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ORIGINAL ARTICLE

ASYMPTOTIC INDEPENDENCE EX MACHINA: EXTREME VALUE
THEORY FOR THE DIAGONAL SRE MODEL

SEBASTIAN MENTEMEIERa* AND OLIVIER WINTENBERGERb

aUniversität Hildesheim, Institut für Mathematik und Angewandte Informatik, Hildesheim, Germany
bSorbonne Université Paris, Laboratoire de Probabilités, Statistique et Modélisation, Paris, France

We consider multivariate stationary processes (Xt) satisfying a stochastic recurrence equation of the form Xt = 𝕄tXt−1 + Qt,
where (Qt) are i.i.d. random vectors and 𝕄t = Diag(b1 + c1Mt,… , bd + cdMt) are i.i.d. diagonal matrices and (Mt) are i.i.d.
random variables. We obtain a full characterization of the vector scaling regular variation properties of (Xt), proving that
some coordinates Xt,i and Xt,j are asymptotically independent even though all coordinates rely on the same random input
(Mt). We prove the asynchrony of extreme clusters among marginals with different tail indices. Our results are applied to
some multivariate autoregressive conditional heteroskedastic (BEKK-ARCH and CCC-GARCH) processes and to log-returns.
Angular measure inference shows evidences of asymptotic independence among marginals of diagonal SRE with different tail
indices.
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Keywords: Stochastic recurrence equations; multivariate ARCH; multivariate regular variation; non-standard regular
variation

MOS subject classification: 60G70; 60G10.

1. INTRODUCTION

We consider multivariate stationary processes (Xt), satisfying a diagonal stochastic recurrence equation (SRE) of
the form

Xt = 𝕄tXt−1 + Qt, t ∈ ℤ, (1.1)

where (𝕄t) is an i.i.d. sequence of matrices such that for non-negative coefficients bi, ci, 1 ≤ i ≤ d,

𝕄t = Diag(b1 + c1Mt,… , bd + cdMt), t ∈ ℤ, (1.2)

and (Qt) is an i.i.d. sequence of ℝd random vectors with marginals Qt,i, 1 ≤ i ≤ d, independent of the i.i.d.
real random variables (Mt). Stationary solutions of SRE have attracted a lot of research in the past few years,
see Buraczewski et al. (2016b) and references therein. However, in the present setting of diagonal matrices, only
marginal tail behavior has been investigated so far using the result of the seminal article of Goldie (1991). Under
Assumptions (A1)–(A6) that are introduced in Section 2.3, applying the Kesten–Goldie–theorem (Kesten, 1973;
Goldie, 1991) we get that

ℙ(X0,i > x) ∼ aix
−𝛼i
, x →∞, (1.3)

where ai is a positive constant and 𝛼i > 0 is the unique solution of the equation 𝔼[|bi + ciM0|
𝛼i ] = 1. Here and

below, f (x) ∼ g(x) means that limx→∞
f (x)
g(x)

= 1.
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Heavy-tails as in (1.3) favor the appearance of extreme values. On the contrary with the i.i.d. case, these values
tend to appear consecutively in time due to the dependency in the diagonal SRE model (1.1). As discussed in
Embrechts et al. (2013), this extremal clustering is an important phenomenon to take into account in risk analysis.
It is usually described via the notion of regular variation for stationary time series defined in Basrak and Segers
(2009).

Definition 1.1. The stationary time series (Xt) is regularly varying if and only if ‖X0‖ is regularly varying and
for all t ≥ 0 there exist weak limits

lim
x→∞

ℙ
(
‖X0‖

−1(X0,… ,Xt) ∈ ⋅|‖X0‖ > x
)
= ℙ

(
(𝚯0,… ,𝚯t) ∈ ⋅

)
.

By stationarity and using Kolmogorov consistency theorem one can extend the trajectories (𝚯0,… ,𝚯t) into a
process (𝚯t) called the spectral tail process. Consecutive big values of the spectral tail process around𝚯0 charac-
terize the extreme clustering due to an extremal event {‖X0‖ > x} for x sufficiently large. Note that serial extremal
dependence of the marginal sequences (Xt,i)t∈ℤ for any 1 ≤ i ≤ d is well known since the pioneer work of De Haan
et al. (1989).

For diagonal SRE (1.1) we will show that 𝛼i ≠ 𝛼j in many situations, so that the marginals of X0 are not tail
equivalent. If 𝛼i < maxj 𝛼j, then

ℙ(|X0,i| > x) = o
(
ℙ(‖X0‖ > x)

)
, x → ∞.

In this case, the notion of regular variation of Basrak and Segers (2009) is not suitable. By an application of the
results in Janssen and Segers (2014), the corresponding marginal of the spectral tail process is degenerated, that
is, Θt,i = 0 a.s. for all t ∈ ℤ. Hence, information about extreme clustering in this coordinate is lost. The notion of
non-standard regular variation was introduced to circumvent this issue in full generality (see Resnick, 2007 and
references therein). For Pareto equivalent marginal tails satisfying (1.3), such as coordinates of stationary solutions
to the diagonal SRE (1.1), vector scaling regular variation (VSRV) in the sense of Pedersen and Wintenberger
(2018) is a simple alternative of the non-standard regular variation of Resnick (2007), see preliminary Section 2
for a formal definition. The extremal behavior of stationary VSRV time series is described by the spectral tail
VSRV process (̃𝚯t), extending the notion of spectral tail process to SRE with different marginal tail indices.

As an illustration of our approach, consider the bivariate case (X0,1,X0,2) such that c2∕c1 > b2∕b1 ≥ 1(with the
convention 0∕0 = 1) and c1 > 0 and both M = M0 as well as the components Q1 = Q0,1 and Q2 = Q0,2 are positive.
Then 𝛼1 > 𝛼2 and we prove in Section 3 that X0,1 and X0,2 are asymptotically independent in the sense that

lim
x→∞

ℙ(X0,1 > x
1
𝛼1 |X0,2 > x

1
𝛼2 ) = lim

x→∞
ℙ(X0,2 > x

1
𝛼2 |X0,1 > x

1
𝛼1 ) = 0. (1.4)

This result remains true also when Q1 = Q2. Thus, even though X0,1 and X0,2 are perfectly dependent in the
sense that all their randomness comes from the same random variables, extremes never occur simultaneously. This
asynchrony is due to different typical time scales until the appearance of an extremal event in coordinates with
different tail indices. Note that the different vector scaling (x1∕𝛼1

, x1∕𝛼2 ) in (1.4) depends on the power-law index
in (1.3). This asymptotical independence result (1.4) is responsible for the VSRV properties of the stationary time
series (Xt,1,Xt,2). We refer to Section 3 for the general result in ℝd. We prove asymptotic independence between
blocks with different tail indices, and asymptotic dependence within blocks. Clusters of extremes of coordinates
with different tail indices in the diagonal SRE are necessarily asynchronous. We describe this phenomenon as
asynchronous extreme clustering.

The diagonal SRE (1.1) is a very simple model that may coincide with some classical multivariate GARCH ones.
For the specific case (Mt) are i.i.d. (0, 1), bi = 0 for all 1 ≤ i ≤ d and (Qt) are i.i.d. (0,𝚺) the diagonal SRE
coincides with the diagonal BEKK-ARCH(1) model as in Pedersen and Wintenberger (2018). For (Qt) degenerated

J. Time Ser. Anal. 43: 750–780 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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752 S. MENTEMEIER AND O. WINTENBERGER

to a constant the diagonal SRE model coincides with the volatility process of some CCC-GARCH model. Such
diagonal SRE models are very interesting as they generate potentially different marginal tail indices 𝛼i > 0. This
freedom is not offered by the general CCC-GARCH model whom marginals have the same tail index, as discussed
in Buraczewski et al. (2016b) and Stărică (1999). This feature is important for modeling: Heavy tailed data, such as
in finance, may exhibit different tail indices indicating different magnitude in the responses during financial crisis.

We illustrate in Section 4 via simulations of the CCC-GARCH model the consequence of different marginal
tail indices on extreme clustering. We show the asynchrony of the clusters of extreme values generated by mul-
tivariate GARCH models with different tail indices and asymptotic independence of bivariate processes. Even if
the conditional covariance dependence is total, that is, the multiplicative random term is common to all GARCH
models, the clustering of extremes does not propagate between blocks of different tail indices. We believe that
this asynchronous extreme clustering phenomenon is shared by general models that do not fit into the setting of
our work. We apply our approach on real dat. We fit the more general and realistic DCC-GARCH model of Engle
(2002) on log-returns of IBM and GOOGLE. Despite strong correlation clustering1 and close tail indices among
the marginals of the model, the fitted DCC-GARCH model exhibits some evidences of asymptotic independence
on simulations despite the model does not satisfy our assumptions. These evidences are not shared by the real
data. Asynchrony of extreme clusters constitute, in our opinion, a strong and intrinsic limitation of multivariate
GARCH models with different marginal tail indices. The model captures extreme clustering with different magni-
tude only when they are due to different financial crisis. The existence of a multivariate GARCH model exhibiting
extremal clustering among marginals with different tail indices is left as an open question.

1.1. Structure of the Article

Section 2 contains preliminaries such as notation, VSRV notion and assumptions required to formulate the results
contained in Section 3. Illustrations of our results are provided in Section 4 both on simulated and real data. The
proofs are collected in Section 5 using a crucial lemma on the different typical time scales until the first appearance
of an extreme value in different coordinates. The proof of this lemma is contained in the Appendix A together
with a result on the non-standard regular variation properties of VSRV random vectors with positive coordinates.

2. PRELIMINARIES

2.1. Notation

The max-norm on ℝd is denoted ‖ ⋅ ‖ and the euclidean norm ‖ ⋅ ‖2. For vectors, we use bold notation x =
(x1,… , xd). Operations between vectors or scalar and vector are interpreted coordinate wise, for example, x−1∕𝜶 =
(x−1∕𝛼1

,… , x−1∕𝛼d ) for positive x and ab = (aibi)1≤i≤d. A notation that will be used frequently is vector scaling of a
sequence of ℝd-valued random variables, for example

x−1∕𝜶(X0,… ,Xt) =
(
x−1∕𝜶X0,… , x−1∕𝜶Xt

)

=
((

x−1∕𝛼i X0,i

)

1≤i≤d
,… ,

(
x−1∕𝛼i Xt,i

)

1≤i≤d

)
.

For some potentially distinct 𝛼1,… , 𝛼d we define the following notion of vector scaling distance:

‖x‖
𝜶
= max

1≤i≤d
|xi|

𝛼i = ‖x𝜶‖, x = (xi)1≤i≤d ∈ ℝd
.

Here x𝜶 denotes the vector (sign(xi)|xi|
𝛼i)1≤i≤d in ℝd. We want to stress that ‖x‖

𝜶
is neither homogeneous nor

does it satisfy the triangle inequality for general values of 𝛼1,… , 𝛼d. Thus, it is not a (pseudo-)norm but it will

1 Correlation clustering is a stylized fact captured by the DCC-GARCH model, see the V-Lab documentation https://vlab.stern.nyu.edu/docs/
correlation/GARCH-DCC.

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 43: 750–780 (2022)
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provide a meaningful scaling function. Note that x → ‖x‖
𝜶

is a continuous function and is 1∕𝜶-homogeneous in
the following sense:

‖𝜆1∕𝜶X0‖𝜶 = max
1≤i≤d

|
|
|
𝜆

1∕𝛼i X0,i
|
|
|

𝛼i = 𝜆‖X0‖𝜶

The components of the vector

‖X0‖
−1∕𝜶
𝜶

Xt =
(
‖X0‖

−1∕𝛼i
𝜶

Xt,i

)

1≤i≤d

have ‖ ⋅ ‖
𝜶

and max-norm equal to one when t = 0 thus it belongs to d−1
∞ = {x ∈ ℝd; ‖x‖

𝜶
= 1} the

max-norm-unit sphere.

2.2. Vector Scaling Regular Variation

To treat the temporal dependence of the stationary solution (Xt), we will use the notion of VSRV introduced in
Pedersen and Wintenberger (2018) as follows:

Definition 2.1 (VSRV). A stationary time series (Xt) is VSRV of order 𝜶 = (𝛼1,… , 𝛼d) if for all 1 ≤ i ≤ d,

ℙ(|X0,i| > x) ∼ aix
𝛼i with ai > 0, (2.1)

‖X0‖𝜶 is regularly varying and there exists weak limits

lim
x→∞

ℙ
(

‖X0‖
−1∕𝜶
𝜶

(X0,… ,Xt) ∈ ⋅
|
|
|
‖X0‖𝜶 > x

)

= ℙ
(
(̃𝚯0,… ,

̃𝚯t) ∈ ⋅
)
, (2.2)

for any t ≥ 0.

One can extend the trajectories (̃𝚯0,… ,
̃𝚯t) into a process (̃𝚯t) called the spectral tail VSRV process. Note that

a VSRV time series (Xt) with indices 𝛼1,… , 𝛼d is such that (X𝜶

t ) is regularly varying as in Definition 1.1 with tail

index 1. When 𝛼1 = · · · = 𝛼d then (Xt) is regularly varying and (̃𝚯t) coincides with the spectral tail process (𝚯t).
It is one advantage of considering VSRV as it extends the regular variation of time series in Basrak and Segers
(2009) to SRE solutions with different marginal tail indices.

2.3. The Univariate Marginal SRE and the Assumptions

Due to the diagonal multiplicative term in (1.1), the marginals of Xt = (Xt,1,… ,Xt,d)⊤ are satisfying the univariate
marginal SREs

Xt,i = (bi + ciMt)Xt−1,i + Qt,i, t ∈ ℤ, for 1 ≤ i ≤ d.

We work under the following set of assumptions that implies the ones of Goldie (1991) on the marginal SREs.
Note that this includes the assumption that the components of Q are (relatively) light tailed, to avoid that the tails
of the stationary solution are dominated by Q; see Assumption (A3). We impose this assumption because we are
interested in the effect of the multiplicative part 𝕄 on the tail properties of the solution. See Grey (1994) for a
discussion of the case when Q dominates. Denoting by (M,Q) a generic copy of (Mt,Qt), we assume that for all
1 ≤ i ≤ d,

𝔼
[

log ||bi + ciM|
]
< 0. (A1)

J. Time Ser. Anal. 43: 750–780 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12637 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



754 S. MENTEMEIER AND O. WINTENBERGER

This implies that the top Lyapunov coefficient of the product 𝕄1 …𝕄k is negative, hence the Markov chain (Xt)
has a unique stationary distribution (see Kesten, 1973). It is given by the law of the random vector

X =

(
X1
⋮

Xd

)

∶=
∞∑

k=1

𝕄1 · · ·𝕄k−1Qk. (2.3)

We further assume that there exist positive constants 𝛼1,… , 𝛼d such that for 1 ≤ i ≤ d

𝔼
[
|bi + ciM|𝛼i

]
= 1. (A2)

Given these 𝛼1,… , 𝛼d, we assume for 1 ≤ i ≤ d

𝔼
[
|M|𝛼i+𝜖

]
< ∞, 𝔼

[
‖Q‖𝛼i+𝜖

]
<∞ for some 𝜖 > 0. (A3)

Of course, it suffices to check this condition for the maximal 𝛼i. We also need the technical assumption that

the distributions of log |bi + ciM| are non-arithmetic for all 1 ≤ i ≤ d. (A4)

Finally, to avoid degeneracy, we require for 1 ≤ i ≤ d that

ℙ((bi + ciM)x + Qi = x) < 1 for all x ∈ ℝ, and ℙ(Qi > 0) > 0. (A5)

Given (A1)–(A5), an application of the Kesten–Goldie theorem of Goldie (1991) and Kesten (1973) yields the exis-
tence of a Pareto tail equivalent stationary distribution, that is, the equivalence in (1.3) is met, namely ℙ(X0,i > x) ∼
aix

−𝛼i as x → ∞.
The positivity of ai can be deduced by non-trivial classical arguments, as follows.
If P(bi + ciM < 0) > 0, then positivity of ai is proved in Goldie (1991, Theorem 4.1). If bi + ciM > 0 a.s., then

additional arguments are needed: Assumptions (A1) and (A2) together imply that there are m,m′ in the support
of M, such that bi + cim < 1, bi + cim

′
> 1. By (A5), there is qi > 0 in the support of Qi. Since Qi and M are

assumed to be independent, we have that (bi + cim, qi) and (bi + cim
′
, qi) are in the support of (bi + ciM,Qi). Then

Buraczewski et al. (2016b, Proposition 2.5.4) yields that the support of Xi is unbounded at +∞, which together
with Buraczewski et al. (2016b, Theorem 2.4.6) implies that ai is positive.

We note in addition that the stationarity condition (A1) can be deduced from (A2) as soon as M is not constant
a.s. (which is implied by (A4)), see the comments after Theorem 2.4.4 in Buraczewski et al. (2016b).

2.4. Assumptions Specific to the Multivariate SRE

We finish with assumptions concerning the interplay of different marginals; these are specific to our multivariate
diagonal setting and not required for the study of marginal SREs.

For all pairs 1 ≤ i, j ≤ d such that 𝛼i > 𝛼j, we will require that

lim
u→∞

log(u)ℙ
(
|Qj|

|Qi|
> u𝜀

)

= 0 for all 𝜖 > 0. (A6)

Considering (2.3), we see that the ratio Xi∕Xj may be affected not only by the ratios (bi + ciMk)∕(bj + cjMk) of
the multiplicative part, but also by the ratios Qi,k∕Qj,k. Assumption (A6) ensures that the effect of the latter ratio
does not dominate. It is easy to check in examples (see Curtiss, 1941 for a discussion); it holds, for example, if
Q ∼ (0,𝚺), or whenever the ratio Qj∕Qi is bounded or has finite expectation.

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 43: 750–780 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12637
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We suppose that coordinates are chosen in such a way that 𝛼i decreases with i. We partition {1,… , d} = I1 ∪
I2 ∪ · · · ∪ Ir such that bi = bj and ci = cj (hence 𝛼i = 𝛼j) if and only if i, j ∈ I𝓁 for some 1 ≤ 𝓁 ≤ r.

To be able to compare the effects of the multiplicative part bi + ciM in different marginals, we assume that one
of the two following cases holds for all i, j with i ∈ I𝓁 , j ∈ I𝓁′ , 𝓁 < 𝓁

′ (hence i < j):

bi = bj = 0, cj > ci > 0, Mt is ℝ-valued (Case I)

bj ≥ bi > 0, cj > ci > 0,
cj

ci

≥
bj

bi

, Mt > 0 a.s. (Case II)

That is, we allow the diagonal entries to be linear or affine transformations of Mt. These cases cover a variety
of multivariate diagonal GARCH models, see the examples in Section 4. In the affine case Case II, we require
positivity to ensure that one entry dominates the other in modulus almost surely; that is, we always know, which
multiplicative component is the largest one. Recalling the definition of 𝛼i by the property

𝔼
[

|bi + ciM|𝛼i

]

= 1,

we note that in both cases |bj + cjM| > |bi + ciM| a.s., which implies 𝛼i > 𝛼j.
We further denote by

ℝ|I𝓁 | = {x ∈ ℝd; xi = 0 for i ∉ I𝓁}

the (embedded) subspace corresponding with coordinates indexed by I𝓁 and by

𝕊|I𝓁 |−1
∞ = {x ∈ ℝd;max

i∈I𝓁
|xi| = 1 and xi = 0 for i ∉ I𝓁}

its max-norm-unit sphere. Note that if I𝓁 = {i} is a singleton, then 𝕊|I𝓁 |−1
∞ = {ei,−ei} where ei denotes the

corresponding standard basis vectors.

3. MAIN RESULT

We provide the VSRV properties of the diagonal SRE in full generality.

Theorem 3.1. Let (Xt) a stationary process satisfying the diagonal SRE (1.1) and assume that (A1)–(A6) hold.
Assume that (Case I) or (Case II) holds, then (Xt) is a VSRV process satisfying

̃𝚯t = 𝕄t
̃𝚯t−1, t ≥ 1. (3.1)

and there exist probability measures 𝜉𝓁 with support contained in 𝕊|I𝓁 |−1
∞ , 1 ≤ 𝓁 ≤ r, such that

ℙ
(
̃𝚯0 ∈ ⋅

)
= lim

x→∞
ℙ
(
‖
‖X0

‖
‖
−1∕𝜶
𝜶

X0 ∈ ⋅
|
|
|
‖
‖X0

‖
‖𝜶 > x

)

= 1
c

∑

1≤𝓁≤r

c𝓁 𝜉𝓁(⋅),

for positive constants c, c1,… , cr with c1 + · · · + cr = c. In particular,

Supp(̃𝚯0) ⊂ ∪1≤𝓁≤r𝕊|I𝓁 |−1
∞ . (3.2)

Proof. The proof of the main and auxiliary results is the content of Section 5, the actual proof of Theorem 3.1 is
in Section 5.4.

J. Time Ser. Anal. 43: 750–780 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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With probability 1, the components of ̃𝚯0 are equal to zero except for the entries within exactly one block I𝓁 .
Thus, we have asymptotic independence between blocks I𝓁: If i ∈ I𝓁 , j ∈ I𝓁′ with 𝓁 ≠ 𝓁′, then

lim
x→∞

ℙ
(

‖X0‖
−1∕𝛼(𝓁)
𝜶

X0,i > 0, ‖X0‖
−1∕𝛼(𝓁′)
𝜶

X0,j > 0 ||
|
‖X0‖𝜶 > x

)

= ℙ
(
̃Θ0,i > 0, ̃Θ0,j > 0

)
= 0.

A natural question to ask is in which cases equality holds in (3.2), or, more precisely, in which cases is the
support of 𝜉𝓁 equal to 𝕊|I𝓁 |−1

∞ ? The following result gives sufficient conditions for equality. For a vector x in ℝd

we write x𝓁 = (xi)i∈I𝓁
and denote by span(M) the linear space generated by the set of vectors M.

Lemma 3.2. Fix 1 ≤ 𝓁 ≤ r and let m = |I𝓁|. Under the assumptions of Theorem 3.1,

supp(̃𝚯0,𝓁) ⊂ span
(
supp(Q𝓁)

)
∩ Sm−1

∞ . (3.3)

In addition, the following implications hold:

(a) In (Case I), if supp(M) is dense in ℝ, then

supp(̃𝚯0,𝓁) = span
(
supp(Q𝓁)

)
∩ Sm−1

∞ .

(b) In (Case II), if supp(M) is dense in ℝ+, then

supp(̃𝚯0,𝓁) = {a1q1 + · · · + anqn ∶ n ∈ ℕ, ai > 0, qi ∈ supp(Q𝓁)} ∩ Sm−1
∞ ,

that is, it equals the convex cone generated by supp(Q𝓁) intersected by the unit sphere.
(c) If supp(Q𝓁) is dense in ℝm, then supp(̃𝚯0,𝓁) = Sm−1

∞ .

Proof. This result is proved in Lemma 5.5.

We can summarize the previous result as follows. If M has full support and Q𝓁 is not confined to a linear
subspace, then ̃𝚯0,𝓁 charges the whole unit sphere S|I𝓁 |−1

∞ , see Remark 5.6 for a precise statement.

4. APPLICATION TO MULTIVARIATE GARCH MODELS AND REAL DATA

We show how our result applies to different multivariate GARCH models.

4.1. Diagonal BEKK-ARCH(1) Model

We consider (Xt) the solution of the diagonal BEKK-ARCH(1) model defined as in Pedersen and Wintenberger
(2018) by the system

{
Xt = H1∕2

t Zt, t ∈ ℤ,
Ht = 𝚺 + Diag(c1,… , cd)Xt−1X⊤Diag

t−1 (c1,… , cd),

where (Zt) is an i.i.d. sequence of Gaussian random vectorsd(0, I) and𝚺 is a variance matrix. Due to the assump-
tion that Zt is Gaussian, we can identify the Gaussian transition kernel of the diagonal BEKK-ARCH(1) model.
It coincides with the one of the diagonal SRE model (1.1) with

(Qt) are i.i.d. (0,𝚺),

𝕄t = Diag
(
c1Mt,… , cdMt

)
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Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12637



EXTREME VALUE THEORY FOR THE DIAGONAL SRE MODEL 757

and (Mt) i.i.d. (0, 1), see Pedersen and Wintenberger (2018). Thus a version of (Xt) satisfies the recursion (1.1).
Under the top-Lyapunov condition

c2
i < 2e𝛾 , 1 ≤ i ≤ d, (4.1)

where 𝛾 ≈ 0.5772 is the Euler constant, it exists a stationary solution (Xt); see for example, Nelson (1990). Its
multivariate extremal behavior is given by the following corollary which follows from an application of Theorem
3.1 in (Case I):

Corollary 4.1. If the stationarity assumption (4.1) is satisfied, then the stationary solution (Xt) of the diagonal
BEKK-ARCH(1) model is a VSRV process satisfying

Supp(̃𝚯0) = ∪1≤𝓁≤r𝕊|I𝓁 |−1
∞

and

̃𝚯t = Mt Diag(c1,… , cd) ̃𝚯t−1, t ≥ 1. (4.2)

Proof. We have to check the assumptions of Theorem 3.1. This is readily done for (A1)–(A5), see Pedersen and
Wintenberger (2018) for details. Considering (A6), let 𝜎2

i = Var(Qi) and 𝜌ij be the correlation coefficient of Qi and
Qj; 𝔼Qi = 𝔼Qj = 0. Then the ratio Qi∕Qj has a Cauchy distribution with location parameter a = 𝜌ij

𝜎i

𝜎j
and scale

parameter b = 𝜎i

𝜎j

√
1 − 𝜌2

ij; see for example, Curtiss (1941, (3.3)). The Cauchy distributions are 1-stable, hence

ℙ
(
|Qi|

|Qj|
> u

)

= O(u)

and (A6) follows if I, J are singletons. To compare Q∗
I = maxi∈I |Qi| with Q∗

J = maxj∈J |Qj| we use the simple
bound (fix any j ∈ J)

{
Q∗

I

Q∗
J

> u

}

⊂

⋃

i∈I

{
|Qi|

|Qj|
> u

}

to conclude that the probability of this event still decays as O(u). Thus, (A6) also holds in this case.
It remains to show that supp

(
̃𝚯0

)
is equal to ∪1≤𝓁≤r𝕊|I𝓁 |−1. Therefore, we can focus on a particular block I and

show that the spectral measure of the restriction (X0,i)i∈I has full support S|I|−1
∞ .

If I is a singleton, then this means nothing but that left and right tails are regularly varying with the same index;
which already follows from the Goldie–Kesten theorem applied to M with ℙ(M < 0) > 0. If |I| > 1 then the result
follows from Lemma 3.2(a), since M and (Qi)i∈I are independent Gaussians, and span

(
supp((Qi)i∈I)

)
= ℝ|I| since

C, the variance of Q, has full rank.

The multivariate regular variation properties of the diagonal BEKK-ARCH(1) process is quite simple as the
support is preserved by the multiplicative form of the spectral tail VSRV process. The spectral tail VSRV process
is a mixture of multiplicative random walks with distinct supports. Each support corresponds to the span of the
diagonal coefficients of the multiplicative matrix that are equal. From a risk analysis point of view, it means that
the extremal risks are dependent only in the directions of equal diagonal coefficients. Thus, the model is relevant
only if the each group of dependent extremal risks are due to different financial crisis.

Under more restrictive assumptions, it is also possible to provide second-order results, see the arXiv version
of the present article (Mentemeier and Wintenberger, 2019). See also Matsui and Pedersen (2021) for a recent
analysis of the general BEKK-ARCH model.
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4.2. CCC-GARCH(1,1) Model

The constant conditional correlation (CCC)-GARCH(1,1) model has been introduced by Bollerslev (1990) such
as the stationary solution of the system

⎧
⎪
⎨
⎪
⎩

Rt = 𝚺tNt, t ∈ ℤ,
𝚺t = Diag(𝜎t,1,… , 𝜎t,d),
𝜎

2
t,i = ai + bi𝜎

2
t−1,i + ciR

2
t−1,i,

(4.3)

where Nt i.i.d. is distributed asd(0,C) for C a correlation matrix and the coefficients ais, bis and cis are positive.
The general CCC-GARCH(1,1) model of Stărică (1999) is defined by the same system with extra cross terms
∑

j≠i bi,j𝜎
2
t−1,j and

∑
j≠i ci,jR

2
t−1,j in the second equation. By a direct application of Theorem of Kesten (1973), the

volatility Xt = (𝜎2
t,1,… , 𝜎

2
t,d)

⊤ ∈ ℝd
+ of a general CCC-GARCH(1,1) is regularly varying when bi,j + ci,j > 0 for

all i, j, see Stărică (1999) for more details.
Back to the original CCC-GARCH model (4.3) we consider the degenerate case Nt = (1,… , 1)⊤Zt with Zt ∼

 (0, 1). Then the original CCC-GARCH(1,1) volatility Xt = (𝜎2
t,i)1≤i≤d satisfies the diagonal SRE (1.1) with

Qt ≡ q = (a1,… , ad)⊤ and

𝕄t = Diag(b1 + c1Z2
t ,… , bd + cdZ2

t ).

The existence of a stationary solution is then ensured under the top-Lyapunov conditions

𝔼[log(bi + ciZ
2
0 )] < 0, 1 ≤ i ≤ d. (4.4)

which is equivalent to (A1) in this case.
We get from another application of Theorem 3.1 in (Case II):

Corollary 4.2. If the stationarity assumption (4.4) is satisfied and cj∕ci ≥ bj∕bi whenever 𝛼i > 𝛼j, then the
volatility (Xt) of the stationary solution of the CCC-GARCH model (4.3) with Nt = (1,… , 1)⊤Zt is a VSRV
process satisfying

Supp(̃𝚯0) = ∪1≤𝓁≤r{q̄𝓁}

where q̄𝓁 is given by

(q̄𝓁)i =

{
0 i ∉ I𝓁 ,

qi∕q∗𝓁 i ∈ I𝓁

with q∗𝓁 ∶= maxj∈I𝓁
qj. Moreover

̃𝚯t = Diag(b1 + c1Z2
t ,… , bd + cdZ2

t ) ̃𝚯t−1, t ≥ 1.

Proof. To apply Theorem 3.1 in (Case II), we have to check conditions (A1)–(A6) for 1 ≤ i ≤ d. The stationarity
assumption (4.4) is (A1) and implies moreover, together with the fact that M = Z2

0 has a 𝜒2-distribution, that all
moments of bi + ciM exist and lims→∞ 𝔼

[
|bi + ciM|s

]
= ∞, while 𝔼

[
|bi + ciM|𝜖

]
< 1 for sufficiently small 𝜖 > 0.

Hence, for any 1 ≤ i ≤ d there exists 𝛼i > 0 satisfying

𝔼[(bi + ciZ
2
0 )
𝛼i] = 1. (4.5)
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The further assumptions are readily checked using that bi + ciM has a density on [b,∞) and that Qt ≡ q is
deterministic. We conclude that

supp(̃𝚯0) ⊂ ∪1≤𝓁≤r𝕊|I𝓁 |−1
∞

Finally, by Lemma 3.2(b), for each I𝓁-block,

supp(̃𝚯0) ∩ 𝕊|I𝓁 |−1
∞ = {q̄𝓁}.

Thus, despite the constant correlation matrix 𝚺 being totally correlated, the volatility process exhibits
asymptotic independence among marginals. On the other hand, if the components of the CCC-GARCH(1,1)
model are independent, which is the case when C = Diag(1,… , 1), they are asymptotically independent
as well.

We conjecture asymptotic independence to be true for all choices of Nt in the original CCC-GARCH(1,1) model,
since the one we considered is the most dependent one. A recent preprint Damek (2021) gives a partial positive
answer to this open question.

4.3. A Simulation Study

We provide some empirical evidences on the results of Theorem 3.1 and Lemma 3.2. We simulate a trajectory of
length 108 of the bidimensional diagonal SRE

Xt =
(

Xt,1
Xt,2

)

=
(

b1 + c1Mt 0
0 b2 + c2Mt

)( Xt−1,1
Xt−1,2

)

+ Qt.

Following (2.2), we consider the ratios
(
‖Xt‖

−1∕𝜶
𝛼

Xt

)
of the exceedances satisfying ‖Xt‖𝜶 > x as an approximation

of the spectral component ̃𝚯0. We fix the threshold x as the empirical (1−10−5)-percentile of the simulated values(
‖Xt‖𝜶

)
. We estimate empirically the angular measure arctan( ̃Θ0,1∕ ̃Θ0,2) by an histogram.

We first consider Case I with Mt ∼ (0, 1) and Qt a bivariate standard Gaussian vector with correlation 0.9. This
corresponds to the diagonal BEKK-ARCH model. To simplify the graphical presentation, we consider the spectral
measure for the absolute values of Xt. Figure 1 corresponds to different coefficients c1 = 1 and c2 = (1∕3)1∕4

whereas Figure 2 corresponds to equal coefficients c1 = c2 = 1. In accordance with Theorem 3.1, the angular
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Figure 1. 𝛼1 = 2 and 𝛼2 = 4
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Figure 2. 𝛼1 = 𝛼2 = 2
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Figure 3. 𝛼1 = 1 and 𝛼2 = 2

measure in Figure 1 is concentrated around 0 and 𝜋∕2. Following Lemma 3.2(c) the support of the angular measure
should be [0, 𝜋∕2) which is not in contradiction with Figure 2.

Next we consider Case II with Mt = Z2
t , Zt ∼  (0, 1), b1 = b2 = 0.1 and constant Qt = (0.2, 0.1)⊤. This

corresponds to the totally correlated CCC-GARCH model. Again the angular measure is concentrated around 0
and 𝜋∕2 in Figure 3 for different coefficients c1 = 0.9 and c2 the positive root of 3c2

2 + 0.2c2 + 0.01 = 1. For

equal coefficients c1 = c2 = 0.9 in Figure 4, the support of the angular measure of ̃𝚯0 is concentrated around
arctan(Qt,1∕Qt,2) = arctan(2) as expected from Lemma 3.2(b).

Figures 3 and 4 correspond to the totally correlated CCC-GARCH. To investigate our conjecture we con-
sider the case where the covariance matrix 𝚺 is standardized with correlation 0.5. In Figures 5 and 6 the
parameters are the same as in Figures 3 and 4. Both angular measures are concentrated around 0 and 𝜋∕2,
supporting our conjecture and encouraging us to extend it: The asymptotic independence might be the rule
for any CCC-GARCH model except when the CCC-GARCH model is totally correlated with equal marginal
tail index.
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Figure 4. 𝛼1 = 𝛼2 = 1
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Figure 5. 𝛼1 = 1 and 𝛼2 = 2
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Figure 6. 𝛼1 = 𝛼2 = 1

J. Time Ser. Anal. 43: 750–780 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12637 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



762 S. MENTEMEIER AND O. WINTENBERGER

Arctan (θ1 θ2)

D
en

si
ty

0.0 0.5 1.0 1.5

0
5

10
15

20

Figure 7. Log-returns

4.4. Real Data Application

We illustrate our approach by fitting a DCC-GARCH model on real data. The DCC-GARCH model was introduced
in Engle (2002) as a more realistic generalization of the CCC-GARCH model satisfying the system of recursive
equations

⎧
⎪
⎨
⎪
⎩

Rt = 𝚺tNt, t ∈ ℤ,
𝚺t = Diag(𝜎t,1,… , 𝜎t,d),
𝜎

2
t,i = ai + bi𝜎

2
t−1,i + ciR

2
t−1,i,

(4.6)

where the correlation matrices (Ct) of Nt are no longer constant but satisfies the dynamic model

Ct = (1 − a − b)C + aRt𝚺−2
t R⊤

t + bCt−1, t ∈ ℤ,

for some a, b > 0 such that a + b < 1 and C being an unconditional correlation matrix. Fitted2 on IBM and
GOOGLE log returns Rt = (Rt,1,Rt,2) from 3 January 2007 to 30 August 2021 (3690 observations), we found
a large unconditional correlation of C1,2 = 0.37 together with some dynamical effect (a, b) = (0.03, 0.85). The
DCC-GARCH model captures the financial stylized fact called correlation clustering: The conditional correla-
tion between log-returns is more likely to be high at time t if it was high at time t − 1. The marginal parameters
of the GARCH(1,1) models are close (b1, c1) = (0.11, 0.82) and (b2, c2) = (0.08, 0.89) and solving the cor-
responding unit-root (4.5), we found very close tail indices (𝛼1, 𝛼2) = (1.46, 1.41) for the squared log-ratios
Xt = R2

t . We consider again the ratios
(
‖Xt‖

−1∕𝜶
𝛼

Xt

)
of the exceedances satisfying ‖Xt‖𝜶 > x, for x the empiri-

cal (1− 10−2)-percentile, as an approximation of the spectral component ̃𝚯0. We estimate empirically the angular
measure arctan( ̃Θ0,1∕ ̃Θ0,2) by an histogram in Figure 7. We do not find clear evidence of asymptotic independence.
Next, simulating a trajectory of length 3690 following the fitted DCC-GARCH model (4.6), we estimate similarly
the angular measure using exceedances above the empirical (1 − 10−2)-percentile. We find in Figure 8 evidences
of asymptotic independence despite the DCC-GARCH model does not satisfy the conditions of our article.

This illustration may lead to several discussions; first, it seems, as conjectured at the end of Section 4.2, that the
asynchrony in multivariate GARCH models with different tail indices is found beyond the conditions of our study
and applies to DCC-GARCH models. Second, correlation clustering is not extremal clustering. When the values
are extreme, the DCC-GARCH model does not capture any clustering among marginals with different tail indices.

2 We used the package rmgarch of the R-CRAN software Ghalanos (2019).
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Figure 8. Fitted DCC-GARCH model

Third, it seems realistic to use GARCH models with different marginal tail indices capturing extreme clustering
among them. However, up to our knowledge, such a model does not exist yet.

5. PROOFS

To prove our main result, we proceed as follows. As the first step, in Section 5.1, we consider a bivariate diagonal
SRE with distinct coefficients b1, b2 and c1, c2; for we can always reduce the study of asymptotic independence
between blocks I𝓁 to the comparison of two components with distinct coefficients.

As the second step, in Section 5.2, we consider a multivariate diagonal SRE where all coefficients are equal.
There, we study properties of the spectral vector within one block I𝓁 . This part also contains the proof of
Lemma 3.2.

As the third step, in Section 5.3, we provide further properties of VSRV, to study the serial dependence structure
provided by

(
̃𝚯0,… ,

̃𝚯t

)
.

We conclude with the proof of Theorem 3.1 in Section 5.4, using the findings of the previous steps.

5.1. The Diagonal SRE with Distinct Coefficients

We will show that the marginals of the diagonal SRE with distinct coefficients are asymptotically independent. A
standard argument reduces the discussion to the bivariate case. We consider the bivariate random recursive process
Xt = 𝕄tXt−1 + Qt, defined by X0 = 0 and

(
Xt,1
Xt,2

)

=
(

b1 + c1Mt 0
0 b2 + c2Mt

)( Xt−1,1
Xt−1,2

)

+ Qt. (5.1)

We assume that (Mt)t∈ℕ are i.i.d. random variables, (Qt)t∈ℕ are i.i.d. ℝ2-valued random vectors independent of
(Mt) and that (A1)–(A6) are satisfied. We assume as well that either (Case I) or (Case II) holds, which read in the
bivariate setting as follows.

b2 = b1 = 0, c2 > c1 > 0, Mt is ℝ-valued (Case I)

b2 ≥ b1 > 0, c2 > c1 > 0,
c2

c1

≥
b2

b1

, Mt > 0 a.s. (Case II)

As before, by the definition of 𝛼i (see (A2)) it holds 𝛼1 > 𝛼2.
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Under our assumptions, by the Kesten–Goldie theorem of Goldie (1991), Kesten (1973) applied to multiplicative
factors with bi + ciM, i = 1, 2, we have for the random variables Xi, defined by (2.3)

lim
u→∞

u𝛼1ℙ(X1 > u) = a1, lim
u→∞

u𝛼2ℙ(X2 > u) = a2 (5.2)

for constants a1, a2 which are positive, see Section 2.3 for details. We are going to prove that

lim
u→∞

uℙ
(
X2 > u1∕𝛼2

, X1 > u1∕𝛼1
)
= 0. (5.3)

which by (5.2) is equivalent to the asymptotic independence

lim
u→∞

ℙ
(
X2 > u1∕𝛼2 |

|X1 > u1∕𝛼1
)
= 0.

of the extremes.

5.1.1. Reduction to the Case of Non-negative M and Qi

From Definition (2.3), it is obvious that we can bound Xi by the following sums over non-negative random
variables:

Xi ≤

∞∑

k=1

k−1∏

𝓁=1

|bi + ciM𝓁||Qk,i| =∶ X∗
i

We notice that X∗
i satisfies the fixed point equation, in distribution,

X∗
i

law
= |bi + ciM|X∗

i + |Qi|, i = 1, 2,

(where
law
= denotes equality in law between random variables on both sides). In particular, thanks to (A1)–(A4),

the Kesten–Goldie theorem, now used in the case of positive coefficients, applies and yields

lim
u→∞

uℙ
(

X∗
2 > u1∕𝛼2

)

= a∗2 > 0 lim
u→∞

uℙ
(

X∗
1 > u1∕𝛼1

)

= a∗1 > 0. (5.4)

Note that the tail indices 𝛼1, 𝛼2 remain unchanged thanks to their definition in (A2). Since |Xi| ≤ X∗
i , i = 1, 2, the

result (5.3) will follow from the relation

lim
u→∞

uℙ
(

X∗
2 > u1∕𝛼2

, X∗
1 > u1∕𝛼1

)

= 0.

5.1.2. Asymptotic Independent Diagonal SRE
By the previous discussion, it is enough to consider the following cases

b2 = b1 = 0, c2 > c1 > 0, Mt,Qi > 0 a.s, (Case I′)

b2 ≥ b1 > 0, c2 > c1 > 0,
c2

c1

>

b2

b1

, Mt,Qi > 0 a.s. (Case II′)

We summarize these two cases under the condition c2∕c1 > b2∕b1 ≥ 1 and c1 > 0 (with the convention 0∕0 = 1).
We are going to prove the following result.
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Theorem 5.1. Assume (A1)–(A6) for i = 1, 2 with c2∕c1 > b2∕b1 ≥ 1 and c1 > 0. Then we have

lim
u→∞

uℙ
(

X2 > u1∕𝛼2
, X1 > u1∕𝛼1

)

= 0,

that is, X1 and X2 are asymptotically independent.

The basic tool in the proof is to analyze the behavior of X2 under an exponential change of measure that favors
large values for X1. Namely, we consider the probability measure ℙ𝛼1 , under which (Mn) is still an i.i.d. sequence,
but with the new law

ℙ𝛼1(M ∈ ⋅) ∶= 𝔼
[
(b1 + c1M)𝛼1 1(M ∈ ⋅)

]
.

The law of the sequences (Qn,i) remains unchanged and independent of (Mn) under ℙ𝛼1 .
Considering the random variables

W1 ∶= log(b1 + c1M) and W2 ∶= log(b2 + c2M),

with associated i.i.d. sequences Wn,i ∶= log(bi + ciMn), we denote their respective ℙ𝛼1 -drift by

𝜇j|1 ∶= 𝔼[log(bj + cjM)(b1 + c1M)𝛼1] = 𝔼𝛼1
[
Wj

]
, j = 1, 2.

We have the following result.

Lemma 5.2. In both (Case I′) and (Case II′), it holds that

𝛼2𝜇2|1 < 𝛼1𝜇1|1. (5.5)

Proof. Using Jensen’s inequality under the change of measure, we obtain

𝛼2𝜇2|1 − 𝛼1𝜇1|1 = 𝔼
[

log

(
(b2 + c2M)𝛼2

(b1 + c1M)𝛼1

)

(b1 + c1M)𝛼1

]

= 𝔼𝛼1

[

log

(
(b2 + c2M)𝛼2

(b1 + c1M)𝛼1

)]

< log𝔼𝛼1

[(
(b2 + c2M)𝛼2

(b1 + c1M)𝛼1

)]

= log𝔼
[
(b2 + c2M)𝛼2

(b1 + c1M)𝛼1
(b1 + c1M)𝛼1

]

= 0

The strict inequality holds since log is strictly convex and the random variable (b2 + c2M)𝛼2∕(b1 + c1M)𝛼1 is not
constant a.s., due to the different exponents and condition (A4) which implies that M is not degenerate.

Proof of Theorem 5.1. We are going to study partial sums converging to the random variables X1, X2 given by
(2.3), namely

Xj∶m,i ∶=
m∑

k=j+1

k−1∏

l=1

(bi + ciMl)Qk,i, i = 1, 2. (5.6)
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We write Xn,i ∶= X0∶n,i and observe that Xi = limn→∞ Xn,i = supn≥0 Xn,i a.s. Note the distinction between the Markov
chain (Xt,i) (the forward process) and the almost surely convergent series (Xn,i) defined above (the backward
process); see Letac (1986).

Step 1. We gain additional control by introducing the first exit time for (Xn,1),

Tu ∶= inf
{

n ∈ ℕ ∶ Xn,1 > u1∕𝛼1
}
.

As Xi = supn≥0 Xn,i for i = 1, 2 we have {X1 > u1∕𝛼1} = {Tu < ∞}. By (5.4) we have

lim
u→∞

u ⋅ ℙ(Tu < ∞) > 0. (5.7)

Thus, the desired result will follow from the relation

lim
u→∞

ℙ
(
X2 > u1∕𝛼2 |

| Tu < ∞
)
= 0. (5.8)

On the set {Tu < ∞}, it holds

X2 = XTu,2
+

Tu∏

l=1

(b2 + c2Ml)XTu∶∞,2. (5.9)

The simple inclusion

{X2 > s} ⊂
{

XTu,2
> u1∕𝛼2∕2

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶Au

∪
{ Tu∏

l=1

(b2 + c2Ml)XTu∶∞,2 > u1∕𝛼2∕2

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶Bu

allows us to consider the contributions in (5.9) separately. The following lemma, to be proved subsequently, pro-
vides stronger control and is the crucial ingredient for evaluating the contributions of Au and Bu. The proof of this
lemma is deferred to the Appendix A.

Lemma 5.3. For any 𝜖 > 0, define the set Cu(𝜖) as the intersection

{

Tu ≤ Lu

}

∩
{

XTu,1
≤ u

1+𝜖
𝛼1

}

∩
{

max
1≤k≤Lu

Qk,2

Qk,1

≤ u𝜀∕𝛼1

}

∩
{ Tu∑

l=1

(Wl,2 −Wl,1) − Tu(𝜇2|1 − 𝜇1|1) ≤ 𝜖Tu

}

∩
{ Lu∑

l=1

Wl,1 ≤
1 + 𝜖
𝛼1

log u

}

where Lu ∶= log(u)∕(𝜇1|1𝛼1) + Cf (u), f (u) ∶=
√

log(u) ⋅ log(log(u)) and C is a (suitably large) constant that can
be chosen independently of 𝜖.
Then it holds that

lim
u→∞

ℙ
({

X2 > u1∕𝛼2
}
∩ Cu(𝜖) || Tu <∞

)
= lim

u→∞
ℙ
(
X2 > u1∕𝛼2 |

| Tu < ∞
)

if either of the limits exists.
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Step 2. Considering the event Au, we have, using b1 ≤ b2 and c1 < c2 and the controls provided by Cu(𝜀), that

XTu,2
=

Tu∑

k=1

k−1∏

l=1

(b2 + c2Ml)Qk,2

≤

(

max
1≤k≤Tu

Qk,2

Qk,1

) Tu∑

k=1

k−1∏

l=1

b2 + c2Ml

b1 + c1Ml

(b1 + c1Ml)Qk,1

≤

(

max
1≤k≤Lu

Qk,2

Qk,1

)( Tu−1∏

l=1

b2 + c2Ml

b1 + c1Ml

) Tu∑

k=1

k−1∏

l=1

(b1 + c1Ml)Qk,1

≤

( Tu−1∏

l=1

b2 + c2Ml

b1 + c1Ml

)(

max
1≤k≤Lu

Qk,2

Qk,1

)

XTu,1

≤

( Tu∏

l=1

b2 + c2Ml

b1 + c1Ml

)

u𝜖∕𝛼1 u(1+𝜖)∕𝛼1

≤ e
∑Tu

l=1 Wl,2−Wl,1 u(1+2𝜖)∕𝛼1
. (5.10)

Now we use that on Cu(𝜀) we have the relation

Tu∑

l=1

(Wl,2 −Wl,1) ≤ Tu(𝜇2|1 − 𝜇1|1) + 𝜖Tu ≤ Lu(𝜇2|1 − 𝜇1|1 + 𝜖)

so that (5.10) yields

log XTu,2

log u
≤
𝜇2|1 − 𝜇1|1 + 𝜖

𝜇1|1𝛼1

+ +1 + 3𝜖
𝛼1

=
𝜇2|1 + 𝜖(1 + 3𝜇1|1)

𝜇1|1𝛼1

= 1
𝛼2

𝛼2𝜇2|1 + 𝜖𝛼2(1 + 3𝜇1|1)
𝛼1𝜇1|1

. (5.11)

Here we have used that

exp
(√

log u
)

log u = exp
(

log u∕
√

log u
)

log u = u1∕
√

log u log u ≤ u𝜖∕𝛼1

for any fixed 𝜖 > 0, as soon as u is large enough.
Under the condition (5.5) it is always possible to find 𝜖 so small that

𝜂 ∶= 1
𝛼2

𝛼2𝜇2|1 + 𝜖𝛼2(1 + 3𝜇1|1)
𝛼1𝜇1|1

≤
1
𝛼2

− 𝜖

and hence by (5.11),

{XTu,2
> u1∕𝛼2∕2} ∩ Cu(𝜖) ⊂

{
u𝜂 ≥ XTu,2

> u1∕𝛼2∕2
}
= ∅

for u sufficiently large. It follows that the first term Au in (5.9) does not contribute on Cu(𝜀).
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Step 3. Turning to Bu, we start by bounding the multiplicative factor on Cu(𝜖). By Lemma 5.3,

Tu∏

l=1

(b2 + c2Ml) = exp

( Tu∑

l=1

(Wl,2 −Wl,1)
)

exp

( Tu∑

l=1

Wl,1

)

≤ eLu(𝜇2|1−𝜇1|1+𝜖) u(1+𝜖)∕𝛼1 ≤ u𝜂

where we used the same calculations as the ones leading to (5.11). Hence

ℙ
({ Tu∏

l=1

(b2 + c2Ml)XTu∶∞,2 >
1
2

u1∕𝛼2

}

∩ Cu(𝜖)
|
|
|
Tu < ∞

)

≤ ℙ
(
XTu∶∞,2 > u1∕𝛼2−𝜂∕2||Tu < ∞

)
= ℙ

(
X2 > u1∕𝛼2−𝜂∕2

)
.

since XTu∶∞,2 is independent of {Tu <∞}. Since 1∕𝛼2 > 𝜂, the last probability tends to zero.
Combining the two previous steps, we have proved that

lim
u→∞

ℙ
({

X2 > u1∕𝛼2

}

∩ Cu(𝜖) ||Tu < ∞
)

= 0

which by Lemma 5.3 is enough to conclude (5.8) and thus the desired result.

5.2. The Diagonal SRE with Equal Coefficients

We focus on the case where bi = b ≥ 0 and ci = c > 0 for any 1 ≤ i ≤ d so that

Xt = (b + cMt)Xt−1 + Qt, t ∈ ℤ.

We can interpret the multiplicative factor (b+cMt) as multiplication with the random similarity matrix (b+cMt)Id,
thus we are in the framework of Buraczewski et al. (2009). From there, we obtain the following result:

Theorem 5.4. Assume (A1)–(A5) for all 1 ≤ i ≤ d. Let X0 have the stationary distribution. Then X0 is VSRV
and (Xt)t≥0 is a VSRV process of order 𝜶 = (𝛼,… , 𝛼), and its spectral tail process satisfies the relation

̃𝚯t = (b + cMt)̃𝚯t−1, t ≥ 1.

Proof. By Buraczewski et al. (2009, Theorem 1.6), there is a non-null Radon measure 𝜇 on [−∞,∞]d ⧵ {0} such
that

x𝛼ℙ(x−1X0 ∈ ⋅)
v
→ 𝜇, x →∞.

(See Buraczewski et al. (2016b, Theorem 4.4.21) for a reformulation of the quoted result which is more consistent
with our notation.) Hence, X0 is (standard) regularly varying and also VSRV of order 𝜶 = (𝛼,… , 𝛼) since 𝚯0 and
̃𝚯0 coincide then.

The remaining assertions follow from a direct application of Proposition 5.8.

To determine whether the components of X0 are asymptotically independent or dependent, we are interested in
information about the support of ℙ(̃𝚯0 ∈ ⋅). By (2.2), two or more components of X0 can be large simultaneously
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if and only if two or more components of ̃𝚯0 can be non-zero simultaneously; that is, ̃𝚯0 is not concentrated on
the standard basis vectors ei.

We write supp(Q) for the support of the law of Q and span(E) for the linear space spanned by set E ⊂ ℝd.
Let Sd−1

∞ denote the unit sphere in ℝd with respect to ‖⋅‖
𝜶

which coincides with the unit sphere for the max-norm
whatever is 𝜶.

Lemma 5.5. Under the assumptions of Theorem 5.4,

supp(̃𝚯0) ⊂ span
(
supp(Q)

)
∩ Sd−1

∞ . (5.12)

In addition, the following implications hold:

(a) If b = 0, c > 0 and supp(M) is dense in ℝ, then

supp(̃𝚯0) = span
(
supp(Q)

)
∩ Sd−1

∞ .

(b) If b > 0, c > 0 and supp(M) is dense in ℝ+, then

supp(̃𝚯0) = {a1q1 + · · · + anqn ∶ n ∈ ℕ, ai > 0, qi ∈ supp(Q)} ∩ Sd−1
∞ ,

that is, it equals the convex cone generated by supp(Q) intersected by the unit sphere.
(c) If supp(Q) is dense in ℝd, then supp(̃𝚯0) = Sd−1

∞ .

Proof of Lemma 5.5. The proof is based on Buraczewski et al. (2009, Remark 1.9), which gives that the support
of the spectral measure 𝜎∞ with respect to the Euclidean norm is given by the directions (subsets of the unit sphere
Sd−1) in which the support of X0 is unbounded. More precisely, consider the measures

𝜎t(A) ∶= ℙ
(

‖X0‖2 > t,
X0

‖X0‖2

∈ A

)

Then supp(𝜎∞) =
⋂

t>0 supp(𝜎t). The surprising part of this result is that all directions, in which the support of
X0 is unbounded, do matter. One does not need a lower bound on the decay of mass at infinity. However, if we
know that the support of the spectral measure w.r.t. the Euclidean norm is the intersection of a particular subspace
with the unit sphere, we immediately deduce the same for the spectral measure w.r.t the max-norm, that is, for
ℙ(𝚯0 ∈ ⋅), as well as for ℙ(̃𝚯 ∈ ⋅).

Thus, to proceed, we have to study the support of X0. For simplicity we write, for the remainder of the proof,
(m, q) for a realization of the random variables (b + cM,Q). We identify a pair (m, q) with the affine mapping
h(x) = mx + q, we say that h ∈ supp

(
(b + cM,Q)

)
if (m, q) ∈ supp

(
(b + cM,Q)

)
. We consider the semigroup

generated by mappings in supp
(
(b + cM,Q)

)
,

 ∶=
{

h1 · · · hn ∶ hi ∈ supp
(
(M,Q)

)
, 1 ≤ i ≤ n, n ≥ 1

}

.

Then, by Buraczewski et al. (2009, Lemma 2.7)

supp
(
X0

)
= closure of

{
1

1−m
q ∶ (m, q) ∈ , |m| < 1

}

.

This is obviously a subset of span(Q), hence (5.12) holds. (Again, see Buraczewski et al. (2016b, Proposition
4.3.1) for a reformulation of the quoted result which is more consistent with our notation.)
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Since M and Q are independent, supp
(
(b+ cM,Q)

)
= supp(b+ cM) × supp(Q) and a general element in  is of

the form

h(x) = m1 …mnx +
(

q1 +
n∑

k=2

m1 …mk−1qk

)

with mi ∈ supp(b + cM), qi ∈ supp(Q). Thus, a generic point in supp(X0) is of the form

1
1 − m1 …mn

(

q1 +
n∑

k=2

m1 …mk−1qk

)

, (5.13)

with

mi ∈ supp(b + cM), qi ∈ supp(Q), |m1 …mn| < 1.

The prefactor in (5.13) is scalar, while the bracket term represents a linear combination of qk ∈ supp(Q). Now we
can prove the two implications.

Concerning (a), if supp(M) is dense in ℝ, then the bracket term in (5.13) can be chosen such that its direction
approximates any direction of y ∈ span

(
supp(Q)

)
. Then, given t > 0, mn can be chosen arbitrarily small, such

that |m1 …mn| < 1 and moreover, the norm of (5.13) exceeds t. It follows that supp(𝜎t) = span
(
supp(Q)

)
∩ Sd−1

for all t, which yields the assertion since supp(𝜎∞) =
⋂

t>0 supp(𝜎t).
Concerning (b), note that m ∈ supp(b + cM) is bounded from below by b > 0, with b < 1 due to Assumption

(A1). If supp(M) is dense in ℝ+, then the bracket term in (5.13) can be chosen such that its direction approximates
any direction of y ∈ span

(
supp(Q)

)

+ given that its norm is suitably large. Similarly as for (a) above, the desired
assertion follows.

Concerning (c), if supp(Q) is dense in ℝd, then the bracket term can be chosen such that it approximates an
arbitrary element of ℝd and its modulus is larger than t, while (A1) entails that there are mi ∈ supp(M) such that
|m1 …mn| < 1.

Remark 5.6. We conclude for the diagonal SRE with equal coefficients, under the assumptions of Lemma 5.5:
As soon as Q is not confined to a linear subspace of ℝd, we have that X0 is multivariate regularly varying and its
components are asymptotically dependent. In fact, the spectral measure charges the whole unit sphere.

5.3. Stationary VSRV Markov Chains

We adapt the work of Janssen and Segers (2014) to our framework. We consider a Markov chain (Xt)t≥0 with
values in ℝd satisfying the recursive equation

Xt = 𝚽(Xt−1,Zt), t ≥ 0, (5.14)

where 𝚽 ∶ ℝd ×  → ℝd is measurable and (Zt) is an i.i.d. sequence taking values in a Polish space  . We work
under the following assumption, which is the vector scaling adaptation of Janssen and Segers (2014, Condition
2.2). As above, we fix in advance the positive indices 𝛼1,… , 𝛼d.

VS condition for Markov chains: There exists a measurable function 𝝓 ∶ Sd−1
∞ ×  → ℝd such that, for all

e ∈  ,

lim
x→∞

x−1∕𝜶𝚽(x1∕𝜶s(x), e) → 𝝓(s, e),
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whenever s(x) → s in Sd−1
∞ . Moreover, if ℙ(𝝓(s,Z0) = 0) > 0 for some s ∈ Sd−1

∞ then Z0 ∈  a.s. for a subset
 ⊂  such that, for all e ∈ ,

sup
‖y‖

𝜶
≤x
‖𝚽(y, e)‖

𝜶
= O(x) x →∞.

We extend 𝝓 over ℝd ×  thanks to the relation

𝝓(v, e) =

{
‖v‖1∕𝜶

𝜶
𝝓

(

‖v‖−1∕𝜶
𝜶

v, e
)

if v ≠ 0,

0 if v = 0.

We have the following result which extends Theorem 2.1 of Janssen and Segers (2014)

Theorem 5.7. If the Markov chain (Xt) satisfies the recursion (5.14) with 𝚽 satisfying the VS condition and if
the vector X0 is VSRV with positive indices 𝛼1,… , 𝛼d then (Xt)t≥0 is a VSRV process and its spectral tail process
satisfies the relation

̃𝚯t = 𝝓(̃𝚯t−1,Zt), t ≥ 0.

started from ̃𝚯0, the spectral component of X0.

Proof. The result follows by an application of Theorem 2.1 in Janssen and Segers (2014) to the Markov chain
(Yt)t≥0 = (X

𝜶

t )t≥0. We have Y0 regularly varying since X𝜶

0 is VSRV. Moreover

Yt = ̃𝚽(Yt−1,Zt), t ≥ 0,

with ̃𝚽(x, z) = (𝚽(x1∕𝜶
, z))𝜶 . As the VS condition for Markov chain is the vector scaling version of the Condition

2.2. of Janssen and Segers (2014) on ̃𝚽 associated to the limit ̃𝝓((x, z)) = 𝝓((x1∕𝜶
, z))𝜶 , that is,

lim
x→∞

x−1
̃𝚽(xs(x), e) → ̃𝝓(s, e)

whenever s(x)→ s in Sd−1
∞ . We obtain that the spectral tail process of (Yt)t≥0 satisfies the recursion

𝚯Y
t = ̃𝝓(𝚯Y

t−1,Zt), t ≥ 1.

The desired result follows as ̃𝝓((x, z)) = ̃𝝓((x1∕𝜶
, z))𝜶 and ̃𝚯

𝜶

t = 𝚯
Y
t , t ≥ 0.

We are specially interested in stochastic recurrence equations (SRE) corresponding to the Markov chains

Xt = 𝚽(Xt−1, (M,Q)t) = MtXt−1 + Qt, t ≥ 0.

In this setting (Mt) are i.i.d. random d × d matrices and (Qt) i.i.d. random vectors in ℝd. We have

Proposition 5.8. The SRE Markov chain (Xt)t≥0 satisfies Condition VS for positive indices 𝛼1,… , 𝛼d if and only
if Mij = 0 a.s. for any (i, j) so that 𝛼i > 𝛼j. Then

𝝓

(
s, (M,Q)

)
=
( d∑

j=1

Mij1𝛼i=𝛼j
sj

)

1≤i≤d

.
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Proof. As x → ∞ and s(x) → s, we have

lim
x→∞

x−1∕𝜶𝚽
(
(x1∕𝜶)s(x), (M,Q)

)
= lim

x→∞
x−1∕𝜶

(

M(x1∕𝜶s(x)) + Q
)

= lim
x→∞

( d∑

j=1

Mijs(x)jx1∕𝛼j−1∕𝛼i

)

1≤i≤d

.

Each coordinate converges to
∑d

j=1 Mij1𝛼i=𝛼j
sj for any s ∈ Sd−1

∞ if and only if Mij = 0 a.s. for any (i, j) so that
𝛼i > 𝛼j.

Remark 5.9. In case of distinct 𝛼i’s, it means that the dynamic tail process depends only on the diagonal elements
of M. In general, specifying Mt to be diagonal, we ensure that if X0 is VSRV then the SRE process is VSRV with

̃𝚯t = Mt
̃𝚯t−1, t ≥ 1,

whatever are the positive indices 𝛼1,… , 𝛼d.

5.4. Proof of the Main Result

Proof of Theorem 3.1. We start by proving that (Xt) is a VSRV process. According to Proposition 5.8 and Remark
5.9, it suffices to prove that X0 is VSRV, then (3.1) and the VSRV of (Xt) follow.

We use the following short-hand notation: For x ∈ ℝd, let x𝓁 = (xi)i∈I𝓁
, ‖x‖𝓁 ∶= maxi∈I𝓁

|xi| and 𝛼(𝓁) is the
common tail index of all coordinates in I𝓁 .

Let 𝜖 > 0, 𝓁 ≠ k. By (5.3) of Theorem 5.1, it holds that

lim
x→∞

x ⋅ ℙ
(

‖X0‖𝓁 > 𝜖
‖
‖X0

‖
‖

1∕𝛼(𝓁)
𝜶

, ‖X0‖k > 𝜖
‖
‖X0

‖
‖

1∕𝛼(k)
𝜶

,
‖
‖X0

‖
‖𝜶 > x

)

≤ lim
x→∞

x ⋅ ℙ
(

‖X0‖𝓁 > 𝜖x
1∕𝛼(𝓁)

, ‖X0‖k > 𝜖x
1∕𝛼(k)

)

≤

∑

i∈I𝓁 , j∈Ik

lim
x→∞

x ⋅ ℙ
(

|X0,i| > 𝜖x
1∕𝛼i
, |X0,j| > 𝜖x

1∕𝛼j

)

= 0 (5.15)

We note from the results of Section 5.2 that there are positive constants c𝓁 and probability measures ̃𝜉𝓁 on the
|I𝓁|-dimensional unit sphere (w.r.t. the max-norm), such that for all 1 ≤ 𝓁 ≤ r

lim
x→∞

x ⋅ ℙ
(

‖X0‖𝓁 > x1∕𝛼(𝓁)
, ‖X0‖

−1
𝓁 X0,𝓁 ∈ ⋅

)

= c𝓁 ̃𝜉𝓁(⋅).

Applying the inclusion–exclusion principle, we have

lim
x→∞

x ⋅ ℙ
(
‖
‖X0

‖
‖𝜶 > x

)
= lim

x→∞
x ⋅ ℙ

( ⋁

1≤𝓁≤r

‖X0‖𝓁 > x1∕𝛼(𝓁)
)

=
∑

1≤𝓁≤r

lim
x→∞

x ⋅ ℙ
(

‖X0‖𝓁 > x1∕𝛼(𝓁)
)

−
∑

1≤𝓁<k≤r

lim
x→∞

x ⋅ ℙ
(

‖X0‖𝓁 > x1∕𝛼(𝓁)
, ‖X0‖k > x1∕𝛼(k)

)

+…

= c1 + · · · + cr =∶ c, (5.16)

since all intersection terms vanish asymptotically due to (5.15) (with 𝜖 = 1).
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Thus we have shown that ‖‖X0
‖
‖𝜶 is regularly varying. We claim that

lim
x→∞

ℙ
(
‖
‖X0

‖
‖
−1∕𝜶
𝜶

X0 ∈ ⋅
|
|
|
‖
‖X0

‖
‖𝜶 > x

)

= 1
c

∑

1≤𝓁≤r

c𝓁 𝜉𝓁(⋅),

where 𝜉𝓁 is the extension of ̃𝜉𝓁 to a measure on the unit sphere Sd−1
∞ in ℝd by putting unit mass in the origin of

the additional coordinates. Hence, its support is contained in 𝕊|I𝓁 |−1
∞ . In particular, (3.2) follows once this claim is

proved.
By the Portmanteau lemma, it suffices to study closed sets. Note that for any closed set B ⊂ Sd−1

∞ , it holds that

B𝓁,𝜖 ∶= {x𝓁 ∶ x ∈ B, |xj| < 𝜖 for j ∉ I𝓁} → {x𝓁 ∶ x ∈ B ∩ 𝕊|I𝓁 |−1} =∶ B𝓁

as 𝜖 → 0. Using (5.15) and the inclusion–exclusion principle, we obtain

lim sup
x→∞

x ⋅ ℙ
(
‖
‖X0

‖
‖
−1∕𝜶
𝜶

X0 ∈ B, ‖‖X0
‖
‖𝜶 > x

)

= lim sup
x→∞

x ⋅ ℙ
(

‖
‖X0

‖
‖
−1∕𝜶
𝜶

X0 ∈ B,
⋁

1≤k≤r

‖X0‖k > x1∕𝛼(k)
)

=
∑

1≤𝓁≤r

lim sup
x→∞

x ⋅ ℙ
(

‖
‖X0

‖
‖
−1∕𝜶
𝜶

X0 ∈ B, ‖X0‖𝓁 > x1∕𝛼(𝓁)
,

⋀

k≠𝓁

‖X0‖k ≤ 𝜖
‖
‖X0

‖
‖

1∕𝛼(k)
𝜶

)

≤

∑

1≤𝓁≤r

lim
x→∞

x ⋅ ℙ
(

‖X0‖
−1
𝓁 X0,𝓁 ∈ B𝓁,𝜖 , ‖X0‖𝓁 > x1∕𝛼(𝓁)

,

⋀

k≠𝓁

‖X0‖k ≤ 𝜖x
1∕𝛼(k)

)

=
∑

1≤𝓁≤r

lim
x→∞

x ⋅ ℙ
(

‖X0‖
−1
𝓁 X0,𝓁 ∈ B𝓁,𝜖 , ‖X0‖𝓁 > x1∕𝛼(𝓁)

)

=
∑

1≤𝓁≤r

cl
̃
𝜉𝓁(B𝓁,𝜖)

This holds for all 𝜖 > 0. Since the sequence B𝓁,𝜖 is decreasing, we conclude by the continuity of ̃𝜉𝓁 that

lim sup
x→∞

x ⋅ ℙ
(
‖
‖X0

‖
‖
−1∕𝜶
𝜶

X0 ∈ B, ‖‖X0
‖
‖𝜶 > x

)

≤

∑

1≤𝓁≤r

c𝓁 ̃𝜉𝓁(B𝓁)

=
∑

1≤𝓁≤r

c𝓁𝜉𝓁(B).

Combined with (5.16), this proves the weak convergence by an application of the Portmanteau lemma.
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APPENDIX A. VSRV AND NON-STANDARD REGULAR VARIATION

We show that indeed any VSRV random vector with positive coordinates X0 ∈ (0,∞)d is also non-standard
regularly varying; which is defined in Resnick (2007) as follows.
Assume that marginals are positive and (one-dimensional) regularly varying with possibly different tail indices 𝛼i

and cdf Fi, 1 ≤ i ≤ d. Then non-standard regular variation holds if and only if

lim
x→∞

x ⋅ ℙ
(
x−1

̃X0 ∈ ⋅
)

exists in the vague sense, where the standardized vector ̃X0 is defined as

̃X0 = (1∕(1 − Fi(X0,i)))1≤i≤d.

Following de Haan and Resnick (1977, Theorem 4), we note that ̃X0 is regularly varying in the classical sense,
that is, ‖̃X0‖ is regularly varying with tail index 1 and there exists an angular measure which is the weak limit of

lim
x→∞

ℙ
(

‖̃X0‖
−1
̃X0 ∈ ⋅

|
|
|
‖̃X0‖ > x

)

.

Note that the standardization is made so that all coordinates of ̃X0 are tail equivalent

ℙ
(
̃X0,i > x

)
∼ x−1

, x →∞, 1 ≤ i ≤ d.

Proposition A.1. Let X0 be a VSRV random vector with positive coordinates of order 𝛼 = (𝛼1,… , 𝛼d). Then X0

is non-standard regularly varying and the angular measure is given by

𝔼
[
‖
‖a−1̃𝚯

𝜶

0
‖
‖ 1

(
‖
‖a−1̃𝚯

𝜶

0
‖
‖
−1a−1̃𝚯

𝜶

0 ∈ ⋅
)]

𝔼
[
‖
‖a−1̃𝚯

𝜶

0
‖
‖

] ,

where a = (a1,… , ad) is the vector of standardization coefficients given by (2.1).

We remark that the angular measure of X0 is completely determined by the spectral tail process (̃𝚯t). However
its expression is intricate because of the different marginal standardizations a whereas we will derive explicit
expressions of (̃𝚯t) for many Markov chains in Section 5.3. We emphasize that this simplicity is the main moti-
vation for introducing the notion of VSRV rather than using the more general notion of non-standard regular
variation.

Proof. The standardized vector

̃X
′
0 = a−1X𝜶

0

has marginal tails equivalent to the standard Pareto marginally distributed vector ̃X0 =
(
1∕(1 − Fi(X0,i))

)

1≤i≤d
.

Moreover ‖̃X
′
0‖𝜶 tail is Pareto equivalent with tail index 1 since an union bound yields

ℙ(|X0,1|
𝛼1
> x) ≤ ℙ(‖X0‖𝜶 > x) ≤

d∑

i=1

ℙ(|X0,i|
𝛼i
> x)
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and a sandwich argument concludes. Thus ‖̃X
′
0‖ is also regularly varying because, denoting a∗ = min1≤i≤d ai and

a0 = lim x−1ℙ(‖̃X
′
0‖𝜶 > x), we have

ℙ(‖̃X
′
0‖ > x

)
= ℙ

(
‖a−1X𝜶

0 ‖ > x, a−1
∗ ‖X𝜶

0 ‖ > x
)

= ℙ
(
‖a−1X𝜶

0 ‖ > x| ‖X𝜶

0 ‖ > xa∗
)
ℙ(‖X𝜶

0 ‖ > xa∗)

∼ ℙ
(
‖a−1X𝜶

0 ‖

‖X𝜶

0 ‖
>

x
‖X𝜶

0 ‖
| ‖X𝜶

0 ‖ > xa∗

)

a0a−1
∗ x−1

∼ ℙ
(
‖
‖
‖
‖

a−1

(
X0

‖X𝜶

0 ‖
1∕𝜶

)
𝜶‖
‖
‖
‖
>

x
‖X𝜶

0 ‖
| ‖X𝜶

0 ‖ > xa∗

)

a0a−1
∗ x−1

∼ ℙ
(
‖
‖a−1

̃𝚯
𝜶

0
‖
‖ > a∗Y

−1
)
a0a∗x

−1

∼ 𝔼
[
‖
‖a−1

̃𝚯
𝜶

0
‖
‖

]
a0x−1

.

We conclude that X0 is non-standard regularly varying and the angular measure is the limit, as x →∞, of the ratio

ℙ
(
‖̃X0‖

−1
̃X0 ∈ ⋅| ‖̃X0‖ > x

)
=

ℙ
(
‖̃X0‖

−1̃X0 ∈ ⋅, ‖̃X0‖ > x
)

ℙ(‖̃X0‖ > x
)

=
ℙ
(
‖̃X

′
0‖
−1̃X

′
0 ∈ ⋅, ‖̃X

′
0‖ > x

)

ℙ(‖̃X
′
0‖ > x

)

=
ℙ
(
‖̃X

′
0‖
−1̃X

′
0 ∈ ⋅, ‖̃X

′
0‖ > x| ‖X𝜶

0 ‖ > xa∗
)

ℙ(‖̃X
′
0‖ > x| ‖X𝜶

0 ‖ > xa∗
)

and the desired result follows by definition of ̃𝚯0.

APPENDIX B. PROOF OF LEMMA 5.3

The fundamental ingredient in the proof is a large deviation result for Tu by Buraczewski et al. (2016a) (see also
Buraczewski et al., 2018). It gives a very precise bound on the typical range of Tu, which allows us to deduce
properties of the relevant random variables at time Tu, by replacing the random time by a deterministic bound.

Step 1. Fix 𝜖 > 0 and write Cu = Cu(𝜖). It is enough to show that limu→∞ ℙ(Cc
u |Tu < ∞) = 0. Indeed, we can

sandwich the conditional probabilities as follows

ℙ
(
X2 > u1∕𝛼2 |

|Tu < ∞
)
≥ ℙ

({
X2 > u1∕𝛼2

}
∩ Cu

|
| Tu <∞

)

= ℙ
(
X2 > u1∕𝛼2 |

| Tu < ∞
)
− ℙ

({
X2 > u1∕𝛼2

}
∩ Cc

u
|
| Tu < ∞

)

≥ ℙ
(
X2 > u1∕𝛼2 |

| Tu < ∞
)
− ℙ

(
Cc

u
|
|Tu <∞

)
.

Then the desired result follows by letting u →∞. We will consider each of the contributions to Cc
u separately:

Cc
u =

{

Tu > Lu

}

∪
{

XTu,1
> u(1+𝜖)∕𝛼1

}

∪
{

max
1≤k≤Lu

Qk,2

Qk,1

> u𝜀∕𝛼1

}

∪
{ Tu∑

l=1

(W2,l −W1,l) − Tu(𝜇2|1 − 𝜇1|1) > 𝜖Tu

}

∪
{ Lu∑

l=1

Wl,1 >
1 + 𝜖
𝛼1

log u

}

= A ∪ B ∪ D ∪ E ∪ F.
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By (5.7), the required assertion limu→∞ P(B|Tu < ∞) = 0 will as well follow from

lim
u→∞

u ⋅ P(B ∩ {Tu < ∞}) ≤ lim
u→∞

u ⋅ P(B) = 0.

Step 2. The negligibility of A is a direct consequence of Buraczewski et al. (2016a, Lemma 4.3) which provides
that for a sufficiently large constant C,

lim
u→∞

ℙ
(
|
|
|
|
Tu −

log u

𝜇1𝛼1

|
|
|
|
≥ Cf (u) ||

|
Tu < ∞

)

= 0,

where f (u) =
√

log(u) ⋅ log(log(u)).

Step 3. Negligibility of B and F: Considering B, we have by (5.4) that limu→∞ uℙ(X1 > u(1+𝜖)∕𝛼1 ) = 0 implying that

lim
u→∞

uℙ(XTu,1
> u(1+𝜖)∕𝛼1 ) = 0,

since X1 = supn Xn,1.
By the classical Cramér estimate for the random walk Wn,1 (see Feller, 1971, XII.(5.13)) it holds

lim
u→∞

u1∕𝛼1ℙ
(

sup
n∈ℕ

( n∑

l=1

Wl,1

)

> log u

)

= c∗ ∈ (0,∞)

and hence in particular

lim
u→∞

uℙ
( Lu∑

l=1

Wl,1 >
1 + 𝜖
𝛼1

log u

)

= 0.

Step 4. Now we turn to D. A union bound yields

ℙ
(

max
1≤k≤Lu

Qk,2

Qk,1

> u𝜀∕𝛼1
, Tu <∞

)

≤

Lu∑

k=1

ℙ
(

u𝜀∕𝛼1 Qk,1 < Qk,2, Tu < ∞
)

.

We decompose for any k ≥ 0

ℙ(u𝜀∕𝛼1 Qk,1 < Qk,2, Tu < ∞)
= ℙ(u𝜀∕𝛼1 Qk,1 < Qk,2,X1 > u1∕𝛼1 )

≤ ℙ
(

u𝜀∕𝛼1 Qk,1 < Qk,2,
∑

j≠k

j−1∏

𝓁=1

(b1 + c1M𝓁)Qj,1 +
k−1∏

𝓁=1

(b1 + c1M𝓁)Qk,1 > u1∕𝛼1

)

.

We bound this probability by the sum of two terms

ℙ
(

u𝜀∕𝛼1 Qk,1 < Qk,2,
∑

j≠k

j−1∏

𝓁=1

(b1 + c1M𝓁)Qj,1 >
1
2

u1∕𝛼1

)

+ ℙ
(

u𝜀∕𝛼1 Qk,1 < Qk,2,

k−1∏

𝓁=1

(b1 + c1M𝓁)Qk,1 >
1
2

u1∕𝛼1

)

(B1)
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and have to show that both contributions, when summed over k = 0,… ,Lu, are of order o(u−1).
We estimate the second term in (B1) thanks to Markov’s inequality of order 𝛼1∕(1 + 𝜀) < 𝜅 < 𝛼1:

ℙ
(

u𝜀∕𝛼1 Qk,1 < Qk,2,

k−1∏

𝓁=1

(b1 + c1M𝓁)Qk,1 >
1
2

u1∕𝛼1

)

≤ ℙ
( k−1∏

𝓁=1

(b1 + c1M𝓁)Qk,2 >
1
2

u(1+𝜀)∕𝛼1

)

≤
2𝜅
(
𝔼[(b1 + c1M)𝜅]

)k 𝔼[‖Q‖𝜅]
u𝜅((1+𝜀)∕𝛼1)

.

As 𝛼1∕(1 + 𝜀𝛼1) < 𝜅 < 𝛼1 we have that q ∶= 𝔼[(b1 + c1M)𝜅] < 1 and conclude

∞∑

k=0

ℙ
(

u𝜀∕𝛼1 Qk,1 < Qk,2,

k−1∏

𝓁=1

(b1 + c1M𝓁)Qk,1 >
1
2

u1∕𝛼1

)

≤
2𝜅𝔼[‖Q‖𝜅]

1 − q
1

u𝜅((1+𝜀)∕𝛼1)
= o(u−1).

Step 5. Finally we turn to E. Note that E = ∅ in Case I′, since then

Wl,2 −Wl,1 = log

(
c2Ml

c1Ml

)

= log c2 − log c1 = 𝜇2|1 − 𝜇1|1 a.s.

Hence, we consider only Case II′. We have to prove the conditional large deviation result

lim
u→∞

ℙ
( Tu∑

k=1

(Wk,2 −Wk,1) − Tu(𝜇2|1 − 𝜇1|1) > 𝜖Tu

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶Du

|
|
|

Tu < ∞
)

= 0

Underℙ𝛼1 we have that Sn =
∑n

k=1 Wk,1 constitutes a random walk with positive drift 𝜇1|1 = 𝔼𝛼1[log(b1+c1M)] > 0.
Thus under the change of measure Sn → ∞, Tu < ∞ a.s. Note here that Tu is not a stopping time for the random
walk, but for the sequence X1,n. However, divergence of Sn implies divergence of X1,n, see for example, Goldie and
Maller (2000, Theorem 2.1). Hence, we have the identity

ℙ
(
Du

|
|Tu < ∞

)
=

𝔼𝛼1
[
e−𝛼1STu 1Du

]

ℙ(Tu < ∞)
.

Since uℙ(Tu <∞) → c > 0 as u → ∞, it is enough to show that

lim
u→∞

u𝔼𝛼1
[
e−𝛼1STu 1Du

]
= 0.

We have

u𝔼𝛼1
[
e−𝛼1STu 1Du

]
= 𝔼𝛼1

[(
u1∕𝛼1

XTu,1

)
𝛼1(XTu,1

eSTu

)
𝛼1

1Du

]

≤ 𝔼𝛼1

[(XTu,1

eSTu

)
𝛼1

1Du

]
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by definition of Tu implying that XTu,1
> u1∕𝛼1 . Then, using Chernoff’s device, we achieve for any 𝜆 > 0 the

following upper-bound

𝔼𝛼1

[(XTu,1

eSTu

)
𝛼1

1Du

]

≤ 𝔼𝛼1

[(XTu,1

eSTu

)
𝛼1

e𝜆(
∑Tu

k=1(Wk,2−Wk,1)−Tu(𝜇2|1−𝜇1|1)−𝜖Tu)
]

.

We will show that

Zn(𝜖, 𝜆) ∶=
(

Xn,1

eSn

)
𝛼1

e𝜆
∑n

k=1(Wk,2−Wk,1)
(
e𝜆((𝜇2−𝜇1)+𝜖)

)n

is an integrable stochastic process with supn≥1 𝔼𝛼1[Zn(𝜖, 𝜆)] < ∞ a.s. for any 𝜖 > 0 small by choosing 𝜆 > 0
accordingly. Then 𝔼𝛼1[Zn(𝜖′, 𝜆)]→ 0 for any 𝜖′ > 𝜖 which is the desired result.

To show the uniform bound for 𝔼𝛼1[Zn] one has to introduce the sequence

Vn =
Xn,1

eSn
=
∑n

k=1

∏k−1
l=1 AlQk,1

∏n
l=1 Al

= 1
An

Vn−1 +
Qn,1

An

with An = b1 + c1Mn. We abbreviate ΔWk ∶= Wk,2 − Wk,1 and Δ𝜇 ∶= 𝜇2|1 − 𝜇1|1 and note that 𝔼𝛼1(ΔW1) = Δ𝜇
and that, due to the assumptions of (Case II′)

d∗ ∶= log(b2) − log(b1) ≤ ΔW1 = log

(
b2 + c2M1

b1 + c1M1

)

≤ log(c2) − log(c1) =∶ d∗.

We will use the recursive formula

Zn(𝜖, 𝜆) = V𝛼1
n

e𝜆
∑n

k=1 ΔWk

(
e(𝜆Δ𝜇+𝜖)

)n

=
(

1
An

Vn−1 +
Qn,1

An

)
𝛼1

e𝜆
∑n−1

k=1 ΔWk

(
e𝜆Δ𝜇+𝜖

)n−1
⋅

e𝜆ΔWn

e𝜆(Δ𝜇+𝜖)
.

Then

𝔼𝛼1
[
Zn(𝜖, 𝜆)

|
|
|
n−1

]
≤ 𝔼𝛼1

[
1

A𝛼1
n

e𝜆(ΔWn)

e𝜆(Δ𝜇+𝜖)

]

Zn−1 + 𝔼𝛼1

[(
Qn,1

An

)
𝛼1

e𝜆ΔWn

e𝜆(Δ𝜇+𝜖)

]
e𝜆

∑n−1
k=1 ΔWk

(e𝜆Δ𝜇+𝜖)n−1
(B2)

and we are going to prove that both the factors

𝔪(𝜆) ∶= 𝔼𝛼1

[
1

A𝛼1
n

e𝜆ΔWn

e𝜆(Δ𝜇+𝜖)

]

= 𝔼
[

e𝜆ΔW1

e𝜆(Δ𝜇+𝜖)

]

𝔠(𝜆) ∶= 𝔼𝛼1

[
e𝜆ΔW1

e𝜆(Δ𝜇+𝜖)

]

are less than one for suitably small 𝜆. On taking ℙ𝛼1 -expectations in (B2), we infer

𝔼𝛼1
[
Zn(𝜖, 𝜆)

]
≤ 𝔪(𝜆)𝔼𝛼1

[
Zn−1(𝜖, 𝜆)

]
+ 𝔠(𝜆)n−1CQ
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with

CQ = 𝔼𝛼1

[(
Qn,1

An

)
𝛼1

e𝜆ΔWn

e𝜆(Δ𝜇+𝜖)

]

= 𝔼
[

Q𝛼1

n,1

e𝜆ΔWn

e𝜆(Δ𝜇+𝜖)

]

≤ 𝔼
[
Q𝛼1

n,1

] e𝜆d∗

e𝜆(Δ𝜇+𝜖)
< ∞.

Using again the boundedness of ΔW1, an application of Hoeffding’s lemma yields that

𝔼𝛼1
[
e𝜆ΔW1

]
≤ exp

(

𝜆(Δ𝜇) + 𝜆

2

8
(d∗ − d∗)

)

and hence

𝔠(𝜆) ≤ exp

(
𝜆

2

8
(d∗ − d∗) − 𝜆𝜖

)

.

Thus 𝔠(𝜆) < 1 for suitably small 𝜆 > 0.
Turning to𝔪(𝜆), we again use Hoeffding’s lemma to get that

𝔠(𝜆) ≤ exp

(

𝜆𝔼[ΔW1] +
𝜆

2

8
(d∗ − d∗) − 𝜆𝔼𝛼1[ΔW1] − 𝜆𝜖

)

Hence, it suffices to show that difference of the expectations is non-positive. We write

ΔW1 = log

(
b2 + c2M1

b1 + c1M1

)

= log f (A1)

for A1 = b1 + c1M1 and

f (a) =
b2 + c2

( a−b1

c1

)

a
= −

b1

a

(c2

c1

−
b2

b1

)

+
c2

c1

, a ≥ b1.

The function f is increasing and log f (a) ≥ 0 for a ≥ b1. Then

𝔼[ΔW1] − 𝔼𝛼1[ΔW1] = 𝔼
[

log f (A1)
(
1 − A𝛼1

1

)]

= 𝔼
[

log f (A1)
(
1 − A𝛼1

1

)
1{A≤1}

]

+ 𝔼
[

log f (A1)
(
1 − A𝛼1

1

)
1{A>1}

]

Recall that 𝔼[A𝛼1

1 ] = 1, thus

−𝔼
[
(1 − A𝛼1

1 )1{A>1}
]
= 𝔼

[
(1 − A𝛼1

1 )1{A≤1}
]

−𝔼
[

log f (A1)(1 − A𝛼1

1 )1{A>1}
]
≥ 𝔼

[
log f (A1)(1 − A𝛼1

1 )1{A≤1}
]

where we have used that the function f is increasing and non-negative.
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