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Abstract

Utilizing a machine learning technique known as random forests, we study

whether regional output growth uncertainty helps to improve the accuracy of

forecasts of regional output growth for 12 regions of the UK using monthly

data for the period from 1970 to 2020. We use a stochastic volatility model to

measure regional output growth uncertainty. We document the importance of

interregional stochastic volatility spillovers and the direction of the transmis-

sion mechanism. Given this, our empirical results shed light on the contribu-

tion to forecast performance of own uncertainty associated with a particular

region, output growth uncertainty of other regions, and output growth uncer-

tainty as measured for London as well. We find that output growth uncertainty

significantly improves forecast performance in several cases, where we also

document cross-regional heterogeneity in this regard.
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1 | INTRODUCTION

Theoretically, the effect of uncertainty on economic activ-
ity is generally explained by the “real option theory” (see,
e.g., Bernanke, 1983; Dixit & Pindyck, 1994; Pindyck,
1991; and more recently, Bloom, 2009), which suggests
that decision making is affected by uncertainty because
the latter raises the option value of waiting. In other
words, given that the costs associated with wrong invest-
ment decisions are high, uncertainty makes firms and, in
the case of durable goods, also consumers more cautious.
As a result, firms and consumers postpone investment,
hiring, and consumption decisions to periods of lower
uncertainty (which results in cyclical fluctuations in

macroeconomic aggregates). Hence, uncertainty is
expected to negatively impact overall output (besides
consumption and investment).1 In the wake of the

1It should be noted that there are two potential additional channels
through which uncertainty can unfold a positive effect on the economy.
The first channel rests on the theory of “growth options.” This theory
stresses that uncertainty can encourage investment because the upside
when uncertainty is resolved can be high, although there is a limited
downside (Kraft et al., 2018; Segal et al., 2015). The second channel is
called the “Oi–Hartman–Abel” effect and traced back to the works of
Oi (1961), Hartman (1972), and Abel (1983). According to this channel,
an increase in uncertainty implies an increase in both potential good
outcomes and bad outcomes. When firms are able to contract works as
an insurance against bad outcomes, an asymmetry emerges because
increased risk is looked upon positively. This asymmetry makes firms
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“Great Recession” and more recently the COVID-19 pan-
demic, the large empirical literature (see Al-Thaqeb &
Algharabali, 2019; Caggiano et al., 2020; Castelnuovo
et al., 2017; Gupta et al., 2018, 2019, 2020, 2021, for
detailed reviews) that has emerged involving the impact
of uncertainty on output has overwhelmingly confirmed
the negative association between these two variables as
outlined in theory.

Although the literature dealing with the influence of
uncertainty on output primarily relies on in-sample-
based structural analyses, more recently, quite a few
studies (see e.g., Aye et al., 2019a, 2019b; Balcilar et al.,
2016; Gupta et al., forthcoming; Junttila & Vataja, 2018;
Karnizova & Li, 2014; Pierdzioch & Gupta, 2020; Salisu
et al., 2022; Segnon et al., 2018) have also analyzed the
role of uncertainty in forecasting economic activity
(output growth and recessions) in out-of-sample analyses.
This is an important line of research, because
policymakers in general, and central banks in particular,
would need accurate predictions of the future path of the
economy following periods of heightened uncertainty
while making their policy decisions. Understandably,
precise forecasting of the macroeconomy is also impor-
tant for investors. Finally, because in-sample predictabil-
ity might not translate into forecasting gains, and the
ultimate test of any predictive model (in terms of econo-
metric methodologies and the predictors being used) is
primarily considered to be in its out-of-sample perfor-
mance (Campbell, 2008), this area also forms a pertinent
question for academic researchers.

Against this backdrop, the objective of this research is
to analyze the forecasting ability of uncertainty for output
growth in the UK, but from a regional perspective. In
particular, we look at 12 regions of the UK (viz., East
Midlands, East of England, London, North East, North
West, Northern Ireland, Scotland, South East, South West,
Wales, West Midlands, Yorkshire, and the Humber) over
the quarterly period from February 1970 to February
2020. In the process, we not only study the predictive role
of uncertainty associated with a particular region but also
incorporate the effect of uncertainty of the other regions,
given the widespread evidence of international uncer-
tainty spillovers (see, e.g., Antonakakis et al., 2018, 2019;
Christou et al., 2020a; Gabauer & Gupta, 2018; Gupta

et al., 2016) and evidence of which we also provide in our
particular dataset. We also control for other standard
aggregate macroeconomic predictors (inflation rate, finan-
cial stress, and interest rate), as well as lagged values of
the growth rate of the specific region under investigation
and the other regions, which have also been shown to
depict interconnectedness (Koop et al., 2020a).

At this stage, we must point out that Junttila and
Vataja (2018), Aye et al. (2019b), Gupta et al.
(forthcoming), and Salisu et al. (2022) have highlighted
the important role played by uncertainty in forecasting
alternative measures of the performance of the aggregate
real economy of the UK, but our paper makes the first
attempt to analyze the forecastability of output growth
due to uncertainty at the regional level, based on a newly
constructed high-frequency (quarterly) novel dataset of
regional gross value added (GVA) by Koop et al.
(2020b, 2020c). As highlighted by Mumtaz (2018) and
Mumtaz et al. (2018), based on in-sample analyses of
state-level data for the USA, the impact of uncertainty is
heterogeneous and depends on the underlying conditions
of the regions at the time the uncertainty shock origi-
nates. Naturally, one cannot generalize the role of uncer-
tainty for the aggregate economy to the various regions
comprising the overall country, thus making our regional
study of tremendous importance from the policy perspec-
tive for determining the nature and size of policy inter-
vention to counteract the negative influence of an
uncertainty shock, especially given the well-established
heterogeneity involving business-cycle fluctuations and,
in general, across regions of the UK (Barrios et al., 2003;
Beenstock & Felsenstein, 2008). Note that, although we
could have studied the states of the USA, which does
indeed have widespread availability of regional data, and
could indeed be an area of future research, our decision
to look at the UK emanates from the persistent
uncertainty witnessed by its regions ever since the Brexit
referendum that took place in (23rd) June 2016, besides
the impact of the global financial and European
sovereign debt crises that took place earlier. Hence, the
UK, which has witnessed waves of crises including the
current coronavirus episode, forms an interesting case
study of the uncertainty-growth nexus.

As far as the econometric approach is concerned, we
rely on a machine learning approach known as random
forests (Breiman, 2001), which, in turn, has two main
advantages in the context of our analysis. First, random
forests can accurately and flexibly analyze the links
between regional GVA growth and a large number of
predictors in a full-fledged data-driven manner. Second,
random forests automatically capture potential nonlinear
links between output growth and its predictors, including
uncertainty, as shown to exist historically for the UK by

investing in large capacity because it will make them able to take
advantage of potential positive news. At the same time, if the news is
bad, firms will, with low effort, be able to scale back. To sum up, there
exist competing effects of uncertainty on economic activity, and the
overall effect would be contingent on the relative strength of these
effects, though it is generally expected that the real option theory will
dominate, and so uncertainty, on balance, has a negative impact on
output, as observed during the global financial crisis and the recent
outbreak of the COVID-19 pandemic.
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Christou et al. (2020b) and Bredin et al. (2021),2 as well
as any interaction effects between the predictors.

We structure the remainder of this research as
follows. In Section 2, we briefly describe how a random
forest is grown. In Section 3, we describe our data and
report our empirical results. Finally, in Section 4, we
conclude with final remarks.

2 | RANDOM FORESTS

A random forest consists of a large number of individual
regression trees (see Hastie et al., 2009, for a textbook
exposition; our notation follows theirs). A regression tree,
T, in turn, consists of branches that subdivide the space
of predictors, x¼ðx1,x2,…Þ, of the regional output growth
rate (in the following: regional output growth, for short)
into l nonoverlapping regions, Rl. These regions are
computed by applying a search-and-split algorithm in a
recursive top-down fashion.

Application of this search-and-split algorithm to grow
a regression tree requires starting at the top level of the
tree, iterating over the various predictors, s, and the all
possible splitting points, p, that can be formed using the
data on a predictor. For every combination of a predictor
and a splitting point, the search-and-split algorithm
forms two half planes, R1ðs,pÞ¼ fxsjxs ≤ pg and R2ðs,pÞ¼
fxsjxs > pg so as to minimize the standard squared-error
loss criterion:

min
s,p

min
RG1

X
xs � R1 s,pð Þ

RGi�RG1
� �2þmin

RG2

X
xs � R2 s,pð Þ

RGi

�
8<
: �RG2

�2

9=
;,

ð1Þ

where the index i denotes those observations on regional
output growth, RG, that belong to a half plane, and
RGk ¼meanfRGijxs �Rkðs,pÞg,k¼ 1,2 denotes the half
plane-specific mean of regional output growth. The objec-
tive function given in Equation (1), thus, requires
(i) searching over all combinations of s and p, and, (ii) for
any given combination of s and p, minimizing the half
plane-specific squared-error loss by an optimal choice of
the half plane-specific means of regional output growth.
The solution of this minimization problem gives the

top-level optimal splitting predictor and optimal splitting
point, and the two RGk. The resulting simple regression
tree has two terminal nodes.

In order to grow a larger tree, the next step of the
search-and-split algorithm requires to carry out the mini-
mization problem in Equation (1) for the two top-level
half planes, R1(s, p) and R2(s, p), yielding up to two
second-level optimal splitting predictors and optimal
splitting points, and four second-level region-specific
means of regional output growth. Solving the minimiza-
tion problem over and over again gives an increasingly
complex regression tree. Finally, the search-and-split
algorithm is terminated when a regression tree has a
preset maximum number of terminal nodes or every
terminal node has a minimum number of observations.
In our empirical research, we cross-validate a technique
to determine the optimal minimum number of observa-
tions per terminal node (see Section 3.2 for details).

Once the search partition algorithm has stopped, the
regression tree sends the predictors of regional output
growth from its top level to its leaves along the optimal
partitioning points (i.e., the nodes of the tree) and bra-
nches. A forecast of regional output growth can then be
computed by its region-specific mean. For a regression
tree made up of L regions, this forecast is formed as fol-
lows (1 denotes the indicator function):

T xi,fRlgL1
� �

¼
XL
l¼1

RGl1ðxi �RlÞ: ð2Þ

The search-and-split algorithm can be used in prin-
ciple to grow an increasingly complex regression tree.
However, the resulting complex hierarchical structure
of a regression tree gives rise to an overfitting and
data-sensitivity problem and, thereby, implies that fore-
casting performance deteriorates. It is at this stage that
a random forest enters the scene. A random forest sol-
ves the overfitting problem in two steps. In the first
step, a large number of bootstrap samples (sampling
with replacement) are drawn from the data. In the sec-
ond step, a random regression tree is fitted to every
bootstrap sample. Such a random regression tree dif-
fers from a classic regression tree in that for every
splitting step, only a random subset of the predictors is
being used. In this way, a random regression tree
mitigates the effect of influential predictors on tree
building. Moreover, growing a large number of random
trees lowers the correlation of forecasts from the
individual trees. Finally, averaging the decorrelated
forecasts computed by means of the individual random
regression trees stabilizes the forecasts of realized
output growth.

2For a detailed review of the international literature on the nonlinearity
between uncertainty and economic activity, the reader is referred to
Caggiano et al. (2021). For a recent application of random forests in
economics along with a discussion of their advantages, see Bouri
et al. (2021). For a detailed analysis of the pros and cons of random
forests and other machine learning techniques, see also the
comprehensive discussion in the textbook by Hastie et al. (2009).
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3 | EMPIRICAL ANALYSIS

3.1 | Data

The annualized GVA growth of the regions (East
Midlands, East of England, London, North East, North
West, Northern Ireland, Scotland, South East, South West,
Wales, West Midlands, Yorkshire, and the Humber) is
obtained from the nowcasting project of Koop et al.
(2020b, 2020c) associated with the Economic Statistics of
the Centre of Excellence.3 Koop et al. (2020b, 2020c)
develop a mixed-frequency vector autoregressive
(MF-VAR) model and use it to produce estimates of quar-
terly regional output growth. Temporal and cross-
sectional restrictions are imposed in the model to ensure
that the quarterly regional estimates are consistent with
the annual regional observations and the observed quar-
terly UK totals. Koop et al. (2020b, 2020c) use a machine
learning method based on the hierarchical Dirichlet–
Laplace prior to ensure optimal shrinkage and parsimony
in the overparameterized MF-VAR. Because this dataset
is available from February 1970 onward, our analysis
starts from this period and ends in February 2020, based
on data availability at the time of writing of this paper.

It is important to emphasize that uncertainty is a
latent variable, and hence, one requires ways to measure
it. In this regard, besides the various alternative metrics
of uncertainty associated with financial markets (such as
the implied volatility indices, realized volatility, idiosyn-
cratic volatility of equity returns, and corporate spreads),
there are primarily three broad approaches to quantify
uncertainty: (i) The main idea behind the news-based
approach is to search newspapers for terms associated
with economic and policy uncertainty and, based on the
results of this search, to construct indices of uncertainty.
(ii) Another approach is to extract uncertainty from sto-
chastic volatility (SV) estimates of various types of small
and large-scale structural models analyzed in the macro-
economics and finance literature. (iii) A third approach is
to construct measures of uncertainty based on profes-
sional forecaster disagreements. As for our metric of
uncertainty, motivated by the recent work on the nexus
between growth and growth uncertainty by Balcilar and
Ozdemir (2020), we use the second approach, because
the first and third approaches are not applicable in the
context of our analysis due to unavailability of the
corresponding regional data. Hence, our measure of
regional uncertainty is derived from SV estimates of the
regional output growth. Although we could have also
relied upon generalized autoregressive conditional

heteroskedasticity (GARCH) models, which have a deter-
ministic volatility-generating mechanism, we prefer the
SV approach because it does not impose restrictions on
conditional moments (as in GARCH models). In
addition, SV models have also been shown in earlier
literature to produce a better in-sample fit as well as
superior out-of-sample forecasts of volatility and, hence,
uncertainty (as discussed in detail by Balcilar &
Ozdemir, 2020). In particular, building on the work by
Kastner and Frühwirth-Schnatter (2014), given observed
growth rates for a particular region denoted by
y¼ðy1,y2,…,yTÞ0, we specify the SV model as follows:
yt ¼ eht=2ϵt, with ht ¼ μþψðht�1�μÞþσνt, where the
i.i.d. standard normal innovations, ϵt and νs, are by
assumption independent for t, s� {1,… ,T}. The latent
process, h¼ðh0,h1,…,hTÞ, appearing in the state equation
is usually interpreted as the latent time-varying volatility
process (i.e., our measure of uncertainty), with the initial
state being distributed according to the stationary distri-
bution, that is, h0jμ,ψ ,σ�Nðμ,σ2=ð1�ψ2ÞÞ. Because
model reparameterization often helps to improve simula-
tion efficiency in state-space models, that is, a centered
parameterization has several disadvantages, we use, like
Kastner and Frühwirth-Schnatter (2014), the (fully)
noncentered parameterization of the model given by
yt �Nð0,ωeσ~htÞ, with ~ht ¼ψ ~ht�1þνt, where νt �Nð0,1Þ,
where ω¼ eμ. The initial value of ~h0jψ is drawn from the
stationary distribution of the latent process, that is,
~h0jψ �Nð0,1=ð1�ψ2ÞÞ, and note that ~ht ¼ðht�μÞ=σ.
Figure 1 shows the estimated regional stochastic
volatilities.

Our forecasting exercise also includes Consumer Price
Index (CPI)-based annualized inflation rate, with the CPI
data obtained from the Main Economic Indicators (MEI)
Database of the Organisation for Economic Co-operation
and Development (OECD). To measure the stance of
monetary policy, we consider the official bank rate
derived from the Bank of England (BoE) until 1989, and
then we use the shadow short rate (SSR) developed by
Wu and Xia (2016) from 1990 onwards,4 given that our
period of analysis involves the zero lower bound (ZLB)
scenario in the wake of the Great Recession and the
global financial crisis, and more recently following the
outbreak of the coronavirus in 2020. Given that a range
of unconventional monetary policies (such as large-scale
asset purchases, a maturity extension program, and
efforts of forward guidance in order to manage expecta-
tions of a prolonged period of low policy rates) are pur-
sued during the ZLB situations, we would need a

3The data are downloadable from https://www.escoe.ac.uk/
regionalnowcasting/.

4The data are available for download from the website of Professor Jing
Cynthia Wu at https://sites.google.com/view/jingcynthiawu/shadow-
rates?authuser=0.
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uniform and coherent measure of the monetary policy
stance. Thus, we use the SSR, which measures the nomi-
nal interest rate that would prevail in the absence of its
effective lower bound.5 Finally, we incorporate the

information of the Financial Stress Index (FSI) derived
from the Statistical Data Warehouse of the European
Central Bank.6 The index includes six market-based
financial stress measures that capture returns and (real-
ized) volatility of three financial market segments, that is,
equity, bond, and foreign exchange. In addition, when
aggregating the subindices, the FSI takes the com-
ovement across market segments into account. The
reader is referred to Duprey et al. (2017) for further
details. Note that data that are available at higher
monthly frequency are converted to quarterly values by
taking 3-month averages.

5The SSR is based on models of the term structure, which essentially
removes the effect that the option to invest in physical currency (at an
interest rate of zero) has on yield curves, resulting in a hypothetical
“shadow yield curve” that would exist if physical currency was not
available. The process allows one to answer the question: “What policy
rate would generate the observed yield curve if the policy rate could be
taken negative?” The “shadow policy rate” generated in this manner,
therefore, provides a measure of the monetary policy stance after the
actual policy rate reaches zero. The main advantage of the SSR is that it
is not constrained by the ZLB and thus allows us to combine the data
from the ZLB period with that of the non-ZLB era and use it as the
common metric of monetary policy stance across the conventional and
unconventional monetary policy episodes.

6The data can be downloaded from https://sdw.ecb.europa.eu/
quickview.do;jsessionid=
D122B96CF06237259EFEBFB2ADCA10F0SERIES_KEY=383.CLIFS.M.
GB._Z.4F.EC.CLIFS_CI.IDX.

FIGURE 1 Regional stochastic

volatilities

BALCILAR ET AL. 1053

https://sdw.ecb.europa.eu/quickview.do;jsessionid=D122B96CF06237259EFEBFB2ADCA10F0SERIES_KEY=383.CLIFS.M.GB._Z.4F.EC.CLIFS_CI.IDX
https://sdw.ecb.europa.eu/quickview.do;jsessionid=D122B96CF06237259EFEBFB2ADCA10F0SERIES_KEY=383.CLIFS.M.GB._Z.4F.EC.CLIFS_CI.IDX
https://sdw.ecb.europa.eu/quickview.do;jsessionid=D122B96CF06237259EFEBFB2ADCA10F0SERIES_KEY=383.CLIFS.M.GB._Z.4F.EC.CLIFS_CI.IDX
https://sdw.ecb.europa.eu/quickview.do;jsessionid=D122B96CF06237259EFEBFB2ADCA10F0SERIES_KEY=383.CLIFS.M.GB._Z.4F.EC.CLIFS_CI.IDX


3.2 | Empirical results

We carry out our empirical analysis by using the statisti-
cal computing program R (R Core Team, 2021), where
we make use of the add-on package “grf” (Tibshirani
et al., 2020). Our results are based on estimates of ran-
dom forests for rolling-estimation windows of length
40, 60, and 80 quarters (i.e., 10, 15, and 20 years).
Although shifting the rolling-estimation windows across
the dataset, we optimize, by means of cross validation,
the number of predictors randomly selected for splitting,
the minimum node size of a tree, and the parameter that
governs the maximum imbalance of a node, where we
use 2000 regression trees to grow a random forest. We
study three forecast horizons: one, two, and four quar-
ters, where the target variable in case h > 1 is the arith-
metic average of the regional output growth rates under
scrutiny over the respective forecast horizon.

We estimate random forests for four different models.
Model 1 features, in addition to the inflation rate, the
monetary policy-related interest rate, and the FSI as prox-
ies of monetary and financial conditions, as predictors
only the own lagged regional output growth of a region
along with the regional output growth of all other regions,
given the evidence of spillovers of regional growth as
shown by Koop et al. (2020a). Model 2 features the predic-
tors of Model 1 plus the own SV of a region, capturing the
associated uncertainty of that region. Comparing Models
1 and 2 sheds light on whether today's regional output

growth uncertainty helps to improve the accuracy of
forecasts of subsequent regional output growth. Model
3 features all predictors of Model 2 and, in addition, the
regional stochastic volatilities of all other regions.

To motivate the formulation of Model 3, we would like
to formally highlight the importance of interregional SV
spillovers. In this regard, we utilize a full-fledged time-
varying version of the spillover approaches of Diebold and
Yilmaz (2009, 2012, 2014), as proposed based on a time-
varying parameter–vector autoregressive (TVP-VAR) model
by Antonakakis et al. (2020). This framework is based on
the generalized forecast-error variance decomposition for a
VAR, but the biggest drawback of the generalized spillover
method is that it provides misleading information when it
comes to aggregate spillover as the associated index is
bounded between 0% and 100%, and so when a shock is
introduced to the individual variable, it brings most of the
variation in other factors than the factor to which shock
was introduced. In light of this, we also use the joint spill-
over method by following Lastrapes and Wiesen (2021)
capable in gauging the system-wide spillovers, as devel-
oped in a TVP-VAR context by Balcilar et al. (2020).

Both approaches provide qualitatively similar results,
illustrating the robustness of our findings with respect to
the spillover analysis. Figure 2 represents the dynamic
total connectedness, which describes the average amount
of shock spillover one series has to all others in the net-
work. We see that the Antonakakis et al. (2020) results
are constantly smaller in magnitude than those of

FIGURE 2 Dynamic total connectedness. Black area illustrates Balcilar et al. (2020), whereas red line demonstrates Antonakakis

et al. (2020) results based upon a 20-quarter-ahead forecast horizon. Both approaches are based on a TVP-VAR with a lag length of as

suggested by the Bayesian information criteria
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Balcilar et al. (2020). Besides the fact that the high degree
of dynamic total connectedness highlights the importance
of uncertainty shock spillovers when it comes to regional
UK output growth, it further points out significant eco-
nomic events that had a substantial effect on its dynamic
behavior such as the mid-1970s recessions that was mar-
ked by the 1973 oil crisis, and stagflation, as well as the
early 1980s recession characterized by the transition from
a manufacturing to a services economy and a period of
considerable spending cuts. More recent dynamics cover
the time of the global financial crisis, the European sover-
eign debt crisis, and the coronavirus pandemic that has

spread over to the European continent in the beginning
of 2020.

But even more to the point is the direction of the trans-
mission mechanism as it lays out a more in-depth analysis
of the regional shock propagation. Figure 3 depicts the rel-
ative strength of each region in a time-varying behavior
underlining the significant and permanent effect the
global financial crisis of 2009 had on most UK regional
dynamics. In particular, regions such as London, East of
England, North West, and Scotland decreased in its net
transmission power until the end of the sample period.
Furthermore, similar but less severe adjustments can be

FIGURE 3 Net total directional connectedness measures. Black area illustrates Balcilar et al. (2020), whereas red line demonstrates

Antonakakis et al. (2020) results based upon a 20-quarter-ahead forecast horizon. Both approaches are based on a TVP-VAR with a lag

length of as suggested by the Bayesian information criteria
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observed during the coronavirus pandemic. In general,
our results reveal that Yorkshire and the Humber, East of
England, and London have been permanent transmitters
of shocks, whereas East Midlands, West Midlands, South
West, and Wales have been permanent receivers of
shocks. Two notable evolutions are that the North West
has become an essential transmitter after 2009, whereas
Scotland has become a receiver of shocks. It should also
be mentioned that our findings indicate the importance of
economic weight London has in the evolution of UK's
regional uncertainty by its persistent net transmission
characteristic, the unprecedented magnitude in its trans-
mitting power prior the global financial crisis of 2009, and
its still continuing—even though not as significant—role
afterwards. Thus, this analysis shows that the UK regional
SV spillovers are strong, as its dynamics explain between
75% and 90% of the evolution of uncertainty.

Going back to our Model 3, given the evidence of out-
put growth volatility spillovers across regions, upon com-
paring Models 2 and 3, we can assess whether regional
uncertainty spillovers onto other regions help t0 predict
regional output growth of a particular region. Finally,
Model 4 features the own SV of a region plus the SV of
output growth estimated for London, given its impor-
tance as a transmitter of uncertainty shocks. When we
compare Models 2 and 4, we can study the contribution
of the capital city to forecasting regional output growth
over and above the own uncertainty of a region.

Turning next to our out-of-sample forecasting analy-
sis, Table 1 summarizes results for root-mean-square
forecast-error (RMSFE) ratios. An RMSFE ratio larger
than unity implies that the alternative model outperforms
out of sample in terms of the RMSFE of the corresponding
baseline model. The first bloc of results obtains when the
baseline model features only regional output growth as
predictors (Model 1), whereas the alternative model fea-
tures, in addition, the own SV of a region (Model 2). We
observe in general RMSFE ratios that exceed unity for
Yorkshire and the Humber, East of England, Scotland,
and Northern Ireland. Results for North East and Wales
are mixed, and for East Midlands, London, South East,
South West, West Midlands, and North West, we observe
RMSFE ratios smaller than unity or hovering around
unity for several combinations of the length of the rolling-
estimation window and forecast horizon. On balance, the
results suggest that taking into account regional output
growth uncertainty over and above regional output
growth and monetary and financial conditions helps to
improve the accuracy of forecasts of regional output
growth in several cases, where the results certainly dis-
play a certain degree of cross-regional heterogeneity.

The second bloc of results in Table 1 compares Model
2 and Model 3. This comparison sheds light on the

contribution of uncertainty that originates in other regions
for the accuracy of output growth forecasts. We observe in
the majority of cases RMSFE ratios smaller than unity
when we study the short 40-quarter rolling-estimation
window. For the two longer rolling-estimation windows;
in contrast, we observe several RMSFE ratios that exceed
unity, especially for Yorkshire and the Humber, West
Midlands, Wales, Scotland, and to a somewhat lesser
extent for North West and Northern Ireland, with evi-
dence that regional spillover effects help to improve the
accuracy of output growth forecasts being weak for North
East, East of England, and London. Hence, it appears that
accounting for output growth uncertainty that has its ori-
gins in other regions implies that Model 3 for several
regions and model configurations has a better forecast per-
formance than Model 2 in terms of the RMSFE criterion.

The third bloc of results in Table 1 sheds light on the
role of uncertainty as measured for London. The RMSFE
ratios show that accounting for the “London effect” leads
to more accurate forecasts for the following regions, espe-
cially when we consider the two longer rolling-estimation
windows: East Midlands, South East, South West, West
Midlands, North West, and Wales. The “London effect” is
either small or even deteriorates the accuracy of forecasts
when we consider North East, Yorkshire and the Hum-
ber, East of England, Scotland, and Northern Ireland.

We use the test proposed by Clark and West (2007) of
equal mean-squared prediction errors to shed light on the
statistical significance of differences in forecast perfor-
mance across the various models. The null hypothesis is
that the alternative model has the same out-of-sample
forecasting performance as the baseline model. The alter-
native hypothesis is that the alternative model performs
better than the baseline model. Table 2 summarizes the
results (p-values).7

We find relatively strong evidence (in terms of the
significance of the test results, using roughly a 5%
threshold) that adding own regional uncertainty to Model
1 improves forecast accuracy for Yorkshire and the

7Comparing forecasts is complicated by the complex structure of
random forests. We, therefore, use alternative techniques (RMSFE
ratios in addition to formal tests) to compare forecasts. Moreover, as an
additional analysis, we decomposed the regional output volatility into
common and idiosyncratic components using the nonparametric and
model-free two-step general dynamic factor approach of Barigozzi and
Hallin (2016) to check whether such a decomposition adds value to the
forecasting exercise. Based on Table A1, we find that such a
decomposition gives largely insignificant results. This result is possibly
an indication of the strong evidence of overall output growth volatility
spillovers and interconnectedness across the regions, whereby
distinguishing between common and idiosyncratic volatilities
corresponding to common and local factors that drive these respective
volatilities results in loss of information that tends to add value to the
forecasting analysis.
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TABLE 1 Comparing models by means of root-mean-square forecast-error ratios

Window length = 40 Window length = 60 Window length = 80

Model combination Region h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4

Base vs. Base + own SV North East 0.9991 1.0028 1.0099 0.9985 1.0098 0.9849 1.0151 0.9900 1.0140

Base vs. Base + own SV Yorkshire and
the Humber

1.0162 1.0070 1.0188 1.0195 1.0509 1.0258 1.0747 1.0839 1.0594

Base vs. Base + own SV East Midlands 1.0062 1.0032 0.9819 1.0078 0.9666 1.0035 0.9934 0.9823 1.0054

Base vs. Base + own SV East of England 1.0286 1.0283 1.0211 1.0570 1.0287 1.0227 1.0683 1.0213 0.9956

Base vs. Base + own SV London 1.0077 0.9957 1.0045 1.0348 0.9948 0.9936 0.9985 1.0072 0.9844

Base vs. Base + own SV South East 0.9768 0.9950 0.9929 0.9698 0.9863 0.9862 0.9923 0.9806 0.9695

Base vs. Base + own SV South West 0.9796 0.9980 0.9965 1.0007 0.9935 0.9914 1.0070 1.0032 0.9817

Base vs. Base + own SV West Midlands 0.9956 1.0059 0.9976 0.9891 0.9749 0.9962 1.0387 0.9958 0.9894

Base vs. Base + own SV North West 0.9767 1.0008 0.9898 0.9904 0.9887 0.9826 1.0183 1.0058 1.0131

Base vs. Base + own SV Wales 0.9959 0.9832 1.0190 0.9874 1.0006 0.9962 1.0105 1.0263 1.0004

Base vs. Base + own SV Scotland 1.0206 1.0430 1.0474 1.0128 1.0140 1.0230 1.0200 1.0285 1.0223

Base vs. Base + own SV Northern
Ireland

1.0077 1.0067 1.0243 1.0322 1.0076 0.9967 1.0326 1.0254 1.0053

Base + own SV vs. Base +
all SVs

North East 0.9530 0.9329 0.9471 0.9847 0.9627 0.9856 1.0247 0.9779 0.9660

Base + own SV vs. Base +
all SVs

Yorkshire and
the Humber

0.9514 0.9391 0.9370 1.0375 1.0110 1.0009 1.0641 1.0049 1.0068

Base + own SV vs. Base +
all SVs

East Midlands 0.9812 0.9678 0.9779 0.9904 0.9495 0.9703 1.0671 1.0233 1.0018

Base + own SV vs. Base +
all SVs

East of England 0.9596 0.9125 0.9446 1.0070 0.9588 0.9795 0.9979 0.9626 0.9899

Base + own SV vs. Base +
all SVs

London 0.9613 0.9316 0.9472 0.9998 0.9728 0.9574 1.0555 0.9750 0.9758

Base + own SV vs. Base +
all SVs

South East 0.9360 0.9220 0.9256 1.0276 0.9849 0.9920 1.0203 0.9940 1.0141

Base + own SV vs. Base +
all SVs

South West 0.9801 0.9455 0.9648 1.0303 0.9939 1.0046 1.0317 0.9746 0.9900

Base + own SV vs. Base +
all SVs

West Midlands 0.9374 0.9075 0.9423 1.0933 1.0313 1.0113 1.0445 0.9965 1.0233

Base + own SV vs. Base +
all SVs

North West 0.9801 0.9642 0.9536 1.0687 1.0072 1.0181 1.0671 0.9945 0.9756

Base + own SV vs. Base +
all SVs

Wales 0.9718 0.9782 0.9522 1.1280 1.0497 1.0588 1.1719 1.0523 1.0605

Base + own SV vs. Base +
all SVs

Scotland 0.9964 0.9800 0.9999 1.0400 1.0327 1.0089 1.0272 1.0163 1.0105

Base + own SV vs. Base +
all SVs

Northern
Ireland

1.0095 1.0064 1.0095 1.0422 0.9890 0.9868 1.0720 1.0097 1.0080

Base + own SV vs. Base +
own SV + London SV

North East 0.9802 0.9563 0.9711 1.0242 1.0033 0.9972 1.0157 0.9940 1.0027

Base + own SV vs. Base +
own SV + London SV

Yorkshire and
the Humber

0.9938 0.9664 0.9489 1.0288 1.0299 0.9988 1.0009 0.9986 0.9925

Base + own SV vs. Base +
own SV + London SV

East Midlands 1.0193 1.0179 1.0420 1.0328 1.0511 1.0309 1.0557 1.0153 1.0083

(Continues)
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TABLE 1 (Continued)

Window length = 40 Window length = 60 Window length = 80

Model combination Region h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4

Base + own SV vs. Base +
own SV + London SV

East of England 0.9956 1.0046 0.9976 0.9563 0.9736 0.9907 0.9682 0.9826 1.0044

Base + own SV vs. Base +
own SV + London SV

London — — — — — — — — —

Base + own SV vs. Base +
own SV + London SV

South East 1.0200 1.0076 1.0137 1.0563 1.0401 1.0212 1.0294 1.0347 1.0286

Base + own SV vs. Base +
own SV + London SV

South West 1.0399 1.0237 1.0446 1.0553 1.0323 1.0308 1.0490 1.0254 1.0429

Base + own SV vs. Base +
own SV + London SV

West Midlands 1.0019 1.0001 1.0390 1.0205 1.0362 1.0311 1.0051 1.0304 1.0172

Base + own SV vs. Base +
own SV + London SV

North West 0.9972 0.9825 0.9846 1.0385 1.0169 1.0335 1.0396 1.0030 0.9927

Base + own SV vs. Base +
own SV + London SV

Wales 1.0126 1.0014 0.9906 1.0689 1.0276 1.0211 1.0594 0.9880 1.0039

Base + own SV vs. Base +
own SV + London SV

Scotland 0.9792 0.9486 0.9642 1.0120 1.0000 0.9949 0.9890 1.0002 0.9945

Base + own SV vs. Base +
own SV + London SV

Northern
Ireland

0.9971 1.0097 0.9783 1.0071 0.9798 0.9996 1.0171 0.9892 0.9860

Note: This table reports RMSFE ratios, computed for out-of-sample forecasts. The column entitled “Model combination” gives the baseline and the alternative
model. A ratio larger than unity indicates that the alternative model outperforms the corresponding baseline model. Estimation is by a rolling window. The
parameter h denotes the forecast horizon (in months). The random forests are built using 2000 trees.

TABLE 2 Comparing models by means of the Clark–West test

Window length = 40 Window length = 60 Window length = 80

Model combination Region h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4

Base vs. Base + own SV North East 0.1449 0.1968 0.0934 0.3079 0.0002 0.5351 0.0184 0.4173 0.1025

Base vs. Base + own SV Yorkshire and
the Humber

0.1167 0.1667 0.1439 0.0072 0.0875 0.0347 0.0126 0.0116 0.0658

Base vs. Base + own SV East Midlands 0.0888 0.1867 0.8780 0.2424 0.7637 0.3380 0.4868 0.7249 0.2125

Base vs. Base + own SV East of England 0.0236 0.0806 0.0232 0.0501 0.0068 0.0369 0.0188 0.0122 0.4277

Base vs. Base + own SV London 0.1352 0.2039 0.1180 0.0522 0.3222 0.4287 0.3726 0.1410 0.6536

Base vs. Base + own SV South East 0.8660 0.3319 0.3498 0.9002 0.7089 0.6230 0.6152 0.8144 0.8677

Base vs. Base + own SV South West 0.8836 0.3027 0.3720 0.1916 0.3903 0.2501 0.1068 0.1344 0.6089

Base vs. Base + own SV West Midlands 0.3562 0.2243 0.2762 0.5375 0.6829 0.3409 0.0363 0.3117 0.2963

Base vs. Base + own SV North West 0.9370 0.2238 0.4862 0.3702 0.5129 0.7474 0.0236 0.0660 0.0145

Base vs. Base + own SV Wales 0.3756 0.8652 0.0068 0.6842 0.2012 0.3997 0.1373 0.0249 0.2988

Base vs. Base + own SV Scotland 0.0262 0.0354 0.0401 0.0610 0.1072 0.0382 0.0603 0.0360 0.0646

Base vs. Base + own SV Northern
Ireland

0.1075 0.1204 0.0094 0.0139 0.1169 0.2788 0.0463 0.1370 0.1579

Base + own SV vs. Base +
all SVs

North East 0.6158 0.7253 0.5957 0.2274 0.3542 0.1214 0.1762 0.2465 0.4851

Base + own SV vs. Base +
all SVs

Yorkshire and
the Humber

0.6158 0.7030 0.6765 0.0544 0.0830 0.1812 0.1000 0.1804 0.1190
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TABLE 2 (Continued)

Window length = 40 Window length = 60 Window length = 80

Model combination Region h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4

Base + own SV vs. Base +
all SVs

East Midlands 0.4621 0.6262 0.4597 0.3120 0.5921 0.5761 0.1109 0.0065 0.1819

Base + own SV vs. Base +
all SVs

East of England 0.6829 0.9244 0.7158 0.1386 0.8201 0.6254 0.3141 0.7973 0.4323

Base + own SV vs. Base +
all SVs

London 0.8059 0.9038 0.8476 0.3023 0.6002 0.9218 0.1564 0.8152 0.8368

Base + own SV vs. Base +
all SVs

South East 0.9491 0.9465 0.9267 0.1452 0.5365 0.4301 0.0474 0.1085 0.1222

Base + own SV vs. Base +
all SVs

South West 0.4345 0.7151 0.5767 0.0037 0.2118 0.0644 0.1560 0.6090 0.2292

Base + own SV vs. Base +
all SVs

West Midlands 0.8332 0.8708 0.6431 0.0516 0.0041 0.1335 0.1481 0.2203 0.0059

Base + own SV vs. Base +
all SVs

North West 0.4127 0.5203 0.5926 0.0426 0.0475 0.0106 0.1224 0.1226 0.4704

Base + own SV vs. Base +
all SVs

Wales 0.1989 0.1749 0.3591 0.0312 0.0086 0.0150 0.0618 0.0031 0.0144

Base + own SV vs. Base +
all SVs

Scotland 0.2496 0.5762 0.1380 0.0231 0.0128 0.0887 0.0134 0.0373 0.0778

Base + own SV vs. Base +
all SVs

Northern
Ireland

0.0446 0.0811 0.0702 0.0323 0.1245 0.1223 0.0655 0.0989 0.0601

Base + own SV vs. Base +
own SV + London SV

North East 0.4086 0.5615 0.5312 0.0571 0.0926 0.1102 0.1179 0.2030 0.1227

Base + own SV vs. Base +
own SV + London SV

Yorkshire and
the Humber

0.3238 0.6059 0.7084 0.0350 0.0350 0.2158 0.1422 0.1272 0.1795

Base + own SV vs. Base +
own SV + London SV

East Midlands 0.0303 0.0511 0.0152 0.0601 0.0526 0.0454 0.0518 0.0734 0.1613

Base + own SV vs. Base +
own SV + London SV

East of England 0.4066 0.0513 0.2776 0.9097 0.7805 0.7449 0.9325 0.9262 0.2283

Base + own SV vs. Base +
own SV + London SV

London — — — — — — — — —

Base + own SV vs. Base +
own SV + London SV

South East 0.0111 0.1439 0.0914 0.0113 0.0045 0.0544 0.0092 0.0133 0.0219

Base + own SV vs. Base +
own SV + London SV

South West 0.0199 0.0822 0.0169 0.0080 0.0475 0.0144 0.0041 0.0480 0.0138

Base + own SV vs. Base +
own SV + London SV

West Midlands 0.2695 0.2871 0.0683 0.0489 0.0445 0.1227 0.1254 0.0963 0.1347

Base + own SV vs. Base +
own SV + London SV

North West 0.2328 0.3481 0.3225 0.0120 0.0169 0.0021 0.1026 0.1523 0.3882

Base + own SV vs. Base +
own SV + London SV

Wales 0.1143 0.2426 0.4898 0.0426 0.0330 0.1330 0.1457 0.4752 0.2282

Base + own SV vs. Base +
own SV + London SV

Scotland 0.6258 0.9812 0.8416 0.0610 0.2234 0.3270 0.4343 0.1869 0.3191

Base + own SV vs. Base +
own SV + London SV

Northern
Ireland

0.1151 0.0241 0.3786 0.1497 0.5799 0.1117 0.1057 0.3982 0.5123

Note: This table reports the results (p-values) of the Clark–West test of equal mean-squared prediction errors. The null hypothesis is that the alternative model
has the same out-of-sample forecasting performance as the baseline model. The alternative hypothesis is that the alternative model performs better than the
baseline model. Results are based on Newey–West robust standard errors. Estimation is by a rolling window. The parameter h denotes the forecast horizon (in
months). The random forests are built using 2000 trees.
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Humber, East of England, and Scotland. The test results
are occasionally significant for North East, North West,
Wales, and Northern Ireland. Hence, there is some
evidence that output growth uncertainty matters for
forecasting regional output growth, though our results
clearly show that it is important to differentiate between
regions in this regard. As far as a comparison of Models
2 and 3 is concerned, we find that the model that includes
the other regions stochastic volatilities as predictors often
produces significantly better forecasting results for Wales,
Scotland, and Northern Ireland than the model that dis-
misses uncertainty originating in other regions, for the for-
mer mainly for the two longer rolling-estimation windows.
There is also some, albeit weaker, evidence that regional
uncertainty spillover effects matter in some model configu-
rations for West Midlands and North West. Finally, we find
strong evidence that accounting for the “London effect”
significantly improves forecast accuracy in the case of East
Midlands, South East, and South West. We also find a few
significant test results for West Midlands and North West,
and Yorkshire and the Humber and Wales.

As a further extension, and as a robustness check, we
replicated the analysis given in Table 2 for forecasts of the
regional output growth rate h periods ahead, given data
when a forecast has to be made, rather than its arithmetic
average over the forecast horizon. The results (not reported
to safe journal space, but available from the authors upon
request) in some cases strengthen the evidence of a role of
uncertainty. Specifically, evidence of predictive value of
own regional output uncertainty strengthens for North East
and London, and North West, while including the regional
output uncertainty of all regions gives significant results for
all regions at the two longer forecast horizons, that is, for
h¼ 2 and 4 for the intermediate window length and in
the overwhelming majority of regions for the long win-
dow. Finally, evidence of the “London effect” strengthens
for North East, West Midlands, North West, and Wales.
In sum, these results further back our conclusion that
uncertainty matters for forecasting regional output
growth and that it is important to carefully take into
account regional heterogeneity in this regard.

4 | CONCLUDING REMARKS

We have used random forests and an SV model to study
the out-of-sample predictive value of regional output
growth uncertainty for regional output growth in
12 regions of the UK over the sample period from 1970 to
2020, where we have accounted for a region's own uncer-
tainty, the uncertainty of other regions, and uncertainty
as measured for London, given evidence of regional vola-
tility connectedness. We have reported evidence that

uncertainty helps to improve forecast accuracy and that
spillover effects of uncertainty onto other regions as well
as the “London effect” are beneficial in this regard too.
The results, however, turned out to display a substantial
extent of cross-regional heterogeneity, one interpretation
of which is that the relative importance of the different
channels, described in Section 1, through which uncer-
tainty may affect output differs across regions.

From the perspective of policymaking, our results
highlight primarily two issues: First, due to the evidence of
volatility spillovers of output growth across regions,
policymakers need to take into account the growth uncer-
tainty of other regions beyond its own when making pre-
dictions about the future path of growth of a specific region
and accordingly deciding on policy choices to mitigate the
adverse effect of uncertainty. Second, given the underlying
heterogeneity, understandably, policy decisions, both in
terms of the type of intervention and its associated
strength, cannot be uniform at the aggregate UK level, but
need to be conducted in a region-specific manner. As far as
academics are concerned, we confirm that the general in-
sample results in the international literature suggesting a
predictive impact of uncertainty on economic growth, as
well as findings of out-of-sample gains due to the informa-
tion contained in uncertainty for output growth of the
aggregate UK, tend to hold at the regional level for the UK
too, based on robust forecasting models that account for
many predictors, nonlinearity, and interactions. This is an
important finding, recalling that out-of-sample forecasting
tests are more robust test of predictability compared with
in-sample versions of the same. Finally, just like policy
authorities, investors, when making investment decisions
(like setting up a production plant) in a particular region,
must be cognizant of the fact that uncertainty across the
regions of the UK is connected and spillover, and, hence, a
decision to invest in a particular region should not only be
based on the corresponding uncertainty levels of that
region, but also uncertainty emanating from other regions,
and in particular that of London, should be taken into
account. This information should assist in, for example,
labor-hiring decisions too, as uncertainty also has a direct
effect on unemployment (Gupta et al., forthcoming).

In future research, it is interesting to apply the
methodology we use in our empirical research to study
the output growth uncertainty nexus at the regional level
for other countries (such as the USA). Another promising
avenue for future research is to use alternative machine
learning techniques to study the output growth uncer-
tainty nexus. Such a comparison can also be used to trace
out which machine learning technique performs best
when applied to regional output growth data. In the
process, this will allow researchers to improve upon a
possible limitation of our current work, which is
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associated with the usage of only one, though appropriate
for our context (in modeling multiple predictors, and
nonlinearity as well as interaction among them), specific
machine learning approach, namely, random forests.
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TABLE A1 Comparing models by means of the Clark–West test (common and idiosyncratic SV)

Window length = 40 Window length = 60 Window length = 80

Model combination Region h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4

Base + own common SV vs.
Base + all common SVs

North East 0.9260 0.9482 0.9452 0.0962 0.4193 0.5402 0.2633 0.5425 0.0767

Base + own common SV vs.
Base + all common SVs

Yorkshire and
The Humber

0.8923 0.0924 0.4338 0.8078 0.3016 0.6088 0.7728 0.4453 0.6389

Base + own common SV vs.
Base + all common SVs

East Midlands 0.2932 0.9079 0.9233 0.5802 0.1168 0.7282 0.7778 0.7748 0.8121

Base + own common SV vs.
Base + all common SVs

East of
England

0.9075 0.7013 0.9319 0.7421 0.8695 0.2382 0.9032 0.5933 0.4280

Base + own common SV vs.
Base + all common SVs

London 0.5024 0.2672 0.1434 0.0629 0.6327 0.8038 0.1545 0.8796 0.9477

Base + own common SV vs.
Base + all common SVs

South East 0.8536 0.5019 0.5417 0.8736 0.8631 0.8900 0.1674 0.7104 0.4691

Base + own common SV vs.
Base + all common SVs

South West 0.9214 0.3154 0.8325 0.9311 0.1154 0.8067 0.4269 0.0646 0.1084

Base + own common SV vs.
Base + all common SVs

West Midlands 0.8177 0.9235 0.7920 0.0965 0.6426 0.2488 0.8897 0.5346 0.5057

Base + own common SV vs.
Base + all common SVs

North West 0.3446 0.2558 0.3144 0.8078 0.8798 0.9448 0.3044 0.5803 0.7886

Base + own common SV vs.
Base + all common SVs

Wales 0.5409 0.7728 0.2971 0.4314 0.4208 0.3647 0.7098 0.0649 0.3825

Base + own common SV vs.
Base + all common SVs

Scotland 0.2266 0.2451 0.0356 0.8405 0.1505 0.3147 0.1266 0.8088 0.4292

Base + own common SV vs.
Base + all common SVs

Northern
Ireland

0.8664 0.6145 0.0945 0.6944 0.4794 0.3336 0.7931 0.8105 0.5142

(Continues)
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TABLE A1 (Continued)

Window length = 40 Window length = 60 Window length = 80

Model combination Region h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4 h¼ 1 h¼ 2 h¼ 4

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

North East 0.7320 0.8375 0.3176 0.5591 0.3079 0.1087 0.0784 0.5314 0.8685

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

Yorkshire and
the Humber

0.2516 0.4289 0.4058 0.7261 0.8606 0.8297 0.0788 0.5971 0.5312

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

East Midlands 0.7034 0.8749 0.7483 0.8928 0.4053 0.7786 0.5180 0.4500 0.4468

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

East of
England

0.0441 0.0367 0.0567 0.8560 0.2677 0.3496 0.3037 0.0813 0.2857

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

London 0.8726 0.9574 0.9728 0.9381 0.9202 0.9245 0.9822 0.9505 0.8420

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

South East 0.9246 0.6381 0.9321 0.8385 0.7433 0.8884 0.9296 0.8834 0.3958

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

South West 0.8742 0.9440 0.2947 0.8570 0.8862 0.8578 0.3765 0.0545 0.5296

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

West Midlands 0.8773 0.8649 0.9402 0.8663 0.8692 0.8285 0.8374 0.8989 0.8014

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

North West 0.9539 0.9366 0.1254 0.1051 0.5899 0.5347 0.4192 0.3207 0.6165

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

Wales 0.5805 0.9397 0.5879 0.7806 0.8720 0.9154 0.3568 0.1093 0.1410

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

Scotland 0.7093 0.6803 0.0752 0.4434 0.8332 0.3895 0.0170 0.8506 0.2728

Base + own idiosyncratic SV
vs. Base + all idiosyncratic
SVs

Northern
Ireland

0.0261 0.2371 0.2887 0.0666 0.1016 0.1555 0.0075 0.0807 0.0123

Note: This table reports the results (p-values) of the Clark–West test of equal mean-squared prediction errors. The null hypothesis is that the extended model

has the same out-of-sample forecasting performance as the baseline model. The alternative hypothesis is that the full model performs better than the baseline
model. Results are based on Newey–West robust standard errors. Estimation is by a rolling window. The parameter h denotes the forecast horizon (in months).
The random forests are built using 2000 trees.
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