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Summary

In many forecast evaluation applications, standard tests as well as
tests allowing for time-variation in relative forecast ability build on
heteroskedasticity-and-autocorrelation consistent (HAC) covariance estima-
tors. Yet, the finite-sample performance of these asymptotics is often poor.
“Fixed-b” asymptotics, used to account for long-run variance estimation,
improve finite-sample performance under homoskedasticity, but lose asymp-
totic pivotality under time-varying volatility. Moreover, loss of pivotality due to
time-varying volatility is found in the standard HAC framework in certain cases
as well. We prove a wild bootstrap implementation to restore asymptotically
pivotal inference for the above and new CUSUM- and Cramér-von Mises-based
tests in a fairly general setup, allowing for estimation uncertainty from either a
rolling window or a recursive approach when fixed-b asymptotics are adopted to
achieve good finite-sample performance. We then investigate the (time-varying)
performance of professional forecasters relative to naive no-change and
model-based predictions in real-time. We exploit the Survey of Professional
Forecasters (SPF) database and analyze nowcasts and forecasts at different
horizons for output and inflation. We find that not accounting for time-varying
volatility seriously affects outcomes of tests for equal forecast ability: wild boot-
strap inference typically yields convincing evidence for advantages of the SPF,
while tests using non-robust critical values provide remarkably less. Moreover,
we find significant evidence for time-variation of relative forecast ability, the
advantages of the SPF weakening considerably after the “Great Moderation.”
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1 INTRODUCTION

Forecasting plays a crucial role in economics, finance, and many other disciplines. Policy makers, firms, investors, and
households have various needs for macroeconomic predictions. Many of those are available, for example, from the
IMF and OECD, governmental forecasts like “Teal Book” forecasts from the Federal Reserve, or commercial forecasters
(e.g., Blue Chip Economic Indicators, Data Resources Inc., or the Survey of Professional Forecasters [SPF]). The SPF is
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the most comprehensive database available to assess the performance of professional forecasters. A fundamental question
is then whether SPF forecasts outperform simple (model-based) alternatives, that is, have significantly smaller forecast
error loss differentials on average. For example, Zarnowitz and Braun (1993) reveal that SPF forecasts perform well in
comparison with standard time series models (see also Croushore, 1993; Stark, 2010). With data from 1969 to 2017, we
re-evaluate SPF forecasts for US output growth and GDP deflator inflation using robust inference methods.

This long evaluation period contains subsamples with structural changes mainly due to the “Great Moderation,” but
also during and after the “Great Financial Crisis.” The “Great Moderation” is a period of considerable reduction in
macroeconomic volatility as well as of sharp decline in predictability (Campbell, 2007). The “Great Financial Crisis”
changed volatility, although to a lesser extent than the “Great Moderation,” and yet less is known about its consequences
on predictability. Changing macroeconomic volatility and changing predictability have important implications for fore-
cast evaluation tests. While the first feature typically leads to time-varying volatility (in the sense of possibly unconditional
heteroskedasticity over time) in forecast error loss differentials, the second might imply an instability of their mean.
Ignoring these features may lead to significant size distortions and power losses; see the rich literature on forecasting in
unstable environments (e.g., Coroneo & Iacone, 2020; Giacomini & Rossi, 2010; Rossi, 2013).

Here, we discuss the Diebold and Mariano (DM, 1995), fluctuation (Giacomini & Rossi, 2010), and new CUSUM
and Cramér-von Mises tests from the perspective of time-variation, in particular time-varying volatility. While the DM
test focuses on comparisons in stable environments, the latter three statistics capture time-varying relative forecast per-
formance explicitly. The fluctuation, CUSUM, and Cramér-von Mises statistics are however generally not robust to
time-varying volatility, as their limiting null distributions depend on limit processes for partial sums, which do not
converge to standard Wiener processes under time-varying volatility (cf. Section 2.2).

Moreover, we conduct the discussion in the “fixed-b” paradigm as pioneered by Kiefer and Vogelsang (2005). This
paradigm goes beyond the standard heteroskedasticity and autocorrelation consistent (HAC) framework (see the seminal
contributions of Andrews, 1991; Newey & West, 1987), in which, for example, Diebold and Mariano (1995) and Giacomini
and Rossi (2010) also derive their limiting distributions for the cited test statistics. HAC permits to use critical values
from standard distributions, like the 𝜒2 or standard normal. These asymptotic distributions, however, turn out to be
rather poor approximations to actual finite-sample distributions. Hence, substantial size distortions arise in practice. In
particular, test results turn out to be sensitive to the choice of bandwidth B and kernel k employed for long-run variance
estimation. The poor performance of HAC's asymptotic approximation can be explained by the “small-b” requirement
that a vanishing fraction b ∶= B∕P → 0 of the number of observations P be used for estimating autocovariances, while
of course b > 0 in finite-samples. To tackle this issue, Kiefer et al. (2000) and Kiefer and Vogelsang (2002a, 2002b, 2005)
propose “fixed-b” asymptotics, which do not assume that b → 0. This leads to nonstandard distributions (reviewed in
Section 2). Conveniently and unlike in the standard small-b HAC framework, the new distributions reflect the choice of
B and k even in the limit. The above papers convincingly demonstrate that the new distributions provide, in the absence
of time-varying variances, substantially better approximations to actual finite-sample distributions. For these reasons,
Choi and Kiefer (2010) advocate the use of Diebold and Mariano (1995) tests with fixed-b critical values; see also Li and
Patton (2018). However, fixed-b critical values rely too on asymptotics for partial sums, which are affected by time-varying
volatility, such that the fixed-b based Diebold and Mariano (1995) test then lacks pivotality, too.

Our main theoretical contribution is then to develop time-varying volatility-robust wild bootstrap versions of DM,
fluctuation (Giacomini & Rossi, 2010), and the new CUSUM and Cramér-von Mises statistics under the fixed-b paradigm.
We allow for parameter estimation error (West, 1996) in estimated non-nested forecast models (such that one may, as we
shall occasionally do, also refer to the DM statistic as a Diebold-Mariano-West statistic) and cover both rolling window
and recursive estimation for a fairly general nonlinear GMM setup.

In more detail, Section 2 rigorously shows time-varying variances to affect fixed-b limiting distributions of all the
above four statistics (discussed in more detail in Section 2.1) and thus to lead to a loss of asymptotic pivotality (see also
Müller, 2014, p. 314). This actually emphasizes a strength of the fixed-b approach, as it implies that the variability of the
variances—influencing finite-sample behavior—is reflected in the limiting distribution. It does, however, come at the cost
of yet different critical values. Such time-varying variances are pervasive in applied work in general and in our empirical
application in Section 3 specifically.1

1Indeed, Groen et al. (2013) find variance changes to be important for inflation forecasting. More generally, time-varying volatility is present in many
macroeconomic (e.g., Clark & Ravazzolo, 2015; Justiniano & Primiceri, 2008; Sensier & van Dijk, 2004; Stock & Watson, 2002) and financial (e.g., Amado
& Teräsvirta, 2013; Guidolin & Timmermann, 2006; Rapach & Strauss, 2008) series such as economic growth, inflation, and excess returns.
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Adopting the parameter estimation framework of West (1996) (see Section 2.2), we characterize the resulting additional
terms affecting the fixed-b distribution of the discussed tests for a class of generic nonlinear GMM estimators. We then
develop a wild bootstrap correction (Section 2.3) replicating these features of the asymptotic distribution and establish its
asymptotic validity. An appendix provides numerical results indicating considerable size distortions, due to time-varying
volatility, resulting from using the non-bootstrapped conventional asymptotic critical values even in the limit. At the same
time, the proposed bootstrap is shown to work well.

Section 3 compares the predictive ability of SPF forecasts for output and inflation to no-change and model-based
approaches based on rolling window and recursive estimation. We focus on nowcasts and one-quarter and 1-year ahead
forecasts and evaluate these by considering the first and the final release of data. Overall, we find forecast error loss dif-
ferentials to exhibit substantial heteroskedasticity. This has a direct impact on test decisions when comparing outcomes
of traditional and our new robust tests: While the bootstrap provides strong evidence for the superiority of SPF fore-
casts (especially for nowcasts), there are notably fewer and weaker rejections when using asymptotic critical values. Our
findings strongly suggest that SPF forecasts perform better early in the sample, but also that this advantage shrank con-
siderably in the 1980s, leading to equal predictive ability starting in the mid-1980s. There are some signs of recoveries of
forecast superiority around 2000 for GDP deflator inflation. We discuss our findings in relation to the literature on SPF
accuracy, in general as well as with emphasis on the loss in relative predictability related to the “Great Moderation.”

In recent related work, Coroneo and Iacone (2020) study the use of the full-sample Diebold and Mariano (1995) statis-
tic  DM for unconditional predictive ability testing. They adopt the framework of Giacomini and White (2006); that is,
they work with observed loss differentials—estimated from rolling forecasts—directly and hence do not explicitly model
effects of parameter estimation in the limiting distributions as we do in our nonlinear GMM setup. Next to an applica-
tion of fixed-b inference using the Bartlett kernel, Coroneo and Iacone (2020) use an alternative weighted periodogram
estimate of the long-run variance with associated “fixed-m” asymptotics to improve the finite-sample performance of
 DM . Additionally, they compare the effectiveness of these testing approaches to a stationary block bootstrap (Politis &
Romano, 1994). Their fixed-b and fixed-m approaches rule out time-varying volatility.2 Under time-varying volatility, as is
also present in, for example, their empirical applications to the SPF, Coroneo and Iacone (2020) suggest to split the sam-
ple into subsamples for which an assumption of constant variance is more credible and hence would allow for the use
of standard fixed-b or fixed-m asymptotics. Sometimes, economic considerations (e.g., the “Great Moderation”) may pro-
vide useful guidance about suitable splits of the whole sample. However, there are several problems with ad hoc choices
regarding selected sample splits. These issues touch upon the unknown existence, number and locations of break points
see, for example, Rossi and Sekhposyan (2016). Our proposed tests do not require the researcher to possess such knowl-
edge. Section 4 concludes. A series of appendices collects proofs (unless indicated otherwise in the main text), other
derivations, simulation results and further empirical results.

2 FIXED-b INFERENCE UNDER TIME-VARYING VOLATILITY

2.1 Hypotheses and tests

We test the null of equal predictive ability of two competing forecasts for a target series zt, either generated by models
or obtained from surveys. We shall not assume a specific loss function but work with generic loss differentials directly
(Diebold & Mariano, 1995),

𝑦t = t
(

zt+h, 𝑓1,t
)
− t

(
zt+h, 𝑓2,t

)
. (1)

Here, 𝑓i,t, i = 1, 2, denote the competing h-step ahead forecasts for time t + h and t(u1,u2) the loss function relevant
at time t for horizon h. Typically, one focuses on one horizon h at a time, and we, therefore avoid any explicit dependence
of 𝑓i,t and t on h in the following.

The forecasts 𝑓i,t depend on various predictors (including, e.g., zt and lags of zt) in the model-based case, gathered in the
vector xi,t, and on parameters of a model, say 𝜽i ∈ RMi . Sometimes, 𝜽i is known, and we write 𝑓i,t = 𝑓i

(
xi,t,𝜽i

)
as “ideal

forecasts.”3 In practice, however, parameters of forecast models are typically unknown, and one uses 𝑓 r
i,t = 𝑓i

(
xi,t, �̂�

r
i,t

)
.

2The sampling properties of the periodogram also depend on time-varying volatility (see, e.g., Demetrescu & Sibbertsen, 2016).
3This includes cases such as driftless random-walk forecasts that do not require parameter estimation.
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The notation �̂�
r
i,t emphasizes that one can update the estimators over time, either in a rolling (r = rol) or a recursive

(r = rec) fashion.
Time-variation in the loss differentials (1) may arise for a variety of reasons. The most obvious are time-varying features

in the series zt+h and the forecasts 𝑓i,t, but changes in the loss function (such as different weights attached to forecast
errors at different times) may also play a role. Less apparent but potentially no less important is the effect of parameter
estimation, 𝑓 r

i,t − 𝑓i,t; see Section 2.2.
We focus on tests of unconditional (cf. Remark 6 for alternative cases) equal predictive accuracy for all t. Hence, the

null of interest is that of a zero loss differential at each point in time (Giacomini & Rossi, 2010)

H0 ∶ E (𝑦t) ≡ 𝜇t = 0∀t,

extending the pair of hypotheses of “average” equal versus unequal predictive ability as pioneered by Diebold and
Mariano (1995). One may also consider one-sided alternatives (cf., e.g., Remark 3). Imposing constancy of𝜇t has important
consequences: As pointed out by Giacomini and Rossi (2010), one can expect some loss of power and reduced inter-
pretability of rejections by tests based on falsely assuming a (time-)homogenous alternative. We follow the seminal work
of Giacomini and Rossi (2010) and allow for time-variation in 𝜇t under the alternative (e.g., as a consequence of forecast
breakdowns or other forms of structural instabilities in the relative predictive performance).

To accommodate parameter estimation, we follow closely the setup pioneered by West (1996). There are R preliminary
observations used to obtain estimates �̂�1,R and �̂�2,R. These are used to set up the forecasts 𝑓1,R and 𝑓2,R, which are compared
with zR+h. Then, for the rolling window approach, one estimates the parameters using observations t = 2, … ,R+1 (result-
ing in �̂�

rol
i,R+1), while the estimation sample is expanded by one observation for the recursive approach (resulting in �̂�

rec
i,R+1).

The forecast comparison is then conducted for t = R, until t = R + P − 1. Here, P denotes the number of out-of-sample
observations, zR+h, … , zR+P−1+h, which are available for forecast comparison together with 𝑓i,R, … , 𝑓i,R+P−1. According
to West (1996), R and P should go to infinity jointly, with P∕R → 𝜋 > 0 to ensure that the estimation effect is reflected
in the asymptotics.4 To fix ideas, we focus on the class of (possibly overidentified) GMM estimators with at least as many
moment conditions Ni as parameters Mi. Like in West (1996), pseudo-true values 𝜽i are taken to exist, such that, as the
sample size grows, one may write �̂�

r
i,t

p
→ 𝜽i ∀ t ≥ R, for r ∈ {rol, rec}. Section 2.2 states precise assumptions on the

estimators. The observed forecast losses are then given by t

(
zt+h, 𝑓

r
i,t

) ≡ t

(
zt+h, 𝑓i

(
xi,t, �̂�

r
i,t

))
; so one uses

�̂�r
t = t

(
zt+h, 𝑓

r
1,t
)
− t

(
zt+h, 𝑓

r
2,t
)
, t = R, … ,R + P − 1, (2)

for testing rather than the unobserved 𝑦t.
Testing the null restriction E(𝑦t) = 0 under the assumption of (time-)homogeneity may be done via a

Diebold-Mariano-West Wald-type statistic building on �̂�r
t (Diebold & Mariano, 1995; West, 1996). Concretely, let

 DM = 1
P

(∑R+P−1
t=R �̂�r

t

)2

Ω̂
, (3)

where Ω̂ is a suitable estimator of the relevant long-run variance. Estimation of Ω̂ is discussed in more detail below.
Considering heterogeneity, the first method used here to test𝜇t = 0 against𝜇t ≠ 0 without imposing constant expectations
is the fluctuations test of Giacomini and Rossi (2010). With Ω̂ based on all P pseudo out-of-sample observations available,5

consider

4By considering the contribution of estimation uncertainty, our framework therefore focuses on (adopting the taxonomy of Giacomini & Rossi, 2010)
comparing forecasting models (and, in so doing, on non-nested models) rather than comparing forecasting methods, as in, e.g., Giacomini and
White (2006), where the losses depend on parameters estimated in sample using so-called limited-memory estimators.
5We hence follow Giacomini and Rossi (2010) and focus on a full-sample estimate of the long-run variance. In a time-varying framework like the present
one, it is, following a suggestion of a referee, natural to also study time-varying estimates Ω̂t of the long-run variance. We investigate this option in our
Monte-Carlo study, but find full-sample estimates to typically perform better, at least in the experiments considered there.
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 F = max
t∈{⌊S∕2⌋+R,… ,P+R−⌊S∕2⌋}

|||||| 1√
SΩ̂

t+⌊S∕2⌋−1∑
𝑗=t−⌊S∕2⌋�̂�

r
𝑗

|||||| , S = ⌊𝜈P⌋ with 𝜈 ∈ (0, 1). (4)

We consider two additional statistics to deal with time-varying relative predictive ability, namely, a CUSUM-type and a
Cramér-von Mises functional.6 The CUSUM-type statistic is directly based on the partial sums of �̂�r

t ,
7

 Q = max
R≤t≤R+P−1

√
S2

t

Ω̂P
with St =

t∑
𝑗=R

�̂�r
𝑗 . (5)

The Cramér-von Mises statistic is given by

 C = 1
P2

R+P−1∑
t=R

S2
t

Ω̂
. (6)

Standard regularity conditions assumed, the small-b limiting distribution of  x, x ∈ {DM,F,Q,C} are known under
unconditional homoskedasticity, and can be obtained as particular cases of Proposition 2.2, which deals with the
encompassing case of time-varying volatility.

Let us now take a closer look at the long-run variance estimator. Given suitable choices for the kernel k and the
bandwidth B = ⌊bP⌋(see Andrews, 1991; Newey & West, 1987),

Ω̂ = �̂�0 + 2
P−1∑
𝑗=1

k (𝑗∕B) �̂�𝑗 (7)

is a long-run variance estimator with �̂�𝑗 = P−1 ∑R+P−1
t=|𝑗|+R (𝑦t − �̄�)

(
𝑦t−|𝑗| − �̄�

)
. Regularity conditions assumed, Ω̂ is consistent

for the long-run variance of 𝑦t. Whenever 𝑦t is unobserved, one computes Ω̂ based on �̂�r
t . However, West (1996) shows that,

when parameters need to be estimated, the resulting long-run variance estimator does not standardize the partial sums of
�̂�r

t correctly in general. See theorem 4.1 of West (1996), which also indicates how to explicitly correct the long-run variance
estimator. Yet, we shall not require West's explicit correction here, since the wild bootstrap we use to deal with time-varying
volatility in the fixed-b framework (see Section 2.3, and in particular Step 4 of Algorithm 1) implicitly correctly replicates
the behavior of the test statistics in the limit by constructing bootstrap samples in such a way that they do capture the
effect of estimation error.

Although (cf. Remark 1 ) the small-b asymptotic distributions of the above statistics do not depend on k and b,8 Kiefer
and Vogelsang (2005) argue for  DM (and this extends to  x, x ∈ {F,Q,C}) that finite-sample dependence on tun-
ing parameters translates into poor finite-sample behavior. To alleviate this, Choi and Kiefer (2010) resort to fixed-b
asymptotics for  DM .

However, fixed-b based limiting distributions are affected by time-varying variances, such that one solution immediately
prompts the next problem. Proposition 2.2 contains a formal treatment; see also Demetrescu et al. (2019) and the refer-
ences therein. To illustrate the main issues with such time-varying variances, consider the case of known parameters and
tests based on  DM . To make the dependence of the distribution of  DM on k and b explicit, Kiefer and Vogelsang (2005)
let b ∈ (0, 1] in the limit. Under homoskedasticity, the resulting limiting distribution is free of nuisance parameters (any
scale matrix cancelling out), but is nonstandard. Concretely, Choi and Kiefer (2010) show that

6These appear to be more popular in the statistical literature, with prominent econometric exceptions such as the KPSS test for stationarity.
7The (perhaps more familiar) CUSUM statistic for a break in mean involves St∕t−SP∕P. This effectively demeans the series, and such a test is rather for
a break in relative predictive power. We however test for departures from the null 𝜇t = 0 rather than 𝜇t being a constant unknown mean, so centering
St at zero is the natural choice here.
8Since B = ⌊bP⌋, we may switch freely between the use of the bandwidth B and the fraction b; however, since b appears in the limit distributions, we
use it from now on.
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 DM d
→ k,b with k,b = W 2(1)∕Λk,b(W) and

Λk,b(W) ≡
⎧⎪⎨⎪⎩
− ∫ 1

0 ∫ 1
0

1
b2 k′′

(
r−s

b

)
W̄(r)W̄(s)drds for k differentiable twice

2
b

(∫ 1
0 W̄(r)2dr − ∫ 1−b

0 W̄(r + b)W̄(r)dr
)

for the Bartlett kernel,

(8)

where W̄(s) ≡ W(s) − sW(1) with W(s) a standard Wiener process. The distinct feature of fixed-b asymptotics is that k,b

depends on the entire path of the Wiener process W(s) obtained as the limit process of the partial sums of 𝑦t—and not
only on W(1), like for small-b. Since time-varying volatility implies a different limit for partial-sums processes (see, e.g.,
Cavaliere, 2004), this has important consequences for fixed-b when the volatility of 𝑦t varies over time. Such dependence
of the limiting distributions on the variance pattern extends to the case of estimated parameters and forecast instabilities;
see Proposition 2.2.

Remark 1. For b → 0, Λk,b(W)
d
→ 1 and k,b

d
→ 𝜒2

1 (Kiefer & Vogelsang, 2005). In this sense, small-b asymp-
totics are a particular case of fixed-b asymptotics. Interestingly,  DM is asymptotically robust under the null
to time-varying volatility under small-b asymptotics.9 Yet, as mentioned above, the finite-sample quality of the
HAC-based 𝜒2-approximation is poor, so the two extant options presented above effectively force practitioners to
choose for  DM between two problems under possible time-varying volatility: either non-pivotal fixed-b distributions,
or asymptotically robust small-b distributions with poor finite-sample quality.

2.2 Assumptions and limiting behavior

This subsection states our maintained assumptions on the DGP and GMM estimation with Ni ≥ Mi moment conditions,
and provides relevant asymptotic theory.

Assumption 1. Let C̄b
i,a ≡ ∑b

𝑗=a Ci,𝑗,𝜽i
. For t = R, … ,R + P − 1 and r ∈ {rol, rec}, let the following decompositions

hold:

�̂�
r
i,t = 𝜽i +

(
C̄t,′

i, Wi,𝜽i
C̄t

i,
)−1

C̄t,′
i, Wi,𝜽i

t∑
𝑗=

ai,𝑗,𝜽i
+ rr

i,t

where  = t − R + 1 for r = rol and  = 1 for r = rec. Furthermore,

(i) supR<t≤R+P
‖‖‖rr

i,t
‖‖‖ = op

(
R−1∕2) as R,P → ∞ with P∕R → 𝜋,

(ii) Wi,𝜽i
> 0 are deterministic, symmetric full-rank matrices,

(iii) E(ai,t,𝜽i
) = 0 and

(iv) C̄t
i, are full-rank with probability approaching unity as specified in Assumption 4.

This assumption gives the usual linearized representation of a standard nonlinear GMM estimator which minimizes the
suitably weighted quadratic form of sample moment conditions. The condition that E

(
ai,t,𝜽i

)
= 0 at the true 𝜽i follows

from specifying moment conditions for estimating 𝜽i. The Ci,𝑗,𝜽i
are the Jacobians of the moment conditions and the Wi,𝜽i

are the limiting weighting matrices (note that the formulation allows for estimated optimal weights). The dependence on
𝜽i arises from having possibly nonlinear moment conditions which are linearized for the asymptotics.

In the linear GMM case, the Ci,𝑗,𝜽i
are simply the cross-products of instruments and regressors, while the ai,t,𝜽i

are the products of instruments and regression errors, say, 𝜖i,t. Moreover, rr
i,t = 𝟎 in the linear setup. For OLS,

of course, regressors serve as instruments and weight matrices cancel out. We thus simply have that �̂�
rol
i,t = 𝜽i +

9 The explanation is that the full-sample sum in the numerator of the  DM converges upon normalization to a normal distribution even under
time-varying volatility, while the long-run variance estimator converges under small-b to the average long-run variance of the loss differentials as
required for robustness (see Cavaliere, 2004).
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(∑t
𝑗=t−R+1 x𝑗,tx′

𝑗,t

)−1 ∑t
𝑗=t−R+1 xi,t𝜖i,t (and analogously for �̂�

rec
i,t ). Appendix S1 provides further details for the important

special case of a linear regression.
In line with the literature (again, see West, 1996), we assume the loss and forecast functions to be smooth enough to

allow for an evaluation of the impact of the estimation noise. The assumption covers leading loss functions such as squared
error loss as well as generic forecast functions, (cf. again Appendix S1 for a specific example). The gradient characterizing
the impact of changes in the parameters on the loss is

di(𝑓, t) = 𝜕t

𝜕u2

||||u1=zt+h
u2=𝑓

𝜕𝑓i

𝜕𝜽

|||| xi,t

𝜽=t

, (9)

and we assume it to be uniformly continuous in the following sense.

Assumption 2. There exists 0 < 𝜖 < 1∕2 such that, for the neighborhood ΦP = ×i=1,2
{
�̃�i ∶ ‖‖�̃�i − 𝜽i‖‖ < CP−1∕2+𝜖,

C > 0} of
(
𝜽′

1;𝜽
′
2
)′, it holds as R,P → ∞ with P∕R → 𝜋 that

sup
( ̃𝜽

′

1,
̃𝜽
′

2)′∈ΦP;t=R,… ,P+R−1

‖‖di(𝑓i,t, �̃�i) − di(𝑓i,t,𝜽i)‖‖ p
→ 0

where 𝑓i,t = 𝑓i
(

xi,t, �̃�i
)
, i = 1, 2.

As a consequence, we may write

�̂�r
t = 𝑦t +

2∑
i=1

(−1)i+1d′
i(𝑓i,t,𝜽i) ·

(
�̂�

r
i,t − 𝜽i

)
+ op(1), t = R, … ,R + P − 1, (10)

where the op(1) term is negligible uniformly in t (see the proof of Lemma 2.2) and (the transpose of) d′
i(𝑓i,t,𝜽i) is defined

in (9). Assumption 2 serves the same purpose as the corresponding Assumption 1(b) of West (1996) requiring a certain
boundedness of second derivative of the 𝑓i,t. The conditions are useful in this form for dealing with the bootstrap later
on; see in particular the proof of consistency of our proposed bootstrap approach (Proposition 2) below. It is fulfilled, for
example, when the Jacobians of di are bounded on ΦP. To describe the effect of the “estimation noise” terms d′

i(𝑓i,t,𝜽i) ·(
�̂�

r
i,t − 𝜽i

)
, we make the following mild high-level assumption serving to guarantee a law of large numbers for the average

of the derivatives to hold.10

Assumption 3. As P,R → ∞ with P∕R → 𝜋, the weak convergence P−1 ∑R+[sP]−1
t=R di(𝑓i,t,𝜽i) ⇒ hi(s), i = 1, 2 holds on

s ∈ [0, 1], where hi are Lipschitz-continuous deterministic vector functions.

To quantify the departures from the standard small-b limits, we specify the behavior of the moment conditions jointly
with that of 𝑦t (and also characterize the limit behavior of the Jacobians of the moment conditions Ci,𝑗,𝜽i

):

Assumption 4. Let 𝝃t =
(

a′
1,t,𝜽1

,a′
2,t,𝜽2

, 𝑦t − 𝜇t

)′
∈ RN1+N2+1 s.t. 𝝃t = G(t∕R)ṽt. Assume that

(i) G(u) is a matrix of piecewise Lipschitz functions, full-rank at all u ∈ [0, 1 + 𝜋],
(ii) ṽt has zero mean and unit long-run covariance, and is L2+𝛿-bounded for some 𝛿 > 0, strictly stationary and

strong mixing with mixing coefficients 𝛼(𝑗) satisfying the summability condition
∑

𝑗≥0𝛼(𝑗)1∕p−1∕(2+𝛿) < ∞ for
some 2 < p < 2 + 𝛿, and

(iii) there exist matrices Ci(u) of deterministic Lipschitz functions, full-rank for all u > 0, such that the weak
convergence R−1 ∑[uR]

t=1 Ci,t,𝜽i
⇒ Ci(u) holds on [0, 1 + 𝜋].

10One could alternatively state slightly more low-level assumptions on average of di(𝑓i,t ,𝜽i) for the full sample t = 1, … ,R + P − 1. However, as can be
seen in (10), one only needs observations at times R, … ,R + P − 1, so that we state our assumption on P−1 ∑R+[sP]−1

t=R di(𝑓i,t ,𝜽i) directly.
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The structure of G is not restricted, since its role is to generate time-varying, symmetric, positive definite (local) long-run
covariance matrices G(t∕R)G′(t∕R) for 𝝃t. Assumption 4 allows for a wide range of patterns of time-varying volatility,
including (possibly multiple) abrupt or smooth changes, as well as periodic patterns of heteroskedasticity. The assumption
of a non-stochastic variance function G(u) can moreover be relaxed, for example, under independence conditions between
G(u) and ṽt. The strong mixing condition is fairly mild, too; it is a typical requirement for CLTs and invariance principles
for dependent sequences and allows, under suitable restrictions, for various forms of, for example, Markov switching or
GARCH models (the surveys of Bradley, 2005, and Lindner, 2009, provide more technical discussions).

Partitioning G conformably with the components of 𝝃t, we note that the off-diagonal blocks induce (long-run) corre-
lation of the moment conditions and the loss differentials, which may therefore be time-varying. Correspondingly, block
diagonality of G implies asymptotic independence of the average moment conditions and the loss differentials, case in
which the time-variation is rather in their marginal covariance matrices. Clearly, the mixing requirement on 𝝃t and the
deterministic limit of the sample averages of the Jacobians of the moment conditions imply short memory, so we do not
allow for unit root behavior of regressors or instruments in the GMM estimation procedure. We obtain from, for example,
Smeekes and Urbain (2014, Lemma 1) the following partial sum behavior:

Lemma 1. Under Assumption 4 with W a N1 + N2 + 1 vector of independent Wiener processes, R−1∕2 ∑[uR]
t=1 𝝃t ⇒

∫ u
0 G(s)dW(s) ≡ (A′

1(u),A′
2(u),A𝑦(u))′ on [0, 1 + 𝜋].

The process ∫ u
0 G(s)dW(s) is Gaussian with independent, zero-mean increments, but not a Brownian motion as its

quadratic variation ∫ s
0 G(r)G′(r)dr is nonlinear whenever G(·) ≠ const. In particular, this can occur due to breaks or

smooth transitions in variances or covariances of 𝝃t. Its components Ai and A𝑦 are simply the limit processes for the partial
sums of the GMM moment conditions and the loss differentials, respectively. We then have the following behavior of the
partial sums of �̂�r

t , r ∈ {rol, rec}, in the evaluation period t = R, … ,R + P − 1.

Lemma 2. Let (s) ≡ (
A𝑦 (1 + s𝜋) − A𝑦(1)

)
∕
√
𝜋, and, for r ∈ {rol, rec}, C̃rol

i (s) ≡ Ci(1 + 𝜋s) − Ci(𝜋s), C̃rec
i (s) ≡

Ci(1 + 𝜋s), Ãrol
i (s) ≡ Ai(1 + 𝜋s) − Ai(𝜋s) and Ãrec

i (s) ≡ Ai(1 + 𝜋s). Under Assumptions 1–4 and the null 𝜇t = 0 ∀t, we
have, for s ∈ [0, 1],

1√
P

R+[sP]−1∑
t=R

�̂�r
t ⇒ (s) +

√
𝜋

2∑
i=1

(−1)i+1 ∫
s

0
Nr′

i (r)(M
r
i )
−1(r)dhi(r) ≡ Br

G,𝜋
(s),

where Mr
i (s) ≡ C̃r′

i (s)Wi,𝜽i
C̃r

i (s) and Nr
i (s) ≡ C̃r′

i (s)Wi,𝜽i
Ãr

i (s).

Proof. See Online Appendix.

Remark 2. As already discussed by West (1996, Sec. 4), there are situations in which the effect of estimation error is
negligible. Lemma 2.2 shows that it is sufficient that hi(s) = 0 for all s, as the weak limit of P−1∕2 ∑R+[sP]

t=R+1 �̂�
r
t then only

depends on the limit process for the loss differential, A𝑦. Verifying whether the condition hi(s) = 𝟎 holds or not in
a particular application requires information beyond the observed forecast errors. A sufficient condition for this to
hold is that 𝜕t

𝜕u2
has zero expectation and is uncorrelated with 𝜕𝑓i

𝜕𝜽
for both i = 1, 2. The first condition (unbiasedness)

is quite mild. The second, however, implies both 𝑓1,t and 𝑓2,t to be rational forecasts. The statistics under study test
for equal predictive accuracy only, so rationality may be quite restrictive. It will, however, at least approximately be
met in an interesting situation: under stationarity and estimation under the relevant loss, their product di

(
𝑓i,t,𝜽i

)
may be close to zero because it represents a f.o.c. for the estimators (following from minimizing the observed loss,∑ (

zt+h; 𝑓i,t(𝜽)
)

w.r.t. 𝜽). See, for example, Appendix S1 for a leading example. The bottom line is that, for all tests
considered here, the estimation effect depends in general on the examined forecasting procedures via 𝜕𝑓i

𝜕𝜽
. In order to

compare forecasts, one therefore requires information regarding their construction, that is, information in addition
to the point forecasts and the actual realizations, see West (1996) again.

Lemma 2.2 confirms that one also recovers the case without estimation error for 𝜋 → 0 (i.e., when “many” prelimi-
nary observations R are available relative to the forecasting periods P), where, again P−1∕2 ∑R+[sP]−1

t=R �̂�t ⇒ (s). At the
same time, for 𝜋 → ∞, the estimation effect dominates.

When the researcher knows that she is in a situation like one of those discussed in this remark, she may simply set
di = 0 in Step 4 of the bootstrap algorithm 1 introduced in the following subsection.
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Since the processes Br
G,𝜋

are not Brownian motions is general, Lemma 2.2 implies non-pivotal null distributions for the
statistics of interest. With Λk,b from (8), we have the following

Proposition 1. Under the assumptions of Lemma 2.2 and the null 𝜇t = 0 ∀t, we have for Br
G,𝜋

, r ∈ {rol, rec},

 DM d
→ (Br

G,𝜋
(1))2∕Λk,b

(
Br

G,𝜋

)
,  F ⇒ sup

s∈[𝜈∕2,1−𝜈∕2]

1
𝜈

||||Br
G,𝜋

(
s + 𝜈

2

)
− Br

G,𝜋

(
s − 𝜈

2

)||||√
Λk,b

(
Br

G,𝜋

)
 Q ⇒ sup

s∈[0,1]

|||Br
G,𝜋

(s)|||√
Λk,b

(
Br

G,𝜋

) ,  C ⇒
1

Λk,b

(
Br

G,𝜋

) ∫
1

0
(Br

G,𝜋
(s))2ds .

Proof. See Online Appendix.

Remark 3. Evidently, the limiting random variables presented in Proposition 2.2 may, together with suitable
critical values (see Section 2.3), also be adopted for one-sided testing whenever the researcher has specific
alternatives in mind. For example, a signed version of (5), maxR≤t≤R+P−1 St∕

√
Ω̂P , together with large quantiles of

sups∈[0,1]Br
G,𝜋

(s)∕
√

Λk,b

(
Br

G,𝜋

)
may be used for right-tailed CUSUM-type tests. See Section 3 for an illustration of

one-sided testing. □

Remark 4. Notwithstanding Remark 1, the limiting distributions of  F ,  Q and  C depend on the entire path of the
processes Br

G,𝜋
via their numerator even when b → 0. Therefore, small-b robustness to time-varying volatility is only

given for  DM in general. □

Given the dependence on time-varying variances in this particular form, a wild bootstrap is a natural candidate to restore
asymptotically valid inference. See, for example, Hansen (2000, p. 106) for an early application of the wild bootstrap to
replicate sampling distributions affected by unconditional heteroskedasticity. We provide implementation details in the
next subsection.

Remark 5. There are alternative ways to deal with time-varying (co)variances, some of which we explore in related
work (Demetrescu et al., 2019). These build (i) on estimating G and using the estimate to time-transform the series so
as to restore homoskedasticity and hence apply standard fixed-b inference or (ii) on using a pretesting approach where,
depending on the outcome of a test of no unconditional heteroskedasticity, either standard or heteroskedasticity robust
fixed-b methods are used. We provide evidence that the wild bootstrap's performance is superior in terms of both size
and power. We therefore focus in a wild bootstrap implementation here.

Remark 6. Tests of equal conditional predictive ability are obtained by leveraging the loss differentials with
a vector wt of K suitable test functions (Giacomini & White, 2006). To cover this case, one may set yt =
wt

(t
(

zt+h, 𝑓1,t
)
− t

(
zt+h, 𝑓2,t

))
and correspondingly test the null H0 ∶ E

(
yt
)
= 0. Appendix S3 contains the details

of a multivariate implementation of tests of equal predictive accuracy. Of course, wt = 1 recovers the unconditional
approach on which we focus here. In any case, conditional tests are of course equally affected by time-varying volatility.

2.3 A wild bootstrap correction

To correct for inherent non-pivotality via the wild bootstrap, the bootstrap scheme must replicate the properties of Br
G,𝜋

, r ∈
{rol, rec}, in the limit. In particular, the wild bootstrap algorithm we propose focuses at replicating the volatility-related
time-varying properties of all involved series. These properties depend, among others, on hi(·), Ci(·), and the joint behavior
of A𝑦(·) and Ai(·). Since Ci(·), Wi and hi(·) are deterministic, this can be achieved by jointly bootstrapping 𝑦t and ai,t.
To do so, one must however resort to estimated quantities, since 𝑦t and especially ai,t are not observed directly (unless
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there is no estimation error, such that 𝑦t is observed and the other quantities do not enter the test statistics at all). While
�̂�r

t , r = {rec, rol}, is a natural estimator for 𝑦t, estimates of ai,t,𝜽i
, Wi,𝜽i

and Ci,t,𝜽i,t
require plugging in estimates of 𝜽i,

leading to Ĉr
i,t, Ŵr

i,t and âr
i,t:

Algorithm 1

1. Compute �̂�r
t from (2) and Ĉr

i,t, Ŵr
i,t and âr

i,t, r = {rec, rol} as follows:

• For rolling window estimation:

Ĉrol
i,t = C

i,t, ̂𝜽
rol

i,R

, Ŵrol
i,t = W

i, ̂𝜽
rol

i,R

, ârol
i,t = a

i,t, ̂𝜽
rol

i,R

, for t = 1, … ,R

Ĉrol
i,t = C

i,t, ̂𝜽
rol

i,t

, Ŵrol
i,t = W

i, ̂𝜽
rol

i,t

, ârol
i,t = a

i,t, ̂𝜽
rol

i,t

, for t = R + 1, … ,R + P − 1.

• For recursive estimation: set �̂�rec
i,t = 𝟎 for t < Ni and compute

Ĉrec
i,t = C

i,t, ̂𝜽
rec

i,t
, Ŵrec

i,t = W
i, ̂𝜽

rec

i,t
, ârec

i,t = a
i,t, ̂𝜽

rec

i,t
, t = 1, … ,R + P − 1.

To save computing time, one may evaluate Ĉr
i,t, Ŵr

i,t and ai,t,· at �̂�r
i,R+P−1.

2. For t = 1, … ,R+P− 1, construct wild bootstrap variates
(

a∗,′
1,t ,a∗,′

2,t , 𝑦
∗
t

)′
as

(
âr,′

1,t, âr,′
2,t, �̂�

r
t

)′
r∗t , where the multipliers

r∗t are an i.i.d.(0,1) sequence, independent of the data, with E
(|r∗t |w) < ∞ ∀w ∈ N. Note that, for t < R, one may

use any values for 𝑦t and �̂�r
t since these do not enter the test statistics  x, x ∈ {DM,F,Q,C}.

3. Construct the bootstrap analogues

�̂�
∗,r
i,t =

( t∑
𝑗=

Ĉr,′
i,𝑗 Ŵr

i,t

t∑
𝑗=

Ĉr
i,𝑗

)−1 t∑
𝑗=

Ĉr,′
i,𝑗 Ŵr

i,t

t∑
𝑗=

a∗
i,𝑗 + �̂�

r
i,R+P

for t = R, … ,R + P − 1, where  = t − R + 1 for r = rol and  = 1 for r = rec.
4. Letting 𝑓

r,∗
i,t = 𝑓i

(
xi,t, �̂�

r,∗
i,t

)
, r ∈ {rol, rec}, construct the bootstrap sample

�̂�
r,∗
t = 𝑦∗t + d′

1(𝑓
r,∗
1,t , �̂�

∗,r
1,t ) ·

(
�̂�
∗,r
1,t − �̂�

r
1,R+P

)
− d′

2(𝑓
r,∗
2,t , �̂�

∗,r
2,t ) ·

(
�̂�
∗,r
2,t − �̂�

r
2,R+P

)

for t = R, … ,R + P − 1.
5. Using the bootstrap sample �̂�

r,∗
t , t = R, … ,R + P − 1, compute the bootstrap analogues  x,∗, x ∈ {DM,F,Q,C}, of

the test statistics (3)-(6).
6. Obtain the quantile(s) qx,∗

1−𝛼, x ∈ {DM,F,Q,C}, of the respective bootstrap distributions.

In practice, the distribution functions of the bootstrap statistics  x,∗ are not known, but can be simulated in the usual
way by repeating Steps 2–5 M times for a reasonably large M to obtain consistent empirical analogues via Monte Carlo
simulation. Typical choices for the distribution of r∗t are the Gaussian, Rademacher, or Mammen (1993) distributions.

Some additional conditions are required for establishing the validity of this bootstrap.
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Assumption 5.

(i) Wi,𝜽i
is continuous in 𝜽i,

(ii) for max{N1,N2} ≤ t ≤ R + P − 1, supt
‖‖‖Ĉr

i,t − Ci,t,𝜽i

‖‖‖ p
→ 0,

(iii) ∃𝛾 > 0 such that supt
‖‖di(𝑓i,t,𝜽i)‖‖ = Op

(
P1∕2−𝛾) and supt

‖‖‖âr
i,t − ai,t,𝜽i

‖‖‖ = Op (P−𝛾 ),
(iv) E

(
ṽtṽ′t

)
= c · IN1+N2+1 with c > 0.

Proposition 2. Under Assumptions 1–5, it holds under the null 𝜇t = 0 ∀t that

P
( x ≥ qx,∗

1−𝛼
)
→ 𝛼, x ∈ {DM,F,Q,C}, as R,P → ∞ with P∕R → 𝜋.

Proof. See Online Appendix.

Remark 7. The additional Assumption 5(i)-(iii) refers essentially to required smoothness of Ĉr
i,t and âr

i,t as functions
of the estimators, and is fulfilled in, for example, the linear GMM case; see, for example, Appendix S1. In a nutshell,
it transfers the smoothness requirements from Assumption 2 to the bootstrap world. Assumption 5(iv) implies the
proposed bootstrap scheme to asymptotically work under the additional condition that E

(
ṽtṽ′t

)
= c · IN1+N2+1, namely

that the covariance and long-run covariance matrices of ṽt are proportional. This is trivially fulfilled in the case with-
out estimation error, and may for example also be side-stepped when there is one factor driving the volatility changes
having the same impact on all components, that is, when G(s) = g(s) · G0 for some constant full-rank matrix G0 and
g(s) a piecewise Lipschitz scalar function. A further slightly more restrictive example of this condition being fulfilled
is given in case of common dynamics. That we require this condition is a consequence of using a plain-vanilla wild
bootstrap in step 2 of the above algorithm, which imposes no serial correlation in the bootstrap error replicates, there-
fore producing equal covariance and long-run covariance matrices (conditional on the data). The condition would
be violated when, for example, the researcher overdifferences the involved series to obtain a reduced-rank long-run
covariance matrix. In such cases, one could for example resort to a sieve wild bootstrap (see, e.g., Cavaliere et al., 2010,
for an implementation in co-integrated models with time-varying volatility) or, in a less parametric vein, to a block
wild bootstrap (see, e.g., Smeekes & Urbain, 2014, who explicitly permit singular long-run covariance matrices) both
of which allow to capture the relevant long-run covariance matrix.

Remark 8. As argued in the proof of Proposition 2, qx,∗
1−𝛼 remains unaffected under local alternatives 𝜇t = R−1∕2𝜇(t∕R)

with 𝜇 a non-zero deterministic Lipschitz function 𝜇(·); see the discussion following Equation (S16) in Appendix S2.
At the same time, the limiting behavior of  x, x ∈ {DM,F,Q,C} can easily be seen to change, so that the bootstrap
tests have nontrivial local power.

Remark 9. The algorithm is easily modified to account for the case where only one of the forecasts involves estimated
parameters, or when the two forecasts resort to different estimation schemes, one rolling and the other recursive.

Remark 10. While the bootstrap from Algorithm 1 is feasible when a researcher possesses all the necessary informa-
tion regarding the construction of the forecast, some external sources (cf. Section 3) only publish point forecasts and
actual realizations. Such information is not sufficient to assess the relative strengths of privately constructed forecast
models. Among others, the covariance of Ai and A𝑦 is often not known to “outsiders,” making it impossible to apply
a suitable bootstrap.

Remark 11. Appendix S4 presents the results of extensive Monte Carlo simulations confirming good finite-sample
performance of the bootstrap versions of all statistics considered in this section.

Remark 12. Multiple forecast comparisons, for example, of the kind used for model confidence sets (Hansen et al.,
2011), may also be implemented using the proposed bootstrap procedure.
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3 EMPIRICAL RESULTS

3.1 The Survey of Professional Forecasters data—summary statistics

The survey started in 1968 (conducted by the American Statistical Association and the National Bureau for Economic
Research) and is administered by the Federal Reserve Bank of Philadelphia since 1990. Participants are asked to predict
main US macroeconomic variables in the middle of each quarter for the current and the following four quarters.
We consider two key variables: output growth (RGDP, “Real Gross National Product/Gross Domestic Product”) and
inflation (PGDP, “Price Index for Gross National Product/Gross Domestic Product”).11

Our sample includes the 1970s with its severe oil price shocks, leading to increases in macroeconomic volatility and
conversely, the “Great Moderation,” lasting until the mid-1980s, which exhibited a sharp decline in volatility and pre-
dictability (see Campbell, 2007). It is well documented that the “Great Moderation” led to enhanced macroeconomic
stability which eased forecasting in general, but also made it more difficult to beat simple time series models (see, e.g.,
Stock & Watson, 2007). Similarly, Groen et al. (2013) find that regime changes in the variance play an important role for
real-time (inflation) forecasting. The sample also covers the “Great Financial Crisis” in 2007/2008. Such a long sample is
interesting as it may be possible to identify different episodes in relative forecast performance.

We consider three horizons, namely, nowcasting (h = 0), one-quarter ahead (h = 1) and 1-year ahead (h = 4) forecasts,
and two vintages (the first and final releases). Macroeconomic data are often revised significantly, see Croushore and
Stark (2001). Faust and Wright (2013) and Stark (2010) discuss and demonstrate the importance of the vintage structure
when evaluating SPF (inflation) forecasts. We compare the SPF to model-based forecasts generated in real-time to enable
a fair comparison with regard to the available information; see also Stark (2010), D'Agostino et al. (2006), and Coroneo
and Iacone (2020).

The dynamic forecast models are economically motivated and include a predictor xt and an autoregressive term: zt =
𝜃0 + 𝜃1xt−1 + 𝜃2zt−1 + et. For output, we use the term spread (in short: TMS), that is, the difference between long-term
bond rates and short-term yields, as a predictor. Important references include Estrella and Hardouvelis (1991) for the term
spread being an important predictor of real output and Giacomini and Rossi (2006) for the instability of its forecasting
performance after the “Great Moderation.” For inflation, we use a Phillips curve-based model (in short: PC), see, for
example, Stock and Watson (1999). Here, xt is the unemployment rate. By using the unemployment rate and an intercept
rather than the unemployment gap, this specification is in line with the assumption of a constant NAIRU. The forecasting
performance of the model and its empirical instability are investigated in, for example, Giacomini and Rossi (2009) and
recently in Perron and Yamamoto (2021).

Real-time data from the Federal Reserve Bank of Philadelphia12 is used to construct rolling window and recursive
forecasts with R = 60. Interest rate data are taken from the updated data set of Welch and Goyal (2008).13 In the following,
we present evaluation results for the first release and rolling window estimation and discuss differences and similarities
for the final release and recursive estimation towards the end of this section.

Figure 1 displays representative mean squared error loss differentials for h = 0 for the full sample, which covers 191
quarterly observations from 1969Q4 to 2017Q2.14 The series reveal that (i) loss differentials are mostly, but not always,
positive, indicating advantages of SPF forecasts, (ii) there is potentially some time-variation in the mean, (iii) there are
striking volatility changes and (iv) there is some mild to intermediate autocorrelation. Appendices S8 and S9 contain
further Figures S33–S37 (S49–S51) for other horizons and releases with similar patterns.

Table 1 provides summary statistics. We report root mean squared error ratios of competing forecasts relative to the SPF,
such that values >1 indicate a better performance of the SPF. In all cases, the SPF appears to outperform its competitors.
However, there is some notable heterogeneity. The SPF is particularly successful at nowcasting (most strongly so for
output). The advantages typically shrink with an increasing forecast horizon. However, the term spread model (TMS) is
a strong competitor at h = 4, while Phillips curve-based (PC) forecasts are less competitive.

11The data files are located at https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/data-files/
error-statistics. Appendix S10 presents some results indicating robustness of our findings when investigating unemployment and housing starts, which
are also available from the SPF.
12The data files are located at https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files.
13See Amit Goyal's website http://www.hec.unil.ch/agoyal/. In the notation of Welch and Goyal (2008 p. 1459), the ten-year long-term government bond
yield and the three-month Treasury bill secondary market rate are labeled as “lty” and “tbl,” respectively.
14Some series contain a few missing values. Details on imputation are provided in Appendix S7. As there are relatively many missing values in the first
year of the survey, we decided to start in 1969Q4.
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FIGURE 1 Loss differential series for output
growth (RGDP) and GDP deflator inflation
(PGDP) of competing forecasts against the SPF
(NC: no-change; TMS: term spread; PC: Phillips
curve). Nowcasts are evaluated against the first
release for mean squared error loss

TABLE 1 Summary statistics for output growth (RGDP) and GDP deflator inflation (PGDP) using the first data release

Statistic RelLoss SD(I) SD(II) SD(III) AC(1)
Sample 1969–2017 1969–1984 1985–2006 2007–2017 1969–2017

RGDP - NC/SPF h = 0 1.69 28.67 4.95 6.02 0.24
h = 1 1.51 60.61 5.49 14.02 0.14
h = 4 1.40 55.26 8.17 15.76 0.44

RGDP - TMS/SPF h = 0 1.52 19.33 4.10 10.39 0.21
h = 1 1.16 16.49 5.42 8.21 0.22
h = 4 1.06 20.27 3.99 1.99 0.04

PGDP - NC/SPF h = 0 1.38 5.88 1.68 2.41 0.08
h = 1 1.23 9.82 2.01 1.91 0.26
h = 4 1.12 16.62 2.33 2.57 0.29

PGDP - PC/SPF h = 0 1.32 5.75 1.43 1.99 -0.02
h = 1 1.26 11.00 1.65 1.83 0.25
h = 4 1.29 22.55 2.41 2.58 0.41

Note: RelLoss denotes the relative root mean squared error loss of the competing forecasts against the SPF (NC: no-change; TMS: term
spread; PC: Phillips curve); SD(·) labels the standard deviation of the loss differentials in the subsample I (1969–1984), II (1985–2006),
or III (2007–2017). AC(1) denotes the empirical first-order autocorrelation coefficient of the loss differential series.

Unconditional standard deviations for the subsamples I (1969Q4–1984Q4, 61 observations), II (1985Q1–2006Q4, 88
observations) and III (2007Q1–2017Q2, 42 observations) indicate strong overall changes in volatility. This underlines the
need for suitable inferential procedures. Structural changes associated with the “Great Moderation” are strongest for real
GDP growth (with many break factors being even smaller than 1/5). For output, volatility of loss differentials increased
a bit during the “Great Financial Crisis” (relative to the “Great Moderation”), while it stays fairly constant for inflation.
Finally, the empirical first-order autocorrelation coefficient indicates a mild to intermediate degree of serial correlation
in the loss differentials.
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3.2 Tests for equal predictive ability and time-variation

For all statistics  x, x ∈ {DM,F,Q,C}, we consider b ∈ {0, 0.1, … , 1} for the fixed-b bandwidth parameter. We thus
include a classic Newey-West type statistic (b = 0, see also Appendix S3, fn. 24) and also the fixed-b versions proposed by
Choi and Kiefer (2010). We focus on the Bartlett kernel (i.e., k(x) = 1 − |x| for |x| < 1 and k(x) = 0 otherwise) due to its
higher power relative to the Quadratic Spectral kernel, where both have similar size (cf. Appendix S4). Test decisions and
their strengths based on asymptotic, non-robust (“asy”) and wild bootstrap (“bs”) critical values are compared.

No-change forecasts do not involve parameter estimation while model-based forecasts generally do. For the SPF, the
estimation error is not available and therefore, no correction of estimation error is applied, see the discussion in Giacomini
and Rossi (2010) and Rossi and Sekhposyan (2016). Therefore, we employ the bootstrap algorithm given in Algorithm
1 with the additional restrictions from Remarks 2 and 9 using M = 5000 replications, see also Appendix S1 for further
details.

First, we test for equal predictive ability using the full-sample statistic  DM . Table 2 reports rejections at significance
levels of 1%, 5%, and 10%. These are labeled as “***”, “**”, and “*” to ease the presentation of the many results and to
conserve space by not reporting six different critical values for each statistic. We consider one-sided tests against the
alternative that the SPF outperforms the benchmark.

Starting with output growth (RGDP) and no-change (NC) forecasts, the bootstrap version (subscript “bs”) rejects equal
predictive ability across the full sample in all cases—at least at the nominal ten percent level, but mostly at the 5% level or
lower. This finding holds for all horizons h and all values of the bandwidth-parameter b. It thus clearly suggests that the

TABLE 2 Test decisions for the full-sample  DM-statistic for equal predictive ability of competing forecasts against the SPF (NC:
no-change; TMS: term spread; PC: Phillips curve)—either based on wild bootstrap (“bs”) or asymptotic critical values (“asy”)

RGDP - NC/SPF RGDP - TMS/SPF
h = 0 h = 1 h = 4 h = 0 h = 1 h = 4

b  DM
bs

 DM
asy  DM

bs
 DM

asy  DM
bs

 DM
asy  DM

bs
 DM

asy  DM
bs

 DM
asy  DM

bs
 DM

asy

0 *** *** *** *** *** *** *** *** ** ** * *
0.1 *** *** *** *** *** ** *** *** ** * * *
0.2 *** ** *** ** *** ** *** ** ** ** ** *
0.3 *** * *** * ** * ** ** ** ** ** *
0.4 *** * *** * ** * ** ** ** ** **
0.5 ** * *** * ** * ** * ** ** **
0.6 ** * *** * ** * ** * ** ** **
0.7 ** * *** * * ** * ** ** *
0.8 ** * *** * * ** * ** ** *
0.9 ** * *** * * ** * ** ** *
1 ** * *** * * ** * ** ** *

PGDP - NC/SPF PGDP - PC/SPF
h = 0 h = 1 h = 4 h = 0 h = 1 h = 4

b  DM
bs

 DM
asy  DM

bs
 DM

asy  DM
bs

 DM
asy  DM

bs
 DM

asy  DM
bs

 DM
asy  DM

bs
 DM

asy

0 *** *** *** ** *** *** *** *** *** **
0.1 *** *** *** *** ** * *** *** *** *** *** *
0.2 *** *** *** *** ** * *** ** *** ** *** *
0.3 *** ** *** *** ** * *** ** *** ** *** *
0.4 *** ** *** ** ** * ** * *** ** *** *
0.5 *** ** *** ** ** ** * *** ** ***
0.6 *** ** *** ** ** ** * *** ** ***
0.7 *** ** *** ** ** ** * *** * ***
0.8 *** ** *** ** ** ** * *** ** ***
0.9 *** ** *** ** ** ** * *** ** ***
1 *** ** *** ** ** ** * *** ** ***

Note: Nowcasts (h = 0), one-quarter (h = 1) and 1-year ahead forecasts (h = 4) are evaluated against the first data release. Evaluation sample runs
from 1969Q4 to 2017Q2.
*Significance level at 10%.
**Significance level at 5%.
***Significance level at 1%.
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SPF significantly outperforms its competitors over the full sample. On the contrary, asymptotic critical values produce far
weaker and fewer rejections. Results for the term spread model (TMS) are quite similar.

For GDP deflator inflation (PGDP), bootstrap inference leads to rejections at the 1% level in all cases for the shortest
horizons h = 0 and h = 1. Relying on asymptotic critical values mainly produces rejections at the 5% level. We find a
clear difference in test decisions for 1-year ahead forecasts (h = 4): While the bootstrap detects significant differences,
asymptotic inference hardly indicates any significant deviation from equal predictive ability. The differences between the
outcomes for testing the superiority of the SPF over no-change or Phillips-curve based model forecasts are quite small.

In sum, the volatility-robust full sample results convincingly indicate the usefulness of the SPF for both variables,
especially at short horizons. We next consider tests suitable for detecting time-variation in the relative forecast perfor-
mance. To this end, we proceed in two steps. First, we apply the  F (with 𝜈 = 0.3 as suggested in Giacomini & Rossi, 2010),
 Q and  C statistics presented in Section 2 as two-sided versions to test for time-variation in both directions and to ensure
that we do not overlook potential periods in which the SPF is outperformed by the benchmarks. It may occur that the SPF
is outperformed in some periods and that this feature is reversed in another part of the sample. Second, we investigate
the time-varying nature of relative predictive ability of the SPF further by studying the time-varying components of the
fluctuation and the CUSUM statistic and consider signed versions of the aforementioned test statistics with one-sided (in
favor of the SPF) critical values, see Remark 3. The time-varying components are in particular the (i) rolling standardized
mean squared error difference and (ii) scaled partial sum of the loss differential to identify different episodes of relative
predictability, if present.

TABLE 3 Test decisions for the time-variation  {Q,C,F}-statistics for time-variation in the predictive ability of competing forecasts against
the SPF (NC: no-change; TMS: term spread; PC: Phillips curve)—either based on wild bootstrap (“bs”) or asymptotic critical values (“asy”)

RGDP - NC/SPF
h = 0 h = 1 h = 4

b 
Q

bs


Q
asy  C

bs
 C

asy  F
bs

 F
asy 

Q
bs


Q

asy  C
bs

 C
asy  F

bs
 F

asy 
Q

bs


Q
asy  C

bs
 C

asy  F
bs

 F
asy

0 *** *** *** *** *** *** *** *** *** *** ** *** *** ** *** *** ** ***
0.1 *** ** *** *** *** *** *** ** *** *** *** *** ** * *** ** ** **
0.2 *** * *** ** ** ** *** * *** ** * * ** ** ** *
0.3 ** ** ** * ** ** * * ** *
0.4 ** ** * ** ** * ** *
0.5 * ** * * ** * *
0.6 * ** * ** *
0.7 * ** * ** *
0.8 ** * ** *
0.9 ** * ** *
1 ** * *

RGDP - TMS/SPF
h = 0 h = 1 h = 4

b 
Q

bs


Q
asy  C

bs
 C

asy  F
bs

 F
asy 

Q
bs


Q

asy  C
bs

 C
asy  F

bs
 F

asy 
Q

bs


Q
asy  C

bs
 C

asy  F
bs

 F
asy

0 *** *** *** *** *** *** ** ** * ** * *
0.1 *** ** *** *** *** *** * * **
0.2 ** * *** ** ** ** * * * ** *** ** ** **
0.3 * ** ** * ** * ** ** * ** * * *
0.4 * ** * ** * ** ** **
0.5 * * * * ** ** **
0.6 * * * * * *
0.7 * * ** ** ** *
0.8 * * ** * *
0.9 * * ** * *
1 * * ** * *

Note: Nowcasts (h = 0), one-quarter (h = 1) and 1-year ahead forecasts (h = 4) are evaluated against the first data release. Evaluation sample runs from
1969Q4 to 2017Q2.
*Significance level at 10%.
**Significance level at 5%.
***Significance level at 1%.
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TABLE 4 Continued from Table 3

PGDP - NC/SPF
h = 0 h = 1 h = 4

b 
Q

bs


Q
asy  C

bs
 C

asy  F
bs

 F
asy 

Q
bs


Q

asy  C
bs

 C
asy  F

bs
 F

asy 
Q

bs


Q
asy  C

bs
 C

asy  F
bs

 F
asy

0 *** *** *** *** *** *** ** * * ** *
0.1 *** *** *** *** *** *** *** *** *** *** *** ***
0.2 *** ** *** *** *** *** *** ** *** *** *** ***
0.3 *** ** *** ** ** ** *** ** *** *** *** ***
0.4 *** ** *** ** ** * *** ** *** ** ** ** *
0.5 *** ** *** ** ** * *** ** *** ** ** ** *
0.6 *** ** *** ** ** * *** ** *** ** ** ** *
0.7 *** ** *** ** ** * *** * *** ** ** ** **
0.8 ** ** *** ** * * *** * *** ** ** ** *
0.9 *** ** *** ** ** * *** * *** ** ** ** *
1 *** ** *** ** ** * *** * *** ** ** ** *

PGDP - PC/SPF
h = 0 h = 1 h = 4

b 
Q

bs


Q
asy  C

bs
 C

asy  F
bs

 F
asy 

Q
bs


Q

asy  C
bs

 C
asy  F

bs
 F

asy 
Q

bs


Q
asy  C

bs
 C

asy  F
bs

 F
asy

0 *** *** *** *** *** *** *** ** ** *** ** ** ** ** **
0.1 *** ** *** *** *** *** *** ** *** *** ** *** ** ** *
0.2 ** * *** ** ** ** *** ** *** ** ** ** * ** *
0.3 ** ** ** * *** * *** ** * ** ** *
0.4 * ** * ** *** ** **
0.5 * ** * ** *** * **
0.6 * ** ** *** * **
0.7 * ** ** *** * **
0.8 ** ** *** * **
0.9 * ** ** *** * **
1 * ** ** *** * **

*Significance level at 10%.
**Significance level at 5%.
***Significance level at 1%.

Tables 3 and 4 report results. Once more, bootstrapped versions of the test statistics provide stronger rejections than
their asymptotic counterparts. Since both  DM (aiming at testing against a constant alternative) and  x, x ∈ {F,Q,C}
(tests allowing for time-varying alternatives) yield quite similar rejections overall, the current results are not clear-cut as
to the nature of the alternative.

Figure 2 reveals a sizable and significant deterioration in nowcast predictability in the early 1980s associated with
the “Great Moderation.” This breakdown is significant and permanent, while the mild recoveries observed for inflation
(versus no-change forecasts only) in the early 2000s are too weak for a rejection. For output growth, the results suggest
that there is no comeback in relative predictive ability of the SPF. Interestingly, relative forecast performance did not
change a lot during the “Great Financial Crisis” even though volatility changed somewhat, but to a much lesser extent
when compared with the “Great Moderation.” Appendix S8 shows that these results also hold for other horizons, see
Figures S38–S39. Figures S43–S45 show the unscaled rolling window mean squared error difference between the SPF and
its competitors. They generally support the previous interpretation and reveal that, at least, no-change forecasts never
significantly outperform the SPF. The CUSUM statistic indicates a breakdown in relative forecast performance as it also
turns significant in the early 1980s, implying that the accumulated changes are large enough for a rejection.15

Our interpretation is that the full sample results are mainly driven by the first part of the sample (until the mid-1980s)
in which the SPF clearly performed better. As the statistics for time-variation further indicate clearly and robustly, the
advantages in relative predictability largely disappear in the mid-1980s. Most of the evidence for time-variation, however,
would not have been detected by a traditional analysis using asymptotic critical values.

15Its behavior at the beginning and end of the sample provides additional information which  F cannot provide due to trimming. Before 1976, there
are signs for time-variation in all series. GDP deflator inflation and output growth apparently exhibit some further time-variation after 2010.
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FIGURE 2 The plots show the signed
time-varying components of the
fluctuation statistic (left axis, solid black
line) and the CUSUM statistic (right
axis, dashed-dotted blue line), see
Equations (4) and (5) and Remark 3.
Horizontal dashed lines are the
corresponding one-sided five percent
critical values for the maximum of the
displayed statistics. Nowcasts are
evaluated against the first release;
b = 0.2, 𝜈 = 0.3

Our results are fairly robust with respect to the vintage (first and final release) and the employed estimation scheme
(rolling and recursive). Starting with the descriptive statistics reported in Tables S8 and S12 (see Appendices S8 and S9),
we observe very similar patterns to the baseline case in Table 1. The loss differentials in Figures S33–S37 and S49–S51
generally reveal strong heteroskedasticity. Regarding the full sample results (Tables S9 and S13), our main conclusions
continue to hold. A notable difference is the case of real output growth when forecasts are evaluated against the final
rather than the first release. Here, we find no more evidence for the superiority of the SPF over the term spread model,
except when looking at nowcasts. For inflation, on the contrary, results are quite robust throughout various settings. These
findings are not affected by the estimation scheme. When looking are tests for time-variation, we obtain very similar
conclusions, see Tables S10–S11 and S14–S15. Figures S46–S48 show rolling averages of loss differentials16 (analogous
to Figure 1); see Figures S40–S42 for the components of the statistics designed to detect time-variation (analogous to
Figure 2).17 In nearly all cases, we find the same pattern of advantages for the SPF in the early part of the sample (prior
to the “Great Moderation”) with a significant decline in the mid-eighties and limited recovery in the 2000s (if at all). An
exception (for one- and four-quarter ahead forecasts) is the recursively estimated term spread model for which the relative
SPF performance improves since the 2000s.

3.3 Discussion of our results in light of the related literature

We now provide a comparison of our findings with those of previous studies on the performance of the SPF. Most of these
use the Diebold and Mariano (1995) test for differences in mean squared error. One strand of the literature deals with
the accuracy of the SPF in general, while a second smaller one focusses on the decline of predictability in connection to
the “Great Moderation.” A comparison is generally complicated by the fact that studies obviously use different variables
(and definitions), benchmarks, vintages, horizons, samples, and so forth. However, two articles, namely, D'Agostino
et al. (2006) and Coroneo and Iacone (2020), are particularly close to the scope of our work.

There is some consensus that the SPF provides accurate forecasts, especially nowcasts, for real output growth and
inflation. Zarnowitz and Braun (1993) and Croushore (1993) (see also references therein) provide early evidence on the

16See Figures S55–S57 for the case of recursively estimated models.
17See Figures S52–S54 for the case of recursively estimated models.
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good performance of SPF forecasts for real GDP and inflation. Ang et al. (2007) find that surveys (including the SPF)
forecast inflation better than macro variables, time series models (including no-change forecasts as advocated by Atkeson
& Ohanian, 2001) and asset markets. They also find that when allowing for time-variation, the SPF dominates throughout
the whole sample. Croushore (2010) finds confirmatory evidence using real-time data.

The advantages of SPF nowcasts has been documented in several influential studies, for example, Giannone et al. (2008).
Liebermann (2014) considers real-time nowcasting for output growth and compares professional forecasters and a
dynamic factor model to simple autoregressive and no-change forecasts. The author finds that gains in forecasting
accuracy are pronounced for h = 0 and decrease in h. For a sample from 1985Q1 to 2007Q4, Stark (2010) similarly finds
that the accuracy of the SPF declines significantly for h > 1 and that the SPF outperforms no-change forecasts.

We now turn to the discussion of D'Agostino et al. (2006) and Coroneo and Iacone (2020). Both use a naive benchmark
(without estimation) under mean squared error loss and deal with time-variation by running tests on subsamples. In
contrast to our tests, theirs are not robust to time-varying volatility and do not exploit the full sample to formally and
endogenously test for time-variation.

Coroneo and Iacone (2020) propose a Diebold and Mariano (1995) statistic with fixed-m asymptotics (cf. the intro-
duction). Their full-sample test has good size under homoskedasticity even in samples of only 40 observations, while
tests using standard small-b-type asymptotics are oversized. Another advantage is the ensured positivity of the estimated
long-run variance which is particularly important in small samples and with relatively long forecast horizons, see e.g.
Harvey et al. (2017). In addition, Coroneo and Iacone (2020) consider a stationary block-bootstrap version of the test and
find it to yield better size than standard asymptotics, again under homoskedasticity, and to be equally powerful as the
fixed-m approach. In a sample ranging from 1987Q1 to 2016Q4, the SPF significantly outperforms a naive random walk
in some cases for real output growth and inflation (as well as unemployment and interest rates). For output growth and
inflation, there is evidence against the null at all horizons except three-quarters ahead. Generally, the evidence is stronger
for shorter horizons.

In a subsample analysis with three blocks of ten years of data, the authors investigate time-variation and find: (i) for
output growth, the SPF provides constantly superior nowcasts in all three subsamples, while the results for other horizons
and subsamples are mixed—overall, the evidence is declining over the subsamples and for horizons beyond one-quarter;
(ii) for inflation, relative advantages of the SPF are mainly observed for their last subsample period from 2007 to 2016
at all horizons (except three-quarters ahead). Thus, our findings only partly corroborate those of Coroneo and Iacone
((2020), tabs. 1 and 2) for these two variables. Unlike Stark (2010) and Coroneo and Iacone (2020), we do not find
that the SPF easily outperforms naive output and inflation forecasts after the “Great Moderation.” In order to further
investigate whether the use of different testing environments may serve as an explanation for these differences, we
provide an additional analysis reported in Appendix S11. First, we run the  DM-statistic on each of the three subsamples
(for SPF vs. no-change nowcasts and one-quarter and one-year ahead forecasts). The different tests mostly agree and give
the same answers. Such an outcome is in line with the theory in Section 2 since the volatility varies much more across
the individual subsamples rather than within. Second, we run our  x, x ∈ {F,Q}-tests on their subsample to identify
periods of instability in relative forecasting performance and thereby, we are able to further compare the test results in
light of the applied testing environments. Actually, we find differences as the results do not match very closely. This leads
us to conclude that the observed differences in our main analysis may indeed be attributed to the different tests in use.
As a by-product, we further provide evidence for instability within the subsamples studied in Coroneo and Iacone (2020)
and thus recommend the usage of fluctuation and related tests in general.

D'Agostino et al. (2006) find a significant decline in relative predictive accuracy of the SPF for inflation and output
growth for h = 1 to h = 4. Their full-sample (1975Q1 to 1999Q4) results indicate that the advantages of the SPF appear to
be driven by the period prior to 1985 in which the SPF outperformed the naive benchmark, with no significant advantage
thereafter. This points strongly to instabilities in the relative forecast performance. Our findings corroborate their results
and sharpen them in showing that this phenomenon also holds for nowcasting. In addition, Campbell (2007), D'Agostino
and Whelan (2008) and Gamber and Smith (2009) find, through analyses of various subsamples and consistent with our
results, declining predictability of the SPF after the “Great Moderation” for output growth and inflation. Explanations
regarding the causes of the forecast breakdown differ across these studies and remain an open issue.

By applying robust tests to a fairly long sample of more than 40 years, we obtain results which support several previous
findings. Among these are (i) the advantages of the SPF for shortest horizons, but smaller advantages for one-year ahead
forecasts; (ii) a significant decline in relative predictability during the 1980s; (iii) the robustness of the relative performance
of the SPF to data revisions. Our results yield the following new insights: (i) advantages of the SPF forecasts are minimal
in the 1990s, with weak signs of recoveries for GDP deflator inflation later on; (ii) relative forecast performance did not
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change during the “Great Financial Crisis,” even though volatility increased (although relatively less than during the
“Great Moderation”) and (iii) the time-variation in the relative performance of the SPF is robust to the evaluation against
simple no-change forecasts and dynamic models based on the term spread or the Phillips curve.

The observed recoveries possibly turn into a significant comeback of SPF forecasts in the future. In this case, the exact
timing would very likely be unknown (Inoue & Rossi, 2005), rendering a subsample analysis inappropriate. In general,
the ad hoc choice of break points may easily lead to biases. Moreover, it is not always possible to invoke economic reasons
like the well-studied “Great Moderation.” In contrast, the methods proposed here are suitable for data containing possibly
multiple unknown breakpoints in forecast performance alongside changes in volatility.

4 CONCLUDING REMARKS

This paper proposes wild bootstrap tests for equal predictive ability that can be applied when volatility and relative fore-
cast performance may be time-varying, and proves their validity. Both features are present in many macroeconomic and
financial forecast comparisons. The tests account for, when needed, rolling and recursive estimation of parameters of
forecast models (West, 1996). The considered tests are either full sample tests (Diebold & Mariano, 1995) or CUSUM,
Cramér-von Mises and fluctuation statistics when testing for time-variation. All employ fixed-b asymptotics which deliver
more accurately sized tests in finite-samples.

Our empirical application investigates the (time-varying) forecast performance of professional forecasters obtained
from the SPF relative to simple no-change and model-based forecasts in real-time. The analysis suggests that ignoring
time-varying variance seriously affects conclusions regarding the null of equal predictive ability. Traditional tests provide
considerably weaker evidence against the null than the wild bootstrap versions. Tests allowing for time-variation indicate
that the SPF had significant advantages until the mid-1980s, but not thereafter. Further research might address to what
extent the time-varying relative forecast performance can be explained (e.g., Campbell, 2007). Another interesting avenue
is to investigate the Fed's popular “Teal Book” forecasts (e.g., D'Agostino & Whelan, 2008; Romer & Romer, 2000; Rossi &
Sekhposyan, 2016).
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