DT

) is equivalent to

r∗t = 1− δ
∑

s∈A\{t}

y∗Ds
r∗s for each t ∈ AM (8.3)

and

δ
∑
s∈A

y∗Ds
r∗s ≥ 1 if AM 6= {1, . . . , T}. (8.4)

Let

v
def
= (

δy∗Ds

1− δy∗Ds

)s∈AM
and U

def
= diag(1− δy∗Ds

)s∈AM
.

Then (8.3) is equivalent to

(I + 1vT )Ur∗AM
= 1.

From the Sherman–Morrison formula, provided that 1 + vT1 6= 0, it holds that

r∗AM
= U−1(I + 1vT )−11 = U−1(I− 1vT

1 + vT1
)1 = U−1(1− vT1

1 + vT1
1) =

1

1 + vT1
U−11.

Hence, for each t ∈ AM , it holds that

r∗t =

1
1−δy∗Dt

1 +
∑

s∈AM

δy∗Ds

1−δy∗Ds

.

Note that since r∗t > 0 for each t ∈ AM , it follows from above that either y∗Dt
> 1

δ
for each

t ∈ AM or y∗Dt
< 1

δ
for each t ∈ AM . Moreover, in view of (8.4), if AM 6= {1, . . . , T} then∑

s∈AM

δy∗Ds

1−δyDs

1 +
∑

s∈AM

δy∗Ds

1−δy∗Ds

= 1− 1

1 +
∑

s∈AM

δy∗Ds

1−δy∗Ds

≥ 1,
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which implies that ∑
s∈AM

δy∗Ds

1− δy∗Ds

< −1.

Hence if AM 6= {1, . . . , T}, then it holds that y∗Dt
> 1

δ
for each t ∈ AM .

Conversely, it is easy to check that if either for each t ∈ AM it holds that y∗Dt
> 1

δ
, or

for each t ∈ AM = {1, . . . , T} it holds that y∗Dt
< 1

δ
, and

r∗t =

1
1−δy∗Dt

1 +
∑

s∈AM

δy∗Ds

1−δy∗Ds

,

then r∗M is a Nash equilibrium of Γ(GpM , δ; y∗D1
, . . . , y∗DT

).�

Proof of Corollary 1. (i) and (ii) follow immediately from Proposition 2.

(ii) Note that

x∗M =
∑
t∈AM

r∗t y
∗
DT

=

∑
t∈AM

δy∗Dt

1−δy′Dt

δ(1 +
∑

s∈AM

δy∗Ds

1−δy∗Ds

)
=

1

δ
− 1

δ(1 +
∑

s∈AM

δy∗Ds

1−δy∗Ds

)
.

Hence if AM ⊂ A′M , then it holds that∑
s∈A′M

δy′Ds

1− δy′Ds

<
∑
s∈AM

δy∗Ds

1− δy∗Ds

< 0,

which implies x′M ≤ x∗M .�

Proof of Corollary 2. Suppose not. Then, there is a stable Nash equilibrium with

at least two over-threshold descendants: Dt and Ds. From Theorem 2, it follows that

the intergroup game is stable, which implies that the eigenvalues of the quotient network

induced by active modules are positive. By the classical interlacing eigenvalues theorem,

the eigenvalues of

C =

(
1 δy∗Dt

δy∗Ds
1

)
.

interlace the eigenvalues of the quotient network induced by the active modules. Note

that the lowest eigenvalue of C is negative, which is a contradiction.�

Proof of Theorem 3. Consider a maximal independent partition (Mk)k∈I of the cograph

and a profile x∗ = ((x∗Mk
)k∈I ,0), where x∗Mk

is a Nash equilibrium of Γ(gMk
, δ). Since

every over-threshold descendant is minimal it follows that for each Mk using Propositions

1 and 2 recursively along the nodes of the modular decomposition tree that the Nash
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equilibrium x∗Mk
of Γ(gMk

, δ) is unique and all players are active. Clearly, each player

i ∈ ∪k∈IMk is optimally responding to his neighbors’ actions. Moreover, each player

i /∈ ∪k∈IMk is connected to all players in at least one active minimal over-threshold

descendant otherwise (Mk)k∈I is not a maximal independent partition. Hence he has

access to a provision of public goods that exceeds 1
δ
. Therefore, his optimal best-response

is zero. Finally, from Corollary 2 in Bramoullé, Kranton, and D’Amours (2014) it follows

that the unique Nash equilibrium x∗Mk
of Γ(gMk

, δ) is stable. Hence the eigenvalues of the

Jacobian matrix associated with x∗Mk
are all negative. The stability of x∗ = ((x∗Mk

)k∈I ,0)

follows from the fact that the eigenvalues of the Jacobian matrix associated with x∗ are

negative since they are the union of the eigenvalues of the Jacobian matrices associated

with (x∗Mk
)k∈I .�

Proof of Proposition 3. Note that a caterpillar may be formed by repeatedly adding

one player, either connected to all previous players, which makes him a descendant of a

series module, or to none of them, which makes him a descendant of a parallel module.

Hence, traversing the caterpillar bottom-up, the degree sequence is decreasing for single

players descendants of parallel modules and is increasing for single players descendants of

series modules. Note also that the the action of each player is decreasing if descendant of

series modules and increasing. if descendant of parallel modules. Finally, observe that if

there exists a minimal over-threshold descendant, then all active descendants will have a

degree below the maximal degree in the minimal over-threshold descendant.�

Proof of Proposition 4. Let x∗ be a Nash equilibrium of Γ(g, 1) such that x∗i > 0,

for each i ∈ N . Let M be a series module. From Theorem 1, there exists a real number

rM > 0 such that x∗ = rMy∗M , where y∗M is a Nash equilibrium of Γ(gM , 1). Suppose that

M is not uncentered. Let pM = (D1, . . . , DT ) denote the descendants’ partition of M .

Then, there exists 1 ≤ t1 6= t2 ≤ T such that Dt1 = {i1} is a single player and Dt2 is not

a single player. Note that each player in Dt2 is not connected to all other players in Dt2 .

Otherwise, Dt2 is not a direct descendant of M .

At the Nash equilibrium y∗M , each player’s action is a best reply to his neighbors’

actions. In particular, it holds for player i1 that

y∗i1 +
∑
i∈Dt2

y∗i +
∑
t6=t1,t2

y∗Dt
= 1



22

and for a player i2 ∈ Dt2 that

y∗i2 +
∑

i∈Ni2
(gM)∩Dt2

y∗i + y∗i1 +
∑
t6=t1,t2

y∗Dt
= 1,

which together imply ∑
i∈{i2∪Ni2

(gM)}c∩Dt2

y∗i = 0.

This is a contradiction since {i2 ∪Ni2(gM)}c ∩Dt2 6= ∅ and y∗i > 0, for each i ∈M.�

Proof of Proposition 5. Suppose the network g is a cograph. Therefore, the network

g has only parallel and series modules in its modular decomposition tree. If all series

module are uncentered, then, given a series module M , with direct descendants’ partition

pM = (D1, . . . , DT ), either all or none of the direct descendants are single players. If

all direct descendants are single players, then the symmetric contribution 1
T+1

is a Nash

equilibrium of Γ(gM , 1). If none of M ’s direct descendants is a single player, then for

each t = 1, . . . , T and for any Nash equilibrium y∗t of Γ(gDt , δ), it holds that y∗Dt
≥ 2

since Dt is a parallel module with at least two direct descendants. From (2)(iii) in

Theorem 2, it follows that there exists a Nash equilibrium of the quotient game such that

r∗t > 0 for each t = 1, . . . , T. Therefore one can use in Propositions 1 and 2 recursively

along the nodes of the modular decomposition tree in order to construct a distributed

equilibrium.�
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