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Abstract

A theory in which the timing of consumer expectation adjustments is endogenously state-
dependent and stochastic is proposed. These expectation adjustments generate highly
heterogenous consumption responses to income windfalls: many households do not re-
spond, those who do over-react, the marginal propensity to consume depends on windfall
size and is asymmetric. We document these features in the Bank of England survey of
consumers and find that they simultaneously rule out most previous explanations for these
effects, including consumption adjustment cost and liquidity constraints. At the aggre-
gate level, consumption is less sensitive to expansionary policies during recessions and its
excess smoothness varies significantly over the business cycle with consumers’ attention,
a feature that we document in US data.
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Non-Technical Summary

Following an income shock, many individuals do not adjust their consumption, those
who do over-react, and the probability to adjust consumption depends on the magnitude
and sign of the shock. These adjustment frictions shape the size and dynamics of con-
sumption responses, which are central to the transmission of monetary and fiscal policies.
They are, however, largely absent in macroeconomic models.

Motivated by recent evidence from information experiments, we show that the stochas-
ticity and state-dependence of consumer expectation adjustments can account for these
behaviors. To this end, we propose a trackable model in which a consumer faces a fixed
cost for paying attention to noisy signals about her permanent income and her atten-
tion choice can be a function of signal realizations. At the optimum, the consumer faces
an inattention region where she remains momentarily inattentive to income shocks, and
expectation adjustments are stochastic and state-dependent. As a result, in the model,
many individuals do not adjust their consumption following an income shock because they
remain inattentive to it, those who do over-react because they also adjust for the shocks
that they previously ignored, and the probability to adjust consumption depends on the
magnitude and sign of the shock because of the state-dependence of attention.

We further show that the model is consistent with the size effects and asymmetries
from both negative and positive income shocks at the extensive, intensive and overall
responses of consumption that we document in the Bank of England survey of consumers.
In particular, we identify a decreasing size effect from positive shocks which is not specific
to credit, liquidity or cash-on-hand constrained consumers. This feature of consump-
tion data rule out most previous explanations for size effects and asymmetries, including
consumption adjustment cost and liquidity constraints.

Simulating shocks that are comparable to the 2008 Tax Rebates and the Alaska’s Per-
manent Fund payments, with the latter being 4 times larger than the former, we further
illustrate the aggregate implication of our theory. We predict quantitatively different dy-
namics following these two shocks. This is because a large shock prompts more consumers
to become attentive and, thereby, to adjust consumption in response to this shock. More-
over, during bad times, consumers are more likely to be attentive to further destabilizing
shocks and aggregate consumption responds more promptly to negative than to positive
shocks, while the opposite is true during good times.

Finally, our theory predicts that the excess smoothness of aggregate consumption
varies significantly over the business cycle with consumer inattention. We document this
feature of aggregate consumption in US data.



1. Introduction

In surveys and quasi-experiments, 30 to 60 percent of households do not adjust non-
durable consumption following an income shock (Misra and Surico, 2014; Bunn et al.,
2018; Christelis et al., 2019; Fuster et al., 2021; Andreolli and Surico, 2021). These
adjustment frictions shape the size and dynamics of consumption responses, which are
central to a broad set of macroeconomic mechanisms including the transmission of mon-
etary and fiscal policies. Despite their potential importance, these adjustment frictions
are largely absent in consumption models and their consequences unexplored.1

Some authors have hypothesized that consumers’ cognitive cost to process informa-
tion may cause these adjustment frictions in consumption (Caballero, 1995; Browning
and Collado, 2001; Fuster et al., 2021). Consistent with this view, evidence indicates
that consumers do not continuously adjust their expectations, but rather that expecta-
tion adjustments are sporadic, with consumers discretely updating their expectations to
incorporate continuous information. In particular, the timing of expectation adjustments
is stochastic and state-dependent – as illustrated by the strictly positive and U-shape
hazard function reported in Khaw et al. (2017) and Henckel et al. (2021).2

Our first contribution is to propose a dynamic model of rationally inattentive con-
sumers consistent with these features of expectation adjustments. Our theory builds on
sticky expectation models in which consumers face a fixed cost to be attentive, i.e., to
observe information (Gabaix and Laibson, 2001; Reis, 2006; Carroll et al., 2020). These
models predict that consumers adjust their expectations on a calendar basis or with a
constant probability, which is inconsistent with the aforementioned evidence on expecta-
tion adjustments. Hence, we extend these models in two directions. First, we introduce
an information friction by assuming that a consumer can observe noisy Gaussian sig-
nals about her permanent income when attentive, but not the true value. Second, we
allow the consumer to condition her attention behavior on signal realizations. Otherwise,
the consumption-saving problem coincides with Hall’s (1978) random walk model with
quadratic utility and Gaussian income shocks.

1Exceptions are Caballero (1995) and Fuster et al. (2021) who consider fixed costs to adjust nondurable
consumption. The former demonstrates that consumption adjustment frictions can explain the excess
smoothness and sensitivity of aggregate consumption. The latter finds that consumption adjustments
are important determinants of household consumption response heterogeneity in survey data.

2Randomized controlled trials and laboratory experiments also report that consumer expectation
adjustments are affected by the provision of free and salient information, imperfect, and both large and
small (Armantier et al., 2016; Khaw et al., 2017; Armona et al., 2018; Roth and Wohlfart, 2020; Henckel
et al., 2021). Our model is consistent with these features. We discuss these empirical findings and their
relation to existing models of inattention in Section 3.
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At the optimum, the attention behavior is governed by an inattention region with
respect to the expectation wedge between a consumer’s current beliefs under inattention
and the latent beliefs under continuous attention. Consequently, a consumer is inattentive
to new signal realizations most of the time and it is only when (the absolute value of) the
expectation wedge is larger than some endogenously defined threshold that she becomes
attentive. When attentive, she catches up with the signals she previously ignored to close
the expectation wedge.

In the absence of information frictions, the expectation wedge coincides with the ex-
pectation error, i.e., the difference between the consumer’s true and expected permanent
income. It is, therefore, an observable variable and the attention behavior is purely
state-dependent with a probability that jumps from 0 to 1. However, in the presence of
information frictions in the form of noisy signals, the expectation wedge is unobservable
and only partially correlates with the consumer’s expectation error (or other observable
variables). Hence, consistent with the aforementioned evidence, the timing of expecta-
tion adjustments is stochastic and state-dependent, with a strictly positive and U-shape
hazard function. We further illustrate that the inattention region can generate atten-
tion behaviors that are simultaneously stochastic, state- and time-dependent, as well as
smooth unimodal and bimodal distributions of expectation revisions.

Our second contribution is to illustrate how these expectation adjustments gener-
ate consumption adjustments that are consistent with household consumption data. In
the model, many households do not adjust consumption following an income shock be-
cause of inattention, the probability to adjust consumption correlates with income shock
size because of the state-dependent nature of expectation adjustments, and the marginal
propensity to consume (MPC) of adjusting consumers is large because attentive consumers
over-react to income shocks by also closing their expectation wedge. These predictions
are consistent with evidence on reported spending from hypothetical scenarios (Fuster
et al., 2021) and, as we find, from experienced shocks in the Bank of England surveys of
consumers. They cannot be attributed to precautionary motives, borrowing and liquidity
constraints, non-homothetic preferences, nor sticky expectations (Kaplan and Violante,
2014, 2022; Jappelli and Pistaferri, 2017; Carroll et al., 2020; Andreolli and Surico, 2021).

Arguably, a fixed cost to adjust consumption could also reproduce these features of
consumption adjustments (Caballero, 1995; Chetty and Szeidl, 2016; Fuster et al., 2021).
However, the difficulty in matching the aforementioned micro evidence on sporadic adjust-
ments to income shocks is to preserve indisputable features of household nondurable con-
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sumption dynamics. Consumption adjustment costs imply that household consumption
should remain anchored at a constant level (or trend) for many periods and, occasionally,
jump by a lot to reach a new anchor.3 Such jerky behavior has been forcefully criticized
in the context of nondurable consumption (Reis, 2006; Carroll et al., 2020). Instead,
in our model, consumers behave essentially as if they were systematically attentive and
adjusting consumption to idiosyncratic income shocks at a quarterly frequency, despite
being largely inattentive to aggregate shocks at this frequency.4

Our third contribution is to offer an explanation to seemingly conflicting findings about
size effects and asymmetries from positive and negative income shocks reported across the
literature. Using consumer surveys, Bunn et al. (2018), Christelis et al. (2019) and Fuster
et al. (2021) report that MPC from negative income shocks are larger than MPC from
positive shocks on average, a so called negative asymmetry. This finding is generally
interpreted as a consequence of liquidity constraint and precautionary motive, but Fuster
et al. (2021) find that these explanations cannot quantitatively account for all the negative
asymmetry found in their data – suggesting that there is missing negative asymmetry. In
contrast, Ballantyne (2021) identifies a missing positive asymmetry after controlling for
liquidity constraints.5 Similarly, existing studies report opposite size effects from positive
shocks: Christelis et al. (2019) and Fagereng et al. (2021) find an average MPC decreasing
with shock size, while Fuster et al. (2021) find an average MPC increasing with size.

Our model provides an explanation for the missing asymmetry and shifts in size effects.
The consumption function is linear everywhere in our model. Thus, nonlinearities in
consumption responses arise solely from the extensive margin of expectation adjustments.
Size effects are due to the state-dependence of consumers’ attention and asymmetries are a
consequence of consumers’ prior localization in the inattention region. Hence, size effects
and asymmetries can reverse at the individual level depending on a consumer’s expectation
wedge. Averaging across consumers, size effects and asymmetries in the cross-sectional
MPC are governed by the distribution of expectation wedges and can also reverse as
aggregate income shocks shift this distribution.

3A similar behavior emerges in the entropy-based model of Tutino (2013).
4Carroll et al. (2020) review evidence that consumers appear to be attentive to idiosyncratic income

shocks but not aggregate shocks in quarterly data. This feature is assumed in their model, whereas it
arises endogenously here.

5Ballantyne (2021) reports an absence of asymmetry on average resulting from a positive asymmetry
for financially secure households and a negative asymmetry for households who are likely to face financial
frictions.
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An ideal test of our theory on cross-sectional data would require to elucidate the
distribution of expectation wedges. These wedges are, however, unobservable and we
cannot infer this distribution. Nevertheless, we show that knowledge of the sign of the
first moment of this distribution is generally sufficient to characterize size effects for the
probability to adjust consumption (extensive margin), the conditional MPC of consumers
who adjust (intensive margin), and unconditional MPC (overall response). Importantly,
size effects reverse across margins for a given sign of the mean wedge, and within margins
depending on the sign of the mean wedge. For instance, when the mean wedge is negative,
our model predicts a probability to adjust consumption (P1) and an unconditonal MPC
(P2) increasing with the size of negative income shocks, while the size effect associated to
positive shocks is unclear. In opposition, the conditional MPC always displays decreasing
size effects from both negative and positive income shocks (P3), and is larger (with a
discontinuity at zero) for negative income shocks (P4).6

We are not aware of previous work estimating size effects from both negative and posi-
tive income shocks at the extensive, intensive and overall responses of consumption.7 We
make progress in this direction using the 2012-2014 Bank of England surveys of consumers,
previously analyzed in Bunn et al. (2018), in which respondents are asked to report their
perceived income surprise over the last year and how they adjusted their spending to
it. The timing of the survey coincides with a period of economic downturn in the UK
economy, suggesting that the mean expectation wedge was negative during this period.
Controlling for households observable characteristics, we find suggestive evidence for all
predictions P1-P4. Our conclusions are unaffected when focusing on households who are
the less likely to face binding borrowing and liquidity constraints. Furthermore, our data
are characterized by a state-dependent extensive margin and decreasing size effect from
positive shocks, features of consumption responses that we show to simultaneously rule
out most previous explanations for size effects and asymmetries.

Our fourth contribution is to illustrate how the size effects and asymmetries induced
by expectation adjustments affect the dynamics of aggregate consumption. We illustrate
the dynamic consequences of size effects by simulating shocks that are comparable to

6These predictions hold for linear size effects. We asses the strength of these predictions using Monte
Carlo simulations. We also extend our analysis to nonlinear size effects.

7Fuster et al. (2021) analyze all margins of consumption responses, but estimate size effects only for
positive shocks. We explain in Section 4 how their results are a weaker test of, though consistent with,
our theory.
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the 2008 Tax Rebates (Parker et al., 2013) and the Alaska’s Permanent Fund payments
(Hsieh, 2003; Kueng, 2018), with the latter shock being 4 times larger than the former.
We predict quantitatively different dynamics following these two shocks. This is because
a large shock prompts relatively more consumers to become attentive and, thereby, to
adjust consumption in response to this shock, resulting in sharper aggregate consumption
response from larger shocks. Thus, our theory offers novel insights to understand the
heterogenous effects of fiscal stimuli reported across the literature.8 Our theory also
provides novel insights regarding asymmetries to positive and negative aggregate shocks
along the business cycle. During bad times, consumers are more likely to be attentive
to further destabilizing shocks and aggregate consumption responds more promptly to
negative than to positive shocks, while the opposite is true during good times. These
asymmetric dynamics have been previously documented in US aggregate consumption
data (Caballero, 1995) and could participate in explaining the asymmetry and state-
dependence of fiscal multipliers (Barnichon et al., 2022).

Finally, we document and explain significant variations in the persistence of aggregate
consumption related to business cycle fluctuations. Consistent with the meta-analysis of
Havranek et al. (2017), the inattention region implies that consumption is highly persis-
tent, or ‘excessively smooth’, at the aggregate level but not at the household level. This
feature is not specific to our model and, for instance, also emerges in consumption models
with random attention as in Carroll et al. (2020). A distinctive feature of our theory is,
however, that aggregate consumption excess smoothness varies over time depending on
the share of inattentive consumers. We document these variations in the persistence of
US consumption data. The share of inattentive consumers is not directly observable in
the data. Therefore, we propose two proxies to identify periods when these shares are the
largest. The first relates to the deviation of lagged consumption growth from its mean and
the second coincides with recessionary periods.9 In accordance with our prediction, we
find that US consumption persistence drops drastically during these periods. Our conclu-
sion is robust to different set of instruments and weak-instrument inference. It contributes
to the prominent literature on consumption excess smoothness initiated by Campbell and

8See Jappelli and Pistaferri (2010), Parker et al. (2013) or Carroll et al. (2017) for a review. The
dynamic size effect that we document relates to the magnitude hypothesis that postulates a negative
relation between excess sensitivity and shock size (Browning and Collado, 2001; Jappelli and Pistaferri,
2010; Scholnick, 2013).

9We use these proxies based on the model predictions. The second proxy is also supported by the evi-
dence that information rigidities drop persistently in the aftermath of a recession in surveys of professional
forecasters (Dräger and Lamla, 2012; Coibion and Gorodnichenko, 2015).
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Deaton (1989) and we are not aware of previous work explaining this feature of aggregate
consumption dynamics. It holds important implications beyond the realm of consumption
because aggregate consumption persistence is a key driver of sluggish dynamics in DSGE
models.

The paper is organized as follows. Section 2 introduces and solves the consumer
problem. Section 3 discusses the implications of the inattention region for expectation
adjustments and revisions. Section 4 analyses size effects and asymmetries in household
consumption. Sections 5 and 6 focus on aggregate consumption dynamics. All proofs are
relegated to the Appendix.

2. Consumer problem

This section first introduces the consumer problem using a two-agents analogy. It then
formally sets and solves the problem.

2.1. Informal description of the consumer problem: A two-agents analogy

Consider the textbook random walk model of consumption (Hall, 1978) with quadratic
utility and Gaussian innovations. We extend this model to account for recent evidence on
consumer inattention. To this end, consider that the household is composed of two indi-
viduals. The first individual, the ‘consumer’, is in charge of buying consumption goods.
The only information she has comes from the second individual. This second individ-
ual, the ‘worker’, has private information about realizations of the stochastic components
of the household’s income. The worker’s information can be imperfect. Both individuals
share the common objective of maximizing the household’s intertemporal utility, but they
dislike meeting to share information (fixed utility cost).

The structure of the household raises novel questions: When should the two individuals
meet? What is the information disclosed during meetings? Can the consumer infer some
information between meetings? Does it affect consumption between meetings?

In the rest of this section, we demonstrate the following results. First, the consumer
and worker problems are separable. Hence, the certainty equivalence holds and the con-
sumption policy is unaffected. Second, the worker manages the frequency of the meetings.
She calls for a meeting whenever her expected permanent income is too different from the
one of the consumer. Thus, a symmetric ‘no meeting’ region emerges. Fourth, the worker
discloses her expected permanent income and the consumer revises the consumption plan
accordingly during meetings. Last, between meetings, the consumer realizes that the
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worker’s information does not trigger a meeting. Nevertheless, it has no effect on con-
sumption choices between meetings (because the ‘no meeting’ region is symmetric).

The two-agents analogy discussed here is useful insofar that it helps to clarify the
information structure considered in the present paper. Arguably, it could as well illustrate
the communication between two separate parts of the brain – one for observing new
information and another for acting upon new information – instead of two individuals.
More generally, it captures the behavior of a consumer who sometimes remains inattentive
to new information. This is the interpretation that we retain in the rest of the paper.

2.2. Formalizing the consumer problem

Utility and income – Consider the problem of a consumer with memory who lives
from period 0 to period T − 1. She consumes ct each period and her utility is quadratic
u(ct) = −(ct − c̄)2 with c̄ ∈ R+ a consumption bliss point.10 This agent discounts future
utility by the factor β ∈ (0, 1) and can borrow and lend freely at the gross interest rate
1 + r. At each period, she receives an exogenous stochastic income yt which follows
from a multivariate linear state space model with Gaussian white noise innovations. The
consumer’s budget constraint writes at+1 = (1 + r)at− ct + yt where at are asset holdings.

Permanent income – We reformulate the consumer’s problem in terms of permanent
income. To this end, let st ≡ at + µt −

∑T−1
t=0 (1 + r)−tc̄ be the consumer’s perma-

nent income net of a constant consumption stream equal to c̄ at each period.11 µt ≡∑T−1
k=t Et[(1 + r)(t−k−1)yk] is the discounted expected present value of current and future

incomes. Accordingly, the period budget constraint may be written in terms of permanent
income: st+1 = (1 + r)st − (ct − c̄) + ζt+1 where ζt+1 ≡

∑T−1
k=t+1(1 + r)t−k

(
Et+1 − Et

)
[yk]

is the innovation to permanent income. The assumption on the income process implies
that this innovation is a Gaussian white noise with variance σ2

ζ .
Terminal condition – In the following, we will express the problem as a linear-quadratic

control problem. Therefore, we impose a terminal condition to account for the no-Ponzi
game and transversality conditions. To this end, we incorporate the terminal condition as
a large utility penalty qT s2

T when the consumer dies at time T .12 In the rest of the paper,

10The quadratic utility assumption allows to derive an analytical solution and is a standard framework
for the study of rationally inattentive consumers (Sims, 2003; Luo and Young, 2014; Carroll et al., 2020;
Miao et al., 2022).

11Incorporating the constant consumption stream in the state variable allows to directly take ut ≡ ct− c̄
as a control variable. Note that since c̄ is known to the consumer, it is equivalent to choose ut or ct.
Consequently, it plays no other role than simplifying the notation when deriving the solution.

12Intuitively, we may want to impose the standard condition with finite horizon that sT = 0 in expec-
tation given the consumer information. However, the information structure considered thereafter does
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we focus on the infinite horizon limit of the problem so that this penalty has a negligible
effect on optimal policies.

Noisy information – Because of information frictions, the consumer never perfectly
observes permanent income st. Nevertheless, she receives imperfect information about st
in the form of additive noisy signals zt = st + ϑt with i.i.d. Gaussian white noises the
variance of which is σ2

ϑ. The smaller the variance of the noise σ2
ϑ is, the more informative

the signal is. We collect these signals in a latent information set, denoted It. Using the
previously discussed two-agents analogy, it corresponds to the worker’s information.

Information at the attention choice – When the consumer is attentive, she can use
the information in It for her consumption choices. However, we assume that attention
is cognitively costly and we model this cost as a fixed utility cost denoted λ. We allow
the attention choices to depend on the information in It. Without lack of generality, the
information set It also contains past actions of the consumer. These actions are twofolds.
They consist in the consumption choices (ct) and whether the consumer was attentive
(τt = 1) or not (τt = 0). Hence, the information set at the attention choice writes

It ≡ {z0, τ0, c0, . . . , zt−1, τt−1, ct−1, zt} (1)

Information at the consumption choice – The information set at the consumption
choice, denoted It, is not necessarily incremented at each period by the signal zt as
the consumer can be inattentive. Instead, let z̄t be the incremental information at the
consumption choice. Thus, we write

It ≡ {z̄0, τ0, c0, . . . , z̄t−1, τt−1, ct−1, τt, z̄t} (2)

By definition, z̄t = ∅ is empty when the consumer is inattentive (τt = 0). When the
consumer is attentive, the information conveyed in z̄t is a priori not clear. It could, for
instance, be the last signal that was received zt, a sequence of past signals, or a filtration
of these signals. Therefore, we remain agnostic about the form of z̄t. The only restriction
we impose is that this information must come from the latent information set It. That

not preclude situations where the consumer prefers to remain inattentive for a long period of time before
dying. Consequently, a terminal condition sT = 0 is not strong enough to prevent exploding deviations
in terms of realized permanent income. Hence, we may want to unsure that the consumer finds it optimal
to use all the information she can access at period T − 1 to satisfy the terminal condition. When βT qT is
arbitrarily large, a rationally inattentive consumer decides to observe all the information she can to adjust
her consumption at period T − 1. It thus prevents the type of deviations that we have just mentioned.
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is, we impose that σ({z̄k}tk=0) ⊆ σ({zk}tk=0) where σ(.) denotes a σ-algebra. Following
Molin and Hirche (2010), we refer to this property as the nestedness of the information
structure.13

Problem formulation – Collecting the consumption and attention parts, the consumer
problem writes as follows:

min
{ct,τt}T−1

t=0 ∈RT×{0,1}T
E0

[
T−1∑
t=0

βt
(
(ct − c̄)2 + λτt

)
+ βT qT s

2
T

∣∣∣∣∣
{
It, It

}]
(3)

s.t. st+1 = (1 + r)st − (ct − c̄) + ζt+1

ct = ft(It); τt = gt(It)

s0|I0 ∼ N (s0, σ
2
s0) ; s0 and σ2

s0 given

Problem (3) states that the consumer maximizes her intertemporal utility given the
aforementioned period budget constraint and information structure. The instantaneous
utility is quadratic and the consumer must pay a fixed utility cost λ whenever she decides
to be attentive. The presence of the term βT qT s

2
T follows from the discussion on the

terminal condition. The consumption choice depends on the information set It, while the
attention choice depends on It. Formally, this implies that the policies ft(.) and gt(.),
which respectively refer to the consumption and attention choices, are Borel-measurable
functions with respect to It and It. The last condition characterizes the initial uncertainty
surrounding the perceived permanent income.

Comparison to some related models – The above formulation encompasses some well-
known models of inattentive consumers as limiting cases. When the attention cost λ is nil,
the consumer is always attentive to the Gaussian signals. Hence, Problem (3) collapses to
a consumption problem with noisy information (Sims, 2003; Luo and Young, 2014). When
the signals are noiseless (zt = st) and the information at the attention choice is restricted
to It, Problem (3) collapses to a consumption problem with sticky information (Reis,
2006).14 Problems related to (3) have been studied recently in engineering. The closest
papers are Molin and Hirche (2010, 2017) who also study a discrete-time linear-quadratic
Gaussian control problem with a similar information structure. The only deviation with

13In Section 3.3, we discuss an extension breaking the nestedness of the information structure by
assuming that the consumer observes st when attentive.

14Because of this restriction, Reis (2006) finds that the optimal attention behavior is purely time-
dependent. Reis (2006) argues that consumers may, nevertheless, be attentive to extreme events. By
allowing τt = gt(It), Problem (3) is designed to allow consumers to be attentive to the (extreme) events
that they deem attention worthy.
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respect to their framework is that we introduce discounting in the objective function.

2.3. Consumption and expectations

The detailed solution to Problem (3) is relegated to Appendix A. In the following,
we present main results for consumption and attention behaviors. The last subsection
concludes with the main proposition.

Consumption policy – The attention and consumption choices are separable. This
separation result arises as a consequence of the nestedness of the information structure and
the quadratic utility. On the one hand, the nestedness of the information structure implies
that the information available at the consumption choice is observable at the attention
choice. As a result, any attempt to adjust consumption to affect the attention behavior
would be vain. To demonstrate this, we show that attention policies are functions of the
random variables realizations and are, thereby, independent of consumption policies. On
the other hand, the quadratic structure of the problem implies that for any given attention
policy, the optimal consumption policy is the certainty equivalent one. Finally, we can
always retrieve a new admissible attention policy, coherent with the certainty equivalent
policy for consumption, that will dominate the initial one; Hence, the certainty equivalent
policy is optimal irrespectively of the attention strategy.

Lemma 1 (Certainty equivalence). The certainty equivalence holds and consumption is

ct = LtE[st|It] + c̄ ∀t ∈ 0, . . . , T − 1 (4)

where Lt ≡ (1 + r)βpt+1/(1 +βpt+1) and pt follows from iterating on the backward Riccati
equation pt = (1 + r)2βpt+1/(1 + βpt+1) with terminal condition pT = qT .

The consumption policy is not affected by the information structure. Moreover, we
retrieve the well-known result that the consumption function is linear when the consumer’s
utility is quadratic. Lt is the marginal propensity to consume with respect to expected
permanent income. It depends solely on the discount rate β, the interest rate r, the time
horizon T , and the terminal condition qT .

Expectations at the attention choice – We next characterize expectations at the at-
tention choice. Following common practice in the literature (e.g. Sims (2003), Luo et al.
(2017) and Maćkowiak et al. (2018)), we assume that the initial uncertainty surrounding
the state variable σ2

s0 is at its steady state value. Consequently, the optimal expectation
E[st|It] is the least-squares estimator. Thanks to the linearity of the state dynamics and
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the i.i.d. Gaussian noises and innovations, the least-squares estimator is the Kalman fil-
ter. The following Lemma characterizes the dynamics of expectations at the attention
choice.

Lemma 2 (Kalman filter). The optimal estimate of st at the attention choice is

E[st|It] = (1−K)
(
(1 + r)E[st−1|It−1]− ct−1 + c̄

)
+Kzt (5)

where K is the steady state Kalman gain defined in Appendix A.2

Expectations at the consumption choice – When the consumer is attentive (τt = 1),
she can access the information contained in It to update her expectation E[st|It, τt = 1].
Therefore, E[st|It, τt = 1] = E[st|It] because the latter expectation is optimal given It
and the nestedness property of the information structure implies that there is no other
source of information.

Characterizing expectations while the consumer remains inattentive (τt = 0) is more
involved. Indeed, when inattentive, the consumer realizes that she is inattentive. When
the choice to become attentive is not random, this realization conveys some information
that the consumer can use to revise her expectations while inattentive. This generates a
corrective term in the expectation at the consumption choice

E[st|It, τt = 0]︸ ︷︷ ︸
expectation when inattentive

= E[st|It−1]︸ ︷︷ ︸
mechanical update

+E
[
(1 + r)et−1 +K(zt − E[st|It−1])

∣∣∣It, τt = 0
]

︸ ︷︷ ︸
corrective term α(.)

(6)

where et ≡ E[st|It] − E[st|It] is the expectation wedge, i.e., the difference between ex-
pectations at the attention and consumption choices. Hence, the corrective term, denoted
α(.), corresponds to the consumer’s expected wedge between the two expectations when
she is inattentive. The corrective terms are intrinsically related to the attention policy.15

Nevertheless, since these corrective terms are measurable from the consumer’s information
set when she is inattentive, they can vary only with respect to two inputs: the time period
t and the last period when the consumer was attentive lt. We therefore write α(t, lt). The
following Lemma characterizes the consumer’s expectation depending on whether she is
attentive τt = 1 or not.

15To illustrate this dependence, suppose that the consumer is willing to be attentive to negative news
only. Implicitly, this attention strategy would imply that a news is positive when the consumer remains
inattentive to it, as it would have triggered her attention otherwise. The consumer would therefore infer
that, on average, her permanent income is higher than what would be implied by the mechanical update
in equation (6) at periods when she is inattentive. In this scenario, the corrective terms in equation (6)
would be positive.
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Lemma 3 (Perceived permanent income). The optimal estimate of st given the informa-
tion set at the consumption choice is

E[st|It] =

 E[st|It] if τt = 1
(1 + r)E[st−1|It−1]− ct−1 + c̄+ α(t, lt) if τt = 0

(7)

with α(t, lt) = E
[
(1 + r)et−1 +K(zt − E[st|It−1])

∣∣∣∣It, τt = 0
]
.

2.4. Optimal attention policy

The realization that the corrective terms α(t, lt) only depend on t and lt greatly simpli-
fies the attention problem as it implies that they do not vary with the expectation wedge
et. Hence, the attention problem can be derived for an arbitrary sequence of α(t, lt) for
all t and lt < t, that we denote by α. Consequently, the optimal attention policy is the
(functional fixed-point) solution to the attention problem given a sequence α coherent
with Equation (6) evaluated at the optimal attention policy.

Attention problem – To find the optimal attention policy, we first characterize the
attention problem for an arbitrary sequence of corrective terms α. When inattentive,
the expectation wedge et translates into a consumption wedge Ltet (from Lemma 1) and,
thereby, into a utility wedge. With a quadratic utility, the utility wedge is proportional to
the square of the consumption wedge. When the consumer prefers to become attentive,
this utility wedge vanishes but she has to pay the fixed utility cost λ.

Moreover, the expectation wedge evolves dynamically while the consumer remains
inattentive. Using Lemmas 2 and 3, the dynamics of the expectation wedge et are

et+1 = (1− τt)(1 + r)et +K
(
zt+1 − E[st+1|It]

)
− α(t, lt) (8)

That is, the expectation wedge is incremented at each period by the new information
incorporated at the attention choice minus the corrective term. The wedge grows at the
interest rate whilst the consumer remains inattentive. This growth arises because the
expectation wedge translates into a consumption wedge and, thereby, also into an asset
wedge growing at the interest rate. Importantly, Equation (8) implies that the expectation
wedge et can be computed from It. Therefore, it is observable at the attention choice at
time t.
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Consequently, the attention policy solves

Jt(et, lt;α) = min
τt∈{0,1}

(1− τt)(1 + βpt+1)L2
t e

2
t + λτt + βE[Jt+1(et+1, lt+1;α)|It] (9)

s.t. et+1 = (1− τt)(1 + r)et +K
(
zt+1 − E[st+1|It]

)
− α(t+ 1, lt+1)

lt+1 = τtt+ (1− τt)lt

for a given sequence of corrective terms α. This is a standard dynamic problem with two
states, the expectation wedge et and the last period when the consumer was attentive lt,
which are both observable at the attention choice.

Solution – Assume that the corrective terms are zero for all t and lt < t (i.e. α = 0).
Then, the state lt becomes irrelevant in problem (9) and we find that the optimal attention
policy is a symmetric function equal to one when the absolute value of the expectation
wedge is larger than a threshold denoted πt. That is, the consumer is attentive τt =
1 ⇐⇒ |et| ≥ πt and inattentive otherwise at the optimum. In other words, a symmetric
inattention region emerges with respect to the expectation wedge at the attention and
consumption choices.

This solution is locally stable is the sense that the corrective terms, defined in Equation
(6), are indeed zero when the attention policy is τt = 1 ⇐⇒ |et| ≥ πt and zero
otherwise. This follows from the symmetry of this attention policy. The intuition is
as follows. Take a consumer who was last attentive one period ago. She knows that
the new information incorporated at the attention choice was an innovation drawn from
a Gaussian distribution with zero mean. She also knows that this innovation did not
trigger her attention. Therefore, the conditional distribution of the innovation follows a
truncated Gaussian. The truncation being symmetric, the conditional expectation of this
innovation remains zero. Hence, the corrective terms α(t, t − 1) = 0 for all t. Using this
argument recursively, we can show that this is also the case for all lt < t.

Finally, Theorem 1 in Molin and Hirche (2017) allows to conclude that this solution is
globally asymptotically stable. That is, starting from any α0, solving the associated opti-
mal attention policy from problem (9) and computing an updated sequence of corrective
terms α1 from their definition in equation (6), we asymptotically converge to α∞ = 0.
We report these results in the following Lemma.

Lemma 4 (Attention policy). Let the sequence of corrective terms α = 0. The expectation
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wedge law of motion is thus

et+1 = (1− τt)(1 + r)et +K
(
zt+1 − E[st+1|It]

)
(10)

Then, the optimal attention policy τt = gt(et) is symmetric and such that gt(et) = 1 ⇐⇒
|et| ≥ πt and 0 otherwise for all t. The thresholds πt ∈ R+ follow from solving ∀t ∈
{0, . . . , T − 1}

λ+ βE[Jt+1(et+1;0)|It, et = 0] = L2
t (1 + βpt+1)π2

t + βE[Jt+1(et+1,0)|It, et = πt](11)

with Jt+1(et+1;0) defined in (9). This solution is globally asymptotically stable.

2.5. Stationary policies

Lemmas 1-4 fully characterize the solution to problem (3). In our setup, the time-
dependence of the consumption and attention policies results from accounting for the
terminal condition qT s2

T . Therefore, we consider the infinite horizon limit of problem (3)
where the impact of this terminal condition is negligible on the optimal policies. When
the horizon T tends to infinity, the optimal policies ft(.) and gt(.) respectively converge
to stationary policies f(.) and g(.). These stationary policies are characterized in the
following Proposition.

Proposition 1. When the horizon tends to infinity, the policy functions converges to
stationary policies f(.) and g(.). Consequently, and assuming it exists, the consumption
policy converges to

ct = β(1 + r)2 − 1
β(1 + r) E[st|It] + c̄ (12)

and the consumer updates the information set It, that is τt = 1, whenever |et| ≥ π where
et ≡ E[st|It]− E[st|It, τt = 0] and

π =

√
β(1 + r)

(
λ+ β(E[J(et+1;0)|It, et = 0]− E[J(et+1;0)|It, et = π])

β(1 + r)2 − 1 (13)

J(.;0) is the functional fixed-point solution to the infinite horizon reformulation of the
Bellman equation defined in (9).

The stationary consumption policy (12) is standard and we retrieve the well-known
result that the consumption path is constant over time when β−1 = (1+r). The stationary
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threshold π can be computed numerically with standard dynamic programing methods.
We consider these stationary policies in the rest of the paper.

3. Inattention region, state-dependence and revisions

This section presents key features related to consumers’ expectations in the presence
of inattention region and discusses them in light of existing empirical evidence. Technical
details are relegated to Appendix B.

3.1. Inattention region

In the presence of an inattention region, a consumer is inattentive most of the time.
Sporadically, however, the expectation wedge |et| exceeds the threshold π which triggers
her attention. Panel A in Figure 1 illustrates the dynamics behind the attention behav-
ior. Starting from a period 0 when the consumer was attentive, the expectation wedge
smoothly incorporates the signals observed at the attention choice. As long as the expec-
tation wedge remains in the inattention region, the consumer remains inattentive to it.
However, when it exceeds the lower (−π) or upper (π) threshold, the consumer becomes
attentive and observes et. Since the consumer observes the expectation wedge et when
attentive, she catches up with the information available at the attention choice and the
dynamics of the expectation wedge restarts from zero.

Hence, a direct implication of the inattention region is that expectations exhibit dis-
crete adjustments and consumers, sometimes, remain inattentive to salient information.
Using randomized controlled trials, Armantier et al. (2016), Armona et al. (2018), and
Roth and Wohlfart (2020) investigate how US consumers’ expectations are affected by
the provision of information about respectively inflation, local home prices, and growth.
They all report a significant share of consumers who do not revise their expectations
upon the provision of information. Arguably, some consumers may have not adjusted
their expectations because they had already observed the information provided during
the experiments. Laboratory experiments allow to sidestep this limitation by control-
ling the information available to each individual. These experiments also evidence that
individuals adjust their expectations in discrete jumps and sporadically ignore new in-
formation (Khaw et al., 2017; Henckel et al., 2021). Taken together, these studies favor
models predicting discrete adjustments in expectations.

The literature already offers models predicting discrete adjustments in expectations.
On the one hand, there are the sticky expectation models. As is illustrated in Figure 1
(Panel B), in these models consumers either have a constant probability to be attentive
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Figure 1: Inattention dynamics

Note: Panel A – illustration of the dynamics of the expectation wedge (et) and the inattention region. The grey line
represents the evolution of the expectation wedge over time. The latter is unobservable to the consumer. The only
information available to her corresponds to the black lines (i.e. the threshold π) and the black dot in the upper attention
region. Panel B – Unconditional hazard rates predicted by different models of sticky expectations. The computation of
the hazard rates for the model considered in this paper is presented in Appendix B. The Calvo-like hazards predict a
constant probability to update at each period (e.g. Mankiw and Reis (2002), Carroll (2003) and Carroll et al. (2020)).
The time-dependent models predict that consumers update on a purely time dependent basis (e.g. Reis (2006)). All model
predict an average inattention length of four periods. Panel C – illustrations of the predicted state-dependent hazard rates
when the information at the attention choice, measured from the precision of the signals zt = st + ϑt, is perfect (σϑ = 0),
imperfect (0 < σϑ < ∞), or inexistent (σϑ 7→ ∞). The prior errors ∆t ≡ st − E[st|It−1] are normalized by the standard
deviation of innovations to permanent income.

(Mankiw and Reis, 2002; Carroll, 2003; Carroll et al., 2020)16 or their attention behavior
is purely time-dependent (Gabaix and Laibson, 2001; Reis, 2006). On the other hand,
entropy-based models of rational inattention can generate discrete adjustments which
neither occur with a constant probability nor are purely time-dependent (Woodford, 2009;
Tutino, 2013; Khaw et al., 2017; Jung et al., 2019).

While conceptually different, these models share the prediction that the provision of
information does not affect adjustment behaviors.17 This prediction seems in contradiction
with evidence from the aforementioned randomized control trials reporting that consumers
are more likely to adjust their expectations after the provision of information (Armantier
et al., 2016; Armona et al., 2018; Roth and Wohlfart, 2020). Alternatively, the inattention

16We refer to these models as Calvo attention models in analogy to the Calvo price setting model
(Calvo, 1983).

17It follows from the Calvo or time-dependent adjustments in models of sticky expectations. In entropy-
based models of rational inattention, a consumer processes the most relevant information given an entropy
constraint. Hence, the provision of new information should have no effect since this information would
have been already processed would it have been optimal to use it. Arguably, such interpretation of
entropy-based rational inattention may be too literal. However, even assuming that individuals may
freely use the information they are provided with during information experiments, then they would be
bayesian and systematically adjust their expectations. Either way, these models may not explain why
the provision of information leads some, but not all, consumers to adjust their expectation.
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region predicts that the provision of free and novel information enters the dynamics of
the expectation wedge, as any other signal would, and affects the attention behavior.

Finally, the inattention region also finds support in the psychology, neuroeconomics,
and neuroscience literature aiming to explain observed patterns of choice and response
times. Of particular importance in this literature is the drift-diffusion model “where
the decision maker accumulates evidence until the process hits either an upper or lower
stopping boundary and then stops and chooses the alternative that corresponds to that
boundary.” (Fudenberg et al., 2020, abstract) The inattention region is a manifestation
of such drift-diffusion model in the context of continuous consumption choices.

3.2. Stochastic state-dependent attention

While the model predicts that the inattention region takes the form of a strict Ss-
threshold policy, the attention behavior is stochastic as the latent information at the
attention choice is unobservable. This stochasticity holds from the consumer’s perspective,
but also from the perspective of a modeler who observes consumption choices, expectations
and permanent income.

As is apparent from Panel C in Figure 1, the discrepancy between attention and observ-
able variables emerges because of the imperfect information at the attention choice. More
specifically, when the information at the attention choice is perfect, the attention behavior
is perfectly predictable from a consumer’s prior error st−E[st|It−1]. The attention behav-
ior is, thereby, purely state-dependent. Alternatively, when there is no information at the
attention choice, the attention behavior is not correlated with prior errors. The attention
behavior is, thereby, purely stochastic. As a result, in general when the information at
the attention choice is imperfect, the attention behavior is stochastic state-dependent. In
the presence of an inattention region, the stochastic state-dependence takes the form of
smooth U-shape conditional hazard rates with a strictly positive minimum at 0.

Such U-shape pattern with a positive probability at 0 is characteristic of the attention
behaviors observed in Khaw et al. (2017, fig. 8) and Henckel et al. (2021, fig. 2).
Khaw et al. (2017) explain at length how this U-shape pattern compares, and is hard to
reconcile, with optimizing models of (price) adjustments found in the economic literature.

3.3. Expectation revisions

The aforementioned randomized controlled trials and laboratory experiments also re-
port that individuals do not reach perfect information upon adjusting. Similarly, our
model predicts that consumers catch up with the imperfect information at the attention
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choice when adjusting. Consequently, expectation revisions equal the expectation wedges
et and, thereby, they almost surely never close the gap with the full information rational
expectations.

Nevertheless, the prediction that expectation revisions equal the expectation wedges
is, arguably, disputable. Indeed, since the expectation wedge et governs the attention
dynamics at the inattention region, a sharp prediction of the model is that we should not
observe revisions of a magnitude smaller than the threshold π and that they cannot be
too far from ±π either. Figure 2 (Panel A) illustrates this prediction.

Figure 2: Distributions of expectation revisions

Note: Illustration of the distributions of revisions predicted with an inattention region. The calibrated average inattention
length and consumption problem parameters are the same across panels. Values are normalized by the standard deviation
of the innovation to permanent income. Panel A – distribution predicted by the model from Section 2 when the information
of the consumer coincides with the information at the attention choice when attentive. Panel B – distribution predicted by
an extension of the model from Section 2 where the consumer accesses more information (here perfect information) than
the one at the attention choice when attentive. Panel C – Same extension than Panel B but with a higher discrepancy
between the precision of the information at the attention choice and the one observed when attentive.

The equality of expectation revisions and expectation wedges ensues from the as-
sumption that, when attentive, the consumer can observe neither more nor less than the
information at the attention choice. Arguably, this is a special case and it seems as rea-
sonable to suppose, instead, that when attentive the consumer may devote more time and
effort to process more information. That is, the consumer could access information that
is not in It when attentive, thus generating a discrepancy between expectation revisions
and expectation wedges.

To illustrate the potential effects of such discrepancy on the distribution of expectation
revisions, Online Appendix H considers an extension of the consumption problem where
the consumer perfectly observes her permanent income st when attentive.18 Extending

18Considering perfect information when attentive is convenient as it implies that a measure of the
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the model in this direction has two effects on the distribution of revisions. First, the
consumer also observes the expectation error at the attention choice when attentive.
Therefore, the distribution of revisions is now a convolution of a Gaussian (for the errors)
and the stationary distribution of expectation wedges. Second, the inattention region is
not constant anymore but varies with the inattention length. This dependence generates
a form of time-dependence leading to smoother stationary distributions of expectation
wedges (as can be seen from the plain lines in Figure 2). Ultimately, and as is reported
in Panels B and C, this extension can generate smooth bimodal and unimodal stationary
distributions of revisions.19

In conclusion, the inattention region can be reconciled with a wide range of empirical
distributions of expectation revisions, as long as the consumer’s information when atten-
tive is not restricted to coincide with the information at the attention choice. However,
relaxing this assumption also implies that the inattention region varies with the con-
sumer’s attention history. While this may be more realistic to capture some features of
expectation revisions, it also greatly complicates the analyze of consumption dynamics as
it requires to track another dimension of heterogeneity. Because this increased complexity
comes with little qualitative gains for the analyze of consumption dynamics, we continue
to rely on the model from Section 2 in the rest of the paper.20

4. Asymmetry and size effects in household consumption

In this section, we derive new predictions on asymmetries and size effects in household
consumption responses arising as a consequence of the inattention region. Using household
survey data from the Bank of England, we find suggestive evidence for these predictions.

discrepancy between the information at the attention and consumption choices (when attentive) is given
by the amount of information rigidities at the attention choice (i.e., the precision of the signal zt). As
we have already mentioned, evidence however shows that consumers do not reach perfect information
when adjusting. Fortunately, none of the results from this extension hinge on the assumption of perfect
information when attentive. Similar results continue to hold when the information remains imperfect (in
the form of Gaussian signals) when the consumer is attentive. Indeed, and as is shown in Online Appendix
H, the model predicts that the inattention region varies with the consumer’s posterior variance at the
attention choice. The assumption of perfect information implies that this posterior variance collapses
to zero when the consumer is attentive, so that the inattention length is a sufficient statistic for the
attention policy. The dependence of the attention policy on the inattention length, instead of on the
posterior variance, is the only feature specific to perfect information.

19Unimodal distributions are generally reported in the empirical literature focusing on economic agent
expectations. Nevertheless, bimodal distributions are sometimes a characteristics of firm price setting
(Costain and Nakov, 2011) and could thus also be of interest in the economic literature.

20Consistent with our focus on the extensive margin of expectation adjustments, Caballero and Engel
(2007) emphasize the role of the extensive margin of price adjustments to monetary shocks.
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4.1. Model predictions

The consumption response depends on whether a consumer becomes attentive after an
income shock. Therefore, we distinguish the conditional and unconditional consumption
responses. The conditional propensity to consume (PC) is the ratio of the expected change
in consumption to the perceived shock ωt for consumers who adjust their consumption.21

The unconditional PC consists in the same ratio computed for all consumers. In both
cases, expectations are taken over the cross sectional distribution of consumers.22

These measures capture different aspects of consumption responses. As is formally
demonstrated in Appendix D.2, the conditional response captures the fact that consumers
who are close to the inattention threshold, and become attentive after the shock, have a
disproportionate response to this shock because they also adjust for the expectation wedge
et. On the other hand, the unconditional response essentially measures the contribution
of the extensive margin of adjustments (Caballero and Engel, 2007). That is, it captures
the additional consumption increase resulting from the rise in the fraction of consumers
adjusting upwards after a positive income shock, and the fall in the fraction of consumers
adjusting downwards.

Interestingly, the conditional and unconditional responses are affected differently by
the size of shocks. At the stationary cross section of consumers, the conditional PC
decreases with the size of a shock. This is because a larger shock prompts consumers who
are further away from the inattention threshold to adjust their consumption. As a result,
the expected over-reaction to the shock decreases, and so does the conditional response.
On the other hand, the unconditional PC increases with the size of a shock. This is
because a larger positive (resp. negative) shock increases (resp. decreases) the proportion
of consumers who revise their consumption upwards and decreases (resp. increases) the
proportion of consumers who revise downwards.

The symmetry of the conditional and unconditional consumption responses follows
from the symmetry of the stationary cross sectional distribution of consumers. However,
in the presence of aggregate income shocks, the cross sectional distribution of consumers
is generally asymmetric. Hence, Appendix D.2 analyzes how the conditional and uncon-

21We consider the response to a perceived shock ωt because it is the concept relevant for the empirical
analysis below.

22We formally introduce the cross sectional distribution of consumers in the next section. It corresponds
to the distribution of expectation wedges at period t denoted at(e). The stationary distribution is
symmetric and we have Ea[e] = 0. We say that the distribution is shifted to the left (resp. right) when
Eat [e] < 0 (resp. Eat [e] > 0). Left (resp. right) shifts arise as a consequence of recent negative (resp.
positive) aggregate income shocks.
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ditional PC are affected by the size and sign of a perceived income shock when the cross
section of consumers deviates from its stationary distribution. It shows that the size ef-
fects are generally asymmetric and not monotonic. Nevertheless, using simulated data,
Appendix D.2 derives a set of testable predictions for linear regressions on shock sizes that
we summarize in the following. For clarity, we only report the predictions for left shifts
(due to negative aggregate shocks) in the distribution of consumers. The predictions for
right shifts follow by symmetry.

When the cross sectional distribution of consumers is to the left:

P1 The probability to adjust consumption increases with the size of negative perceived
shocks, while the sign of the slope for positive shocks is unclear.

P2 The unconditional PC is increasing for negative shocks, while the sign of the slope
for positive shocks is unclear.

P3 The conditional PC is decreasing for negative shocks. The sign of the slope for
positive shocks is unclear, though it appears to be negative when shifts are not too
drastic.

P4 The intercept of the conditional propensity to consume is larger for negative shocks.

4.2. Evidence from household surveys

Data – We confront predictions P1-P4 to data. To this end, we rely on the 2012-2014
surveys of consumers from the Bank of England (BoE). For the purpose of the present
paper, a key advantage of the BoE survey is that respondents are asked to report their
perceived income surprise over the last 12 months and by how much they adjusted their
spending in response to this surprise. As a result, because some households experienced
positive surprises while other experienced negative ones, it allows us to analyze size ef-
fects for both positive and negative shocks. However, we observe only one shock and
consumption response per respondent. Appendix E.1 provides further information about
the survey characteristics and the main variables that we use. Of particular interest, these
variables include measures for households’ liquid assets net of unsecured debt, cash-on-
hand and whether the income surprise was likely to persist.

The average unconditional MPC is 0.41, a value within the 0.2-0.6 range for standard
estimates of annual propensities to consume (Carroll et al., 2017). About 50% of the
individuals who reported an income surprise did not adjust their consumption, while the
average conditional MPC of those who adjusted was 0.82. These averages hide significant
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variations across time. In 2012, when GDP growth was negative for two quarters in the
UK, the unconditional MPC was about 10 percentage points larger than in 2013-2014.
As can been seen from Figure E.6, this increase is attributable to a similar increase in the
share of consumers who adjusted their consumption. Consistent with a large strand of
the literature, the unconditional MPC negatively correlates with liquid asset holdings and
cash-on-hand, and is smaller for consumers who are the less likely to be credit constrained.
Decomposing the evolution of the unconditional MPC along these dimensions (Figure E.6)
again reveals that these patterns of the unconditional MPC are essentially driven by the
extensive margin of consumption responses, while variations at the intensive margin are
much less pronounced.23

Asymmetry and size effects – Figure E.7 plots MPCs across quartile of income sur-
prises. There is a significant asymmetry in responses to positive and negative income
surprises. The unconditional MPC increases from 0.14 for positive surprises to 0.63 for
negative surprises. This increase is essentially due to a small share of consumers who
adjust following a positive surprise (25%) as opposed to the large share of adjustments
following a negative surprise (77%). This asymmetry is present in each wave of the survey,
persists when controlling for observable household characteristics and is not specific to
respondents who are likely liquidity or credit constrained (not reported). It could indicate
that the cross section of consumers was shifted to the left, which seems coherent with the
economic downturn of the UK economy between 2012 to 2014.

Accordingly, prediction P1 implies that the probability to adjust consumption should
increase with the size of negative surprises. Panel A in Table 1 tests this prediction in
data. The dependent variable is a binary indicator for wether an individual responded
to the income surprise. The independent variables include a set of household and time
controls, and linear slopes for the size of negative and positive surprises (in £1,000).
Estimating this regression, we find a positive and statistically significant size effect for
negative surprises. The size effect for positive surprises is statistically insignificant. These
findings are consistent with P1.

Panel B estimates size effects for the unconditional MPC (‘All’). The size effect is
positive for negative income surprises, and negative for positive surprises. These findings
are consistent with prediction P2. Looking at the conditional response (‘6= 0’), we in-

23The linear consumption function in Lemma 1 can be thought as a first order local approximation of a
concave consumption function, with Lt decreasing with liquid assets holding or cash-on-hand. Hence, up
to this approximation, the model predicts a wider attention region for individuals with higher financial
wealth.
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Table 1: Asymmetry and size effects in the BoE survey of consumers

Panel A - Probability to adjust consumption (Logit)
Full sample Liquid assets (top 50%)

Shock size
Positive -0.060∗∗∗ (0.015) -0.000 (0.018) -0.037 (0.037)
Negative 0.211∗∗∗ (0.021) 0.160∗∗∗ (0.034) 0.173∗∗∗ (0.056)

Constant -0.248∗∗∗ (0.061) -1.232∗∗∗ (0.270) -0.737 (0.479)
Controls No Yes Yes
Obs. – pseudo R2 2,101 0.079 1,706 0.169 584 0.184

Panel B - Linear shape of the MPC (OLS)
Full sample Liquid assets (top 50%)

MPC All 6= 0 All 6= 0 All 6= 0
Shock size

Positive -0.024∗∗∗ -0.016∗∗∗ -0.011∗∗∗ -0.016∗∗∗ -0.012∗∗∗ -0.010
(0.002) (0.003) (0.002) (0.003) (0.004) (0.008)

Negative 0.022∗∗∗ -0.013∗∗∗ 0.014∗∗∗ -0.012∗∗∗ 0.020∗∗∗ -0.008∗∗
(0.003) (0.002) (0.003) (0.003) (0.005) (0.004)

Intercepts
Negative 0.152∗∗∗ 0.114∗∗∗ 0.122∗

(0.030) (0.036) (0.069)
Constant 0.409∗∗∗ 0.758∗∗∗ 0.191∗∗∗ 0.752∗∗∗ 0.241∗∗∗ 0.710∗∗∗

(0.013) (0.027) (0.049) (0.055) (0.087) (0.106)
Controls No No Yes Yes Yes Yes
Obs. 2,101 1,049 1,706 844 584 256
R2 0.085 0.118 0.213 0.154 0.215 0.141

Panel A: Logistic regressions. The dependent variable is a dummy variable for whether an individual MPC is not
zero. Panel B: OLS regressions. The dependent variable is the propensity to consume out of an income shock.
‘MPC 6= 0’ refers to the subsample of non-zero MPC (conditional MPC), while ‘All’ is the unconditional MPC.
Both panels report robust standard errors in parenthesis. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1%
levels respectively. Regressions are run separately on all observations (Full sample) and the subsample of individuals
with net liquid asset holdings above the median. Control variables are categories for age, employment status, debt
concerns, fear about future income drops, whether the household is credit constrained, the type of income shock
(temporary or likely to persist), gross and discretionary income quartiles, and survey wave fixed effects. The base
is an individual, aged 35-45, who responded in 2012, who is working, has no concern about her debt, does not
fear an income drop, has experienced an unexpected income increase, is not credit constrained, has experienced a
temporary income shock, has an annual gross income between £25,000 and £49,999 and a monthly discretionary
income between £600 and £1,199.
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stead find that size effects are negative and statistically significant for both positive and
negative surprises, as predicted by P3. Prediction P4 further states that the conditional
response should be larger at 0−. The intercept for negative shocks in Panel B estimates
the difference in the conditional response at 0− and 0+. The estimate is positive and
statistically significant for the conditional response, consistent with prediction P4.24

Robustness – The baseline results are consistent with predictions P1-P4. To check
the sensitivity of these results, we perform various robustness checks. The persistence
of the income surprise experienced by households could likely correlate with its size. In
the survey, respondents are asked to report whether they believe the income surprise
to be temporary or likely to persist. Table E.4 in the Appendix reports the estimation
results from the subsample of temporary income surprises. The results remain consistent
with predictions P1-P4, though not statistically significant anymore for the conditional
response for which we have fewer observations.

Credit and liquidity constraints, and precautionary savings could cause asymmetries
and size effects. Therefore, we estimate the baseline regressions when excluding net liquid
asset holdings below the median (Table 1), individuals who fear being credit constraint,
or cash-on-hand below the median (Table E.4). These exclusions have little impact on
predictions P1-P4, indicating that the size effects and asymmetry found in our data are
not attributable to credit and liquidity constraints, nor precautionary savings.

While predictions P1-P4 refer to linear slopes, size effects are generally nonlinear.
To asses the shape of these nonlinear effects in the data, we introduce cubic polynomials
with respect to size in the baseline regressions. Figure E.8 reports the estimated nonlinear
size effects. They echo those reported in Figure D.5 which are obtained from simulating
consumption responses in the presence of an inattention region.

Alternative theories – Our analyze reveals two features of consumption responses that
cannot be explained simultaneously by alternative consumption theories. First, consump-
tion responses are driven by a state-dependent extensive margin and an over-reaction
at the intensive margin. Second, the size effect associated to positive income shocks is
decreasing in our data. The extensive margin of nondurable consumption responses is
absent from most consumption theories in the literature. Among theories predicting an
extensive margin of consumption adjustments, time-dependent and Calvo-like expecta-
tion adjustments (Reis, 2006; Carroll et al., 2020) cannot explain the dependence of the
probability to adjust consumption on shock size. Salience (Kueng, 2018) can, to some

24As predicted by theory, we restrict the unconditional MPC to be continuous at zero.
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extend, capture the state-dependence of expectation adjustments, but it is inconsistent
with the asymmetric size effects in the probability to adjust consumption and the observed
over-reaction at the intensive margin of consumption responses. Models with consump-
tion adjustment costs (Fuster et al., 2021) are consistent with the state-dependence at
the extensive margin and over-reaction at the intensive margin. They are, however, in-
consistent with the non increasing size effect associated to positive income shocks for the
unconditional MPC and probability to adjust.25

Reconciling evidence on size effects from positive shocks – Size effects from positive
income shocks are ambiguous in the literature. Using survey questions about spending
in hypothetical scenarios, Christelis et al. (2019) report quasi-experimental evidence on
size effect from positive shocks. Consistent with our results, they find a decreasing size
effect for the unconditional PC. Using a similar methodology than Christelis et al. (2019),
Fuster et al. (2021) reach the opposite conclusion that they are increasing. A distinctive
feature of our model is that size effects for the unconditional response are likely to reverse
with aggregate fluctuations. In particular, predictions P1-P4 are also consistent with the
results reported in Fuster et al. (2021).26

5. Aggregate consumption dynamics

This section shows that the asymmetry and size effects evidenced at the household
level also alter the dynamics of the aggregate consumption response.

25The size effect associated to positive shocks is positive in these models. Fuster et al. (2021) show this
result for the stationary distribution of consumers. Deviations from the stationary distribution are small,
even in the presence of aggregate shocks, and unlikely to reverse the size effect associated to positive
income shocks in these models where adjustments are essentially driven by idiosyncratic shocks; Unless
the ratio of the variances of aggregate to idiosyncratic income shocks is large (Chetty and Szeidl, 2016).
It is, however, well-established that this is not the case and that most of the income uncertainty faced by
individuals comes from idiosyncratic shocks. As we shall see more precisely in the next section, significant
deviations from the stationary distribution of expectation wedges can arise in our model when consumers
use different channels to gather information about idiosyncratic and aggregate shocks.

26In Table 3 (p. 1770), they report that 74% of consumers do not respond to a $500 income gain, while
this share was lower (42%) for a loss of the same size – an asymmetry that they cannot fully explain
with a borrowing constraint. It suggests that the distribution of consumers was to the left. Looking at
the unconditional response, they find a larger PC from a $500 loss than an equivalent gain. Looking at
the conditional response, they again report a higher PC for looses at $500. These higher conditional and
unconditional PC from income losses are also consistent with the distribution being to the left. They
find a positive size effect from positive shock in the probability to adjust and the unconditional response
(P1 and P2) and a negative size effect in the conditional response (P3). Their experiment does not allow
to estimate size effects from negative shocks.
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5.1. Calibration

Idiosyncratic and aggregate shocks – There is a unit mass continuum of infinitely-
lived consumers, indexed by i, who are ex ante identical and whose problem is given
by (3). For simplicity, the discount rate is equal to β = (1 + r)−1. Innovations to
permanent income can be written as the sum of two i.i.d. Gaussian innovations, one for
aggregate factors and the other for idiosyncratic ones. Arguably, consumers use separate
information channels to be informed about aggregate and idiosyncratic innovations. We
therefore allow consumers to be separately attentive to each type of shocks in return of
the same attention cost λ. The quadratic structure of problem (3) and the independence
of innovations imply that the two attention choices are separable. Similar approaches are
taken, for instance, in Maćkowiak and Wiederholt (2009, 2015) and Carroll et al. (2020).
Consequently, idiosyncratic income surprises cancel out for aggregate dynamics. Let ζ̄t
denote an aggregate innovation to permanent income common to all consumers. The
upper bar notation emphasizes that we refer to an aggregate shock henceforth.

Income process and attention – In order to provide quantitative illustrations, we follow
Wang (2003) and Luo et al. (2017) and assume that the income process follows an AR(1)
with persistence 0 < ρ < 1 and standard deviation of the innovation σε. The income
calibration is taken from Pischke (1995, Table VII). The time period is a quarter, the
observational unit a household and values are expressed in 1982 dollars. Average income
is ȳ = $6, 926 and ρ = 1 − 0.438, σε = $2, 470 and r = 0.015. We follow the literature
and take as a rule-of-thumb that the variance of idiosyncratic innovations is 100 times the
variance of the aggregate innovations (Carroll et al., 2020).

Estimates at the macro-level indicate that consumers update their expectation about
macroeconomic variables about once a year on average (Carroll, 2003; Mankiw et al.,
2003; Reis, 2006). The attention cost λ is set accordingly. The remaining parameter σϑ
stands for the signal informativeness. This parameter determines the Kalman filter gain
from Lemma 2 and, thus, the rate at which income shocks are incorporated. We set the
Kalman gain to 0.45, thus implying that 32% of the consumption response to a marginal
income shock arises on impact at the ergodic distribution. This value is slightly below
the unconditional response estimated in Reis (2006) for the US.27

Absence of salient consumption jumps – A recurrent objection to non-convex con-
sumption models is that household nondurable consumption does not appear to remain

27Online appendix I provides a sensitivity analysis for the model parameters. It also reports the welfare
cost of information frictions. Consistent with recurrent findings in the literature, this cost is small.
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constant for a long period of time and that we do not observe large sporadic jumps (Reis,
2006; Carroll et al., 2020). We briefly mention why these critics hardly apply to the type
of adjustments predicted by the inattention region. First, the type of adjustments pre-
dicted by the inattention region do not refer to changes in household consumption levels,
but to consumption plans. Consequently, the prediction that consumption should remain
constant while the consumer remains inattentive is not a consequence of the inattention
region per se, but a consequence of the simplifying assumption that there is no trend in
consumption (i.e. β−1 = 1 + r).

Second, the jumps in consumption predicted by the model are small and would be
hardly observable in consumption data. With our calibration, the predicted jump in
consumption at the attention threshold is ± $11.6 (0.17% of quarterly consumption).28

Last, our calibration implies that only 14% of households would wait more than a
quarter to incorporate new information about their idiosyncratic shocks. This prediction
of close to full attention to idiosyncratic shocks relates to the order of magnitude of the
ratio of idiosyncratic to aggregate variances, which is a robust finding in the literature.
For instance, this probability remains stable (19%) when halving this ratio. Consequently,
frequent unpredictable adjustments are also expected to be a salient feature of household
quarterly data in the presence of an inattention region.

5.2. Cross sectional distribution of consumers

While ex ante identical, households differ ex post in terms of their expectation wedges
ei,t. Therefore, analyzing the aggregate dynamics of consumption requires to track the
cross sectional distribution of ei,t. To this end, let at(e) denote the cross sectional distri-
bution at period t before consumers become attentive. The share of attentive consumers
in the economy at period t is therefore Πt ≡

∫
e/∈Ξ at(e)de. Appendix C.1 characterizes the

ergodic distribution of consumers and demonstrates that it is symmetric.
Recall that consumers rely on a Kalman filter to slowly incorporate information about

the aggregate shock at the attention choice. Consequently, an aggregate shock does not
only disturb the cross sectional distribution when it occurs, but does so persistently at
a rate that depends on the Kalman gain. More specifically, the translation in the cross
sectional distribution at period t is given by a weighted sum of past aggregate income

28See Online Appendix I.2 for the computation of these values. As a comparison, Caballero (1995)
estimates that in order to capture the stickiness of US aggregate consumption data – that our model
matches as we shall see in the next section – the implied jump in a model with consumption adjustment
costs are about 6 percent, more than 30 times the jumps that we have here.
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shocks

St =
t−1∑
s=0

υsζ̄t−s (14)

where υs ≡ K(1 + r)s(1 − K)s is the share of the aggregate shock – augmented by its
returns – that is internalized on average at period t+s at the attention choice. Accounting
for this new state variable, Appendix C characterizes the dynamics of the cross sectional
distribution of expectation wedges that we report in the following Proposition

Proposition 2. The dynamics of the cross sectional distribution in the presence of ag-
gregate shocks is characterized by the following system of dynamic equations

at+1(e) ∝
∫
ẽ∈Ξ

φ

(
e− St+1 − (1 + r)ẽ√

σ2
ω − σ2

S

)
at(ẽ)dẽ

︸ ︷︷ ︸
Inattentive at t

+φ

(
e− St+1√
σ2
ω − σ2

S

)
︸ ︷︷ ︸

resetting at 0

∫
ẽ /∈Ξ

at(ẽ)dẽ
︸ ︷︷ ︸
share attentive︸ ︷︷ ︸

Attentive at t

(15)

St+1 = (1−K)(1 + r)St +Kζ̄t+1 (16)

along with initial conditions a0(e) and S0. φ(.) is the pdf of the standard normal distri-
bution.

The first term in (15) captures the dependence on past expectation wedges when
consumers remain inattentive, while the second term accounts for the fact that attentive
consumers adjust for this wedge. Moreover, Proposition 2 indicates that St follows an
AR(1) process. In general, the dynamics of St is stationary since r should be small in
comparison to K. Therefore, and importantly, this state variable is related to business
cycles in this economy: St is positive when recent aggregate shocks were positive, and
vice versa.

5.3. Aggregate response dynamics

Appendix C demonstrates how the dynamics of at+1(e) can be used to derive aggregate
consumption growth and impulse response functions. These impulse responses depend on
the full history of past aggregate shocks and the sign and size of the current aggregate
shock. To provide insights on this dependencce, we consider two initial scenarios: steady
state and recession.

In the first scenario, the economy is initially at its steady state. It corresponds to a
situation where aggregate shocks were nil for a long period of time. Panel A in Figure 3
reports the impulse response following aggregate shocks to permanent income of increasing
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Figure 3: Size and asymmetry in aggregate consumption dynamics

Note: Impulse response functions of aggregate consumption (left panels) and shares of attentive consumers (right panels)
for aggregate shocks to permanent income of different size at quarter 0. Values are expressed in 1982 dollars. The steady
state scenario (panel A) corresponds to a situation where aggregate shocks were initially nil for an infinite number of
periods. The recession scenario corresponds to a situation where the initial cross sectional distribution is the steady state
distribution centered around Srec such that P (S0 < Srec) = 0.025, that is a one in a ten year recessionary state.

size. The ∼ 0 shock illustrates the marginal response. As can be seen, the share of
attentive consumers at the steady state is low (20%) and the steady state consumption
response is sluggish with only 28.5 percent of the total response arising on impact.

As the size of the shock increases, it prompts more consumers to become attentive,
thus resulting in a sharper consumption response. These changes in the consumption
response dynamics are particularly salient for the $2, 000 shock. As can be seen from
Figure 3, this large shock prompts about 60% of consumers to be attentive on impact,
leading to an impact response of 37 percent. Interestingly, the share of attentive agents
remains significantly higher than its steady state value for about a year and a half. This
is due to the slow filtration of the imperfect information at the attention choice, driving
the dynamics of St. In comparison, recall that a version of the model without imperfect
information at the attention choice would induce a perfect state-dependence of the atten-
tion behavior. As a result, the cross sectional distribution from Proposition 2 would be
a Dirac distribution and an aggregate shock would either prompt all or no consumers to
become attentive when it occurs.

To put some perspective on the size of the shocks, the $2, 000 shock is similar to the
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average annual payments from the state of Alaska’s Permanent Fund analyzed in Hsieh
(2003) and Kueng (2018). The $500 shock is about the same (resp. twice) size than the
2008 (resp. 2001) Tax Rebates (Parker et al., 2006, 2013). As can be seen from Figure
3, these rebates would not have had much effect on the share of attentive consumers
and, thereby, would not have perturbed much consumption dynamics at the steady state.
However, our simulations suggest that these tax rebates may have had an adverse effect
on consumption dynamics because they were implemented during recessions.

Indeed, panel B in Figure 3 reports impulse response functions during a one-in-a-
ten-years recession. The counterfactual with a marginal shock illustrates the dynamics of
consumption during this recession. As is apparent from the marginal response, consumers
are more attentive on average at the trough and, thereby, more likely to adjust their
consumption to account for the state of the economy. However, looking at the ±$500
shocks, we observe that consumption dynamics are highly asymmetric during recessionary
episodes. Indeed, while a further destabilizing shock prompts more consumers to become
attentive and to adjust their consumption, a positive income shock has the opposite effect
and leads to a more sluggish response. The opposite is true during economic booms. This
asymmetry suggests that the state-dependence of consumers inattention may partially
mute the short run consumption response to economic policies leaning against the wind.

Interestingly, these asymmetric dynamics have been identified in data. For instance,
analyzing US aggregate consumption dynamics, Caballero (1995) reports that “in good
times, consumers respond more promptly to positive than to negative wealth shocks, while
the opposite is true in bad times.” (Caballero, 1995, p. 30) Similarly, Ocal and Osborn
(2000) report that consumption response dynamics in the UK also depends on the the
state of the economy and the sign and magnitude of a shock.

6. Consumption Persistence

Consumption dynamics is highly persistent in aggregate data, but not in household
data. The meta-analysis from Havranek et al. (2017) considers 424 estimates from studies
on aggregate data and identifies a median estimate of 0.66. In comparison, they report a
median of 0 from 183 estimates on household consumption. In line with Calvo-like model
of inattentive consumers (Carroll et al., 2020), the inattention region also implies that
consumption is not persistent at the household level (Proposition 3 in the Appendix) but
highly persistent at the aggregate level. However, a distinctive feature of the inatten-
tion region is that the share of inattentive consumers varies over time. In this section,
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we demonstrate that it generates time variations in aggregate consumption persistence
consistent with US consumption data.

6.1. Inattention and aggregate consumption persistence

To assess the relation between aggregate consumption persistence and inattention, we
simulate aggregate consumption dynamics.29 We then estimate the following equation

∆Ct+1 = αt+1 + γt+1∆Ct + βt+1ζ̄t+1 + errort+1 (17)

that relates the aggregate consumption change to its lag ∆Ct and aggregate income shocks
ζ̄t+1. The coefficient γt+1 measures the (potentially time-varying) persistence in aggregate
consumption.

We first estimate a time-invariant regression of Equation (17) as it corresponds to the
standard specification used in the literature to estimate the persistence of consumption.
The estimated time-invariant persistence is equal to 0.70, consistent with the median es-
timate reported in Havranek et al. (2017). In models with a constant share of inattentive
consumers Π and quadratic utility, we have γ ' Π (Carroll et al., 2020). In the present
paper, the share of inattentive consumers Πt is endogenous and varies over time. Conse-
quently, one may expect that consumption persistence continues to relate to the share of
inattentive consumers and, thereby, also varies over time. To assess this hypothesis, we
order the simulated data depending on Πt and estimate a mapping γt+1 = γ(Πt) using
rolling regression with a window of 4,000 observations.

Figure 4 reports the estimated relation between γt+1 and the share of inattentive con-
sumers Πt. The average persistence (0.77) is larger than the time-invariant estimate.
Moreover, consumption persistence increases linearly with the share of inattentive con-
sumers (on most of the domain). The amplitude of this variation is large and holds
important implications for consumption dynamics. For instance, the half-life is 1.5 quar-
ters when 50% of consumers are inattentive, while it increases to 3.2 quarters when they
are 75% to be inattentive.

Figure 4 displays a sharp decrease in the estimated γt+1 when the share of inatten-
tive consumers is larger than 80%. As is further discussed in Online Appendix J, this

29We start the simulation from the steady state cross section of consumers, simulate the model for
4,000 periods and drop the first 500 periods. We repeat these simulations 24 times. The results are thus
based on 84,000 simulated data points.
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Figure 4: Aggregate consumption persistence and inattention

Note: Rolling regression of Equation (17) based on 84,000 simulated data points and a window of 4,000 observations.
The black line reports the estimated persistence γt+1 = γ(Πt). The grey area is a cumulative histogram of the shares of
inattentive consumers. The grey plain line reports the sample average of estimated persistence and the grey tilted line the
time-invariant estimate obtained from an OLS estimation on the 84,000 observations.

decrease in the estimates is accompanied by a sharp decrease in the model R-squared.
This is because an autoregressive process of order 1 is unable to capture the hump-shape
consumption dynamics for these specific, and relatively rare, periods. Allowing for a fur-
ther lag in consumption growth provides a better fit for these periods and confirms that
consumption persistence increases monotonically with inattention.

6.2. Persistence in US consumption

To assess whether these variations in consumption persistence are a characteristic
of US consumption data, we adopt a standard approach to estimate (nondurables and
services) consumption growth (Sommer, 2007; Kiley, 2010; Carroll et al., 2011, 2020).
More specifically, we reformulate consumption growth to account for its persistence, as well
as potential rule-of-thumb consumers and capital market imperfections. As is discussed
in more details in, for instance, Carroll et al. (2020), these considerations lead to the
following benchmark specification

∆ logCt+1 = a+ γ∆ logCt + ηEt[∆ log Yt+1] + αAt + εt+1 (18)
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where Et[∆ log Yt+1] is the predictable component of income growth and At is a normalized
measure of asset holding.30 We follow the literature and interpret η as the share of rule-of-
thumb consumers (Campbell and Mankiw, 1989) and γ as consumption growth persistence
due to consumer inattention.31

It is well-known that because of time aggregation, measurement error and transitory
shocks, OLS estimates of Equation (18) are likely to be biased with quarterly data (Som-
mer, 2007). Therefore, we adopt an instrumental variable approach based on suitable
instruments dated at t − 1 and before. Unfortunately, lagged instruments are also more
likely to be weak predictors of the endogenous variables. To limit the risks induced by
weak instruments, we adopt two complementary approaches.

First, we report the results for two sets of instruments. The first set of instruments is
inspired from Carroll et al. (2011). It consists in two to four lags in ∆ logCt+1, ∆ log Yt+1,
At+1, the unemployment rate, the 3-month Treasury Bill rate, the volatility of personal
consumption expenditures (PCE) price deflator32 and consumer sentiment from the Michi-
gan survey. The second set of instruments is inspired from Kiley (2010) who focuses on
the weak instrument problem. It consists in two to four lags in ∆ logCt+1, ∆ log Yt+1,
At+1, the real interest rate from 3-month Treasury Bill rate, working hours annual growth
rate and annualized inflation from PCE. We also include the two periods ahead GDP
growth Greenbook forecasts made at t−1 which has been shown to be a good instrument
for predictable income growth (Bhatt et al., 2020). Second, we report weak instrument
robust confidence intervals for consumption persistence. These confidence intervals use
the two-step method in Andrews (2018) and a projection method. They are implemented
using the Stata command presented in Sun (2018) and are robust to HAC errors.

As can be seen from the top panel in Table 2, the results from the benchmark estima-
tion are very similar to previous findings across the literature. Consumption persistence
is statistically significant and large, about 0.76. When controlling for Et[∆ log Yt+1] and
At, the persistence drops to about 0.51, but remains significant. Importantly, the point
estimates are barely affected depending on the set of instruments that we consider. The

30We follow Carroll et al. (2011) and introduce asset holdings to control for their effects due to either
uncertainty and time-variation in interest rates.

31γ has generally been interpreted as the consequence of consumption habits in the literature. However,
to the extend that this persistence is absent or, at the very least, small in household consumption data,
habits are unlikely to generate the high persistence reported in aggregate data. Hence, we follow Carroll
et al. (2020) and interpret the serial correlation in consumption growth as a consequence of consumer
inattention. Moreover, given specification (18), the serial correlation in consumption growth γ is a
sufficient statistic for consumption growth persistence.

32See Carroll et al. (2011) for the computation of this volatility.

33



low Kleibergen-Paap F-statistics, however, raise reasonable concerns about the possibility
of weak instruments bias in the ‘horse race’ regression that pits predictable income growth
against lagged consumption growth. Hence, we report the estimation results from the full
specification solely for robustness.

In the benchmark specification, consumption persistence is assumed to be constant
over-time. However, as we have seen, the persistence is not constant anymore in the
presence of an inattention region. More specifically, we have seen that the model predicts
a decreasing mapping between aggregate consumption persistence and the share of inat-
tentive consumers. Consequently, one may want to test whether consumption persistence
is indeed lower when the share of inattentive consumers is low.

However, we do not observe these shares directly in the data. Nevertheless, the model
simulations indicate that the relation between |∆Ct| and Πt is well-approximated by a
monotonically decreasing one-to-one mapping. Hence, we proxy periods with a relatively
high share of attentive consumers from the top 10% of the distribution of |∆ logCt −
∆ logCt| where ∆ logCt is the average consumption growth over the sample size.33 The
middle panel in Table 2 reports the estimates when adding an interaction between this
proxy and consumption persistence in Equation (18). As predicted by the model, we
observe that consumption persistence drops significantly during periods when consumers
were likely more attentive. This conclusion is confirmed by the weak instrument robust
confidence interval for the first set of instruments, and also emerges after controlling for
Et[∆ log Yt+1] and At.

A drawback of this proxy is that it may be affected by measurement errors in quarterly
aggregate consumption. Hence, we consider recessionary periods as an alternative proxy
for periods when consumers are more likely to be attentive.34 The bottom panel in Table
2 reports the estimates obtained with this alternative proxy. It shows that consumption
persistence drops significantly during these periods.35 This conclusion is confirmed by the
weak instrument robust confidence interval for both sets of instruments, and also emerges
when controlling for Et[∆ log Yt+1] and At though the difference is statistically significant

33We use the deviation of consumption growth from its average because this is the prediction that we
obtain from the model when β 6= (1 + r)−1. The 10% threshold is arguably arbitrary. Fortunately, the
conclusions are not sensible to this value. For instance, we reach similar conclusions when setting the
threshold to 50%, though the difference between the two samples becomes, unsurprisingly, statistically
insignificant.

34The relation between Πt and recessionary periods has already been discussed in the previous section.
Moreover, Dräger and Lamla (2012) end Coibion and Gorodnichenko (2015) have reported that informa-
tion rigidities drop persistently in the aftermath of a recession using surveys of professional forecasters.

35Kumar and Jia (2019) report similar results using rolling regression.
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Table 2: Persistence in US consumption

OLS IV 1 IV 2

coeff. (s.e.) coeff. (s.e.) 1-st. Shea coeff. (s.e.) 1-st Shea
[weak instr. 95% CI] partial R2 [weak instr. 95% CI] partial R2

Benchmark – ∆ log Ct+1 = a+ γ∆ log Ct + η∆ log Yt+1 + αAt + εt+1
∆ logCt only

γ 0.426∗∗∗ (0.064) 0.756∗∗∗ (0.072) 0.372 0.771∗∗∗ (0.063) 0.439
[ 0.656, 0.957] [ 0.702, 0.993]

KP F-stat, R2 – 0.182 9.89 0.071 11.11 0.155
∆ logCt and controls

γ 0.306∗∗∗ (0.062) 0.524∗∗∗ (0.104) 0.273 0.505∗∗∗ (0.113) 0.322
η 0.205∗∗∗ (0.041) 0.279∗∗∗ (0.095) 0.114 0.318∗∗∗ (0.100) 0.120
α -7.55e-04∗∗ (3.22e-04) -5.06e-04∗∗ (2.40e-04) 0.949 -4.99e-04∗ (2.76e-04) 0.955
KP F-stat, R2 – 0.325 1.55 0.237 1.21 0.207

Top 10% – ∆ log Ct+1 = a+ (γ + δ110%)∆ log Ct + η∆ log Yt+1 + αAt + εt+1
∆ logCt only

γ 0.495∗∗∗ (0.092) 0.800∗∗∗ (0.084) 0.390 0.783∗∗∗ (0.055) 0.434
[ 0.693, 1.247] [ 0.773, 1.398]

δ -0.135 (0.108) -0.312∗∗∗ (0.085) 0.495 -0.361∗∗∗ (0.049) 0.632
[-0.839,-0.019] [-1.025, 0.232]

KP F-stat, R2 – 0.185 17.70 0.127 22.78 0.208
∆ logCt and controls

γ 0.359∗∗∗ (0.085) 0.556∗∗∗ (0.099) 0.342 0.598∗∗∗ (0.062) 0.403
δ -0.104 (0.091) -0.262∗∗∗ (0.097) 0.492 -0.305∗∗∗ (0.061) 0.626
η 0.203∗∗∗ (0.041) 0.268∗∗∗ (0.046) 0.174 0.233∗∗∗ (0.032) 0.224
α -7.49e-04∗∗ (3.13e-04) -5.20e-04∗∗ (2.09e-04) 0.956 -4.88e-04∗∗ (2.37e-04) 0.959
KP F-stat, R2 – 0.326 5.18 0.278 31.36 0.304

Recession – ∆ log Ct+1 = a+ (γ + δ1rec)∆ log Ct + η∆ log Yt+1 + αAt + εt+1
∆ logCt only

γ 0.483∗∗∗ (0.069) 0.843∗∗∗ (0.062) 0.449 0.815∗∗∗ (0.047) 0.512
[ 0.822, 1.257] [0.713, 1.151]

δ -0.314∗ (0.177) -0.646∗∗∗ (0.175) 0.335 -0.793∗∗∗ (0.179) 0.425
[-2.231,-0.242] [-2.368,-0.532]

KP F-stat, R2 – 0.191 6.10 0.084 9.31 0.140
∆ logCt and controls

γ 0.343∗∗∗ (0.062) 0.519∗∗∗ (0.081) 0.306 0.577∗∗∗ (0.074) 0.385
δ -0.193 (0.168) -0.239 (0.184) 0.317 -0.335∗ (0.171) 0.354
η 0.201∗∗∗ (0.040) 0.303∗∗∗ (0.059) 0.176 0.226∗∗∗ (0.042) 0.208
α -7.35e-04∗∗ (3.22e-04) -5.55e-04∗∗ (2.20e-04) 0.950 -4.37e-04∗∗ (2.21e-04) 0.966
KP F-stat, R2 – 0.327 2.01 0.238 2.53 0.287

The 110% indicator variable equals one for the top ten percent of |∆ logCt−∆ logCt| where ∆ logCt is the average
consumption growth over 1952q4:2019q1. The 1rec indicator variable equals one for recessionary periods (NBER).
The sample runs from 1954q4 to 2019q1 for OLS and IV 1 and from 1967q2 to 2015q4 for IV 2. The IV estimates
are estimated using the generalized method of moments. The first set of instrument (IV 1) includes two to four
lags in consumption growth, income growth, unemployment, 3-month Treasury Bill rate, personal consumption
expenditures price deflator volatility, consumer sentiment (Michigan survey) and net worth as a percentage of
disposable personal income (households and non-profit). The second set of instrument (IV 2) includes two to four
lags in consumption growth, income growth, real interest rate from 3-month Treasury Bill rate, working hours annual
growth rate (in nonfarm business sector), annualized inflation from PCE, net worth as a percentage of disposable
personal income (households and non-profit), and two periods ahead GDP growth Greenbook forecasts made at
t − 1. The instruments are interacted whit the indicator variable in the first stage estimation. Ct is measured as
consumption of non durables and services, Yt as personal disposable income per capita and At as the ratio of net
worth to disposable personal income (households and non-profit). Standard errors in parenthesis are robust (HAC
up to 4 lags) and corrected for small sample size. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels
respectively. The 95% confidence interval are robust to weak instruments. They are obtained using the two-step
method from Andrews (2018) with a 5% threshold and implemented using the Stata command by Sun (2018).
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at the 10% level only for the second set of instruments.
Overall, this analysis provides suggestive evidence that US consumption persistence is

not constant over time and negatively correlates with proxies for the share of inattentive
consumers, as predicted by the inattention region.36

7. Conclusions

Much of the macroeconomic literature is trying to make sense of the large hetero-
geneity in consumption responses to income windfalls, which governs the effectiveness
of monetary and fiscal policies. Some of this heterogeneity correlates with observable
characteristics such as holdings of liquid wealth or age. However, for the most part, this
heterogeneity remains unexplained and largely absent in macroeconomic models. Moti-
vated by recent evidence, the present paper studies a factor that can account for some
of this unexplained heterogeneity: the stochasticity and state-dependence of consumer
expectation adjustments.

To this end, we develop a model in which a consumer faces a fixed cost for paying
attention to noisy signals and her attention choice can be a function of signal realiza-
tions. At the optimum, she faces an inattention region, and expectation adjustments are
stochastic and state-dependent. Unlike in models with consumption adjustment costs,
the emergence of an extensive margin of expectation adjustments does not translate into
jerky household consumption dynamics at quarterly frequencies. Then, we illustrate how
this model can provide novel qualitative insights about the unexplained heterogeneity in
consumption responses to income windfalls by revisiting three pillar topics in the con-
sumption literature: cross-sectional marginal propensities to consume (MPC), impulse
response functions to fiscal stimuli and aggregate consumption excess smoothness.

We find that the theory provides an explanation to the state-dependence of the exten-
sive margin of consumption responses, the over-reaction at the intensive margin, and the
size effects and asymmetries in households MPC that are not attributable to borrowing,
liquidity and cash-on-hand constraints. At the aggregate level, impulse response functions
to fiscal stimuli are more sluggish when stimuli are small or implemented at the trough of
a recession, and the excess smoothness of aggregate consumption varies significantly over
the business cycle with consumer inattention.

36Furthermore, the results are robust to the exclusion of the bottom 20% of observations with the
smallest |∆ logCt −∆ logCt|, for which we would expect the shares of inattentive consumers to be the
largest.
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In future work, enriching the model with cross sectional heterogeneity in the deter-
minants of the inattention region could improve the model quantitative predictions. In
particular, analyzing how liquidity constraints interact with the inattention region seems
a promising avenue. Indeed, we have found suggestive evidence that most of the negative
correlation between MPC and liquid wealth (or cash-on-hand) is driven by the extensive
margin of adjustments.
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Appendix A. Solution to the consumer’s problem in Section 2

This first section of the appendix provides proofs for Lemmas 1 to 4. These results,
and the following demonstrations, closely follow from a series of paper in engineering
by Molin and Hirche. The only deviation from the mathematical framework that they
consider consists in the introduction of discounting. It then concludes with the proof for
Proposition 1.

Appendix A.1. Proof of Lemma 1: Consumption certainty equivalence

This subsection demonstrates that the optimal consumption choice of the consumer
coincides with the certainty equivalent one. The demonstration relies on five steps. First,
it computes an alternative formula for the consumer’s value function at time 0. Second,
it shows that the attention choices depend on the shock realizations and are not directly
affected by consumption choices. This result arises because of the nestedness of the in-
formation structure. Third, it finds that the perception errors at the consumption choice
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are also independent of the consumption policy. Fourth, it shows that it is optimal to
set consumption to its certainty equivalent for any fixed attention strategy that depends
only on the shock realizations. Last, it concludes that the certainty equivalence holds
independently of the chosen attention policy.

We can use the quadratic structure of the objective function V0 to rewrite

it in a more convenient form. To this end, define pt from the following (backward)
dynamic Ricatti equation pt = (1 + r)2βpt+1/(1 + βpt+1) with terminal condition pT = qT

and Lt ≡ (1 + r)βpt+1/(1 + βpt+1). Then, we can use the following identity (used in, e.g.,
Åström (2012), Chapter 8 - Proof of Lemma 6.1)

βT qT s
2
T = p0s̄

2
0 +

T−1∑
t=0

(
βt+1pt+1s

2
t+1 − βtpts2

t

)
(A.1)

where we have used the terminal condition pT = qT . Moreover, using the flow budget
constraint we can write pt+1s

2
t+1 = ((1 + r)st − ut + ζt+1)2pt+1 where ut ≡ ct − c̄. Further

noticing from the definition of Lt that pt+1(1 + r)stut = 1+βpt+1
β

Ltstut and pt+1u
2
t =

1+βpt+1
β

u2
t − 1

β
u2
t , it holds

E[βt+1pt+1s
2
t+1|I0] = E

[
βt(ut − Ltst)2(1 + βpt+1) + βt+1pt+1ζ

2
t+1

+βt+1(1 + r)2pt+1s
2
t − βt(1 + βpt+1)L2

t s
2
t − βtu2

t

∣∣∣∣I0

]
(A.2)

because ζt+1 is independent with respect to ut and st and nil in expectation. Moreover,
βtpts

2
t = βt(1 + r)Lts2

t so that equation (A.1) writes in expectation

E[βT qT s2
T |I0] = E

[
p0s̄

2
0 +

T−1∑
t=0

βt(ut − Ltst)2(1 + βpt+1) + βt+1pt+1ζ
2
t+1 − βtu2

t

∣∣∣∣I0

]

Consequently, the objective function V0 ≡ E
[∑T−1

t=0 β
t
(
u2
t + λτt

)
+ βT qT s

2
T

∣∣∣∣I0

]
is

V0 = E
[
p0s̄

2
0 +

T−1∑
t=0

βtλτt + βt+1pt+1ζ
2
t+1 + βt(ut − Ltst)2(1 + βpt+1)

∣∣∣∣I0

]
(A.3)

Given this expression for the value function, we can now prove that a separation result
holds for the consumption and attention choices.

The attention policy can be equivalently expressed as a function of the
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random variable realizations, i.e., noises, permanent income innovations, and initial
conditions. To see that, consider an alternative formulation of problem (3) without con-
sumption choices. This alternative formulation allows to study the attention choice in the
absence of consumption choice. It is similar to the initial problem (3) excepted that it
imposes that consumption is constant over time and equal to c̄. In particular, all shock
realizations are the same in both problems. Let z̃t be the signal that would be received at
period t in the alternative problem. By definition, these signals are independent of con-
sumption choices (because generated from a system without consumption choices). Nev-
ertheless, simple algebra shows that these signals are related to the signals (zt) received in
the initial problem (3) with a consumption choice such that z̃t ≡ zt +∑t−1

k=0(1 + r)t−1−kuk

with, again, ut ≡ ct − c̄. Hence, for a given sequence of consumption choices {ck}t−1
k=0, z̃t

is a bijective mapping of zt for all t ∈ {0, 1, . . . , T − 1}. Since past consumption choices
are observable from It, the attention policy gt(It) may as well be expressed by another
mapping g′t that depends only on the sequence {z̃k}tk=0. Therefore, we have

τt = gt(It) = g′t({z̃k}tk=0) ∀t ∈ {0, 1, . . . , T − 1} (A.4)

Broadly speaking and using the two agents analogy discussed in Section 2 to describe
the information structure, this result states that the individual managing consumption
cannot distort nor manipulate the behavior of the agent tracking information because
the latter is always better informed (not strictly). Therefore, for a given history of past
consumption choices made by the former individual, the latter individual only conditions
the transmission of information on the realizations of the random variables (and initial
state, i.e., the primitives of the model).

For a given attention policy that is a function of the random variable re-

alizations, the perception error from It – i.e, at the consumption choice – is in-

dependent of the consumption policy. We demonstrate this result in the following.
Let the attention policy be a function of the primitives, i.e., let the g′t(.) be fixed. Then,
the attention choices τt = g′t(.) are random variables also independent of the consump-
tion policy ft(.). Furthermore, define εt ≡ st − E[st|It] the perception error from the
information set at the consumption choice. Then, consider again the model with fixed
consumption equal to c̄ at all t. The evolution of permanent income in this model follows
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from s̃t+1 = (1 + r)s̃t + ζt+1. Iterating backward, we can rewrite

st = (1 + r)ts0 +
t−1∑
k=0

(1 + r)t−1−kuk +
t−1∑
k=0

(1 + r)t−1−kζk+1 (A.5)

and

s̃t = (1 + r)ts0 +
t−1∑
k=0

(1 + r)t−1−kζk+1 (A.6)

In turn, because the consumption choices are observable from It, the above two equations
imply that εt = st − E[st|It] = s̃t − E[s̃t|It]. That is, given It, the estimation error is
independent of the consumption policy ft(.) for all t. We now have to show that E[s̃t|It]
is also independent of ft(.). First, recall that we have seen that when the g′t(.) are
fixed, the τt only depend on the primitives so that they are the same in the models with
and without consumption choices. Second, realize that there is no restriction on the
information acquired by the consumer when attentive (τt = 1) as long as the nestedness
property of the information structure holds. As a result, σ(It) = σ(It) whenever τt = 1.
This is equivalent to saying that when attentive, it is ‘as if’ the consumer was observing
all past signals. We have already seen that the signals z̃t are a bijective mapping of the
signals zt when the consumption choices (up to t− 1) are known. That is, if l ≤ t is the
last period when the consumer was attentive, it must be that

σ
({
{τk}t0, {ck}t−1

0 , {{z̃t}l0, {∅}tl
})

= σ(It) (A.7)

so that E[s̃t|It] = E[s̃t|
{
{τk}t0, {{z̃t}l0, {∅}tl

}
] because s̃t is independent of consumption.

Again realizing that for fixed g′t(.) the τt (and therefore l) are functions of primitives,
then it is clear that E[s̃t|It] only depends on primitives and, hence, is independent of the
consumption policy. To sum up, we have shown that the estimation error εt only depend
on primitives for given g′t(.).

For a given attention policy that is a function of the primitives, we have

a certainty equivalence for the optimal consumption policy. We now want to
characterize the optimal consumption policy for given g′t(.). Again realizing that this
implies that the τt are random variables and independent of consumption policy, min-
imizing V0 in equation (A.3) with respect to consumption is equivalent to minimizing

45



E[∑T−1
t=0 β

t(ut − Ltst)2(1 + βpt+1)|I0] with respect to ut ≡ ct − c̄. Furthermore, we have

E
[
(ut − Ltst)2

∣∣∣I0
]

= E
[(
ut − Lt(E[st|It] + εt)

)2∣∣∣I0
]

= E
[
(ut − Lt(E[st|It])2 − 2(ut − Lt(E[st|It])εt + ε2t

∣∣∣I0
]
(A.8)

Where the first equality uses the definition of εt ≡ st − E[st|It]. By applying the power
property of conditional expectations, we obtain

E
[
(ut − Lt(E[st|It])εt

∣∣∣I0
]

= E
{
E
[(
ut − Lt(E[st|It]

)
εt
∣∣∣It]∣∣∣I0

}
= E

{(
ut − Lt(E[st|It]

)
E
[
εt
∣∣∣It]∣∣∣I0

}
= 0 (A.9)

where the second equality uses the fact that ut = ft(It) is a measurable function with
respect to It and the last equality relies on E[εt|It] = E[st|It] − E

[
E[st|It]

∣∣∣It] = 0.
Recalling that the estimation error εt is independent of the policy function, we see that
ut = LtE[st|It] minimizes V0 for given g′t(.). This is the certainty equivalent consumption
policy.

Certainty equivalence. So far, we have reach a certainty equivalence result condi-
tional on given g′t. We now demonstrate that this result hold independently of g′t. The
intuition behind this broader result comes from the observation that the optimal con-
sumption policy for given g′t is independent of g′t. To formalize this result, let g and f

respectively refer to the sequence of attention and consumption policies. For each and
every admissible pair (g, f), we have seen that it leads to another admissible pair (g′, f),
where the g′t are functions of the primitives, that outputs the same τt. We have also seen
that for a given g′ it is always optimal to set the consumption policy to its certainty
equivalent f ?. Because (g′, f ?) are admissible policies, we can retrieve admissible policies
(ĝ, f ?) that dominate (g, f) in the sense of minimizing V0. The existence of ĝ follows
from equation (A.4) when f ? is given. This concludes the proof for Lemma 1. As can be
seen, this proof rests on the linear-quadratic structure of the problem and the nestedness
property of the information structure.

Appendix A.2. Proof of Lemma 2: Kalman filter at the attention choice

It is easy to show that the optimal estimator given the information at the attention
choice It is a Kalman filter. Apply the tower property of conditional expectations with
respect to It in equation (A.3). Thanks to the nestedness property of the information
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structure, E[st|It] is the least-squares estimator.37 The linearity of the state dynamics, the
Gaussian structure of the initial state, and the (i.i.d.) noises and shocks, the least-squares
estimator is the Kalman filter here.

As is stated in the text, we impose that the Kalman filter is initially at its steady
state. The steady state prior variance solves the algebraic Riccati equation p+ = (1 +
r)2
(
p+− p2

+(p+ + σ2
ϑ)−1

)
+ σ2

ζ . The Kalman gain is K = p+(p+ + σ2
ϑ)−1 and the posterior

steady state variance is p− = (1−K)p+. Normalizing the initial uncertainty to σ2
s0 = p−,

we have that E[(st − E[st|It])2|I0] = p− remains at its steady state. (Q.E.D. Lemma 2).

In order to characterize the optimal attention strategy, it will be useful to incorporate
the result in Lemma 2 into the objective function V0. Using the optimal consumption
policy in Lemma 1, the last term of V0 in equation (A.3) becomes βtL2

t (E[st|It]−st)2(1+
βpt+1) where st−E[st|It] = st−E[st|It]+et and et ≡ E[st|It]−E[st|It] is the expectation
wedge between the two information sets. Thus,

E[(st − E[st|It])2|I0] = E[(st − E[st|It])2|I0] + E[e2
t |I0] (A.10)

as the estimation error from E[st|It] is independent from et (as et is observable from It).
Hence,

V0 = E
[
p0s̄

2
0 +

T−1∑
t=0

βtλτt + βt+1pt+1ζ
2
t+1 + βtL2

t

(
(st − E[st|It])2 + e2

t

)
(1 + βpt+1)

∣∣∣∣I0

]
(A.11)

Appendix A.3. Proof of Lemmas 3 and 4: Optimal attention strategy

In this section, we derive the optimal estimator E[st|It] driving the consumption choice
and reported in Lemma 3. Because of the nontrivial interaction between this estimator
and the attention policy, we must solve for both simultaneously. This requires us to also
prove Lemma 4 in this section.

We first consider the simple casewhen the consumer is attentive at time t (τt = 1).
Looking at the expression for V0 in equation (A.11) and using the tower property of
conditional expectations (for E[•|It, τt = 1]), it is clear that in this case E[st|It, τt = 1]
must minimize the square of the error et = E[st|It] − E[st|It, τt = 1]. Because the

37More precisely, E[st|It] is the discounted least-squares estimator. However, since we assume that the
Kalman filter is initially at its steady state, this is also the least-squares estimator here.
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consumer is able to observe the information It when attentive, then it is optimal to set
E[st|It, τt = 1] = E[st|It] when the consumer is attentive.

We now focus on the more complex situation when the consumer is inattentive

(τt = 0). The difficulty arises from the fact that when inattentive, the consumer realizes
that she is inattentive. Indeed, since the choice to be attentive may be conditioned
on certain realizations of the random variables, the consumer may adjust her perceived
permanent income when inattentive to account for the fact that these conditions are
not met while she remains inattentive. This is a form of negative information, i.e., the
consumer knows that she doesn’t know, which requires to simultaneously characterize
the optimal attention strategy and the evolution of perceptions while the consumer is
inattentive.

To this end, we proceed in five steps. First, we derive a necessary optimality condition
on the corrective terms arising in consumer’s perceptions when she remains inattentive.
These corrections are found to be predetermined for a given attention policy, i.e., unre-
lated to the random variable realizations whilst the consumer is inattentive. Second, we
characterize the problem related to the joint determination of the attention policy and the
corrections. Third, we characterize the optimal attention policy when the corrective terms
are nil. The optimal attention policy is found to be symmetric when the corrective terms
are nil. Fourth, we show that the corrective terms implied by the necessary optimality
condition from the first step are indeed zero when the attention policy is symmetric. This
characterizes a candidate solution for the problem under consideration. Last, we rely on
Theorem 1 in Molin and Hirche (2017) to further conclude that this solution is globally
asymptotically stable.

Any correction in the consumer’s perception must be predetermined while

she is inattentive. To demonstrate this, take the attention policies g′k(.) as functions of
the primitives as given ∀k ∈ {0, 1, . . . , t} and let lt ≡ sup{k : τk = 1, k ≤ t} be the most
recent period when the consumer was attentive. Consider a period t when the consumer
is inattentive (lt < t). Then, compute E[st|It, τt = 0] = E[E[st|It]|It, τt = 0] to get

E[st|It, τt = 0]︸ ︷︷ ︸
estimate when inattentive

= (1 + r)E[st−1|It−1]− ut−1︸ ︷︷ ︸
update

+E
[
(1 + r)et−1 +K(zt − E[st|It−1])

∣∣∣∣It, τt = 0
]

︸ ︷︷ ︸
corrective term accounting for inattention (≡α(t,.))

This is equation (6) in the text. The error terms zt − E[st|It−1] correspond to the
estimation errors from the Kalman filter in Lemma 3 and are therefore orthogonal to
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the information in It−1. The dynamics of the expectation wedge et is given by et =
(1− τt−1)(1 + r)et−1 +K(zt − E[st|It−1])− α(t, .). It therefore follows an AR(1) process
with a reseting at 0 when the consumer is attentive. Hence, we can also write et =∑t
k=lt+1(1 + r)t−k

[
K(zk − E[sk|Ik−1]) − α(k, .)

]
. Consequently, the corrective term also

writes

α(t, .) = E
[
K

t∑
k=lt+1

(1 + r)t−k(zk − E[sk|Ik−1])
∣∣∣∣It, τt = 0

]
−

t−1∑
k=lt+1

(1 + r)t−1−kα(k, .)

(A.12)

By definition of the information set It, we have {It|τt = 0} =
{
Ilt , {ck}t−1

k=lt , {τk = 0}tk=lt

}
.

Because the estimation errors from the Kalman filter are orthogonal to the information in
Ilt and the consumption choices since lt, the only information that may potentially turn
out to be relevant for the consumer here is that we are at period t and that the last time
she was attentive was at period lt. Thus, α(t, lt) takes only two arguments: time t and
the last period when the consumer was attentive lt. It is therefore predetermined and
unrelated to the shock and noise realizations.

Deriving the problem related to the joint determination of the attention

policy and the corrective terms. A difficulty in characterizing the corrective term
α(t, lt) is that it depends on the attention policy gt(.) and vice versa. The objective to
minimize is given by V0 in equation (A.11). Noting that only the second and fourth terms
in (A.11) depend on the attention policy gt(.) and that we have found et = 0 when the
consumer is attentive (τt = 1) leads to the following problem

min
{τt,α(t,lt)}(0≤t≤T−1,0≤lt<t)

E
[ T−1∑
t=0

βtλτt + (1− τt)βtL2
t (1 + βpt+1)e2

t

∣∣∣∣I0

]
(A.13)

s.t. et+1 = (1− τt)(1 + r)et − α(t+ 1, lt+1) + ωt+1

lt+1 = τtt+ (1− τt)lt

where ωt+1 ≡ K
(
zt+1− (1 + r)E[st|It] + ct− c̄

)
is the innovation from the latent Kalman

filter and is an i.i.d Gaussian white noise with variance σ2
ω = K2(p+ + σ2

ϑ). The fact that
we are restricting the admissible corrective terms to depend only on time t and the date
when the consumer was last attentive lt follows from equation (A.12), which must hold
at the optimum of problem (A.13).

Assume that the corrective terms are nil, then the optimal attention policy

only depends on et and is symmetric around zero. To demonstrate this, impose
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α(t, lt) = 0 for all t and lt < t. Then (A.13) is a standard dynamic programming problem
with a binary choice and its Bellman form is given by

Jt(et) = min
τt∈{0,1}

(1− τt)L2
t (1 + βpt+1)e2

t + τtλ+ βE[Jt+1(et+1)|It] (A.14)

s.t. et+1 = (1− τt)(1 + r)et + ωt+1

lt+1 = τtt+ (1− τt)lt

Note that the expectation is taken over It because the choice to be attentive is taken with
respect to this information set. The et are measurable given It. Consequently, (A.13) is
a dynamic problem with perfect state observation (et, lt) .

We can solve this problem backward. At the last period T , we have JT = qT e
2
T =

qT
(
(1 − τT−1)(1 + r)eT−1

)2
. The last equality uses ωT = 0 as there is no new signal

observed at the last period. Hence, JT (eT ) is observable from IT−1 and the consumer will
be attentive at T − 1 whenever

((1 + r)βqT )2

1 + βqT
e2
T−1 + qT

(
(1 + r)eT−1)

)2
≥ λ

As stated in the text, we consider a cost associated to the terminal condition qT to be
arbitrarily large. Rearranging the above equation and taking the limit, it is clear that as
qT 7→ ∞ the above inequality becomes (1 + r)e2

T−1 +
(
(1 + r)eT−1

)2
≥ 0 which holds for

any eT−1 ∈ R. That is, when the penalty qT is large enough, the consumer will almost
surely be attentive at time T − 1. Given this last observation, we have JT−1(eT−1) = λ

and the attention policy gT−1(.) = 1. (Note that both are symmetric around 0 on the real
line.)

At the period T −2, the consumer is attentive if and only if L2
T−2(1+βpT−1)e2

T−2 ≥ λ.
That is, if and only if |eT−2| ≥ 1

LT−2

√
λ

1+βpT−1
(≡ πT−2). The resulting value function is

therefore JT−2(eT−2) =
(
L2
T−2(1+βpT−1)e2

T−2

)1(|eT−2|≤πT−2)
λ(1−1(|eT−2|≤πT−2)) +λ. Clearly,

we find again that the value function and the attention policy are symmetric around zero
on the real line.

We now demonstrate by induction that the symmetry property of the value function in
fact holds for any t ∈ {0, 1, . . . , T−1}. Let Jt+1(et+1) be an even function. The conditional
expectation E[Jt+1(et+1)|It, et = e] preserves the symmetry.38 The cost function L2

t (1 +

38We have

E[Jt+1(et+1)|It, et = e] =
∫
R
Jt+1(x)φ(x; e, σω)dx =

∫
R
Jt+1(−x)φ(−x;−e, σω)dx = E[Jt+1(et+1)|It, et = −e]
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βpt+1)e2
t is even. Given that the sum of two even functions is also even, the objective

to minimize is an even function. Taking the minimum with respect to τt preserves the
symmetry so that Jt(et) is en even function. Since JT (eT ) is an even function,39 we have
that Jt(et) is also even for all t ∈ {0, 1, . . . , T − 1}.

To conclude that this leads to an optimal attention policy of the form gt(et) = 1(|et| ≥
πt) follows from realizing that the objective to minimize is non-decreasing in R+. More-
over, it is easy to show that the threshold πt ∈ R+ solves ∀t ∈ {0, 1, . . . , T − 1}

λ+ βE[Jt+1(et+1)|It, et = 0] = L2
t (1 + βpt+1)π2

t + βE[Jt+1(et+1)|It, et = πt] (A.15)

That is, the threshold πt coincides with the point (on the positive real line) where the
consumer is indifferent between being attentive or not at time t.

The corrective terms implied by condition (A.12) are indeed zero when the

attention strategy is gt(et) = 1(|et| ≥ πt) for all t. We demonstrate this result in the
following. We have already seen that the optimal corrective terms must satisfy equation
(A.12). This condition relies on a given attention policy gt(.). We now demonstrate that
when using the optimal attention policy that we have characterized for α(t, lt) = 0 indeed
implies that the necessary optimality condition (A.12) implies that they are zero.

From equation (A.12) we have that the change in the correction terms at any period
lt < t when the consumer is inattentive is given by

α(t, lt)−
t−1∑

k=lt+1
(1 + r)t−1−kα(k, lt) = K E

[ t∑
k=lt+1

(1 + r)t−kωk
∣∣∣∣It, τt = 0

]
(A.16)

Let’s characterize the distribution of the random variable inside the expectation. Applying
Bayes law, the probability distribution function ft(x|j = t − lt) of the random variable∑t
k=lt+1(1 + r)t−kωk given that the consumer was last attentive j periods ago follows from

the recursion

ft(e|k) ∝
∫ πt−1

−πt−1
φ

(
(1 + r)e− ē
(1 + r)σω

)
ft−1(ē|k − 1)dē ∀k, t ∈ N2, t > k (A.17)

and initial condition ft(ē|0) = δ(ē) ∀t with δ(ē) the Dirac distribution. We recognize that
the inner term of the integral is a convolution. Importantly, we can observe that this

where the second equality uses the symmetry of both Jt+1(x) and the Gaussian pdf φ(x; e, σω) with mean
e and standard deviation σω.

39Or, as we have also shown, JT−1(eT−1) and JT−2(eT−2).
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recursion preserves the symmetry of ft(e|k) when the integral is taken with respect to a
symmetric set around zero. We can therefore conclude that E

[∑t
k=lt+1(1+r)t−kωk

∣∣∣∣It, τt =

0
]

=
∫ πt
−πt eft(e|k)de = 0 for all t and lt < t.

Consequently, the right hand side of equation (A.16) equals zero. Further realizing
that ∀t : α(t, t− 1) =

∫ πt
−πt eft(e|1)de =

∫ πt
−πt eφ(e/σω)de = 0 leads to the conclusion that

α(t, lt) = 0 for all t and lt < t.
The candidate solution that we have identified is globally asymptotically

stable. We have shown in this subsection that an attention policy such that the consumer
becomes attentive if and only if |et| ≥ πt, where the thresholds πt can be computed from
equation (A.15), and the consumer’s expectations are given by E[st|It] when the consumer
is attentive and a mechanical update without corrective term when inattentive. We have
shown that this solution satisfies standard necessary conditions. However, it could be
that this optimum is only local. Thanks to Theorem 1 in Molin and Hirche (2017) we can
however conclude that this solution is globally asymptotically stable. More specifically,
their Theorem shows (by means of Lyapunov stability) that if we start from any fixed
sequence of corrective terms α0(t, lt) (instead of imposing that they are zero), solve the
optimal attention policy from problem (A.13) for this sequence of corrective terms α0(t, lt),
use equation (A.16) to update the sequence of α1(t, lt) and iterate until convergence,
then we would asymptotically converge to the solution with α∞(t, lt) = 0 for all t and
lt < t. The Online Appendix F indicates how to transform the variables from the model
considered in the present paper so that it can be directly mapped into their theorem. The
key assumptions in our framework that allows to rely on their theorem is that the shocks
to permanent income and information noises follow a Gaussian distribution.

Appendix A.4. Proof of Proposition 1

We now demonstrate that the attention and consumption policies converge to station-
ary policies. As we have seen, the consumption policy is the certainty equivalent policy
irrespectively of the attention policy. Therefore, we first characterize the stationary con-
sumption policy. It simply requires to show that pt converges to a stationary solution.
To this end, consider the following infinite horizon deterministic linear quadratic control
problem:

min
{ct}∞t=0

∞∑
t=0

βt(ct − c̄)2 (A.18)

s.t. xt+1 = (1 + r)xt − ct + c̄
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where β ∈ (0, 1). Assuming it exists,40 it is well-known that the stationary control law is
L̄ = (1 + r) βp̄

1+βp̄ where p̄ is the solution to algebraic Ricatti equation

p̄ = (1 + r)2 βp̄

1 + βp̄
(A.19)

that is, p̄ = β(1+r)2−1
β

. Thanks to the certainty equivalence in the original problem, the
consumption policy (4) admits a stationary solution L = (1 + r) βp̄

1+βp̄ = β(1+r)2−1
β(1+r) .

Consequently, we can show that the attention problem also admits a stationary policy
when T maps to infinity. When the consumption policy is stationary, L2

t (1 +βpt+1) equal
the constant [β(1+r)2−1]2

β(1+r) . Therefore, the reward function in the Bellman equation (A.14)
is stationary. The latent Kalman filter being at its steady state, the distribution of its
innovation is also stationary. Hence, problem (A.14) is an infinite horizon discrete time
Markov decision problem where the reward, transition, constraint and shock distribution
are independent of time. As such, the problem is stationary and the Bellman equation
takes the form of a functional fixed-point equation

J(et) = min
τt∈{0,1}

(
β(1 + r)2 − 1

)2

β(1 + r) e2
t + τtλ+ βE[J(et+1)|It] (A.20)

s.t. et+1 = (1− τt)(1 + r)et + ωt+1

We thus have τt = g(et) where g(et) = 1 ⇐⇒ |et| ≥ π and 0 otherwise. π solves

λ+ βE[J(et+1)|It, et = 0] =

(
β(1 + r)2 − 1

)2

β(1 + r) π2 + βE[J(et+1)|It, et = π] (A.21)

and J(.) is the stationary value function from (A.20).

Appendix B. Inattention lengths and hazard rates

Appendix B.1. Inattention lengths

How long will a consumer remain inattentive? A consumer inattention duration is
stochastic. Answering this question therefore requires to derive the distribution of inat-
tention lengths. This is the purpose of this section. It shows that this distribution is
the solution to a first passage problem. It then provides a method to characterize this
distribution and an easily implementable approximation procedure.

40See Ljungqvist and Sargent (2004) section 5.4.1 for a discussion on stability. Section 5.2.2 character-
izes the solution to the problem under consideration.
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The attention dynamics discussed in Section 3.1 may be apprehended as resulting from
a first time passage problem with reseting at 0 when the consumers’ attention is triggered.
That is, how long will it take for the expectation wedge et to reach one of the attention
regions? Formally, let lt ≡ sup{i : τi = 1, i ≤ t} be the most recent period when the
consumer was attentive and the first passage time be defined as d ≡ inf{i : τlt−1+i = 1, i ∈
N}. The associated probability density function is thus

q(k) ≡ P (d = k) = P (τlt+k = 1| ∩k−1
i=1 τlt+i = 0) ∀k ∈ N (B.1)

where q(k) is the probability that a consumer remains inattentive for k consecutive pe-
riods. Following from Jaskowski and van Dijk (2016), a first passage time always ex-
ists here as P (d = ∞) = 0 at the limit. Similarly, a finite average inattention length
d̄t ≡

∑T−1−t
i=1 iqi,t+i exists.

It is well-known that directly computing the probabilities q(k) is difficult. Therefore,
I use the relation between these probabilities and the hazard rates, denoted Λ(k), which
are easier to compute. By definition, we have that

Λ(k) ≡ 1−
∫
Ξ
f(e|k)de ∀k ∈ N (B.2)

where Ξ ≡ [−π, π] is the inattention region and f(e|k) is the distribution of the ex-
pectation wedge et given that the consumer was inattentive for k consecutive periods.
Equation (B.2) thus states that the hazard rate Λ(k) is equal to the probability that
the latent perceived forecast does not belong to the inattention region after k periods of
inattention.

In Section 3.1 we have seen that the latent perceived forecast error follows an AR(1)
process with a reseting at 0 when the consumer is attentive. Therefore, we have from
Bayes law

f(e|k) ∝
∫
Ξ
far(e|ē)f(ē|k − 1)dē ∀k ∈ N (B.3)

where far(e|ē) = 1
σω
φ
(
e−(1+r)ē

σω

)
and the initial condition f(e|0) = δ(e) with δ(.) the Dirac

distribution.
In order to compute the hazard rates in Figure 1 and the expected inattention length,

it is necessary to compute the distribution f(e|k) from equation (B.3). The latter distribu-
tion is not standard and explicitly iterating on equation (B.3) may lead to large numerical
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errors (Shi et al., 2016). Therefore, we rely on the approximation procedure presented
in Lemma 5 which provides closed-form approximations. This approximation relies on a
truncation of histories, a procedure which is well-suited for realistic calibrations of the
problem under consideration. Indeed, the average inattentiveness length being generally
of a few periods, the share of consumers who will encounter a long duration without being
attentive should be small. Therefore, a good approximation method here should be close
to exact for small k. As is highlighted in Lemma 5, the proposed method is exact when
k is equal to one or two periods.

Lemma 5. For k = 1, we have

f(e|1) = 1
σω
φ
( e

σω

)
and for k = 2,

f(e|2) ∝ φ

(
e√

1 + (1 + r)2σω

)[
Φ
(
π − (1+r)

1+(1+r)2 e
σω√

1+(1+r)2

)
− Φ

(
−
π + (1+r)

1+(1+r)2 e
σω√

1+(1+r)2

)]

For higher k ∈ {3, 4, . . . ,∞}, the distribution f(e|k) is approximated by truncating the
histories and we have

fapp(e|k) ∝ φ

(
e√

z(k)σω

)[
Φ
(
π − (1+r)u(k)e

z(k)√
u(k)
z(k)σω

)
− Φ

(
−
π + (1+r)u(k)e

z(k)√
u(k)
z(k)σω

)]

where z(k) = ∑k−1
i=0 (1 + r)2i and u(k) = ∑k−2

i=0 (1 + r)2i.

Proof. See Online Appendix G.

Lemma 5 also shows that the distribution of inattention lengths is driven by three
parameters: the interest rate r which captures the propagation of past errors over time,
the triggering threshold π which characterizes the shape of the inattention region and the
variance σ2

ω of the expectation wedge shocks (noise + income shocks).

Appendix B.2. State-dependent hazard rate

We here compute the state-dependent hazard reported in Section 3. Let ∆t ≡ st −
E[st|It−1] be a consumer’s prior error. Then,

∆t = st − E[st|It] + E[st|It]− E[st|It−1]︸ ︷︷ ︸
=ωt

+E[st|It−1]− E[st|It−1]︸ ︷︷ ︸
=(1+r)et−1︸ ︷︷ ︸

=et
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and st−E[st|It] ∼ N (0, p−) is the posterior error at the Kalman filter for the attention
choice. Therefore, the conditional distribution of et given ∆ is the Gaussian distribution
with mean ∆ and variance p−. Using the definition of the hazard rate, we obtain

Λ(∆) = 1−
∫
Ξ
φ

(
x−∆
√
p−

)
= 1− Φ

(
π −∆
√
p−

)
+ Φ

(
−π −∆
√
p−

)
(B.4)

Appendix C. Additional proofs for the cross sectional distribution

Appendix C.1. Stationary distribution

This section characterizes the stationary distribution of expectation wedges, denoted
a?(e), using the tools developed in Appendix B. We consider that income shocks are not
correlated across individuals, and relegate the introduction of aggregate shocks to the
next section.

Let λt(k) be the share of consumers who were inattentive for k ∈ {1, 2, . . . ,∞} periods
and at(e) the distribution of expectation wedges e at time t. Then,

at(e) =
∞∑
k=1

λt(k)ft(e|k) (C.1)

Similarly, at the next period it must be that

at+1(e) =
∞∑
k=2

λt(k − 1)(1− Λt(k − 1))ft+1(e|k) + ft+1(e|1)
( ∞∑
k=1

λt(k)Λt(k)
)
(C.2)

In the absence of aggregate shocks, the ft(e|k) are time invariant. Equalizing the RHS
of Equations (C.1) and (C.2), a candidate solution is such that the stationary shares of
attentive consumers λ?(k) solve

λ?(1) =
∞∑
k=1

λ?(k)Λ(k) (C.3)

λ?(k) = λ?(k − 1)(1− Λ(k − 1)) ∀k ≥ 2 (C.4)

1 =
∞∑
k=1

λ?(k) (C.5)

where Λ(k) are the time invariant hazard rates from equation (B.2) and (C.5) ensures
that the shares λ?(k) sum to one. Iterating backward, Equation (C.4) writes

λ?(k) = λ?(1)
k−1∏
i=1

(1− Λ(i)) ∀k ≥ 2 (C.6)
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Noting that S?(k − 1) ≡ ∏k−1
i=1 (1 − Λ(i)) is the time invariant survival function with

S?(0) = 1, we may introduce this expression in (C.5) to get

λ?(1) = 1∑∞
k=1 S

?(k − 1) (C.7)

Equations (C.7), (C.6) and (B.3) fully characterize the stationary cross sectional distri-
bution

a?(e) =
∞∑
k=1

λ?(k)f ?(e|k) (C.8)

As a weighted sum of unimodal and symmetric distributions centered around zero, the
stationary cross sectional distribution of consumers is itself symmetric, unimodal and
centered around zero.

Appendix C.2. Cross section dynamics and IRF

The derivation of the stationary distribution based on the distributions f ?(e|k) is
useful insofar that Lemma 5 provides closed-form approximations for these distributions.
However, it is intractable to assess the dynamics of the cross section of consumers in the
presence of aggregate shocks as it would require to track k 7→ ∞ distributions at each
period. For this reason, we consider an alternative method in the presence of aggregate
shocks ζ̄t.

Starting from the law of motion for the expectation wedge in Equation (10), we have

et+1 = (1− τt)(1 + r)et +K (st+1 + ϑt+1 − (1 + r)E[st|It] + ct − c̄)

= (1− τt)(1 + r)et +K
[
ϑt+1 + ζ̄t+1 + (1 + r) (st − E[st|It])

]
= (1− τt)(1 + r)et +K(ϑt+1 + ζ̄t+1) +K(1 + r)

(
(1−K)ζ̄t −Kϑt

)
+K(1−K)(1 + r)2 (st−1 − E[st−1|It−1]) (C.9)

where the second equality uses the budget constraint and the third equality Lemma 2.
Iterating backward and taking the limit when t 7→ ∞, we have

et+1 = (1− τt)(1 + r)et +K

( ∞∑
i=0

(1−K)i(1 + r)iζ̄t+1−i + ϑt+1 −K(1 + r)
∞∑
i=0

(1−K)i(1 + r)iϑt−i
)

where we recognize the definition of St+1 ≡ K
∑∞
i=0(1−K)i(1 + r)iζ̄t+1−i presented in

the text. From this expression, it is clear that the conditional random variable et+1|et =
e, {ζ̄t+1−i}∞i=0 follows a Gaussian distribution with mean (1 + r)(1 − g(e))e + St+1 and
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variance

σ2
ω − σ2

S = K2
[
1 + (1 + r)2

(1− (1−K)(1 + r))2

]
σ2
ϑ (C.10)

under the usual assumption that (1 + r)(1−K) < 1. Using the law of total probability,
it implies

at+1(e) = 1√
σ2
ω − σ2

S

∫
R
φ

e− (1 + r)(1− g(ẽ))ẽ− St+1√
σ2
ω − σ2

S

 at(ẽ)dẽ (C.11)

= 1√
σ2
ω − σ2

S

[ ∫
ẽ∈Ξ

φ

e− (1 + r)ẽ− St+1√
σ2
ω − σ2

S

 at(ẽ)dẽ
︸ ︷︷ ︸

Inattentive at t

+φ

 e− St+1√
σ2
ω − σ2

S

∫
ẽ /∈Ξ

at(ẽ)dẽ
︸ ︷︷ ︸

Attentive at t

]

Note that the time subscript t implicitly refers to the knowledge of the full sequence of
aggregate shocks {ζ̄t−i}∞i=0.

Aggregating household consumption changes in Equations (D.1) and (D.2) when β =
(1 + r)−1, it then follows that the change in aggregate consumption is

∆Ct+1 = L
∫
e/∈Ξ

at+1(e)de (C.12)

Consequently, the consumption change at time t depends on the full history of aggregate
shocks. We define the impulse response function (IRF) to an aggregate shock as the
difference between the change in aggregate consumption induced by this change and the
consumption change that would have been observed without it. Formally, the IRF s

periods after the shock is

∆Ct+s|ζ̄t=χ −∆Ct+s|ζ̄t=0 = L
∫
e/∈Ξ

e (at+s(e)|ζ̄t=χ − at+s(e)|ζ̄t=0) de (C.13)

where we consider that there are no further destabilizing shocks {ζ̄t+i}∞i=1 = {0}∞i=1. The
IRF are then computed from iterating on Equation (C.11) for at+s(e)|ζ̄t=χ and the coun-
terfactual distribution at+s(e)|ζ̄t=0.
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Appendix C.3. Simulations

In the simulations, the (evenly discretized) stationary distribution is first computed
using Lemma 5 and Equation (C.8) as a first guess. We then iterate on

at(e) ∝
1
σω

[ ∫
ẽ∈Ξ

φ

(
e− (1 + r)ẽ

σω

)
at−1(ẽ)dẽ︸ ︷︷ ︸

Inattentive at t−1

+φ

(
e

σω

)∫
ẽ /∈Ξ

at−1(ẽ)dẽ︸ ︷︷ ︸
Attentive at t−1

]
(C.14)

to achieve convergence. All integrals are approximated with Reiman sums. We refer to
this distribution as the ergodic distribution.

The steady state distribution instead assumes that the history of aggregate shocks
is {ζ̄i}ti=0 = {0}ti=0. Its computation is similar to the one for the ergodic distribution
excepted that the distributions are conditional on the history of aggregate shocks. That
is, we replace σω by

√
σ2
ω − σ2

S.

Appendix D. Additional proofs on household consumption

This appendix analyses the consumption change following a shock to permanent in-
come at the household level. It shows that while consumption changes are partially
predictable, they are not serially correlated. Moreover, the expected marginal propensity
to consume out of an income shock depends on the perceived forecast error and the per-
manent income shock. It formalizes the results related to the absence of persistence in
household consumption and the magnitude hypothesis stated in sections 4.

Appendix D.1. Absence of persistence

At the household level, consumption changes are conditional on the updating behavior.
When inattentive, the consumer follows a committed consumption path. As such, the
consumption change solely reflects the trend in this consumption path and consumption
growth is constant. More specifically, we have from Lemmas 1 and 3 that

∆ct+1|(τt+1 = 0) = (r − L)[ct − c̄] (D.1)

As a consequence, consumption growth at non-updating periods is predetermined and
orthogonal to permanent income shocks and information noises. However, at updating
periods the consumer updates her information set and the consumption change

∆ct+1|(τt+1 = 1) = Let+1 + ∆ct+1|(τt+1 = 0) (D.2)
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is a Borel-measurable function with associated σ-statistics It+1. As such, the change in
consumption at updating periods depends on the complete history {{ζi}t+1

i=1, {ϑi}t+1
i=1} and

is therefore partially forecastable using past information about income shocks. In compar-
ison, the sticky expectation models of Carroll (2003) and Reis (2006) predict that, in an
otherwise similar setup, a household consumption growth would be unpredictable using
information prior to her last update at time lt. Furthermore, the following proposition
about serial correlation holds

Proposition 3. Consumption growth is not serially correlated at the household level.

Proof. Equations (8), (D.1) and (D.2) together imply that ∆ct is orthogonal to et when
τt = 0 and that et+1 is orthogonal to et when τt = 1 so that et+1 is also independent from
∆ct in that case.

Appendix D.2. Asymmetry and size effects

Household’s i change in consumption following a positive perceived shock ω > 0 is

ci,t|ωi,t=ω − ci,t|ωi,t=0 =



Lω if −∞ < e ≤ −π − ω
L|e| if − π − ω < e ≤ −π
0 if − π < e < π − ω
L(ω + e) if π − ω ≤ e < π

Lω if π ≤ e <∞

(D.3)

where the first condition refers to consumers with negative e who continue to revise
despite the positive shock, the second to consumers with negative e who no longer revise
because of the shock, the third to consumers who do not revise with and without the
shock, the fourth to consumers who revise because of the shock and the last to consumers
who would have also revised without the shock.

Conditional average propensity to consume – Let us first focus on the average response
of consumers who revise their consumption. Again, we consider a positive perceived shock
ω > 0. Given that the response is conditional on τt|ωi,t=ω = 1, we can focus on the first
and last two groups in (D.3). The conditional expected change in consumption is thus for
ω > 0

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

∣∣∣τt = 1
]

= L

(
ω +

∫ π
π−ω eat(e)de

1−
∫ π−ω
−π−ω at(e)de

)
E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

∣∣∣τt = 1
]

L× ω
= 1 + 1

ω

∫ π
π−ω eat(e)de

1− At(π − ω) + At(−π − ω) (D.4)
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where At(.) is the cdf associated to at(.). The second equation normalizes the response by
ω and L. The normalization by ω gives the average conditional propensity to consumer.
While the normalization by L allows to directly compare this value to what we would
obtain in a full-information rational expectation framework as L would be the average
propensity to consume. Hence, any deviation from 1 is a deviation from the response we
would obtain in the absence of information frictions.41

Equation (D.4) shows that the conditional average response to the perceived shock
is the standard response and an over-reaction. The over-reaction captures the fact that
consumers close to the attention threshold have a disproportionate response to small
income shocks as they also adjust for ei,t. Moreover, we can compute the limits with
respect to the size of the shock

lim
ω 7→0+

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

∣∣∣τt = 1
]

L× ω
= 1 + at(π) π

1− At(π) + At(−π) (D.5)

lim
ω 7→∞

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

∣∣∣τt = 1
]

L× ω
= 1 (D.6)

The first equation uses l’Hopital’s rule and Leibniz integral rule for differentiation.
These limits show that the over-reaction is relatively large for small shocks. However,
it becomes negligible for large shocks that prompt most consumers to revise their con-
sumption choices. In general, there is no reason to expect that the average propensity to
consume decreases monotonically between these two limits. Indeed, when the cross sec-
tional distribution is to the left or/and the shock sufficiently large, then the over-reaction
can become negative. Simulations confirm this intuition, though we find that it happens
for quite radical parameterizations and, even when it does arise, it does not drastically
alter the overall decreasing pattern of the conditional average propensity to consume.

Doing similar computations for negative shocks ω < 0, we obtain

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

∣∣∣τt = 1
]

L× ω
= 1 + 1

ω

∫−π−ω
−π at(e)ede

1− At(π − ω) + At(−π − ω) (D.7)

lim
ω 7→0−

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

∣∣∣τt = 1
]

L× ω
= 1 + at(−π)π

1− At(π) + At(−π) (D.8)

lim
ω 7→−∞

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

∣∣∣τt = 1
]

L× ω
= 1 (D.9)

41Note that because the over-reaction refers to the extensive margin of adjustments, we also know from
Caballero and Engel (2007) that this term would be equal to zero in models of Sticky expectations à la
Carroll et al. (2020) and Reis (2006).
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which leads to a similar pattern with respect to the size of the shock. Interestingly, we
observe that in general the conditional average propensity is discontinuous at zero. More
specifically, since we know from Equation (C.8) that the the stationary cross sectional dis-
tribution is symmetric around zero, the two limits coincide at the steady state. However,
the limit from the left is larger when the cross sectional distribution is more concentrated
on the left, and vice versa.

Unconditional average propensity to consume – We now turn to the unconditional
average response. Following from Equation (D.3), we have for positive shocks ω > 0

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

]
= L

((
1−

∫ π−ω

−π−ω
at(e)de

)
ω +

∫ π

π−ω
eat(e)de−

∫ −π
−π−ω

eat(e)de
)

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

]
L× ω

= 1− (At(π − ω)−At(−π − ω))

+ 1
ω

(∫ π

π−ω
eat(e)de−

∫ −π
−π−ω

eat(e)de
)

(D.10)

lim
ω 7→0+

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

]
L× ω

= 1− (At(π)−At(−π)) + (at(π) + at(−π))π (D.11)

lim
ω 7→∞

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

]
L× ω

= 1 (D.12)

Equation (D.11) is well-known in the pricing literature and extensively discussed in
Caballero and Engel (2007). The first three terms refer to the probability to update at 0
and the last term to the extensive margin. Turning to negative perceived shocks ω < 0.
we have

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

]
= L

((
1−

∫ π−ω

−π−ω
at(e)de

)
ω +

∫ −π−ω
−π

eat(e)de−
∫ π−ω

π
eat(e)de

)
(D.13)

lim
ω 7→0−

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

]
L× ω

= 1− (At(π)−At(−π)) + (at(π) + at(−π))π (D.14)

lim
ω 7→∞

E
[
ci,t|ωi,t=ω − ci,t|ωi,t=0

]
L× ω

= 1 (D.15)

Therefore, the unconditional average propensity to consume is continuous at 0 and
tends to 1 at ±∞. Similarly to what we have done for the conditional response, we
now aim to understand whether the limit at 0 is generally smaller or higher than the
one at ±∞. To gauge the size of (D.11), Caballero and Engel (2007) show that in price

62



adjustment models with increasing hazard rates, a good approximation is given by three
times the probability to update. However, their approximation does not directly apply to
strict Ss-thresholds (they provide another for strict Ss-thresholds and uniform stationary
distribution, which also substantially differ from the framework under study here). In
the following, we aim to provide a similar rule-of-thumb that applies to our model. Our
objective is to illustrate that situations such that the limit at 0 of the unconditional
average propensity to consume is smaller than one are rather common in our setup.
This is important since it implies that the overall pattern of the unconditional average
propensity to consume can be increasing.

Lemma 5 provides a candidate distributions to approximate the stationary cross sec-
tional distribution at ±π. Indeed, we expect that

a?(±π) ≈ φ(±π; 0,
√

1 + (1 + r)2σω)

where φ(x;µ, σ) is the pdf of a normally distributed variable with mean µ and standard
deviation σ. Given our calibration, 1 − (A?(π)− A?(−π)) = 0.25 and π ' 1.4σω. An
approximate value for (D.11) at the stationary cross sectional distribution is thus

1√
1 + (1 + r)2

√
2× 3.14

exp

−0.5×
 1.4√

1 + (1 + r)2

2
× 1.4 + 0.25 = 0.73

Using our simulations, we find that Equation (D.11) is equal to 0.72, thus confirming
our approximation. This value is also very close to Caballero and Engel’s rule-of-thumb
which gives a value of 0.75 here. These illustrative computations suggest that the overall
pattern of the unconditional average propensity to consume out of a positive income shock
increases with the size of the shock when the cross section is at its steady state and the
steady state proportion of attentive agents sufficiently small.

Shape of the average propensities to consume – The behavior of the conditional and
unconditional average propensities to consume is generally not monotonic, making it
harder to draw sharp predictions that can be tested in the data. In the following, we
therefore report the simulated average propensities to consume for three different scenar-
ios: stationary distribution, small shift of the distribution to the left (E(e) = −0.5σω)
and a larger shift (E(e) = −σω). The results for shifts of the cross sectional distribution
to the right follow by symmetry.
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Because all shocks are not equally likely to be observed in the data, we then draw 500
shocks ωt from a Gaussian with mean 0 and standard deviation σω. Fitting a regression
line, we can then get predictions about the sign of the slopes that can be confronted to
the data. Following our discussion on the limits at 0, we allow for different intercepts only
for the conditional average propensity. Based on this exercise, we derive the predictions
P1-P4 regarding the behavior of linear/logistic fits reported in the main text.

These predictions are obtained from translating the stationary distribution of con-
sumers. However, the dynamics of the cross sectional distribution may generate more
complex distributions. To assess whether these predictions continue to hold for alterna-
tive cross sections of consumers, we simulate 500 cross sectional distributions (starting
from the ergodic distribution and iterating 150 times on the dynamic equations from
Proposition 2) and again draw 500 income shocks. We then test wether P1-P4 hold. Do-
ing so, we reject at least one of the four predictions in 3.4 percent of simulations (type I
error). The type II error is 3.0 percent.

Appendix E. Evidence from the BoE survey of consumers

Appendix E.1. Description of the main variables

Anderson et al. (2016) and Bunn et al. (2018) provide an extensive discussion of
the survey characteristics and its representativeness. To avoid unnecessary duplication,
we refer readers to these papers for more information about the survey characteristics.
Moreover, Bunn et al. (2018) verify that the measure of MPC that we use is consistent
with an alternative income shock identification strategy based on hypothetical shocks and
a more qualitative indicator of the spending response. In the following, we describe the
construction of the main variables used in our analysis.

The question about the income surprise is phrased as follows: “Compared to what you
expected this time last year, how much more [less] money did your household receive over
the last 12 months? Please consider your income after income tax and National Insurance
but before any housing costs or bills are paid. Please include any unexpected pay increases
or decreases, bonuses, lottery winnings, unexpected tax bills or repayments, PPI claims
and inheritance, lifestyle changes, etc.” The following question about the persistence of
the surprise is then asked “Are you treating this unexpected increase [decrease] in money
received by your household as: A temporary increase [decrease] / An increase [decrease]
that is likely to persist. We exclude income surprises that exceed ±£25, 000.

The question about the consumption change is “You indicated earlier in the survey that
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your household received £[reported amount ] more [less] over the last 12 months than you
had expected a year ago. By how much did you increase/decrease your annual spending
in response to this?” We compute a respondent’s marginal propensity to consume as
the ratio of her reported consumption change to her income surprise. Following Bunn
et al. (2018), we exclude observations with a negative or too high (> 1.5) propensity to
consume. The results do not hinge on these restrictions.

The question about credit constraint is phrased as follows: “Have you been put off
spending because you are concerned that you will not be able to get further credit when
you need it, say because you are close to your credit limit or you think your loan application
would be turned down? Yes/No.” Liquid assets are elucidated from the following question
“How much do you (and all other members of your household) currently have in total,
saved up in savings accounts? Please include bank/building society accounts or bonds,
cash ISAs, NS&I account/bonds, and other investments such as stocks, shares and unit
trusts.” Net liquid assets are net of unsecured debt (excluding credit card balances which
the household intends to pay in full over the month). Cash-on-hand is net liquid assets
plus quarterly disposable income. Disposable income is elucidated from “How much of
your monthly income would you say your household has left after paying tax, National
Insurance, housing costs (e.g. rent, mortgage repayments, council tax), loan repayments
(e.g. personal loans, credit cards) and bills (e.g. electricity)?”

Table E.3 provides summary statistics for the main variables used in the empirical
analysis.

Table E.3: Summary statistics

Mean Median s.d. P25 P75 N

MPC 0.41 0 0.46 0 1 2,101
Income Surprise -238 -120 5,855 -2,000 2,000 2,101
Net liquid assets 16,675 -250 128,369 -7,000 10,700 1,389
Cash-on-hand 21,138 1,500 130,928 -4,950 16,150 1,370
Monthly disposable income 1,288 550 4,752 250 1,100 2,069

MPC 6= 0 50% 2,101
Working 63% 2,101
Temporary surprise 27% 1,966
Credit constrained 29% 2,044

Years (N) 2012 (515) 2013 (859) 2014 (727)

Appendix E.2. Complementary Tables and Figures
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Table E.4: Asymmetry and size effects: credit constraint, cash-on-hand and temporary
surprise

Panel A - Probability to adjust consumption (Logit)
Not credit constrained Cash-on-hand (top 50%) Temporary shocks

Shock size
Positive 0.010 (0.020) -0.033 (0.033) 0.042∗ (0.025)
Negative 0.167∗∗∗ (0.038) 0.168∗∗∗ (0.051) 0.215∗∗∗ (0.066)

Constant -1.092∗∗∗ (0.316) -0.862∗ (0.480) -0.807 (0.505)
Controls Yes Yes Yes
Obs. – pseudo R2 1,222 0.140 576 0.179 454 0.128

Panel B - Linear shape of the MPC (OLS)
Not credit constrained Cash-on-hand (top 50%) Temporary shocks

MPC All 6= 0 All 6= 0 All 6= 0
Shock size

Positive -0.010∗∗∗ -0.020∗∗∗ -0.012∗∗∗ -0.013∗ -0.004 -0.016∗∗∗
(0.003) (0.004) (0.004) (0.007) (0.004) (0.005)

Negative 0.016∗∗∗ -0.014∗∗∗ 0.019∗∗∗ -0.011∗∗∗ 0.021∗∗∗ -0.007
(0.004) (0.003) (0.005) (0.004) (0.005) (0.005)

Intercepts
Negative 0.101∗∗ 0.128∗ 0.031

(0.045) (0.067) (0.066)
Constant 0.205∗∗∗ 0.747∗∗∗ 0.218∗∗ 0.674∗∗∗ 0.271∗∗∗ 0.742∗∗∗

(0.056) (0.068) (0.086) (0.106) (0.092) (0.110)
Controls Yes Yes Yes Yes Yes Yes
Obs. 1,222 509 576 247 454 195
R2 0.176 0.217 0.201 0.137 0.130 0.173

The results are obtained by fitting the regressions from Table 1 on the subsets of individuals who reported not
being credit constrained, whose cash-on-hand is above the median and who reported that the income surprise was
expected to be temporary. Robust standard errors in parenthesis. ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5%
and 1% levels respectively. Control variables are categories for age, employment status, debt concerns, fear about
future income drops, whether the household is credit constrained, the type of income shock (temporary or likely to
persist), gross and discretionary income quartiles, and survey wave fixed effects. The base is an individual, aged
35-45, who responded in 2012, who is working, has no concern about her debt, does not fear an income drop, has
experienced an unexpected income increase, is not credit constrained, has experienced a temporary income shock,
has an annual gross income between £25,000 and £49,999 and a monthly discretionary income between £600 and
£1,199.
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Online Appendix
Not for publication

This online appendix is composed of three sections. The first section shows that
Theorem 1 in Molin and Hirche (2017) – stating that the solution that we have identified
for the consumer’s problem is globally asymptotically stable – applies. The second section
provides the proof for Lemma 5 used in Appendix B. The third section solves the extension
with perfect information upon being attentive discussed in Section 3.3.

Appendix F. The solution to the consumer’s problem is globally asymptoti-

cally stable

In this appendix, we show that Theorem 1 in Molin and Hirche (2017) applies to the
problem considered in Appendix A.3. The theorem is meant to derive the optimal design
of event-triggered estimation for first-order linear stochastic systems with an identical
information structure. The general requirements for the theorem are that the distributions
of the initial state e0 and {wt} are symmetric and unimodal. This is the case in our setup
since these distributions are Gaussian. The difference from their problem is with regard to
the objective function. They consider the sum of square errors, whereas we are interested
in a weighted and discounted sum of these errors here.

In the following, we recast the problem in Appendix A.3 using the notation used in
their proof. Let

êt ≡ E[st|It]− E[st|It, τt = 0] + α(t, lt) (F.1)

Accordingly, problem (A.13) can be written as

min
g.(.),α(.)

E
[ T−1∑
t=0

βt
(
(1− τt)Γt(êt − α(t, lt))2 + λτt

)∣∣∣∣I0

]
(F.2)

s.t. êt+1 = (1− τt)(1 + r)êt + ωt+1

where Γt ≡ Lt(1 + βpt+1). Note that from (A.12) it is clear that the inattention length is
also a sufficient statistic for the corrective α(t, lt). Moreover, let
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ŷt ≡
êt
Rt
, t = 0, . . . , N − 1

%t,lt ≡
α(t, lt)
Rt

, t = 0, . . . , N − 1, lt = 0, . . . , t

where R ≡ (1 + r). Given this transformation, the running cost is

ĉ%tt (ŷt, lt, τt) = βt
(
(1− τt)R2tΓt(ŷt − %t,lt)2 + λτt

)
(F.3)

The optimization problem for Molin and Hirche (2017) iterative procedure is thus
given by

min
ĝ,%

Ĵ (F.4)

with

Ĵ(ĝ, %) = Eĝ

[
N−1∑
t=0

ĉ%tt (ŷt, lt, τt)
]

(F.5)

where the subscript ĝ emphases that the expectation is taken with respect to the trig-
gering/attention policy. The proof in Molin and Hirche (2017) requires that, for a fixed
vector %i of all %t,lt , the following symmetry and monotonicity properties hold for the
running cost:

ĉ
%it
t (%it,lt + ∆, lt, τ) = ĉ

%it
t (%it,lt −∆, lt, τ) (F.6)

∀∆ ∈ R, lt ∈ {0, . . . , t− 1}, τ ∈ {0, 1}

and

0 ≤ ∆1 ≤ ∆2 =⇒ ĉ
%it
t (%it,lt + ∆1, lt, τ) ≤ ĉ

%it
t (%it,lt + ∆2, lt, τ) (F.7)

∀lt ∈ {0, . . . , t− 1}, τ ∈ {0, 1}

It is straightforward to see that these properties continue to hold for our problem given
(F.3). Consequently, the subsequent results in the proof in Molin and Hirche (2017) are
valid and their Theorem 1 applies.
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Appendix G. Approximating the distribution ft(e|k, et−k)

In this appendix, we provide the computations required to derive the approximation in
Lemma 5 for the probability distribution functions of the expectation wedge conditional
on remaining inattentive for k given an initial wedge et−k = a. The case reported in
Lemma 5 corresponds to the case a = 0.

Recall that σ2
ω = K2(p̄+ + σ2

η) is the variance of the innovation from the steady state
Kalman filter at the attention choice (see Equation A.13). Define ft(e|0, a) = δ(e − a).
Then from iterating on (B.3), we have for k=1:

ft(e|1, a) = 1
σω
φ

(
e− (1 + r)a

σω

)
(G.1)

When k = 2,

ft(e|2, a) ∝
∫
Ξt−1

1
σ2
ω

φ
(e− (1 + r)ē

σω

)
φ
( ē− (1 + r)a

σω

)
dē (G.2)

∝
∫
Ξt−1

1
2πσ2

ω

exp
{
− e2 − 2(1 + r)ēe+ (1 + r)2ē2 + ē2 − 2(1 + r)ēa+ (1 + r)2a2

2σ2
ω

}
dē

Focusing on the numerator in the exponential and using the shortcut notation R = 1 + r

(1 +R2)
[
ē2 − 2R

1 +R2 ē(e+ a) + R2

1 +R2 a
2 + 1

1 +R2 e
2
]

= (1 +R2)
[
ē2 − 2R

1 +R2 ē(e+ a) +
(

R

1 +R2

)2
(e+ a)2 + R2

1 +R2 a
2 + 1

1 +R2 e
2 −

(
R

1 +R2

)2
(e+ a)2

]
= (1 +R2)

(
ē− R

1 +R2 (e+ a)
)2

+ (1 +R2)
[

R2

1 +R2 a
2 + 1

1 +R2 e
2 −

(
R

1 +R2

)2
(e+ a)2

]

Where

R2

1 +R2 a
2 + 1

1 +R2 e
2 −

(
R

1 +R2

)2
(e+ a)2

= R2

1 +R2 a
2 + 1

1 +R2 e
2 −

(
R

1 +R2

)2
(e2 + a2 + 2ea)

= 1
(1 +R2)2 e

2 − 2
(

R

1 +R2

)2
ea+

(
R2

1 +R2

)2
a2 +

[
R2

1 +R2 −
(

R

1 +R2

)2
−
(

R2

1 +R2

)2]
a2

=
(

1
1 +R2 e−

R2

1 +R2 a

)2
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Therefore, (G.2) writes

ft(e|2, a) ∝
∫
Ξt−1

1
2πσ2

ω

exp
{
− (1 +R2)

2σ2
ω

[(
ē− R

1 +R2 (e+ a)
)2

+
(

1
1 +R2 e−

R2

1 +R2 a

)2]}
dē

∝
∫
Ξt−1

√
1 +R2
√

2πσω
exp

{
−

(ē− R
1+R2 (e+ a))2

2 σ2
ω

1+R2

}
1√

2π
√

1 +R2σω
exp

{
− (e−R2a)2

2(1 +R2)σ2
ω

}
dē

∝
∫
Ξt−1

√
1 +R2

σω
φ

(
ē− R

1+R2 (e+ a)
σω√
1+R2

)
1√

1 +R2σω
φ

(
e−R2a√

1 + (1 + r)2σω

)
dē

∝ 1√
1 +R2σω

[
Φ
(
πt−1 − R

1+R2 (e+ a)
σω√
1+R2

)
− Φ

(
−
πt−1 + R

1+R2 (e+ a)
σω√
1+R2

)]
φ

(
e−R2a√
1 +R2σω

)
(G.3)

When k = 3,

ft(e|3, a) ∝
∫
Ξt−1

1
σω
φ

(
e−Rē
σω

)
ft−1(ē|2, a)dē

∝
∫
Ξt−1

1√
1 +R2σ2

ω

φ

(
e−Rē
σω

)
φ

(
ē−R2a√
1 +R2σω

)[
Φ
(
πt−2 − R

1+R2 (ē+ a)
σω√
1+R2

)
− Φ

(
−
πt−2 + R

1+R2 (ē+ a)
σω√
1+R2

)]
dē

Again, I develop and reduce the product of the two gaussian pdfs. To do so, I first
focus on the numerator within the exponential.

1 +R2

1 +R2 +R4

[(
e−Rē

)2 +
(
ē−R2a√

1 +R2

)2]
= ē2 − 2 (1 +R2)R

1 +R2 +R4 ēe+ 1 +R2

1 +R2 +R4 e
2 − 2 R2

1 +R2 +R4 aē+ R4

1 +R2 +R4 a
2

=
(
ē− (1 +R2)Re+R2a

1 +R2 +R4

)2
+ 1 +R2

1 +R2 +R4 e
2 + R4

1 +R2 +R4 a
2 −

(
(1 +R2)Re+R2a

1 +R2 +R4

)2

Where

1 +R2

1 +R2 +R4 e
2 −

(
(1 +R2)Re+R2a

1 +R2 +R4

)2

= (1 +R2)(1 +R2 +R4)− (1 +R)2R2

(1 +R2 +R4)2 e2 − 2 (1 +R2)R3

(1 +R2 +R4)2 ea−
(

R2

1 +R2 +R4

)2
a2

=
( √

1 +R2

1 +R2 +R4

)2
e2 − 2 (1 +R2)R3

(1 +R2 +R4)2 ea+
( √

1 +R2R3

1 +R2 +R4

)2
a2 −

(
R2

1 +R2 +R4

)2
a2 −

( √
1 +R2R3

1 +R2 +R4

)2
a2

= 1 +R2

(1 +R2 +R4)2 (e2 −R3a)2 − R4(1 +R2 +R4)
(1 +R2 +R4)2 a2

so that

(
e−Rē

)2 +
(
ē−R2a√

1 +R2

)2
= 1 +R2 +R4

1 +R2

(
ē− (1 +R2)Re+R2a

1 +R2 +R4

)2
+ (e2 −R3a)2

1 +R2 +R4
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Introducing back this expression in (G.4), I obtain

ft(e|3, a) ∝ 1√
1 +R2σ2

ω

φ

(
e−R3a√

1 +R2 +R4σω

)
× (G.4)

∫
Ξt−1

φ

(
ē− R(1+R2)e+R2a

1+R2+R4√
1+R2

1+R2+R4σω

)[
Φ
(
πt−2 − R

1+R2 (ē+ a)
σω√
1+R2

)
− Φ

(
−
πt−2 + R

1+R2 (ē+ a)
σω√
1+R2

)]
dē

The above expression may not be expressed in other terms to simplify the compu-
tation for k = 4. As a consequence, the computational cost from conditioning on past
histories grows exponentially and will likely generate large approximation error when k

increases. Therefore, I approximate the above expression by not accounting for the impact
of histories before t− 1. The approximated distribution is thus

fapp
t (e|3) ∝ 1√

1 +R2σ2
ω

φ

(
e−R3a√

1 +R2 +R4σω

)∫
Ξt−1

φ

(
ē− R(1+R2)e+R2a

1+R2+R4√
1+R2

1+R2+R4σω

)
dē

∝ 1√
1 +R2 +R4σω

φ

(
e−R3a√

1 +R2 +R4σω

)[
Φ
(
πt−1 − R(1+R2)e+R2a

1+R2+R4√
1+R2

1+R2+R4σω

)
− Φ

(
−
πt−1 + R(1+R2)e+R2a

1+R2+R4√
1+R2

1+R2+R4σω

)]

For k = 4,

fapp
t (e|4) ∝

∫
Ξt−1

1√
1 +R2 +R4σ2

ω

φ

(
e−Rē
σω

)
φ

(
ē−R3a√

1 +R2 +R4σω

)
dē

∝ 1√
1 +R2 +R4σ2

ω

φ

(
e−R4a√

1 +R2 +R4 +R6σω

)∫
Ξt−1

φ

(
ē− R(1+R2+R4)e+R3a

1+R2+R4+R6√
1+R2+R4

1+R2+R4+R6σω

)
dē

∝ 1√
1 +R2 +R4 +R6σω

φ

(
e−R4a√

1 +R2 +R4 +R6σω

)
[
Φ
(
πt−1 − R(1+R2+R4)e+R3a

1+R2+R4+R6√
1+R2+R4

1+R2+R4+R6σω

)
− Φ

(
−
πt−1 + R(1+R2+R4)e+R3a

1+R2+R4+R6√
1+R2+R4

1+R2+R4+R6σω

)]

Using forward iteration, it holds

fapp
t (e|k) ∝ 1√

z(k)σω
φ

(
e−Rka√
z(k)σω

)[
Φ
(
πt−1 − Ru(k)e+Rk−1a

z(k)√
u(k)
z(k)σω

)
− Φ

(
−
πt−1 + Ru(k)e+Rk−1a

z(k)√
u(k)
z(k)σω

)]
∀k ∈ {3, . . . , T − t}

where z(k) = ∑k−1
i=0 (1 + r)2i and u(k) = ∑k−2

i=0 (1 + r)2i.
A comparison from this approximation method to Monte Carlo simulations shows that
the main drawback of this procedure is to potentially over estimate the hazard rates for
large k by an order of magnitude of about one to two percentage points. The impact
on the survival function and distribution of attention length is however negligible as the
proportion of agents who encounters a large k is small. We, therefore, conclude that
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this approximation is well-suited for the calibration used in the paper since it leads to
an average inattention length of 4 periods. More importantly, this approximation is only
used for the computation of the hazard rates in Figure 1, to report an average inattention
length, and as a first guess when iterating for the numerical computation of the stationary
distribution a?(e).

Appendix H. Extension with perfect information when attentive

This appendix presents and solves the extension with perfect information upon being
attentive used to illustrate the potential distribution of expectation revisions in Section
3.3.

Appendix H.1. Problem statement and solution

Problem extension: Consider the consumer problem given in (3) but now assume that
the consumer can perfectly observe the true permanent income st when attentive. The
information structure at the attention choice is unaffected.

The consumption policy is unaffected. The nestedness property of the information
structure is unaffected as the consumption choices are observable at the attention choice
so that the true state st can be retrieved from the latent information set at the beginning
of period t + 1 (i.e. before making a new attention choice). Equation (A.3) is also un-
affected. The rest of the demonstration of Lemma 1 in Appendix A.1 then continues to
hold. Thus, the optimal consumption policy is still the certainty equivalent one. In the
following, we consider the infinite horizon limit and use the fact that the consumption
policy ft(.) converges to a stationary solution (Proposition 1).

Kalman filter at the attention choice. Applying the tower property of conditional
expectations, the estimator at the attention choice must minimize a discounted variance
(as before). We can, however, not focus on situations where the the Kalman filter is
always at its steady state variance as the perfect observation of st systematically disturbs
the system. This would require to account for the potential distortion implied by the
discounting term for the optimal estimation problem. For simplicity, and to remain as
close as possible to the solution of the main problem, we consider that the expectation at
the attention choice remains the linear least-squares estimator, that is, the Kalman filter.

Given an initial posterior variance p−t−1, the prior variance at time t is p+
t = (1 +

r)2p−t−1 +σ2
ζ , the Kalman gain K(p+

t ) = p+
t (σ2

ϑ + p+
t )−1. The posterior variance at the end

of period t however depends on whether or not the consumer was attentive. If she wasn’t,
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then it follows from the standard Kalman dynamics and we have p−t = (1 − K(p+
t ))p+

t .
On the other end, she perfectly observed the state st if she was attentive. Because at time
t+1 the state st is measurable from the information at the attention choice It+1 (because
ct is observable), then the uncertainty conveyed through the posterior variance vanishes.
Consequently, the dynamics of the prior variance follows from

p+
t+1 = (1− τt)(1 + r)2

(
(1− p+

t (σ2
ϑ + p+

t )−1))p+
t

)
+ σ2

ζ (H.1)

Note that the inattention length t− lt is a sufficient statistic for the evolution of this
state variable. Moreover, the expression for the value function in equation (A.11) is un-
affected.

Consumer’s expectation. We now characterize the optimal attention strategy and the
consumer’s expectations. When attentive the consumer fully observes permanent income.
Thus, we have E[st|It, τt = 1] = st.

When inattentive the consumer’s expectation is given by

E[st|It, τt = 0]︸ ︷︷ ︸
estimate when inattentive

= (1 + r)E[st−1|It−1]− ut−1︸ ︷︷ ︸
update

+E
[
(1 + r)et−1 +K(p+

t )(zt − E[st|It−1])
∣∣∣∣It, τt = 0

]
︸ ︷︷ ︸

corrective term accounting for inattention (≡α(t,.))

and the dynamics of the expectation wedge are given by et = (1 − τt−1)(1 + r)et−1 +
K(p+

t )(zt − E[st|It−1]). It therefore follows an AR(1) process with a reseting at 0 when
the consumer is attentive. Therefore, the only difference with respect to the main model
is that the innovations have a time-varying variance due to the time-varying Kalman gain.

Consequently, the corrective terms write

α(t, .) = E
[
K(p+

t )
t∑

k=lt+1
(1 + r)t−k(zk − E[sk|Ik−1])

∣∣∣∣It, τt = 0
]
−

t−1∑
k=lt+1

(1 + r)t−1−kα(k, .)(H.2)

Importantly, we remark that lt is a sufficient statistic for p+
t (see the discussion on

the Kalman filter at the attention choice). Hence, the corrective terms may again be
expressed as a function of time t and the inattention length lt.

The attention problem is slightly affected in comparison to the main model. The
reason is that now being attentive also lead to a persistent reduction in the posterior
error variance at the attention choice. Using equation (A.12) and realizing that p+

t is a
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state variable that enters the attention problem, this problem writes

min
{τt,α(t,lt)}(0≤t≤T−1,0≤lt<t)

E
[ T−1∑
t=0

βtλτt + (1− τt)βt
(β(1 + r)− 1)2

β(1 + r) (p−t + e2
t )
∣∣∣∣I0

]
(H.3)

s.t. et+1 = (1− τt)(1 + r)et − α(t+ 1, lt+1) +K(p+
t )(zt+1 − E[st+1|It])

p+
t+1 = (1− τt)(1 + r)2

(
(1− p+

t (σ2
ϑ + p+

t )−1))p+
t

)
+ σ2

ζ

lt+1 = τtt+ (1− τt)lt

This is again a standard dynamic problem with perfect state observation at the atten-
tion choice.

Optimal attention policy. We again assume that the corrective terms are zero. Further-
more, we again see that if the attention policy takes the form a of symmetric inattention
region with respect to et (for a given inattention length), then equation (H.2) again implies
that the corrective terms are indeed zero.

A notable feature of the state p+
t+1 dynamics is that it converges to a steady state

posterior error variance as the inattention length t − lt increases. Because this state is
the only term in the objective function that depends on the inattention length, it implies
that the attention policy also converges as the inattention length increases. Also recalling
that the inattention length t− lt is a sufficient statistic for p+

t+1, the attention policy may
only depend on two inputs: the expectation wedge et and the inattention length.

Consequently, denoting by dt the inattention length at time t and p+(dt) the posterior
error variance as a function of d, the attention problem writes in its Bellman form

J(et, dt) = min
τt∈{0,1}

(1− τt)
(β(1 + r)− 1)2

β(1 + r)
(
p−(dt) + e2

t

)
+ τtλ+ βE[J(et+1, dt+1)|It](H.4)

s.t. et+1 = (1− τt)(1 + r)et + σ(dt+1)ωt+1

dt+1 = (1− τt)dt + 1

where ωt+1 ∼ N (0, 1) and σ(dt+1)2 = K(p+(dt+1))(σ2
ϑ + p+(dt+1)).

This problem is solved numerically using a value iteration algorithm (see below for a
discussion). Nevertheless, two characteristics of the solution that are already apparent are
worth being emphasized. First, the dependence on the inattention length dt vanishes as
the inattention length increases. This is because when the consumer remains inattentive
for a long time, then the latent Kalman filter converges to its steady state. Therefore, for
large dt, the behavior of the solution resembles the one from the main problem without
perfect state observation upon being attentive. We can use this observation to show that
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the solution again takes the form of a symmetric inattention region with respect to the
expectation wedges et and thresholds ±π(dt). These thresholds converge to some fixed
value as dt increases.

Second, when the information at the attention choice is low enough (i.e. the precision
of the signals small enough), then it can be optimal to be attentive after a given (finite)
inattention length. Such maximum inattention length exists whenever p−(∞) >

[
λ +

βE[J(et+1, 1)|It]
]

β(1+r)
(β(1+r)−1)2 where p−(∞) denotes the steady state posterior variance of

the latent Kalman filter.

Appendix H.2. Numerical simulations

Value function iteration. The solution is computed as follows. Gaussian integra-
tions rely on Gauss-Hermite quadrature and we use a fixed grid for et with 700 equally
spaced points. We first guess a maximum inattention length d0

max and compute the
predetermined variables related to the latent Kalman filter. We then make a guess on
the value function J0,0(et, dt) and deduce the expected value function of being atten-
tive Ju0,0 = λ + βE[J0,0(et+1, 1)|It]. We then iterate backward from d0

max to d = 1
to find the optimal thresholds π(d) and derive J1,0(et, dt) and Ju1,0. We iterate un-
til ||Jn+1,0(et, dt) − Jn,0(et, dt)||∞ is smaller than a given tolerance. We then increase
d1
max = d0

max + 10 and restart the iteration over J0,1(et, dt) using Jn+1,0(et, dt) as a first
guess. We iterate on djmax until ||Jun+1,j+1−Jun′+1,j||∞ is smaller than a given tolerance.

Inattention regions. Figure H.9 reports the inattention regions associated to the dis-
tributions of revisions reported in Panels B and C of Figure 2 in the main text. We use
the benchmark calibration for the income process and consumption parameters. In both
cases, the cost λ is set to match an average inattention length equal to 4 periods. In Panel
B the precision of the signals is the same as in the benchmark calibration. In Panel C,
the precision is much smaller.

Distributions of revisions. The distributions of revisions reported in Panels B and
C of Figure 2 in the main text are then computed from Monte Carlo simulations. We
simulate 400 times the dynamics of et during 1,500 periods for the optimal π(d) found
before. These distributions are thus computed on 150,000 points (on average). We rely
on kernel distribution estimations (Gaussian for the revisions, Epanechnikov for the et).
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Figure H.9: Inattention regions for the extension with full-information when attentive

Note: Inattention regions (between the two lines) for two calibrations of the extended model with full-information upon being
attentive. The calibrated average inattention length and consumption problem parameters are the same across panels. Values
are normalized by the standard deviation of the innovation to permanent income. Panel B – predicted inattention region for the
distribution of revisions reported in Panel B of Figure 2 in the main text. Panel C – Same extension than Panel B but with a
decreased information at the attention choice.

Appendix I. Parameters sensitivity and welfare cost of inattention

As is explained in the main text, consumers are essentially attentive to idiosyncratic
shocks on a quarterly basis. Therefore, we only report results for inattention to aggregate
innovations in the following.

Appendix I.1. Optimal attention: sensitivity to the model parameters

Table I.5 reports the threshold π normalized by the permanent income standard de-
viation. At the benchmark calibration, households update whenever their expectation
wedge et is larger than 1.40 σζ .

Table I.5: Optimal inattentiveness

Benchmark Impact of a 5% decrease
r β ρ σε λ σϑ

π̄ 1.40 1.52 0.68 1.47 1.46 1.38 1.41
d̄ 4.00 4.41 1.92 4.21 4.18 3.91 4.01

Note: Optimal normalized threshold π̄ = π/σζ and implied average duration between up-
dates d̄ in quarters. The first column is for the benchmark calibration. Subsequent columns
evaluate the impact of decreasing one of the parameters by 5% while keeping others constant.

In order to assess how optimal inattentiveness is affected by the model parameters,
Table I.5 displays the change in the normalized threshold and average inattention length
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when one parameter decreases by 5%, keeping the others at the benchmark calibration.
Table I.5 thus provides information on the attention threshold and average inattention
length elasticities. The attention threshold and average length are decreasing in the per-
sistence of innovations ρ and their standard deviation σε. These results are not surprising
as an increase in any of these parameters ultimately rises the ex ante standard deviation
of permanent income, thus making the consumer willing to be relatively more attentive to
changes in permanent income. The effect of the interest rate is unclear a priori. On the
one hand, an increase in r decreases the standard deviation of permanent income, thus
reducing the ex ante uncertainty faced by the consumer. On the other hand, an increase
in r rises the cost of being inattentive today. Simulations indicate that this second effect
dominates. The updating threshold and average duration increase with the discount rate
β. This is because an individual smoothes consumption more when she values tomorrow
more. Therefore, when β increases, the share of permanent income that she consumes
(i.e. the variable L in Lemma 1) decreases and so does the instantaneous cost of misop-
timization. Consequently, she is willing to wait more between two updates on average.
Trivially, the threshold and average inattention length increase when the attention cost λ
increases. Finally, the attention behavior is relatively unaffected by the signal noisiness
σϑ. This is because, as we saw, the consumer relies on a Kalman filter to smoothly incor-
porate new information from noisy signals. Consequently, when these signals are noisier,
the consumer’s optimal strategy is essentially to adjust her estimator with respect to It
from Lemma 2. Hence, she compensates for the decreased precision of the signals by op-
timally adjusting her Kalman gain and anchors even more her latent estimate of st on her
latent prior beliefs. Since we consider a relatively small change in the signal noisiness in
Table I.5, the optimal adjustment in the Kalman gain (almost fully) offsets the increased
uncertainty due to the information loss. The latent posterior is barely affected, and so is
the optimal attention strategy of the consumer.42

Appendix I.2. Welfare decomposition

Taking the infinite horizon version of equation (A.11), the value function at period 0
writes

V0 = E
[
ps̄2

0 + p

1− βσ
2
ζ + L2(1 + βp)

1− β p− +
∞∑
t=0

βt
(
L2(1 + βp)e2

t + λτt

)∣∣∣∣I0

]
(I.1)

42The relative independence of the attention strategy with respect to the signal precision holds locally
given our calibration. This property is not global.
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The above expression provides a straightforward decomposition of the welfare costs from
imperfect information. The first term stands for the expected value function of a consumer
facing a deterministic linear quadratic control problem. Taking the first two terms leads
to the value function of a consumer facing a stochastic control problem with perfect state
observation – that is the standard permanent income model with full-information rational
expectation. The third term measures the welfare cost from the noisy state observation.
Finally, the remaining sum stands for the cost of the information-dependent attention
strategy.

Equation (I.1) is conditional on I0 and therefore imposes that period 0 is an updating
period. To avoid such restriction and consider an initial period that does not rely on
the specifics of the consumer behavior, I instead compute the expected value function
unconditionally on the updating behavior at period 0. Let E[V0(e0)] be this expected
value function. Furthermore, assume that the consumer has initially already lived for a
long time. Accordingly, the pdf associated to e0 is given by the cross-sectional stationary
distribution a?(.) from Proposition ??. Now, realize that et = e0 if e0 ∈ Ξ and zero
otherwise. Consequently, the relevant distribution for et is the transformation of a?(.)
which accounts for the resetting at zero when e is outside the boundaries. Given that∫
ea?(e)de = 0 and denoting σ2

a =
∫
Ξ e

2a?(e)de, we find that E[e2
t ] = σ2

a is time invariante.
Furthermore, let λ̄? ≡

∫
/∈Ξ a

?(e)de be the share of updates at the stationary distribution.
Then, λ∑∞t=1 β

tEa?(.)[τt] = λλ̄?

1−β . Therefore,

Ea?(.)[V0(e0)] = p(s̄2
0 + p−) + p

1− βσ
2
ζ + L2(1 + βp)

1− β (p− + σ2
a) + λλ̄?

1− β (I.2)

Following Cochrane et al. (1989), I use a money metric to measure the welfare cost of
deviating from the full information rational expectation solution. Dividing the expected
welfare loss marginal utility of consumption and converting it to quarterly rates, we get
a welfare cost converted in dollars per period:

WC = r(1− β)−1

2(c̄− ȳ)(1 + r)

[ [β(1 + r)2 − 1]2
β(1 + r) (p− + σ2

a) + λλ̄?
]

(I.3)

The overall welfare cost from costly information processing may therefore be appre-
hended as the sum of three terms: the utility cost from paying λ at each update (updating
cost), the misoptimization cost from being inattentive to signals (latent information cost),
and the misoptimization cost from observing noisy signals instead of perfect information
(noisy information cost).
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Table I.6: Welfare cost of inattention to aggregate income shocks

Coeff. of relative risk aversion 1 2 4 10
Bliss point c̄ $13, 858 $10, 393 $8, 661 $7, 622
Welfare decomposition (¢/quarter) 1.18 2.37 4.74 11.84

Updating cost 0.34 0.68 1.37 3.42
Latent information cost 0.63 1.27 2.54 6.34
Noisy information cost 0.21 0.41 0.83 2.07

Consumption change to update 0.170% 0.169% 0.169% 0.168%

Note: The welfare cost refers to misoptimization cost induced by costly information processing. The coefficient of relative
risk aversion is equal to ȳ/(c̄ − ȳ). The consumption change to update measures the threshold change in perceived con-
sumption that will prompt the consumer to internalize new information at period 0. These results were obtained under the
benchmark calibration for the infinite horizon limit.

Table I.6 reports these welfare costs for different values of the coefficient of relative
risk aversion (CRRA) under the benchmark calibration. The costs induced by costly in-
formation processing are small, even when one considers extremely risk averse consumers.
Decomposing the welfare cost, we find that more than 80% of it is attributable to the
extensive margin of expectation adjustments. When the CRRA is equal to one (resp.
10), the monetary equivalent from paying λ when being attentive is ¢0.34 (resp. 3.42) per
quarter on average. Given that a consumer updates once a year on average, the monetary
equivalent for λ is ¢1.36 (resp. ¢13.68).

Appendix J. AR(2) for the persistence of consumption

In this section, we show that the dynamics of aggregate consumption from the sim-
ulated data in Section 6.1 is better approximated by an AR(2) process when the share
of inattentive consumers is large. Overall, accounting for this more complex dynamics
allows to extend our conclusion that consumption persistence increases with the share of
inattentive consumers to situations where more than 80% of consumers are inattentive.

We amend the Equation (17) to include a further lag

∆Ct+1 = αt+1 + γ1,t+1∆Ct + γ2,t+1∆Ct−1 + βt+1ζ̄t+1 + errort+1 (J.1)

Looking at the R-squared from the AR(1) and AR(2) specifications, it is clear that the
AR(2) performs equivalently for relatively small shares of inattention, while it outperforms
the AR(1) specification when Πt increases. The reason is clear from the top panel in Figure
J.10: as Πt increases, the second lag in consumption growth matters more. A standard
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Figure J.10: Aggregate consumption persistence and inattention (extension with an AR(2))

Note: Rolling regression of Equation (J.1) based on 84,000 simulated data points and a window
of 4,000 observations.

measure of persistence for AR(p) processes is the sum of the autoregressive coefficients.43

As can be seen from the figure, this measure increases monotonically with inattention.

43See the discussion in Dias and Marques (2010) for alternative measures.
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