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Abstract: 
This paper formulates and solves an economic decision problem of the acquisition of 
costly information in data-driven decision making. The paper assumes an agent 
predicting a random variable utilizing several costly explanatory variables. Prior to 
the decision making, the agent learns about the relationship between the random 
variables utilizing its past realizations. During the decision making, the agent 
decides what costly variables to acquire and predicts using the acquired variables. 
The agent’s utility consists of the correctness of the prediction and the costs of the 
acquired variables. To solve the decision problem, we split the decision process into 
two parts: acquisition of variables and prediction using the acquired variables. For 
the prediction, we propose an approach for training a single predictive model 
accepting any combination of acquired variables. For the acquisition, we propose 
two methods using supervised machine learning models: a backward estimation of 
the expected utility of each variable and a greedy acquisition of variables based on a 
myopic estimate of the expected utility. We evaluate the methods on two medical 
datasets. The results show that the methods acquire the costly variables efficiently. 
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1 Introduction

In an information-rich world, understanding what information to acquire and internal-

ize is of crucial importance. In theory, more information implies lower uncertainty and

better decisions of economic agents. In practice, however, the acquisition and internaliza-

tion of information can be costly and the decision making of an agent complicates. Not

only has the agent to decide how to act upon information but also upon what information

to act. When considering what information to acquire and internalize, the agent faces the

following trade-off. On one side, additional information increases the agent’s expected

utility by lowering uncertainty, on the other side, it decreases the agent’s utility through

the incurred costs. Consequently, the agent balances the costs of information against the

reduction in uncertainty provided by the information.

A standard decision theory (Raiffa and Schlaifer, 1961) addresses decision making with

costs stemming from the acquisition of information. The theory introduces a concept of

the value of information and concludes that an agent acquires information if its benefits

exceed its costs. A recently growing literature on the theory of rational inattention (Sims,

2003, 2010; Maćkowiak et al., 2018) focuses on the internalization of information. The

theory argues that the internalization of information consumes agent’s attention, which is

a limited resource. As a result, the agent trades off the scarce attention against the benefits

of internalized information. Both the standard decision theory and the theory of rational

inattention provide valuable insights into the agent’s decision making and answer why

economic agents act upon limited information even if the full information is available. The

theories, however, rely on a subtle assumption: the agent knows the distribution of her

uncertainty.

In contrast to the theory, in many real-life applications, the decisions of agents are

data-driven and imposing assumptions on its distribution could be troublesome. Without

knowing the data distribution, the standard theory fails to describe the agent’s behaviour.

We can find several domains where the decisions are data-driven with the acquisition and

processing of the data being costly. A first such domain is a medical diagnosis utilizing

costly tests or examinations. For example, Turney (1995), Kachuee et al. (2019), Karkkainen

et al. (2019), Raykar et al. (2010), or Shim et al. (2018) studied the trade-off between the
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correctness of data-driven medical diagnosis and the costs of the medical tests or exami-

nations. Krause and Guestrin (2014), Viola and Jones (2001), Wang et al. (2014), Chen et al.

(2012), and Xu et al. (2013) studied systems of sensors and recognition systems making a

trade-off between the correct prediction and the cost of the input data. Another domain is

computer adaptive testing and questionnaires studied by Chen et al. (2015) with the costs

being time or impatience of respondents. Finally, Early et al. (2016) studied the data-driven

forecast of future energy consumption by prospective tenants, while Kanani and Melville

(2008) described a system for targeting customers and business partners containing a costly

variable provided by an external vendor.

In parallel to the economic literature, there is a recently growing literature on cost-

sensitive machine learning addressing the data-driven decision making. The literature

usually focuses on the task of a prediction with costly variables and omits distributional

assumptions about uncertainty. It provides valuable methods in the domain of data-driven

decision making with costly data, but it usually does not relate to the economic theory.

Viola and Jones (2001), Xu et al. (2013), and Nan and Saligrama (2017) proposed methods

that rely on a collection of supervised models each operating on a different subset of costly

variables. Wang et al. (2015) proposed to train a collection of models for all combinations

of acquired costly variables, which is a close approach to the work in this paper. Another

stream of literature focused on the (deep) reinforcement learning Janisch et al. (2017), Shim

et al. (2018), and Kachuee et al. (2019) trained a deep Q-network serving as an acquisition

policy. The last category of methods relies on a heuristic evaluation of all variables and

selection of the next best variable (see Sheng and Ling (2006), Early et al. (2016), Kanani

and Melville (2008), Karkkainen et al. (2019), or Vivar et al. (2020))

In contrast to cost-sensitive machine learning literature, we focus on the acquisition

of costly information in data-driven decision making formulated as an economic decision

problem. We assume an agent predicting a value of a random variable using several costly

explanatory variables. The distribution of the random variables is unknown. Prior to the

decision making, the agent can learn about the relationship between the predicted variable

and the explanatory variables from past realizations of the variables. During the decision

making, the agent chooses what costly variables to acquire and predicts based on the

acquired variables. The agent’s utility reflects both the prediction correctness and the costs
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of the acquired variables.

We consider the formulated model to belong to the family of rational inattention models

by its core nature. The agent actively decides about the information to act upon. Neverthe-

less, two main differences distinguish the model from the general model of choice under

rational inattention (Maćkowiak et al. (2018)). First, the information structure the agent

acquire is not a homogeneous continuous signal. Instead, the agent acquires measurable

variables with a specific meaning. Hence, the information structure in our model is het-

erogeneous. The heterogeneity allows us to describe decision making in situations when

different pieces of information contain a different value for the decision making and, sim-

ilarly, when different pieces of information are more or less difficult to process (and thus

are more or less costly). Second, the agent has to learn about the uncertainty from the past

observations (which we can perceive as experience) and does not have full control over the

uncertainty. The agent only controls what variables to acquire. In contrast, the agent sets

the uncertainty to any desired level in the general model of choice under rational inatten-

tion. These two modification allows us to describe agent’s behaviour in real-life situations

where the variables and their costs are measurable.

Finally, the contribution of the paper is the following. First, the paper proposes data-

driven methods which serve as an approximation of behaviour of economic agents who

face the trade-off between prediction uncertainty and variable costs while utilizing the past

observations with an unknown distribution. Second, the paper provides solution meth-

ods usable in any area where predictions require explanatory variables whose acquisition

might be costly. Such areas are, for instance, medical diagnosis, computer adaptive test-

ing, various areas of computer science, or credit and insurance scoring, where the similar

trade-off exists as well.

This paper is structured as follows. In section 2, we formulate the problem of acqui-

sition of costly information in data-driven decision making. In section 3, we separate the

problem into two parts: optimal prediction and acquisition of costly variables. We address

each part of the problem separately and propose a full and an approximate solution to

both parts following the expected utility approach. In section 4, we evaluate the proposed

methods on two medical datasets and discuss the resulting behaviour.
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2 Acquisition of costly information in data-driven decision making

Assume an agent whose goal is to predict a value of random variable y. Further, assume

the agent can observe a vector of random variables x = (x1, x2, ..., xk) where individual

variables xi provide information about the value of y. To acquire a value of some of the

variables in x, the agent has to exert some effort or spend money making the acquisition

of variables costly. Random variables y and x come from unknown distribution D. We

assume that the distribution cannot be expressed analytically and estimated. The agent is

endowed with a sample of n independent observations realized from the distribution D:

(y, X)

The agent decides which of costly variables x1, x2, ..., xk to acquire and what prediction ŷ to

set. We assume that the agent has no other prior knowledge of variables y and x and relies

on the observed sample only. Hence, we can refer to the decision problem as acquisition of

costly information in data-driven decision making.

2.1 Preferences

First, we assume the agent receives utility based on prediction ŷ and the true value of

y. The agent decides about the prediction and its correctness contains some value for the

agent. To capture the agent’s preferences about prediction ŷ and the true value of y, we

assume utility function u0:

u0 [ŷ, y]

We will refer to u0 as prediction utility since the utility stems purely from the correctness

of prediction of y.

The specific form of prediction utility depends on the nature of the decision problem.

In this paper, we will focus on a multiple choice problem where y belongs to one of K

classes from a discrete set, and the goal is to predict the correct class. We could extend

the problem statement and the solution to other types of decision making as well (e.g

regression, counts, ordered choice, etc.), but we omit this possibility.

For the K-class classification, we can think of the prediction utility as a matrix of real
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numbers U ∈ RK×K:

U =


u11 u12 . . . u1K

u21 u22 . . . u2K
...

... . . . ...

uK1 uK2 . . . uKK


The rows of matrix U refer to utilities from predicted class ŷ and the columns refer to

utilities from specific true class y. When the agent predicts class A while y belongs to class

B, the prediction utility is:

u0[ŷ = A, y = B] = uAB for A, B ∈ {1, 2, . . . , K}

Second, the acquisition of variables x1, x2, . . . , xk is costly. To reflect the costs in the

agent’s preferences, we assume that each variable xj a has fixed cost of acquisition cj. The

costs might stem from financial expenditures, time requirements, inconvenience, or any

other burden associated with the acquisition. To indicate which variables the agent has

acquired, we will use binary indicator vector z with zj = 1 if variable xj has been acquired

and zj = 0 otherwise. The overall costs incurred to all acquired variables are a sum of the

individual costs:

∑
j:zj=1

cj

Finally, the agent’s overall utility is the difference between the prediction utility and the

overall costs:

u [ŷ, y, z] = u0 [ŷ, y]− ∑
j:zj=1

cj

The overall utility depends on both the prediction and the acquired variables and implies

a trade-off between an improvement of prediction and costs incurred to the acquisition of variables.

The agent maximizes the expectation of the overall utility over the unknown distribution

D:

Ex,y∼D(x,y)

{
u0[ŷ, y]− ∑

j:zj=1
cj

}

There are two aspects related to the utility form. First, the prediction utility and the

costs are additive. Second, there are no dependencies between the costs of the variables.

We assume that the acquisition cost of a variable is not related to the cost of any other
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variable.

2.2 Decision framework

Knowing the agent’s preferences, we can turn to the decision process itself. At the be-

ginning, pair (y, x) is sampled from distribution D. The agent does not know the sampled

value of any of the variables x1, . . . , xk or target variable y. The set of known values of

costly variables is empty and z = (0, 0, . . . , 0). To represent the agent’s current knowl-

edge about x, we will denote the set of acquired observations as xz. E.g. when the agent

acquired x1 whose value is 1 and x2 whose value is 0.5, we have:

xz = {x1 = 1, x2 = 0.5}

We do not assume any constraints to the acquisition of costly variables. The agent is

allowed to acquire any costly variable x1, x2, . . . , xk and set prediction ŷ to any admissible

value. Since there are no costs associated with postponing the acquisition, the optimal

strategy is to acquire variables sequentially. The agent can condition the next decision on

the observed value of the first variable and make a more informed decision about further

acquisition and prediction. At worst, the agent will acquire the second variable and receive

the same utility as when acquiring both variables at once. For this reason, we focus on a

sequential acquisition of variables:

At the beginning the agent decides between k + 1 options: predict target variable y

directly or acquire one of k costly variables x1, x2, . . . , xk. The direct prediction results

in utility u = u0[ŷ, y], where prediction ŷ is made without any of the costly variables,

and the decision making ends. When acquiring variable xj, the agent pays cost cj, and

agent’s current observation is xz = {xj}. Given the observation, the agent either decides

to predict based on the observed variable xj or acquires one of k − 1 remaining variables.

The process proceeds until the agent decides to predict target variable y. Clearly, once the

agent acquires all of the variables x1, x2, . . . , xk, the only remaining option is to predict. The

sequential decision process for three costly variables is depicted in Figure 1. For simplicity,

we will refer to the acquisition of information about variable xj as action aj and the decision

to predict target variable y (and end the decision process) as action a0.
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Figure 1. A scheme of sequential decision process for three costly variables
The decision process starts in decision node A with the agent not knowing any of the costly variables. The
agent can terminate in decision node A by a direct prediction of target variable y and receive the prediction
utility u0. Or, the agent can decide to acquire information about a new variable. For instance, by acquiring
variable x1 (action a1), the agent moves to decision node B, and the agent’s utility decreases by c1. From the
node B, the agent can move to nodes E and F, etc. The utility is then given by the prediction utility in the
node where the agent predicts minus the sum of costs on the path to the node.
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3 Directed acyclical graph of supervised models

In this part, we propose to use supervised machine learning models for the approxima-

tion of the agent’s optimal behaviour. We train a collection of supervised models on the

observed sample (y, X) which performs both the acquisition of variables and the predic-

tion of target variable y for any new example. To train the collection, we split the problem

into two parts:

• Static prediction based on acquired costly variables - represented by a predictive

model denoted as f

• Acquisition of costly variables - represented by an acquisition policy denoted as π

Predictive model f passively excepts the acquired costly variables serving as inputs

to the model and predicts the target variable y. We train model f to return a prediction

that maximizes the expected utility conditioned on the values of the acquired variables.

The policy passively excepts the acquired costly variables and returns one of the available

actions. The process repeats until the policy decides to predict with model f . We train the

policy to select an action associated with the highest expected utility assuming the optimal

decision making in the subsequent steps. The sequential nature of the decision problem

allows us to train the policy in a backward fashion.

3.1 Predictive model

Now, we focus on the static prediction performed by predictive model f . The goal is to

train model f (its weights) so that it returns optimal prediction ŷ∗ for any combination of

acquired variables indicated by z:

ŷ∗ = f (xz, z)

We consider two approaches towards the model structure.

3.1.1 Predictive model for each decision-node

The first and straightforward structure of model f is a collection of individual models

fz : X z → Y each operating on single decision node z:

ŷ∗ = f (xz, z) = fz(xz)
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where X z denotes the space of values of acquired variables and Y denotes the space of

possible values of y.

Obviously, the choice of model fz and its training depends on nature of the task. In

our case, we focus on the K-class classification. For both binary and multi-class classifi-

cation, there is a plethora of supervised machine learning models (see Bishop, 2006). We

will consider only models estimating the probability that a class is correct rather than di-

rectly classifying an example. Using the estimated probability of each class conditioned on

current observations xz, we select a class associated with the highest expected utility.

Hence, model fz represents two steps: we predict the probability of a class and select

the class associated with the highest expected utility. The first step is performed by the

supervised classification model trained on the data containing acquired variables only. The

second step is an evaluation of the expected utility of each class and the selection of the

best class. Thus, the output of the model fz is a class maximizing the expected utility.

Training one model for each possible combination of variables can be though very

impractical. The number of required models grows exponentially with the number of

costly variables. The exponential increase is not an issue for a lower number of costly

variables, but training a collection of models for a higher number of costly variables is

intractable. For that reason, we propose a second approach towards the structure of f .

3.1.2 A single predictive model on extended examples

We propose to train a single predictive model excepting any combination of acquired

variables. To train the model, we adjust the structure of the data on which the model is

trained. We extend each example by the indicator variable z and fill unknown values of x

with zero. The indicator variable z ensures that the "true" zero and the zero standing for

a missing value are distinguishable (see Dulac-Arnold et al., 2011; Shim et al., 2018). We

refer to this process as "masking". The model then takes the masked extended examples

as its inputs.

To generate the learning data, we duplicate each example in the original training data

d-times. For each duplicate, we sample indicator z uniformly without replacement from

the set of admissible indicators, mask the variables according to sampled z (we consider

the variables as not acquired), and append z to the masked example. The higher d, the
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more information is kept in the original data and usually the higher the performance of

the predictive model. When d = 2k, then each example is masked with all possible masks

and the extended data contain full information provided by the original training data. As

a consequence of the random sampling, the lack of a variable is not informative. Generally,

training a model on more examples implies higher performance in inference. Since we do

not know which variables will be acquired by the policy, the uniform sampling ensures that

the model performs comparably across all combinations of potentially missing variables.

Notice that the selected model needs to have a sufficient capacity to be able to learn from

such a data structure. For instance, we might consider tree-based models such as random

forest or gradient boosted trees or a simple artificial neural network. Simple linear models

such as logistic regression are not suitable for the encoded data.

The idea of pre-training the predictive model is similar to pre-training a neural network

for prediction actions introduced by Janisch et al. (2017) in the context of deep reinforce-

ment learning. The sampling procedure of the data is though different and the pre-trained

neural network is supposed to change during the training. In contrast, our model f is fixed

and independent from acquisition policy π.

3.2 Acquisition policy

Once we trained the predictive model f , we can find a suitable policy π conducting the

acquisition of costly variables.

3.2.1 Objective and structure

Denote z(π) as the indicator variable for variables acquired by policy π. Our goal is to

find policy π∗ that maximizes average utility on the observed sample:

π∗ = argmax
π

1
n

n

∑
i=1

{
u0

[
f
(
Xz(π)

i , z(π)
)
, yi

]
− ∑

j:z(π)j=1
cj

}

The assumed policy is dependent on the values of each example X i and allow a fully

flexible acquisition of variables conditioned on the already acquired variables. As a result,

the policy might acquire a different combination of costly variables for each example i.

The structure of the acquisition policy is as follows. We train individual "node policies"

πz each operating on a given combination of acquired variables according to z. Node
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policy takes as inputs the acquired variables xz and returns one of the available actions:

πz : X z → {a0, aj : zj = 0}

Each node policy consists of several supervised models that approximate the expected

utility of available actions in the decision node. Policy π is then represented as a collection

of node policies πz that consist of several supervised models.

3.2.2 Full backward solution

We train the individual node policies in a backward fashion. We start by training the

node policy in the last decision node and proceed sequentially until we train the node

policy in the first decision node. The learning process is depicted in Figure 7. The "learn"

function performs the learning process of a single noted policy. The function takes as

inputs the predictions of model fz and outputs of the already trained policies and trains a

new node policy.

Assume we are training policy π∗
z in decision node z with l acquired variables (0 ≤ l ≤

k), and we have already trained the previous node policies. We split the training of the

node policy into the evaluation of individual available actions. To evaluate a0, we perform

Figure 2. A scheme for learning an optimal policy backwards
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the following steps:

1. We perform prediction using the classification model (the first step in f ) for all ex-

amples in training data Xz. We receive n × K matrix of probabilities P.

2. We evaluate the (estimated) expected utility of each class and each example as P ×U ′

minus incurred costs on each example. We obtain an n × K matrix from which we

select the maximum of each row. We obtain n × 1 vector of (estimated) expected

utilities from the best class for each example q̂[z, a0].

When we are in a decision node with all the acquired variables and there is no other

available action, we set the evaluation of the node directly as:

v̂[z] = q̂[z, a0]

and we always select action a0. The evaluation of decision node z represents the expected

utility when being in decision node z and deciding optimally thereafter.

Figure 3. A scheme for training a node policy as an action with the maximum expected utility

To evaluate action am from the remaining actions, we perform the following steps:
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1. We take the evaluation v̂[z(m)] of adjacent decision node z(m) to which we get by

performing action am in decision node z.

2. We train regression model Qm : X z → R on inputs Xz with target v̂[z(m)].

3. We predict with regression model Qm on inputs Xz and obtain an estimate of ex-

pected utility when performing action am for given xz. We denote the vector of

predictions as q̂[z, am].

We evaluate the decision node z with the expected utility for each example i as:

v̂[z]i = max
a

{
q̂[z, a]i

}
During prediction phase, we evaluate each of the available actions am with the trained

regression model Qm and select the action with the highest expected utility for each ex-

ample in testing data. The node policy π∗
z is thus given by the collection of the regression

models and the selection of an action with the highest fitted value. The choice of regres-

sion model Qm depends on the expected data structure. Generally, it can be any suitable

regression model. For an overview of possible models see e.g. Bishop (2006). A scheme

showing the training process is depicted in Figure 3.

3.2.3 Greedy approach

The backward training of acquisition policy is an exhaustive approach that comes at a

high computational cost. Its advantage is that it approximates the optimal policy directly,

though it requires training exponentially many (2k) node policies. For a higher number of

costly variables, the method in not computationally feasible. In this section we propose

a less accurate but computationally more efficient alternative. Instead of training a node

policy on the expected utility estimate from the full depth of the decision graph, we train

it using the expected utility estimate restricted to an arbitrary depth m. In other words, we

allow the agent to evaluate the expected utility from the acquisition of at most m additional

costly variables.

In each node, we construct a vector of expected utilities for each action q̂m[z, a] esti-

mated from the limited depth m. Then, based on the estimates q̂m[z, a], we train node

policy πz which acquires the next variable for each example. Then we estimate the vector
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of expected utilities q̂m[z, a] in the subsequent decision node(s) z. We proceed until the

policy selects prediction for all the examples.

We compute the m-depth estimate of expected utility as follows. Consider a subset

of n′ examples from training data Xz for which we observed costly variables given by z.

Our goal is to construct n′ × 1 vector q̂m[z, a] of utility estimates for each of the examples.

We proceed similarly as in the case of the full solution but instead of starting in the last

decision node with all acquired variables we start in all nodes with m additionally acquired

variables. In the case that m = 1, we consider only nodes adjacent to node z. In all of the

nodes, we exclude the possibility of acquisition of further variables and set the evaluation

of each node z′ directly as the utility from action a0:

v̂[z′] = q̂[z′, a0]

This allows us to ignore the utility stream from more distant decision nodes at the expense

of an imprecise estimate.

For the evaluation of the predict action a0, we can either utilize a pre-trained predictive

model on the extended dataset or train predictive model fz′ whenever the predictive model

is needed. The learning process is hereafter identical as for the full solution. An illustration

of an estimate from depth m = 2 is depicted in Figure 4.

Having n′ × 1 vector q̂m[z, a] of utility estimates, we train node policy πz on the utility

estimate serving as the target and subset of n′ examples of training data Xz serving as

inputs. Then we apply the policy on the same examples and select a new action for each

example. Since we select a different action for different examples, we move simultaneously

to different decision nodes z. The process results in a gradual partition of training data

based on the observed values of the costly variables. Whenever the policy selects action a0

for an example, we disregard the example from the future acquisition. Next, for each of

the selected decision nodes, we calculate an m-step estimate and repeat the whole process.

Since the structure of the decision graph is not a tree, it might happen that examples in

a decision node come from different paths. For this reason, we always evaluate decision

nodes with the lowest number of acquired variables first. Then we can train the node

policy on all the examples coming from parent decision nodes.
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Figure 4. m depth estimate of utility from actions

During the prediction phase, we disregard node policies trained as a part of m-step

estimation and consider only those trained on the estimated utility q̂m[z, a]. Additionally,

we prevent the examples to follow a new path that was not selected during the training

phase. Otherwise, it could happen that we would not have a trained node policy selecting

the next actions.

4 Experiments on medical datasets

In this section, we evaluate the proposed methods on two publicly available medical

datasets. In the first dataset, euthyroid, the goal is to predict whether a patient suffers

from euthyroid sick syndrome utilizing several examinations and other information about

the patient. In the second dataset, NHANES diabetes, the goal is to predict one of three

patient’s health conditions: normal, prediabetes, and diabetes utilizing demographic in-

formation and results obtained from examinations, laboratory tests, and questionnaires.

4.1 Euthyroid

The euthyroid dataset is publicly available on http://archive.ics.uci.edu/ml/machine-learning-databases/

thyroid-disease/. We filter all examples with missing values since the missing values can-

not be acquired during the experiments. The resulting dataset contains 2000 observations
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with 1762 negative examples and 238 positive examples. Next, it contains 17 variables each

associated with an acquisition cost. For the experiment, we consider only costs associated

with medical tests and ignore unit costs associated with acquisition of variables such as

patient’s sex or age. The costs of medical tests are following:

test TSH T3 TT4 T4U

cost 22.78 11.41 14.51 11.41

The utility function stemming from diagnosis is unknown, but we set it as:

U = β

 0 −10

−1 0


We assume that classifying a patient as healthy when having the disease (false negative)

is 10 times more costly than classifying a patient as ill when being healthy (false positive).

Furthermore, we assume that there are no costs associated with a correct diagnosis. We

parametrize the utility by coefficient β and experiment with its several values. Generally,

higher β implies lower relative costs of the medical tests. We use random forest for both

the classification and the node policy, but any combination of suitable supervised models

could be used. We train the classification model and the policy on 75% of examples and

keep 25% of examples for testing.

The experimental results are depicted in Figure 5, Figure 6, and Figure 7. Figure 5

compares mean (dis)utility attained on the testing sample for various values of β. We can

see that for β = 20 the selected methods achieve a similar utility as a static prediction with

free variables only. The static prediction with all variables provides a very low utility due

to the high costs of the medical tests forming most of the disutility. With higher β the gap

in utilities of the selected methods and static prediction with free variables widens. For

β = 100 the evaluated methods achieve a considerably higher utility compared to static

predictions with all and free variables.

The graph illustrates that the potential gain from the dynamic acquisition of variables depends

on the trade-off between costs and predictions. If the costs are high (β is low) then the optimal

policy is to acquire almost no costly variables, and there is nothing to gain over the static

classification with free variables. With higher values of β the gain over static prediction
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Figure 5. A comparison of methods for the euthyroid dataset in mean (dis)utility
A comparison of methods for the euthyroid dataset in mean (dis)utility on the testing sample for selected
betas. "Internal" refers to a classifier trained for each subset of costly variables during the acquisition process,
"External" refers to a classifier pre-trained on an extended dataset prior to the acquisition. "Full depth" refers
to exhaustive backward training, "Greedy" refers to the greedy acquisition of costly variables with m = 1.

with free variables increases since the variables are relatively less costly and provide a

higher prediction utility. The opposite holds for the gain over the static classification with

all variables. With higher values of β the optimal policy acquires more and more costly

variables. In an extreme case, the optimal policy could acquire all the costly variables

reaching the utility of the static classification with all costly variables.

Next, the graph compares the selected methods themselves. The classifier trained on

each subset of costly variables combined with the exhaustive backward training of the pol-

icy (blue square) outperforms the three remaining methods for all values of β. The high

performance is expected since the method does not involve any simplifications neither in

classification nor in the policy training. The difference between the greedy acquisition of

variables and the exhaustive backward training is visible for the collection of classifiers

only. For the pre-trained classifier, the greedy acquisition and the backward training per-

form comparably. Nonetheless, the methods are data-driven, and their performance is very

much dependent on the specific data.
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Figure 6. A comparison of methods for the euthyroid dataset by the trade-off costs and
prediction utility

A comparison of methods for the euthyroid dataset by the trade-off between costs and prediction utility for
selected values of β. The attained prediction utility is scaled down by corresponding β to make the prediction
utilities comparable across various values of β. The legend matches the legend in Figure 5

Figure 6 depicts the trade-off between the prediction utility and the costs of variables.

On the vertical axis, we have a normalized prediction utility which refers to the prediction

utility when β = 1. The prediction performance of each method is then comparable across

various values of β. On the horizontal axis, we have the costs incurred to the medical tests.

When predicting without any medical test, the total costs are zero (a black cross in the left

bottom corner). When predicting with all the medical tests, we achieve the highest possible

prediction utility (we have maximal information) but at the expense of the maximal costs

(a black cross in the right upper corner). The highest prediction utility is depicted by the

horizontal dashed red line and constitutes an upper boundary for the prediction utility

attained by other methods. We can see that there is a potential to improve the prediction

utility by the acquisition of costly medical tests.

Obviously, we aim at achieving the highest prediction utility while incurring the lowest

costs. We can see that all the selected methods acquire medical tests efficiently. With

higher β the prediction utility increases sharply, while the incurred costs on the medical
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tests grow relatively slowly. The most efficient method is the backward training combined

with the classifier trained for each subset of the medical tests. With exception of β = 100,

it achieves the highest prediction utility, while incurring the lowest costs. Recall that the

methods are data-driven. Not only depends the potential efficiency of the methods on values

of β, but it also depends on the informativeness of individual medical tests. For instance, if there

is one cheap and very informative medical test, then the prediction utility increases sharply

at the low costs. The other tests are not acquired and the prediction is highly cost-efficient.

On the other hand, if all the tests provide only partial information and are moderately

costly (the net utility gain of each test is slightly above zero in general), then we cannot

expect a sharp increase in the prediction utility. The costs of such medical tests offset the

prediction utility and the added value of the dynamic acquisition is low. It does not matter

what (and if at all) the medical tests are acquired. The informativeness of medical tests

is embedded in the externally given data structure, and there is nothing we can do about

it. Nevertheless, the proposed acquisition methods approximate the optimal acquisition

regardless of its potential improvements over the static classification.

Figure 7 depicts the acquisition of medical tests on testing data for the backward train-

Figure 7. Acquisition paths on the euthyroid dataset
The euthyroid dataset: Acquisition paths for selected values of β on the testing sample for "Internal - Full
depth" method. A patient is either diagnosed directly or other tests are requested. The numbers represent
the number of patients in the testing sample for which the action was selected. Down arrows represent
prediction.
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ing with a classifier trained on all subsets of medical tests. For β = 20, we diagnose 378

patients directly without requesting additional medical tests. For the remaining 172 pa-

tients we request medical test "T3" before their diagnosis. For β = 30, we value the correct

diagnosis more and request the medical test "T3" for 253 of the patients. For β = 50, the

examination process is more complex. We request test "T3" for most of the patients and

request additional medical tests for few other patients. For one patient we request test

"T4U" as the first test instead of test "T3". The acquisition of medical tests is consistent

with theory. With a higher emphasis on a correct diagnosis, we acquire more costly tests.

Additionally, there is an important caveat related to the three figures. It might be

tempting to select β providing the most convenient results. E.g. β = 50 in Figure 6

provides an attractive trade-off between prediction utility and costs. However, selecting

β contradicts the nature of the ACID problem. We assume an externally given utility

function already containing the trade-off. Our objective is not to optimize the trade-off but

the overall utility composed of prediction utility and costs. We have no free choice over

β since β is embedded in the decision problem from the very beginning. On the other

hand, determining a proper utility specification might be troublesome in many practical

applications. Analyzing the trade-off between prediction utility and costs as depicted in

Figure 6 might provide useful guidance.

4.2 NHANES diabetes

The NHANES diabetes dataset is accessible on https://github.com/mkachuee/Opportunistic

and has been constructed by Kachuee et al. (2019). The dataset contains 92062 observations

with 17% of healthy patients (marked as 0 in the dataset), 80% of patients with pre-diabetes

(1) and 2.5% patients with diabetes (2). The dataset contains 45 costly variables in four cat-

egories: demographic, laboratory, examination, and questionnaire. For our experiments,

we consider costs stemming from laboratory and examination variables only. There are 4

laboratory variables each with costs 9 and 13 examination variables with costs 5. Overall,

we consider 17 costly variables and 38 free variables. The utility matrix from diagnosis is

unknown, but we set it as:

U = β


0 −10 −20

−1 0 −10

−2 −1 0
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which approximately reflects the idea that overlooking more severe health conditions is

more costly than a wrong diagnosis of less severe health conditions. Because of the high

number of costly variables, we consider the greedy acquisition only. We parametrize the

utility matrix by coefficient β and use a random forest for classification and the node

policy. We train the classification model and the policy on 70% of examples and keep 30%

of examples for testing.

The outcomes of the experiment are depicted in Figure 8 and Figure 9. Figure 8 com-

pares the mean (dis)utility attained on the testing examples similarly as Figure 5 for the

experiment on the euthyroid dataset. We observe that classification with all variables re-

sults in a very high disutility compared to classification with free variables only. The reason

is that the total costs of the 17 costly variables are 185. The utility attained from the greedy

acquisition is comparable to utility from classification with free variables for all values of

β. The graph suggests that most of the variables are too costly and provide low informa-

tion. Figure 9 compares the trade-off between prediction utility and costs for the methods

similarly as Figure 6. The figure is truncated to the maximal costs of 10. The horizontal

dashed red line represents the prediction utility attained for classification with all variables

Figure 8. A comparison of methods for the NHANES diabetes dataset in mean (dis)utility
A comparison of methods for the NHANES diabetes dataset in mean (dis)utility on the testing sample for
selected betas. The legend matches the legend in Figure 5.
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and constitutes the upper boundary for the prediction utility. The black cross in the left

bottom part of the graph corresponds to classification with free variables only. The up-

per boundary and the (almost) horizontal dotted black line intersect outside of the graph

when costs are equal to 185. When β = 15 the classifier trained for all acquired subsets

overlaps with the classification with free variables, but the pre-trained classifier achieves

lower prediction utility. The reason is that the pre-trained classifier has lower classification

performance in general (because of the computation constraints we duplicated the dataset

only 10 times).

For higher values of β, the greedy acquisition combined with a collection of classifiers

acquires several variables very efficiently. When β = 100 the greedy acquisition closes half

of the gap in prediction utility between classification with all and costly variables using

variables with only around 2% of the overall costs. The result suggests that only very

few variables provide sufficient information compensating their costs. On the other hand,

the greedy acquisition combined with the pre-trained models does not seem to utilize the

Figure 9. A comparison of methods for the NHANES diabetes dataset by the trade-off between
costs and prediction utility

A comparison of methods for the NHANES diabetes dataset by the trade-off between costs and prediction
utility for selected values of β. The attained prediction utility is scaled down by corresponding β to make
the prediction utilities comparable across various values of β. The legend matches the legend in Figure 5.
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acquired variables that efficiently. The reason might be the weaker pre-trained classifier.

Overall, the experiment on the NHANES data suggests that for the prediction of diabetes

the demographic and questionnaire data provide cost-effective information and only a few

additional examinations have to be requested.

5 Conclusion

In a world abundant with information, agents face two decision problems: what infor-

mation to acquire and internalize and how to act upon the information. For the acquisition

and internalization of information, the economic decision theory describes a trade-off be-

tween costs of information and benefits of the information assuming that agents are fully

aware of their uncertainty. In contrast to the economic theory, this paper introduces an

economic decision problem where an agent does not know the uncertainty but has to learn

about it from past observations. The paper assumes an agent whose goal is to predict a

value of a random variable utilizing several costly explanatory variables. The agent does

not know the distribution of the variables, but, prior to the prediction, the agent can learn

about the relationship between the explanatory variables and the predicted variable from

the past observations. During the prediction, the agent chooses what costly variables to

acquire and trades off the costs of the variables and the information the variables provide.

The generality of the problem statement allows for an application to any area where

the prediction requires explanatory variables whose acquisition is costly. The direct real-

life applications are in medical diagnosis, credit scoring, computer adaptive testing, and

several areas of computer science.

The paper presents a solution to the problem using machine learning methods that

allow learning from the data with unknown distribution. The paper divides the solution

into two rather separate parts: acquisition of costly variables and prediction based on

costly variables. For the prediction, the paper presents an approach for training a single

predictive model accepting any combination of acquired variables. The approach allows

avoiding a training of an exponential number of predictive models for each combination

of acquired variables.

For the acquisition of costly variables, the paper presents two solution methods esti-

mating the expected utility: backward training of supervised machine learning models
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forming a directed acyclical graph and a greedy acquisition serving as a computationally

feasible yet less accurate alternative. Both methods allow for a fully flexible acquisition

of costly variables conditioned on the already acquired variables. The paper evaluates the

methods on two medical datasets and shows that the methods acquire costly variables

efficiently.
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Appendix

A Source code

The code used for the experiments is available in the following GitHub repository:

https://github.com/OrangePiano/acquisition_of_costly_variables

The repository contains all the information necessary for the replication of the results.
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