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Abstract

This paper studies whether and why algorithmic traders exhibit one of the most broadly-

documented behavioral puzzles – the disposition effect. We use trade data from the NASDAQ

Copenhagen Stock Exchange merged with the weather data. We find that on average, the

disposition effect for human traders is substantial and increases significantly on colder days,

while for similarly-trading algorithms, it is insignificant and insensitive to the weather. This

provides causal evidence of the link between human psychology and the disposition effect

and suggests that algorithms can reduce psychology-related human errors. Considering the

ongoing AI adoption, this may have broad implications.
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1. Introduction

Artificial intelligence (AI) has been rapidly transforming the financial sector in general and

algorithmic trading (AT) in particular (Buchanan, 2019; Bholat et al., 2020; Bholat and Susskind,

2021). Arguably, one of the benefits of AT is the ability to reduce psychology-related human

errors (Borch and Lange, 2017; Buchanan, 2019; Buckmann et al., 2021), yet, to our knowledge,

there is no evidence on the extent to which AT actually achieves that.1 This paper provides such

evidence by examining whether and why algorithmic traders (ATs), including high-frequency traders

(HFTs), exhibit one of the most robust and broadly-documented puzzles in behavioral finance – the

disposition effect, i.e., the tendency to realize gains faster than losses (Shefrin and Statman, 1985).2

This paper provides a bridge between the behavioral finance literature and the AT and HFT

literature and makes a twofold contribution. First, psychological biases help explain why investors

behave differently than predicted by rational economic models (Barberis and Thaler, 2003), yet

evidence of the causal link between psychology and the disposition effect puzzle has started to

emerge only recently and primarily from experimental studies (e.g., Frydman et al., 2014; Chang

et al., 2016; Frydman and Camerer, 2016; Fischbacher et al., 2017).3 We provide novel identification

of this causal link using field trading data, exogenous weather variation and with algorithms as a

control group. More generally, we contribute by suggesting how algorithms can be used as a control

group to help identify the effects of human psychology. We also provide suggestive evidence on the

1E.g., algorithms can inherit various biases from developers or training data (e.g., Cowgill and Tucker,
2019).

2Barber and Odean (2013) review the literature that provides potential explanations for the disposition
effect and documents it for different asset classes and investor types. The asset classes include stocks
(Odean, 1998), stock options (Heath et al., 1999), commodity and currency futures (Locke and Mann, 2005),
real estate (Genesove and Mayer, 2001), while investors include individual (Odean, 1998) and institutional
(Grinblatt and Keloharju, 2001) investors, mutual funds (Cici, 2012), and professional day-traders of futures
(Locke and Mann, 2005). The explanations include the prospect theory of Kahneman and Tversky (1979),
the realization utility theory of Barberis and Xiong (2012), regret aversion and self-control issues (Shefrin
and Statman, 1985), beliefs in mean-reversion or in private information (Ben-David and Hirshleifer, 2012),
portfolio rebalancing and transaction costs (Odean, 1998).

3Using field data, Heimer (2016) finds causal peer effects, Frydman and Wang (2020) find causal salience
effects and Li et al. (2021) find causal air pollution effects on the disposition effect.
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link between psychology and the disposition effect by simply comparing the levels of the disposition

effect among algorithms and humans. If the disposition effect is driven primarily by emotions and

cognitive biases rather than by rational reasons such as informed trading, portfolio rebalancing or

transaction costs, we would expect to observe it for humans but less so for algorithms. Second,

despite the prevalence of ATs and HFTs4, the literature is silent on the disposition effect among

them. We document for the first time the disposition effect for HFTs and examine which trading

strategies it is associated with. This contributes to a better understanding of both the disposition

effect and HFT strategies.5

We use trade-level data from the NASDAQ Copenhagen Stock Exchange for the two years 2016-

2017 to measure the disposition effect as a percentage of gains realized (PGR) minus a percentage

of losses realized (PLR) for every proprietary trading account of every member at every point in

time. For comparability between algorithms and humans, we focus on day-traders and, in line with,

e.g., Locke and Mann (2005); Coval and Shumway (2005); Baron et al. (2019), assume zero starting

inventories every day. The data has two important features. First, we see members’ addresses, which

allows matching the data with the hourly weather data in traders’ locations, and thus, similarly

to Goetzmann et al. (2014), to proxy for traders’ mood. Second, we observe the types of trading

accounts issued by the exchange and thus can precisely identify humans and algorithms that trade

“with no human involvement” (Nasdaq, 2019). Since algorithms are immune to mood shocks, we use

them as a control group to account for weather-induced stock market movements (e.g., Saunders,

1993; Hirshleifer and Shumway, 2003; Goetzmann et al., 2014) that could potentially affect trading

decisions for all traders, including algorithms. To further strengthen the identification, we control

for interactive fixed effects, i.e., trader-day, stock-day and trader-stock fixed effects.

Results. First, we find that by the end of the day, human traders realize 28% of gains (PGR)

and only 17% of losses (PLR) on average. The average end-of-day disposition effect, i.e.,

4Algorithms generated around half of the trading volume in our dataset from the Copenhagen Stock
Exchange in 2016-2017. See SEC (2010) for the prevalence of HFT in the US and ESMA (2014) in Europe.

5See, e.g., O’Hara (2015) and Menkveld (2016) for the literature reviews on HFT.

2



PGR-PLR gap, equals 11.5 pp and is statistically different from zero at the 1% significance level.

For similarly-trading algorithms,6 the disposition effect equals 1.5 pp and is not statistically

significant (PGR=34% and PLR=33% on average). This suggests that the disposition effect is

driven by unintentional causes specific to humans, e.g., emotions and cognitive biases, rather than

by intentional profit-maximizing motives that would be relevant for algorithms as well.

Second, we find that warmer weather between 8 am and 9 am CET i.e., when traders travel to

work and thus are most likely to be exposed to the weather, reduces the disposition effect in the first

trading hour. For human traders, the disposition effect at 10 am CET on average equals 7.5 pp on

mornings that are warmer than the monthly median and 9.6 pp, i.e., 28% more, on mornings that are

colder than the monthly median. The difference is statistically significant at the 1% level. Among

other robustness checks, we show that the main results are similar when we use different fixed effects

and error clustering, measure temperature in degrees instead of the “higher-than-median” dummy,

consider either only long or only short positions, and control for other weather variables such as

sunshine duration, cloud cover, precipitation, air pressure, humidity, radiation and wind speed. No

other weather variable shows such a significant and robust effect. The effect of air temperature

remains significant until 11 am but fades out by noon and, in line with evidence in Keller et al.

(2005) on the temperature-mood relationship, is most significant when temperatures are moderate,

i.e., in spring and autumn. We find no impact of the weather on the disposition effect for algorithms.

Due to a well-documented link between the weather and human psychology (see, e.g., Denissen

et al., 2008; Klimstra et al., 2011; Harley, 2018), we interpret these results as evidence of the

causal effect of psychology on the disposition effect. Since warmer air is found to improve both

mood (Cunningham, 1979; Howarth and Hoffman, 1984; Keller et al., 2005) and cognition (Keller

et al., 2005; Yeganeh et al., 2018), our results can be explained by both major preference-based

theories on the disposition effect – realization utility (Barberis and Xiong, 2012) and prospect

6For comparability, we exclude algorithms that trade more frequently than the most frequently trading
human.
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theory (Kahneman and Tversky, 1979). Firstly, according to realization utility, the disposition

effect occurs because it is pleasant to realize gains and painful to realize losses. Realizing more

gains than losses can thus be seen as a mood-repair technique, which becomes less relevant as the

mood is improved by warmer weather.7 Secondly, if warmer weather improves cognition, this can

help reduce cognitive biases that potentially cause the disposition effect, e.g., loss aversion and

attachments to reference points which are at the heart of prospect theory (Kahneman and Tversky,

1979; Kahneman, 2011). Alternatively, the weather could impact the disposition effect through

beliefs rather than preferences. There is evidence that better mood increases overconfidence (e.g.,

Au et al., 2003; Nofsinger, 2005; Ifcher and Zarghamee, 2014), and overconfidence is thought to

strengthen the disposition effect through stronger belief in private information (Ben-David and

Hirshleifer, 2012). Yet, we find the opposite, which suggests that the disposition effect is affected

by the weather through preferences more than beliefs.

Third, we find that 11 of the 22 most frequently trading algorithms (those with an average gap

between trades of less than 100 seconds) persistently exhibit a strong disposition effect and this

can be predicted by their engagement into price-reversal trading strategies. All 11 algorithms that

on average exhibit a significant disposition effect engaged in price-reversal trading for more than

50% of the time, while the other 11 algorithms engaged in price-reversal trading for less than 50%

of the time. This provides evidence that “beliefs” in mean-reversion or private information create

the disposition effect (Ben-David and Hirshleifer, 2012) for HFTs and helps us to better understand

directional HFT strategies (Brogaard et al., 2014; Van Kervel and Menkveld, 2019; Korajczyk and

Murphy, 2019). Unlike the evidence for humans, we find no evidence that price-reversal trading for

HFTs is associated with lower profits, which suggests that HFTs’ “beliefs” in these strategies are

not irrational.

Overall, our results suggest that apart from HFTs, ATs on average avoid the disposition effect,

7Craving for mood-repair has been shown to significantly affect behavior (e.g., Morris and Reilly, 1987;
Elliott, 1994). Li et al. (2021) also use mood regulation to explain the link between air pollution and the
disposition effect.
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while similarly-trading humans do not, and this difference can at least partially be explained by

psychology-related human errors that ATs manage to reduce. Given the ongoing ubiquitous adoption

of AI, this may have broad implications for economic theory, financial markets, the real economy,

and, potentially, the future of human behavior. For economic theory, our results suggest that

decisions automated by algorithms are more consistent with rational economic models than on-the-

spot decisions made by humans. Hence, as humans are replaced by AI, rational economic models,

e.g., those based on Bayesian updating of beliefs, the Expected Utility theory (von Neumann and

Morgenstern, 1947) or Subjective Expected Utility (Savage, 1954), might become more accurate in

explaining the real world. Similarly, as human traders are replaced by algorithmic traders (e.g.,

Kirilenko and Lo, 2013), financial markets might become easier to explain with rational models.

For the real economy, industries that require more “rational” decision-making might replace humans

with algorithms faster, affecting unemployment, productivity and economic growth.8 Finally, people

surrounded by automated decision-making (e.g. self-driving cars, virtual assistants, etc.) that is

more “rational”, may either learn to behave more “rationally” or their “rationality” may atrophy due

to their reliance on machines.9

The rest of the paper is structured as follows. Section 2 highlights our contribution to the related

literature. Section 3 presents the data. Section 4 describes the methodology. Section 5 summarizes

and discusses the main results. Section 6 analyzes the disposition effect among HFTs. Section 7

concludes.

2. Literature and contribution

This paper contributes to a few lines of literature, including on (1) AT and HFT, (2) the

disposition effect, (3) weather effects on financial markets, (4) the algorithmic bias and (5) the

8See, e.g., Autor (2015); Acemoglu and Restrepo (2018); Berg et al. (2018) for effects of automation on
the economy.

9See, e.g., North (1994)’s lecture on how environments shape people’s mental models of reality, and, in
the long run, through collective learning, affect the behavior of future cultures.

5



debate on the rationality assumption in economics.

First, the literature on AT so far has focused on studying ATs’ speed advantage (Budish et al.,

2015; Baron et al., 2019), informational advantage (Biais et al., 2015; Chordia et al., 2018), trading

strategies (Hagströmer and Nordén, 2013; Menkveld, 2013; Malinova et al., 2014; Brogaard et al.,

2014; O’Hara, 2015; Van Kervel and Menkveld, 2019; Korajczyk and Murphy, 2019), and the impact

on market quality, namely, liquidity (Hendershott et al., 2011; Hendershott and Riordan, 2013;

Brogaard et al., 2015; Ait-Sahalia and Saglam, 2017; Brogaard et al., 2018), validity (Hasbrouck

and Saar, 2013; Kirilenko et al., 2017), and price efficiency (Carrion, 2013; Brogaard et al., 2014;

Chabout et al., 2014; Conrad et al., 2015; Weller, 2017; Brogaard et al., 2019). Abis (2022) finds

evidence that algorithmic portfolio managers benefit from a higher learning capacity but suffer

from a lower flexibility during recessions as compared to human portfolio managers. We contribute

with evidence that besides other advantages, e.g., speed, informational, learning and, potentially,

accuracy (see Kahneman et al., 2016), AT has the ability to reduce behavioral biases.

Second, the literature on the disposition effect has documented the effect in different markets,

e.g. stocks (Odean, 1998), options (Heath et al., 1999), currency and commodity futures (Locke and

Mann, 2005), real estate (Genesove and Mayer, 2001), and for different investors, e.g. individual

investors (Odean, 1998), institutional investors (Grinblatt and Keloharju, 2001), mutual funds (Cici,

2012), and professional futures day-traders (Locke and Mann, 2005). Our first contribution to the

literature on the disposition effect is to document the effect for the widespread group of ATs that

include HFTs.

Our second contribution is on the identification of causes of the disposition effect. The prospect

theory (Kahneman and Tversky, 1979) paired with mental accounting (Thaler, 1985) provide a long-

standing preference-based explanation of the disposition effect (e.g., Shefrin and Statman, 1985;

Odean, 1998; Weber and Camerer, 1998; Henderson, 2012; Li and Yang, 2013; Henderson et al.,

2018; Meng and Weng, 2018): if investors view stocks as separate mental accounts and are risk-

seeking when facing losses but risk-averse when facing gains, they will prefer to gamble with losing

investments and to sell winning investments. Realization utility theory (Barberis and Xiong, 2009,
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2012; Ingersoll and Jin, 2013; Frydman et al., 2014) provides another preference-based explanation,

whereby investors draw utility, e.g., pleasure and pain, directly from the realization of gains and

losses. Recent empirical, mostly experimental, studies find evidence that the disposition effect is

caused by specific psychological elements such as cognitive dissonance (Chang et al., 2016), pride and

regret (Strahilevitz et al., 2011; Frydman and Camerer, 2016), self-control problems (Fischbacher

et al., 2017), the salience of the stock purchase price (Frydman and Rangel, 2014; Frydman and

Wang, 2020; Dierick et al., 2019), mental accounting (Frydman et al., 2017), peer pressure (Heimer,

2016), mood regulation (Li et al., 2021) and affect (Loewenstein, 2005). The disposition effect can

potentially also be explained by beliefs in mean-reversion or private information (Ben-David and

Hirshleifer, 2012), portfolio rebalancing (Odean, 1998; Kaustia, 2010), transaction costs (Odean,

1998), the nature of limit orders (Linnainmaa, 2010), and earnings management (e.g., Beatty and

Harris, 1999). We contribute with a novel identification of the causal link between psychology and

the disposition effect, using field trading data, exogenous weather variation, and algorithms as a

control group. Other related papers on the disposition effect examine its impact on asset prices

(Grinblatt and Han, 2005; Frazzini, 2006; An, 2015; Birru, 2015).

Third, this paper relates to the literature studying how the weather affects financial markets.

The weather has been shown to affect stock returns (Saunders, 1993; Hirshleifer and Shumway, 2003;

Goetzmann et al., 2014), the behavior of individual (Schmittmann et al., 2014) and institutional

(Goetzmann et al., 2014) investors, and the behavior and performance of loan officers (Cortés et al.,

2016). We contribute with evidence that the weather has an impact on the disposition effect for

human traders. This also adds to the psychology literature studying how the weather affects mood

(Cunningham, 1979; Howarth and Hoffman, 1984; Denissen et al., 2008; Klimstra et al., 2011) and

cognition (Keller et al., 2005). For example, Keller et al. (2005) find that a higher air temperature

improves both mood and cognition but only in spring, when the air temperature is moderate. The

link between air temperature and cognition is also studied in the engineering literature (for a review,

see Yeganeh et al., 2018).

Fourth, the paper also relates to the literature that studies algorithmic biases (Cowgill and
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Tucker, 2019). For instance, algorithms have been shown to make biased and discriminatory

decisions in lending (Bartlett et al., 2022), criminal sentencing (Dressel and Farid, 2018) and ad

targeting (Datta et al., 2015). We contribute with evidence that algorithms reduce behavioral

biases.

Finally, our evidence that automated decisions are more in line with rational economic models

than on-the-spot human decisions contributes to the debate on the rationality assumption in

economics (Hogarth and Reder, 1987; Hirshleifer, 2001; Thaler, 2016).10

3. Data

We use millisecond-stamped transaction-level trade data provided by the NASDAQ OMX

Copenhagen Stock Exchange for the period from 1 January, 2016, 9 am, i.e., the stock market’s

opening time, to 31 December, 2017, 5 pm, i.e., the stock market’s closing time. We observe the

following details about every trade executed by every member of the stock exchange: (1) the

execution date and time with millisecond precision, (2) the name of the traded stock, (3) the

indicator of whether shares were bought or sold, (4) the share price of the traded stock, (5) the

number of shares traded, (6) the indicator of whether a trade added or removed liquidity, (7) the

indicator of whether a trade was executed on a trader’s own proprietary account or on behalf of

the trader’s client (i.e., a trader acted as a broker), (8) the name of a trader’s institution, i.e., a

member of the stock exchange, (9) the member’s address, (10) the indicator of whether a trader’s

account was used by a human or an algorithm, (11) the user account name (first three letters of a

trader’s name and surname for humans, and PTRxxx, AUTDxx or LPSxxx for algorithms), and

(12) the organization name of a second counterparty. Every trade enters the dataset twice,

treating each counterparty as a primary one. The name of a trader’s institution combined with

the user account name provides a trader’s unique id.

10For various definitions, measures and interpretations of rationality see, e.g., Machina (1987); Marschak
(1950); Simon (1978); Apesteguia and Ballester (2015).
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NASDAQ Copenhagen issues “Algo” accounts to algorithms that “automatically determine

individual parameters of orders such as whether to initiate the order, the timing, price or quantity

of the order or how to manage the order after its submission” (Nasdaq, 2019). For example, the

exchange specifies that a “PTRxxx account may be used for execution algo flow with no human

involvement when placing Child Orders in the market” (Nasdaq, 2019), and an “AUTDxx account

<...> is used for purely automated trading for algorithms with no human involvement in the

investment decision and order execution” (Nasdaq, 2019). The Danish Financial Supervisory

Authority report (Danish FSA, 2016), released in February 2016, i.e., at the beginning of our

sample period, provides a broad overview of algorithmic trading activity on the NASDAQ

Copenhagen Stock Exchange. The report summarizes ATs’ strategies, benefits and risks to the

market, the trends in trading volume of both algorithms and humans, relevant regulations, etc.

Our dataset contains 102,160,854 (double-counted) transactions in all 159 stocks listed in the

exchange throughout our sample period. Since we cannot identify traders that use the exchange

members as brokers, we focus only on the proprietary trades of the members. This leaves us

with 39,703,660 transactions: 32,243,301 executed by 91 algorithmic trading accounts belonging

to 33 members and 7,460,359 executed by 597 human trading accounts belonging to 54 members.

Throughout the 503 trading days in our sample, an average algorithm executed 704 trades per day,

while an average human – less than 25. For comparability between the two groups, we focus on

day traders, i.e., those that buy and sell the same stock multiple times per day and, therefore,

by the end of the day tend to realize some gains and/or losses. We keep traders with at least

30 non-zero end-of-day observations of the disposition effect.11 In this final dataset, there are 93

human trading accounts (6,581,144 transactions) belonging to 26 members located in nine cities (32

accounts in London, 21 in Copenhagen, 11 in Stockholm, 8 in Paris, 5 in Amsterdam, and 16 in

other Danish cities) and 52 algorithmic trading accounts (31,512,711 transactions) belonging to 24

11The measure of the disposition effect is defined in the “Methodology” section as the gap between the
proportion of gains realized and the proportion of losses realized.
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members located in seven cities (28 accounts in London, 12 in Paris, 5 in Stockholm, 3 in Hamburg,

2 in Copenhagen, 1 in Dublin, and 1 in Zürich). Around 2/3 of traders (60 of 93 humans and 36

of 52 algorithms) trade for large international banks such as BNP Paribas, Deutsche Bank, Credit

Suisse, etc. Others trade for local banks, small investment banks or proprietary trading firms. We

provide summary statistics of trading patterns for humans and algorithms at the beginning of the

“Results” section.

We merge the trading data with the hourly weather simulation data, i.e., stored forecasts,

provided by Meteoblue in the 12 cities where traders are located: Copenhagen, London,

Stockholm, Paris, Amsterdam, Hamburg, Dublin, Zürich, Randers, Silkeborg, Aabenraa and

Aalborg.12 According to the data provider, its weather simulation data is comparable to the

measurement data collected by weather stations and has the advantage of often being more

complete, more frequent, more detailed, and, if weather stations are relatively remote, more

precise than measurement data (Meteoblue, 2022). Our dataset includes the following weather

variables: (1) air temperature (°C) two meters above ground, (2) relative humidity (%) two meters

above ground, (3) mean sea level pressure (hPa), (4) precipitation (mm), (5) cloud cover (% of the

sky area), (6) sunshine duration (minutes), (7) shortwave radiation (W/m2), and (8) wind speed

10 meters above ground (km/h). The hourly data frequency allows us to observe these variables

exactly when traders are most likely to be exposed to the weather – on their way to work before

the stock market opens. We thus construct city-day-level weather variables by taking an average

of two data points: at 8 am and at 9 am CET. Table 1 provides summary statistics for

temperature – the variable that we find to have the most significant and robust impact on the

disposition effect – and its correlation with the other weather variables that we use as controls.

The median morning temperature across all cities and days in 2016 and 2017 was 9.2 °C. The 1st

and 99th percentiles were -3.4 °C and 23.2 °C, respectively. Temperature is most correlated with

12For a few traders that were located in small Danish towns, we use weather data from the closest of the
following five Danish cities: Copenhagen, Randers, Silkeborg, Aabenraa and Aalborg.
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radiation (correlation coefficient = 0.680). With other variables, the absolute value of the

correlation coefficient does not exceed 0.5.

4. Methodology

4.1. The measure of the disposition effect

To estimate the disposition effect, we assume zero starting inventories every day for every trader,

which is in line with e.g., Locke and Mann (2005); Coval and Shumway (2005); Baron et al. (2019),

and construct traders’ intraday stock positions using observed trades. The assumption ensures that

our estimated disposition effect is associated with reverting only those trading decisions that were

initiated throughout the same day, which alleviates potential concerns regarding the nonstationarity

and the autocorrelation of the daily time series. We estimate outstanding paper gain for every trader

i, in every stock position s, at every point of time t as follows:

outstanding_paper_gains,i,t = #_shares_outstandings,i,t × (stock_prices,t −WAPPs,i,t) (1)

where #_shares_outstandings,i,t is the number of shares outstanding in stock s held by trader i

at time t, stock_prices,t is the stock price in the latest transaction of stock s observed in the market

up to time t, and WAPPs,i,t is the volume-weighted average purchase price paid for outstanding

shares in stock s held by trader i at time t. WAPPs,i,t is updated every time when shares are

bought and stays the same when shares are sold. For short positions, #_shares_outstandings,i,t

is negative and WAPPs,i,t is replaced by the weighted average selling price WASPs,i,t.

Every time trader i closes stock position s either fully or partially, we observe a realization of a

gain (or a loss, if negative). At that time t, the realized gain is calculated as follows:

realized_gains,i,t = #_of_shares_solds,i,t × (selling_prices,i,t −WAPPs,i,t) (2)

where #_of_shares_solds,i,t is the number of shares sold by trader i in stock s at time t (for

short positions - repurchased, hence, #_of_shares_solds,i,t is negative), and selling_prices,i,t
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is the selling price of those shares (for short positions - repurchasing price). For short positions,

WAPPs,i,t is replaced by WASPs,i,t.

We accumulate all realized gains up to time t for every trader in every stock:

cumulative_realized_gains,i,t =
t∑

n=0

Realized_gains,i,n (3)

Total gain consists of outstanding paper gain and cumulative realized gain:

total_gains,i,t = outstanding_paper_gains,i,t + cumulative_realized_gains,i,t (4)

For every trader i at every point of time t, we aggregate total_gains,i,t across stock positions

considering only those with total_gains,i,t > 0. We also aggregate cumulative_realized_gains,i,t

across stock positions considering only those with cumulative_realized_gains,i,t > 0. We divide

these aggregated positive cumulative realized gains by the aggregated positive total gains to estimate

the proportion of gains realized PGRi,t for trader i at time t, and winsorize it if it exceeds one13.

PGRi,t =

∑S
s=1(cumulative_realized_gains,i,t × js,i,t)∑S

s=1(total_gains,i,t × ks,i,t)
(5)

where js,i,t is equal to one if cumulative_realized_gains,i,t > 0 and zero otherwise, and ks,i,t is

equal to one if total_gains,i,t > 0 and zero otherwise.

Similarly, we estimate the proportion of losses realized PLRi,t:

PLRi,t =

∑S
s=1(cumulative_realized_gains,i,t ×ms,i,t)∑S

s=1(total_gains,i,t × ns,i,t)
(6)

where ms,i,t is equal to one if cumulative_realized_gains,i,t < 0 and zero otherwise, and ns,i,t is

equal to one if total_gains,i,t < 0 and zero otherwise.

13PGRi,t > 1 is possible if, e.g., a trader had realized all gains but then re-opened the position and
experienced some paper losses. The winsorization ensures that PGRi,t ∈ [0; 1].
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Following, Odean (1998), the disposition effect is the gap between PGRi,t and PLRi,t:

DEi,t = PGRi,t − PLRi,t (7)

We graphically depict an average intraday development of the disposition effect for humans and

algorithms, but in all regression analyses, we use daily observations either at end-of-day, i.e., at 5

pm CET, or, when testing morning weather effects, after the first hour of trading, i.e., at 10 am

CET.

4.2. Average disposition effect

Separately for humans and algorithms, we estimate the average end-of-day disposition effect

(DE), proportion of gains realized (PGR) and proportion of losses realized (PLR) by regressing

these trader-day-level variables on a constant and clustering standard errors at the trader level:

PGRi,t = α+ ϵi,t (8)

PLRi,t = α+ ϵi,t (9)

DEi,t = α+ ϵi,t (10)

For robustness, we also estimate the following regression specification, which exploits all three

dimensions of our panel data, and, thus, allows us to control for interactive fixed effects:

PRs,i,t = α+ β1Gains,i,t + FE + ϵs,i,t (11)

where PRs,i,t is the proportion of either a gain or a loss realized in a stock position s held by trader

i at the end of day t, and is calculated as:

PRs,i,t =
cumulative_realized_gains,i,t

total_gains,i,t
(12)
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and Gains,i,t is a dummy equal to one if total_gains,i,t ≥ 0 and zero otherwise.14 Coefficient β1

represents an average difference in PRs,i,t when gains are realized as opposed to losses, and thus

measures the disposition effect. FE includes bank-stock, bank-time, and stock-day fixed effects.

4.3. The impact of air temperature on the disposition effect

To estimate the impact of weather conditions on the disposition effect, we extend regressions

(8)-(11) with the eight city-day-level weather variables defined in “Data” section and Table 1, where

every observation is an average of two data points in every city: at 8 am and 9 am CET. Since we

find only temperature to have a significant and robust impact on the disposition effect, we denote

the temperature variable separately by Ti,t and treat the other seven weather variables as controls

denoted by Ci,t. Specifically, Ti,t is equal to an average temperature (°C) between 8 am and 9

am CET of day t in trader i′s city. To reduce the effects of yearly seasonality in temperature, in

our regressions we primarily use a dummy variable T_dummyi,t equal to one if Ti,t is above that

month’s median in that city and zero otherwise, but we show that our results remain robust if we

use variable Ti,t instead. The regressions are specified as follows:

PGRi,t = α+ β1T_dummyi,t + Ci,t + FE + ϵi,t (13)

PLRi,t = α+ β1T_dummyi,t + Ci,t + FE + ϵi,t (14)

DEi,t = α+ β1T_dummyi,t + Ci,t + FE + ϵi,t (15)

PRs,i,t = α+ β1Gains,i,t + β2T_dummyi,t + β3Gains,i,t × T_dummyi,t + Ci,t + FE + ϵs,i,t (16)

All four trader-day-level dependent variables are observed at 10 am CET. The coefficient of

14PRs,i,t is winsorized if it exceeds 1. If PRs,i,t < 0 while cumulative_realized_gains,i,t > 0, this
suggests that a trader was eager to realize gains (while it was gaining) but lost overall. To reflect his
eagerness to realize gains but not losses, in such cases, we replace PRs,i,t with 1 and Gains,i,t with 1.
Similarly, if PRs,i,t < 0 and cumulative_realized_gains,i,t < 0, we replace PRs,i,t with 1 and Gains,i,t

with 0. Our results remain almost identical if instead we winsorize the variable PRs,i,t below zero or if we
drop observations where PRs,i,t < 0.
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interest in regression specification (16) is β3 on the interaction term. Its statistical significance

would show that an average disposition effect measured by β1 in specification (11) depends on

temperature. FE represents trader-fixed effects and day-fixed effects in specifications (13) to (15)

and trader-day, stock-day and trader-stock fixed effects in specification (16).

4.4. The difference between humans and algorithms

All regressions specified above are run for humans and algorithms separately. In order to test

whether the disposition effect and the impact of temperature differ significantly between humans

and algorithms, we extend specifications (10), (11), (15) and (16) with a dummy variable Humani

equal to one if trader i is a human and zero if an algorithm and run the regressions for all traders

jointly. Effectively, this splits traders into a treatment group (treated by the weather) and a control

group:

DEi,t = α+ β1Humani + ϵi,t (17)

DEi,t = α+ β1Humani + β2T_dummyi,t + β3Humani × T_dummyi,t + Ci,t + FE + ϵi,t (18)

PRs,i,t = α+ β1Gains,i,t + β2Humani + β3Gains,i,t ×Humani + FE + ϵs,i,t (19)

PRs,i,t = α+ β1Gains,i,t × T_dummyi,t ×Humani + V&Is,i,t + Ci,t + FE + ϵs,i,t (20)

V&Is,i,t denotes the three variables that constitute the triple interaction term in specification

(20) and the three possible interactions among them. The dependent variables in specifications

without weather variables, i.e., (17) and (19), are observed at 5 pm CET, while in the other two

specifications - at 10 am CET. The coefficients of interest in regressions (18) and (19) are β3 on the

interaction terms, and, in regression (20), β1 on the triple interaction term.
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5. Results

5.1. Comparability between human and algorithmic traders

To ensure that humans and algorithms in our regression analysis are comparable, we first

examine trader heterogeneity. Figure 1 plots an average disposition effect on the y-axis for every

trader in our sample, i.e., 93 humans and 52 algorithms that have at least 30 non-zero end-of-day

observations of variable DEi,t. Traders are sorted along the x-axis by a major dimension of

heterogeneity – an average trading frequency, which is calculated for every trader as an average

time gap (in seconds) between trades executed throughout the sample period. The disposition

effect is estimated for every trader by regressing the variable DEi,t (observed daily at 5 pm) on a

constant with robust standard errors. Blue and red circles represent humans and algorithms,

respectively. If the disposition effect is statistically different from zero at the 99% significance

level, the circles are colored.

The figure shows that traders differ significantly in their average trading frequency, e.g., some

algorithms trade once every few seconds, while some humans trade once every hour (not necessarily

the same stock). For comparability between humans and algorithms, we exclude 14 algorithms that

trade more frequently than the most frequently trading human, i.e., every 54 seconds, from our

regression analysis and label them “HFTs”. Moreover, to ensure enough within-trader variation in

the disposition effect measured daily at 10 am for the weather impact analysis, as a baseline we

consider “frequent traders”, i.e., 44 humans and 30 algorithms with an average gap between trades

smaller than 10 minutes. The 10-minute threshold is chosen arbitrarily but we show that our main

results remain robust when we include all the remaining traders labeled “infrequent traders”.

Figure 1 suggests that humans tend to exhibit a much larger disposition effect than algorithms

that trade at similar frequencies, even though the share of traders that exhibit a statistically

significant disposition effect equals one third for both groups (disregarding HFTs). Interestingly,

among algorithms that trade more frequently than once every 100 seconds, a large share, 11 out of

22, exhibit a significant disposition effect, while seven exhibit a significant inverse disposition
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effect. In section 6 we examine if this heterogeneity can be explained by trading strategies that

HFTs pursue.

To compare humans and algorithms in terms of other trading patterns besides the disposition

effect, we construct the following trader-day-level variables: (1) N_of_tradesi,t – the total number

of trades executed by trader i in day t; (2) Turnover_EURi,t – total turnover expressed in euros

generated by trader i in day t; (3) Portfolio_size_EURi,t – average portfolio size expressed in

euros for trader i throughout day t;15 (4) Inventory_daysi,t – trading horizon for trader i in day

t, calculated as a ratio of Portfolio_size_EURi,t over the total value of shares sold (repurchased,

for short positions) by trader i in day t, valued at purchase prices (sale prices, for short positions);

and (5) Turnover_top10i,t – the turnover generated in the 10 most traded stocks by trader i in

day t, divided by total turnover generated by trader i in day t. We regress these five variables on a

constant and a dummy Humani equal to 1 for humans and 0 for algorithms. We cluster errors at

the trader level.

Table 2, Panel A shows that among “frequent traders”, i.e., our baseline sample, humans and

algorithms trade similarly as the dummy Humani is not statistically significant for any of the five

dependent variables. On average, algorithms execute 604 trades per day, while humans execute

119 fewer trades, both humans and algorithms generate around EUR 4.1m daily turnover, average

portfolio size is EUR 0.9m for algorithms and EUR 0.1m more for humans, on average it takes

3.3 days to close all daily positions for algorithms and 1 day more for humans, and on average

algorithms generate 87% of their turnover in their 10 most-traded stocks, while humans generate

4% more. The list of 10 most-traded stocks in terms of aggregate turnover is the same for humans

and algorithms. Table 2, Panel B reports that when adding “infrequent traders” to the sample,

turnover and portfolio size remains similar between algorithms and humans, but humans tend to

15For every trader, we assume zero daily starting inventories and, based on trades, estimate long and short
stock positions valued at purchase prices (sale prices, for short positions) at 5-minute intervals throughout
a day. We sum up absolute values of long and short positions and calculate an average of this sum across
the 5-minute intervals.
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trade significantly less frequently, with longer horizon, and with more concentration in favorite

stocks than algorithms. To compare algorithms from our baseline sample with HFTs, we redo the

analysis with dummy HFTi instead of Humani. HFTi equals 1 for HFTs and 0 for algorithms in

the “frequent traders” group. Table 2, Panel C shows that HFTs are significantly different. They

trade with more frequency, more turnover, larger portfolios, shorter horizons and less concentration

on favorite stocks.

5.2. Average disposition effect

To estimate an average disposition effect for humans and algorithms, we run the regression

specifications (8) to (11) for each group separately. Table 3 presents the results for humans in Panel

A and for algorithms in Panel B. Odd columns consider only “frequent traders” and even columns

include “infrequent traders”. On average, by the end of the day, human “frequent traders” realize

28.2% of their daily gains and only 17.4% of their daily losses. The average disposition effect, i.e.,

the gap between PGR and PLR, equals 11.5 pp and is statistically different from zero at the 1%

significance level. When using the regression specification (11) saturated with trader-day, stock-day

and trader-stock fixed effects, the average disposition effect drops to 6.6 pp but remains statistically

significant at the 1% level. All these figures become somewhat smaller but remain statistically

significant at the 1% level when including “infrequent traders” in the even columns. Algorithmic

“frequent traders” realize 34.4% of their daily gains and 32.9% of their daily losses by the end of

the day on average. The average disposition effect is only 1.5 pp and is not statistically significant

(p-value=0.571). It remains insignificant when using the regression specification (11) saturated with

fixed effects and when including “infrequent traders”.

Figure 2 shows an average intraday development of PGR and PLR measured at the end of every

hour for human and algorithmic “frequent traders”. The data points at 5 pm match the estimates

from Table 3 described above. The figure shows that on average PGR and PLR gradually and stably

increase throughout a day for both humans and algorithms. In the last trading hour, the realization

of both gains and losses intensifies in particular, especially for algorithms. The gap between average
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PGR and PLR remains stable at around 2 pp throughout a day for algorithms, but gradually and

slightly increases for humans from 8.1 pp at 10 am to 10.8 pp at 5 pm. The graph suggests that

the disposition effect for human “frequent traders” at 10 am is substantial and comparable to the

end-of-day measure. We therefore use it in the analysis of the impact of the morning weather.

An average disposition effect at 10 am for human “frequent traders” measured using the regression

specification (10) equals 8.6 pp (p-value = 0.001).

5.3. The impact of air temperature on the disposition effect

To evaluate the impact of air temperature on the disposition effect, we estimate regression

specifications (13) to (16) using the dependent variables PGRi,t, PLRi,t, DEi,t, and PRs,i,t observed

daily at 10 am. Table 4 presents the results for humans in Panel A and for algorithms in Panel

B. Columns (1) and (2) indicate that human “frequent traders” realize on average 18.7% of gains

and 9.8% of losses on mornings that are colder than the median for that city-month. On mornings

that are warmer than the median, PGR is on average lower by 0.9 pp (i.e., by 5%) and PLR is on

average higher by 0.7 pp (i.e., by 7%). Both differences are statistically significant at the 10% level

and point towards a lower overall disposition effect. Column (3) shows that an average disposition

effect for human “frequent traders” equals 9.6 pp on mornings that are colder than the median

and 2.1 pp less (i.e., 22% less) on mornings that are warmer than the median. The difference is

statistically significant at the 1% level. The estimated impact of temperature is stronger in column

(4) when controlling for the other seven weather variables described in the “Data” section and Table

1 and even stronger in column (5) when trader-fixed effects and day-fixed effects are added. When

extending the sample with “infrequent traders” in column (6), the coefficient on T_dummyi,t equals

-2.1 pp again and is statistically significant at the 5% level. When replacing T_dummyi,t with Ti,t,

the coefficient equals -0.4 pp and is statistically significant at the 5% level, which suggests that

a 1 °C higher morning air temperature is associated with a 0.4 pp weaker disposition effect on

average. In most specifications, including the latter, coefficients on the other weather variables are

insignificant.
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The results are similar in columns (8) to (10) with three-dimensional panel data. Column (8)

shows that the disposition effect for human “frequent traders” measured by the coefficient on Gains,i,t

in specification (11) is lower by 1.6 pp on mornings that are warmer than the median. This result

is statistically significant at the 1% level. The regression controls for the other weather variables

and trader-day, stock-day and trader-stock fixed effects. The result remains statistically significant

at 1% level in column (9) which includes “infrequent traders”. When replacing Tdummyi,t with Ti,t

in column (10), the coefficient equals -0.1 pp and is statistically significant at the 10% level.

Table 4, Panel B shows that there is no statistically significant impact of air temperature on the

disposition effect for algorithms. Having algorithms as a control group assures that the estimated

impact of the weather on the disposition effect for humans is not driven by weather-induced stock

market movements (see, e.g., Saunders, 1993; Hirshleifer and Shumway, 2003; Goetzmann et al.,

2014), that would affect trading decisions for all traders, including algorithms. For example, if

traders (including algorithms) pursue a mean-reversion strategy in which they trade stocks when

prices cross certain thresholds, then a positive effect of the weather on stock prices could generate

more realized gains, and thus lead to a stronger disposition effect for all traders.

For human “frequent traders”, the impact of morning air temperature on the disposition effect

remains significant by 11 am but fades out by noon. For example, re-estimating column (3) of Table

4 with the variable DEi,t observed daily at 11 am, returns the coefficient on T_dummyi,t equal

to -1.1 pp (p-value = 0.057). The coefficient is equal to -1.7 pp (p-value = 0.007) when weather

control variables are added (i.e., as in column (4)) and -2.6 pp (p-value = 0.039) when trader-fixed

effects and day-fixed effects are also added (i.e., as in column (5)). The coefficient is insignificant if

the variable DEi,t is observed at 12 pm or later.

In line with the evidence in Keller et al. (2005) on the temperature-mood relationship, we find

that the impact on the disposition effect is most significant when temperatures are moderate, i.e., in

spring and autumn. For example, re-estimating column (3) of Table 4 with observations for March,

April and May returns the coefficient on T_dummyi,t equal to -2.7 pp (p-value = 0.076), and for

September, October and November – -3.6 pp (p- value = 0.030). For June, July and August, the
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coefficient equals -1.4 pp (p-value = 0.335), and for December, January and February, only -0.7 pp

(p-value = 0.534). The latter two insignificant results could be explained by temperatures being

uncomfortably high in summer and by a potential avoidance of weather exposure in winter.

5.4. The difference between humans and algorithms

To test if the differences in the results between humans and algorithms in subsections 5.2 and

5.3 are statistically significant, we estimate differential effects using a dummy variable Humani in

regression specifications (17) to (20). Table 5 presents the coefficients of interest for “frequent

traders”. Column (1) shows that the disposition effect is on average larger by 9.9 pp for humans

than for algorithms and the difference is statistically significant at the 5% level. In column (2), the

coefficient on the interaction term between T_dummyi,t and Humani is negative and statistically

significant at the 10% level, which suggests that a higher morning air temperature reduces the

disposition effect for humans significantly more than for algorithms. This differential effect is

stronger and statistically significant at the 5% level when weather controls are included in column

(3) and somewhat weaker but still statistically significant at the 10% level when trader-fixed

effects and day-fixed effects are also added in column (4).

The results are similar with the three-dimensional panel data. Column (5) reports a positive

and statistically significant coefficient at the 10% level on the interaction term between Gains,i,t and

Humani, which suggests that the disposition effect measured by β1 coefficient on variable Gains,i,t

in specification (11) is significantly larger for humans than for algorithms. Columns (6) and (7)

show a negative and statistically significant coefficient at the 5% level on the triple interaction term

between Gains,i,t, T_dummyi,t and Humani without and with all the interactive fixed effects,

respectively. This suggests that the impact of air temperature on the disposition effect measured

by the negative coefficient β3 on the Gains,i,t × T_dummyi,t interaction term in specification (16)

is significantly stronger for humans than for algorithms.
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5.5. Discussion

The results indicate that, on average, algorithmic day traders manage to avoid the disposition

effect while similarly-trading human day traders do not. This serves as suggestive evidence that

the disposition effect is largely driven by unintentional causes specific to human traders, e.g.,

emotions and cognitive biases, rather than by intentional profit-maximizing motives, e.g., portfolio

rebalancing, transaction costs, and private information, that would be relevant for algorithms as

well. This notion is further strengthened by our causal evidence that an air temperature,

potentially through mood and cognition, significantly affects the disposition effect for humans but

not for algorithms. Here we discuss potential explanations of how air temperature can affect the

disposition effect for humans and how algorithms can avoid the disposition effect.

How can air temperature affect the disposition effect for humans? The psychology

literature documents the link between the weather and human psychology (see, e.g., Denissen

et al., 2008; Klimstra et al., 2011; Harley, 2018). In particular, a higher air temperature is found

to improve both mood (Cunningham, 1979; Howarth and Hoffman, 1984; Keller et al., 2005) and

cognition (Keller et al., 2005; Yeganeh et al., 2018). We therefore argue that our results can

be explained by two major preference-based theories on the disposition effect – realization utility

(Barberis and Xiong, 2012) and prospect theory (Kahneman and Tversky, 1979). First, according

to realization utility, the disposition effect occurs because it is pleasant to realize gains and painful

to realize losses. Realizing more gains than losses can thus be seen as a mood-repair technique

(see Morris and Reilly (1987) for theory and Elliott (1994) for another example of mood-repair

techniques), which becomes less relevant as the mood is improved by warmer weather. Li et al.

(2021) use the same mood-regulation argument to explain the link between air pollution and the

disposition effect.

Second, according to prospect theory, investors draw utility from gains and losses relative to a

reference point, are risk-averse when facing gains but risk-seeking when facing losses, and experience

losses more severely than equivalent gains, i.e., are loss-averse (Kahneman and Tversky, 1979).

Hence, if investors view every stock as a separate mental account (Thaler, 1985), they will prefer
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to continue gambling with losing investments and to sell winning investments. If a higher air

temperature improves cognition, this can help reduce cognitive biases such as loss aversion and

attachments to reference points, which would reduce the disposition effect.

The weather may also impact the disposition effect through beliefs rather than preferences. For

example, Goetzmann et al. (2014) find that the weather-induced mood affects traders’ beliefs and

behavior. According to Ben-David and Hirshleifer (2012), the disposition effect can be caused by

traders’ beliefs in their private information about the stock value,16 and these beliefs can stem either

from genuine information or overconfidence.17 Since there is evidence that a higher temperature

enhances mood and that better mood increases overconfidence (see, e.g., Au et al., 2003; Nofsinger,

2005; Ifcher and Zarghamee, 2014), one could expect warmer weather to strengthen the disposition

effect. This prediction, however, is the opposite of our findings, which suggests that morning air

temperature impacts the disposition effect primarily by affecting preferences rather than beliefs.

The direct effects of the weather can potentially be amplified through social interactions, since

mood is found to be contagious (Neumann and Strack, 2000).

How can algorithms avoid the disposition effect? First, while human traders make on-the-

spot decisions under stress, developers have time to “think slow” (Kahneman, 2011) and deliberately

polish decision-making principles in their algorithms. By “thinking slow”, i.e., using the slow System

2, developers may avoid behavioral biases, heuristics and other cognitive features of the fast System

1, such as attachments to reference points and loss aversion, which are at the core of prospect theory

(Kahneman and Tversky, 1979; Kahneman, 2011) – the long-standing explanation of the disposition

effect. However, despite claims (see, e.g., Borch and Lange, 2017), it is not obvious that developers

manage to eliminate effects of mood, emotions and cognitive biases from their codes. For example,

16Traders may view price hikes as the incorporation of their information into the price and price drops
as temporary setbacks, and thus sell (hold) stock after price hikes (drops). Yet, the opposite may hold too:
after price drops (hikes) traders may lose (gain) confidence in their information and sell (buy more) stock
(Ben-David and Hirshleifer, 2012).

17Overconfidence is an extensively documented cognitive bias that affects beliefs (Barberis and Thaler,
2003).
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algorithms may inherit biases from biased developers or training data (Cowgill and Tucker, 2019).

This can help explain why some algorithms in Figure 1 exhibit a significant disposition effect.

Second, while coding, developers are unlikely to experience feelings associated with the on-the-

spot realization of gains and losses. This arguably makes algorithms less affected by realization

utility (Barberis and Xiong, 2012), i.e., pleasure and pain drawn from the realization of gains and

losses, respectively, and by other related psychological mechanisms that help explain the disposition

effect such as pride and regret (Muermann and Volkman Wise, 2006; Frydman and Camerer, 2016),

the salience of the stock purchase price (Frydman and Wang, 2020) and affect (Loewenstein, 2005).

Third, algorithms may serve as a pre-commitment device which can eliminate time-inconsistent

behavior stemming from, for example, self-control problems associated with the disposition effect.

For example, Fischbacher et al. (2017) find that an option to pre-commit to a realization of losses

using an automatic selling device significantly reduces the disposition effect.

Fourth, coding can arguably be viewed as a delegation of trading decisions to an algorithm,

which creates distance between the trading decisions and developers and, thus, reduces the cognitive

dissonance associated with the realization of losses. Chang et al. (2016) finds that the delegation of

trading decisions, e.g., to mutual funds, is associated with a lower – and even reversed – disposition

effect. According to the authors, this can be explained by cognitive dissonance: investors dislike

admitting past mistakes, but delegation allows them to blame someone else.

Other potential explanations for the difference in the disposition effect between humans and

algorithms include belief-based explanations and purely rational explanations such as portfolio

rebalancing, career concerns and transaction costs. We test these explanations in the next section

as part of the robustness checks for our main results.

5.6. Robustness checks

We re-estimate regression specifications (10) and (15) under five different assumptions, which

are listed and explained in detail below. Namely, we consider (1) only long positions, (2) only short

positions, (3) only missed opportunities to gain and lose (i.e., mental gains and losses), (4) only full
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realizations of gains and losses, and (5) we use the FIFO method instead of WAPP to estimate real

gains and losses. Table 6 shows the results for human and algorithmic “frequent traders” separately.

Besides providing robustness checks for our results, these alterations of the baseline setting test

whether transaction costs, career concerns and portfolio rebalancing drive the difference in the

average disposition effect between humans and algorithms.

Transaction costs. A stock price decline may relatively increase transaction costs for that

stock, and, therefore, cause reluctance to sell a losing position. Algorithms may care less about

transaction costs since market venues compete for algorithmic traders by offering favorable terms

(Danish FSA, 2016). This could explain the difference in the disposition effect between humans

and algorithms, but only for long positions. We test this explanation by comparing the disposition

effect between long positions, short positions and our baseline setting, which includes both.

Assumption 1 : we consider only long positions (see results in Table 6, columns (1) and (2)).

Technically, we set negative #_shares_outstandings,i,t and #_of_shares_solds,i,t in equations

(1) and (2), respectively, to zero.

Assumption 2 : we consider only short positions (see results in Table 6, columns (3) and (4)).

Technically, we set positive #_shares_outstandings,i,t and #_of_shares_solds,i,t in equations

(1) and (2), respectively, to zero.

Career concerns. Human traders and developers of trading algorithms may have different

incentives to report realized gains and losses due to potentially different career concerns or

compensation schemes. For instance, banks have been shown to manage, e.g., smooth, their

reported earnings by strategically realizing gains and losses from securities (see, e.g., Dong and

Zhang, 2018; Beatty and Harris, 1999; Ahmed and Takeda, 1995). However, these concerns should

affect only reported gains and losses but not missed opportunities to gain and lose. For example,

consider a trader who is long in 100 shares and sells one of them. If the stock price subsequently

increases, the trader gains on the 99 shares, but misses the opportunity to gain on the sold share,

which can mentally be perceived as a loss. This loss can be realized by repurchasing the share at
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the higher price.18 If the average disposition effect for these mental gains and losses is similar to

the baseline, this would suggest that our main results are not driven by contract-induced

incentives to realize gains and losses.

Assumption 3 : we consider positions that are either long from the daily perspective, i.e., when

assuming zero starting inventory every day, but short from the long-term perspective, i.e., when

assuming zero starting inventory only on the first day, or short from the daily perspective but

long from the long-term perspective (see results in Table 6, columns (5) and (6)). Technically, we

first select trader-stock-day positions that from the long-term perspective are either long or short

throughout the whole day. Then, if a trader-stock-day position from the long-term perspective is

long, we set positive #_shares_outstandings,i,t and #_of_shares_solds,i,t in equations (1) and

(2), respectively, to zero. If the position from the long-term perspective is short, we set negative

#_shares_outstandings,i,t and #_of_shares_solds,i,t in equations (1) and (2), respectively, to

zero.

Another explanation related to career concerns could be that after a stock price decline and an

associated loss, human traders (more than algorithmic traders) may be incentivized to take extra

risks, and if low-priced stocks are more volatile than high-priced stocks (see, e.g., Ohlson and

Penman, 1985; Dubofsky, 1991), traders might prefer to hold on to losing stocks. This explanation,

however, again holds only for long positions, and therefore can be tested by comparing the results

for long and short positions in columns (1) and (3), respectively.

Portfolio rebalancing. Gains (losses) increase (decrease) the weight of certain stocks in a

portfolio and to restore a well-diversified balance, investors may close a portion of their winning

positions (increase their losing positions). If algorithmic traders care less about portfolio

rebalancing, this could explain the difference in the disposition effect between humans and

algorithms. According to Odean (1998), “investors who are rebalancing will sell a portion, but not

all, of their shares of winning stocks. A sale of the entire holding of a stock is most likely not

18Similarly, Strahilevitz et al. (2011) study how regret affects the repurchase of stocks previously sold.
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motivated by the desire to rebalance”. To test the portfolio rebalancing explanation, we check if

the results remain similar to the baseline when we consider only those positions that were fully

closed at least once throughout a day.

Assumption 4 : consider the realization of gains and losses only for those trader-stock-day

positions that were completely closed at least once throughout a day (see Table 6, columns (7) and

(8)). Technically, in the numerator of equations (5) and (6), we set cumulative_realized_gains,i,t

to zero for those trader-stock-day positions that were never fully closed throughout the day.

Finally, we check if our results are affected by the chosen estimation method of real gains and

losses - WAPP.

Assumption 5 : use the first-in-first-out (FIFO) method, instead of WAPP, to calculate realized

gains and losses (see Table 6, columns (9) and (10)).

Table 6 shows that our main results remain robust under each of the five assumptions. The

estimated constant in the odd columns indicates that the average disposition effect for humans

remains similar and statistically significant at the 1% level, while for algorithms it is never

statistically different from zero. This suggests that neither transaction costs, nor career concerns,

nor portfolio rebalancing alone can fully explain the difference in the average disposition effect

between humans and algorithms. The estimated coefficient on T_dummyi,t in the even columns

show that under every assumption, the impact of air temperature on the disposition effect for

humans remains similar and statistically significant at least at the 10% level, while for algorithms

it is never statistically significant.

5.7. Belief-based explanations

Traders may purchase a stock because they believe they have superior private information about

its potential future price. As a result, they may view price hikes as incorporation of their private

information into the price (and thus sell) and price drops as temporary setbacks (and thus hold or

buy more), which would create the disposition effect (Ben-David and Hirshleifer, 2012). Similarly,

traders may believe in the mean-reversion of the stock price, and thus sell stock after price hikes
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and buy it after price drops, which would also lead to the disposition effect. Algorithms, having

better access to information (Chordia et al., 2018; Biais et al., 2015), more computational power

and learning capacity (Abis, 2022), and, possibly, being less subject to overconfidence, may have

weaker "belief" in these price-reversal trading strategies than humans, which would explain the

lower disposition effect on average.

To test whether humans pursue price-reversal strategies more often than algorithms, we

implement the following exercise. First, we estimate the absolute value of the hourly change in the

number of shares, |∆inventorys,i,t|, for every trader i, stock s, day-hour t, and find the 90th

percentile of this variable for every trader-stock, perc90s,i, considering only non-zero observations.

Second, for every trader i, we count the number of stock-day-hour level observations, Ni, where

|∆inventorys,i,t| > perc90s,i and the stock price Ss,t has either increased or decreased for the

second consecutive hour, i.e., either (∆Ss,t > 0 and ∆Ss,t−1 > 0) or (∆Ss,t < 0 and ∆Ss,t−1 < 0).

Third, among these observations, we count the number of cases, N_reversei, where the change in

inventory, ∆inventorys,i,t, occurred in the opposite direction from ∆Ss,t, i.e., either

(∆inventorys,i,t > 0 and ∆Ss,t < 0 and ∆Ss,t−1 < 0) or (∆inventorys,i,t < 0 and ∆Ss,t > 0 and

∆Ss,t−1 > 0). Finally, we estimate a proportion of stock-day-hours spent on price-reversal trading

for every trader as:

Reversal_trading_proportioni =
N_reversei

Ni
(21)

We regress this variable on a constant and a dummy Humani equal to 1 for human and 0 for

algorithmic “frequent traders” and use robust standard errors. The constant equals 0.504 (p-value =

0.000) and indicates that algorithms on average pursue price-reversal and momentum trading equally

often, i.e., 50% of the time. The coefficient on the dummy Humani equals 0.056 (p-value = 0.023)

and suggests that humans pursue price-reversal trading 55.6% of the time, which is significantly

more often than algorithms and thus helps explain why humans’ disposition effect is stronger.

It is not obvious, however, if humans’ price-reversal trading, and the associated disposition effect,
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are rational or not (e.g., driven by overconfidence). According to Odean (1998), if the disposition

effect helps traders to perform better, it would be justified and rational, but if traders continue to

exhibit it despite persistent evidence that doing so hurts their performance, this behavior would be

irrational. To measure the performance of human and algorithmic “frequent traders” we estimate

every trader’s i return at the end of every day t:

ri,t =

∑S
s=1 total_gains,i,t

Portfolio_sizei,t
(22)

where total_gains,i,t is defined in equation (4),
∑S

s=1 total_gains,i,t is the sum of end-of-day

profits across all stocks held by trader i in day t, and Portfolio_sizei,t is calculated in the same

way as Portfolio_size_EURi,t defined in “Data” section and Table 2, but not converted to euros.

We regress this variable on a constant, separately for human and algorithmic “frequent traders”,

and cluster standard errors at the trader level. For humans, the constant equals -0.0033 (p-value

= 0.260), which translates to an average annualized return of -11.3%.19 The negative return is

driven by traders that tend to pursue price-reversal strategies: for humans with

Reversal_trading_proportioni larger than median (i.e., 0.54), the average annualized return

equals -31.2% (p-value = 0.011), while for the rest it is 20.1% (p-value = 0.214). Similarly, for

humans that on average exhibit a significant disposition effect, as shown in Figure 1, and for those

who do not, the average annualized return equals -22.5% (p-value = 0.051) and 0.1% (p-value =

0.994), respectively. Hence, both the price-reversal trading and the disposition effect are

associated with significant losses for human traders, which suggests that human traders’ beliefs in

price-reversal strategies are not always rational.

For algorithms, the average annualized return equals 17.2% (p-value = 0.244). For algorithms

with Reversal_trading_proportioni larger than median (i.e., 0.50), the average annualized return

equals 45.2%, while for the rest it is 2.2% (both p-values are above 0.1). Similarly, for algorithms

19Average annualized return is calculated as (1+average_daily_return)365 - 1.
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that on average exhibit a significant disposition effect, as shown in Figure 1, the average annualized

return equals 49.2%, while for the rest it is 1.7% (both p-values are above 0.1). Hence, algorithms

perform better than humans on average, and particularly when pursuing price-reversal strategies,

which suggests that their “beliefs” in price-reversal strategies might be mostly rational.

Finally, to test whether the disposition effect has a causal effect on performance, we implement

the following exercise. First, for every trader we observe the portfolio composition daily at 1 pm, i.e.,

in the middle of a trading day, and create a hypothetical “realization portfolio”, which, if acquired,

would cancel out all losing positions and thus would realize all unrealized losses. At the end of

a trading day, i.e., at 5 pm, we estimate the return on this “realization portfolio”. Second, we

regress this trader-day level return on a constant separately for four groups of “frequent traders”:

humans and algorithms that do and do not exhibit a significant average disposition effect, as shown

in Figure 1. We cluster errors at the trader level. Assuming zero transaction costs and zero price

impact, the estimated constant can be interpreted as an average daily return not earned due to not

realizing one’s losses in the middle of a trading day. For humans that exhibit a disposition effect,

this constant equals 0.000929 (p-value = 0.046), which translates to an average annualized return

of 40.3%. Hence, these traders would have benefited significantly from a full realization of losses

daily at 1 pm, which suggests that the disposition effect for them was harmful and not driven by

rational causes. For the other three groups, the estimated constant is positive but not statistically

significant.

6. The disposition effect for high-frequency traders

Figure 1 shows that 18 out of the 22 algorithms that on average trade more frequently than once

every 100 seconds, on average exhibit either a significant disposition effect or a significant inverse

disposition effect. We explore if this can be explained by these HFTs’ trading strategies.

SEC (2010) describes four broad categories of HFT strategies, namely, (1) passive market

making, (2) arbitrage, e.g., exploiting price inefficiencies across products or markets, (3)

structural, e.g., exploiting co-location arrangements to increase the speed of data delivery, and (4)
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directional, e.g., price-reversal or price momentum strategies. As described in subsection 5.7,

price-reversal strategies can generate the disposition effect, hence, trading in the opposite

direction, i.e., pursuing price momentum strategies, can create its inverse. Since HFTs have been

shown to pursue directional trading in both directions (see, e.g., Brogaard et al., 2014;

Van Kervel and Menkveld, 2019; Korajczyk and Murphy, 2019), we suspect that being persistently

biased towards either one of the two directions may explain the observed patterns of the

disposition effect for HFTs.

Figure 3 shows an example of a price-reversal trading pattern for one HFT that, according to

Figure 1, on average exhibits a significant disposition effect, and a momentum trading pattern for

another HFT that on average does not exhibit the disposition effect. The figure plots, for the first

ten days of our sample, hourly (end-of-hour) observations of the stock price of Pandora, one of the

most traded stocks in the Copenhagen stock exchange, and the inventory of Pandora stock held by

the two different HFTs. We assume zero starting inventory on the first day. The price and inventory

appear to correlate negatively for the HFT that exhibits the disposition effect and positively for the

HFT that does not.

To check how well the engagement in price-reversal strategies can predict the disposition effect

among HFTs, we estimate a trader-level variable Reversal_trading_proportioni, defined in sub-

section “5.7. Belief-based explanations”, equation (21). The variable measures a proportion of stock-

day-hours spent on price-reversal trading, i.e., either significantly increasing stock inventory as the

price has decreased for the second consecutive hour, or significantly decreasing stock inventory as

the price has increased for the second consecutive hour. Figure 4 plots a distribution of this variable

across the 22 algorithms that, according to Figure 1, on average trade more frequently than once

every 100 seconds. The red columns represent algorithms that, according to Figure 1, on average

exhibit a statistically significant disposition effect, and the white columns represent HFTs that do

not. The histogram shows that all the algorithms with Reversal_trading_proportioni > 0.5 on

average exhibit the disposition effect, while all the rest do not. This suggests that the engagement in

price-reversal strategies can very well predict whether an HFT would exhibit the disposition effect.
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In order to check whether the disposition effect among HFTs is associated with a lower

performance and, thus, with irrational explanations, we estimate every trader’s daily return ri,t

defined in equation (22) and regress it on a constant separately for HFTs that on average exhibit

the disposition effect and for HFTs that do not. We cluster standard errors at the trader level.

The constant equals 0.00073 (p-value = 0.007) and 0.00087 (p-value = 0.028) for the two groups,

respectively. These average daily returns translate to average annualized returns of 30.5% and

37.3%, respectively. The difference between them is not statistically significant as measured by a

dummy variable splitting the data into the two groups. This suggests that for HFTs, the

disposition effect is not associated with a significantly lower performance and, thus, with irrational

beliefs. In our dataset, we observe cases where two HFT accounts that belong to the same

institution follow opposite directional trading strategies and where one account exhibits a

significant disposition effect while the other one exhibits a significant inverse disposition effect.

This suggests that multiple algorithms are deliberately designed to pursue opposite directional

trading strategies, possibly for diversification purposes.

7. Conclusion

This paper studies whether and why algorithmic traders exhibit the disposition effect. First,

by using exogenous weather variation and algorithms as a control group, we provide a novel

identification of the impact of human psychology on the disposition effect. We find that warmer

weather reduces the disposition effect for human traders but has no impact on algorithmic traders.

This suggests that the disposition effect for humans is at least partially caused by psychological

biases and that algorithms can at least partially avoid these biases.

According to the psychology literature, higher air temperature improves both mood and

cognition. Our results can therefore be explained by the two major preference-based explanations

of the disposition effect: realization utility (when traders’ mood is worse, they may try to regulate

it more by seeking pleasure and avoiding pain from the realization of gains and losses, respectively)

and prospect theory (better cognition may help avoid cognitive biases such as loss aversion and the
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attachment to reference points). The belief-based explanation predicts the opposite: better mood

may boost overconfidence, beliefs in private information and the disposition effect. This suggests

that the weather impacts the disposition effect primarily though preferences rather than beliefs.

Second, we find that on average human traders exhibit a significant disposition effect while

similarly-trading algorithms do not and that the difference between the two groups is statistically

significant. Our robustness tests show that this cannot be explained only by potentially different

transaction costs, career concerns or portfolio rebalancing practices between the two groups. This

could be explained, however, by different beliefs in mean-reversion and private information as

humans on average tend to rely on price-reversal strategies more than similarly-trading

algorithms. We find that for humans, both price-reversal trading and the disposition effect are

associated with significant trading losses, which suggests that such human beliefs are irrational.

These results support the results of the weather impact analysis by providing suggestive evidence

that the disposition effect for humans is driven by psychological biases and that algorithms can at

least partially avoid these biases.

Our main results are robust to including maximum fixed effects, using different error clustering,

including the least frequently trading human and algorithmic day-traders, defining the temperature

variable both as a higher-than-median dummy and as an actual temperature, controlling for other

weather variables, and using specifications that exploit the three dimensions of our panel data,

which allows adding trader-time, stock-time and trader-stock fixed effects. Moreover, the results

remain similar when using only long positions, only short positions, only mental gains and losses

(i.e., missed opportunities to gain and lose), only full (not partial) realizations of gains and losses,

and the FIFO method instead of WAPP to estimate realized gains and losses.

Third, we find a high heterogeneity of the average disposition effect among the most frequently

trading algorithms, HFTs, and that it can be very well predicted by their tendency to engage in

price-reversal strategies. Unlike the evidence for human traders, we do not find evidence for HFTs

that their price-reversal trading and, thus, the disposition effect is associated with lower trading

profits. This suggests that for HFTs, the disposition effect is not associated with irrational beliefs.
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TABLE 1 

Summary statistics of morning air temperature 
Number of 

observations 

1st percentile 25th 

percentile 

median 75th 

percentile 

99th 

percentile 

mean 

8,772 -3.4 °C 4.4 °C 9.2 °C 15.0 °C 23.2 °C 9.5 °C 

 

Correlation coefficient between temperature and: 

Relative humidity 

2 meters above 

ground (%) 

Mean sea 

level pressure 

(hPa) 

Precipitation 

(mm) 

Cloud cover 

(% of the sky 

area) 

sunshine 

duration 

(minutes) 

Shortwave 

radiation 

(W/m2) 

Wind speed 10 

meters above 

ground (km/h) 

-0.493 -0.072 0.017 -0.160 0.286 0.680 -0.217 
Table 1 provides summary statistics of the temperature variable and correlation coefficients between the temperature and other 

weather variables. All weather variables are constructed at the city-day level by taking an average of two data points: at 8 am 

and 9 am CET in every city. The data includes every daily observation in the years 2016 and 2017 from the following 12 cities: 

Copenhagen, London, Stockholm, Paris, Amsterdam, Hamburg, Dublin, Zürich, Randers, Silkeborg, Aabenraa and Aalborg. 
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TABLE 2 

Comparison of trading patterns between algorithms and humans 

 

Panels A and B show the results of regressing five different trader-day-level variables on a constant and a dummy Humani, 

which is equal to 1 for humans and 0 for algorithms. The five dependent variables are: (1) N_of_tradesi,t – total number of 

trades executed by trader i in day t; (2) Turnover_EURi,t – total turnover expressed in euros generated by trader i in day t; (3) 

Portfolio_size_EURi,t – average portfolio size expressed in euros for trader i throughout day t (see the “Data” section for the 

detailed variable definition);  (4) Inventory_daysi,t – trading horizon for trader i in day t, calculated as a ratio of 

Portfolio_size_EURi,t over the total value of shares sold (repurchased, for short positions) by trader i in day t, valued at 

purchase prices (sale prices, for short positions); and (5) Turnover_top10i,t – the turnover generated in the 10 most traded 

stocks by trader i in day t, divided by total turnover generated by trader i in day t. Panel A considers “frequent traders”, i.e., 44 

humans and 30 algorithms with an average gap between trades ranging from 54 seconds (the most frequently trading human) 

to 10 minutes.  Panel B includes “infrequent traders” and, thus constitutes 93 humans and 38 algorithms with an average gap 

between trades larger than 54 seconds. Panel C compares two types of algorithms and thus replaces the Humani dummy with a 

dummy HFTi, equal to 1 for algorithms with an average gap between trades smaller than 54 seconds and 0 for algorithms 

assigned to the “frequent traders” group. Standard errors are clustered at the trader level and reported in parentheses. 

 

(1) (2) (3) (4) (5)

Dependent variable: N_of_tradesi,t Turnover_EURi,t Portfolio_size_EURi,t Inventory daysi,t Turnover_top10i,t

Humani -119 -86,352 97,037 0.983 0.041

(100) (966,293) (196,820) (1.004) (0.025)

Constant 604*** 4,165,230*** 895,525*** 3.308*** 0.874***

(61) (558,959) (134,983) (0.739) (0.023)

Observations 20,315 20,315 20,315 16,516 20,313

(1) (2) (3) (4) (5)

Dependent variable: N_of_tradesi,t Turnover_EURi,t Portfolio_size_EURi,t Inventory daysi,t Turnover_top10i,t

Humani -199** -948,756 -155,442 1.803** 0.046**

(81) (664,781) (144,859) (0.899) (0.02)

Constant 459*** 3,232,470*** 706,042*** 3.899*** 0.902***

(67) (512,296) (117,588) (0.658) (0.019)

Observations 37,355 37,355 37,355 25,640 37,344

(1) (2) (3) (4) (5)

Dependent variable: N_of_tradesi,t Turnover_EURi,t Portfolio_size_EURi,t Inventory daysi,t Turnover_top10i,t

HFTi 4,800*** 29,621,417*** 2,442,565*** -2.462*** -0.087***

(1647) (9,880,467) (623,033) (0.79) (0.028)

Constant 604*** 4,165,230*** 895,525*** 3.308*** 0.874***

(61) (558,959) (134,983) (0.739) (0.023)

Observations 13,560 13,560 13,560 12,563 13,560

Robust standard errors are clustered at the trader level and reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Panel A: "frequent traders" - 44 humans and 30 algorithms

Panel B: "frequent traders" + "infrequent traders" - 93 humans and 38 algorithms

Panel C: 14 HFT algorithms and 30 algorithms from "frequent traders"
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TABLE 3 

Average disposition effect 

 

 

Table 3 presents estimates of the average proportion of gains realized (PGR𝑖,𝑡), proportion of losses realized (PLR𝑖,𝑡), and 

disposition effect (DE𝑖,𝑡) for humans (Panel A) and algorithms (Panel B) obtained with regression specifications (8) to (11):  

PGR𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡      (8) 

PLR𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡      (9) 

DE𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡    (10) 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑠,𝑖,𝑡   (11) 
Variables are observed daily at 5 pm CET. Subscripts s, i and t represent stock, trader and day, respectively. In specification 

(11), which uses three-dimensional panel data, a proportion of either a gain or a loss realized PR𝑠,𝑖,𝑡 is regressed on a dummy 

variable Gain𝑠,𝑖,𝑡 equal to 1 for non-losing positions and 0 for losing positions. Coefficient 𝛽1 estimates the disposition effect. 

Detailed descriptions of all variables are provided in section 4 “Methodology”. FE represents stock-day, trader-day and stock-

trader fixed effects. Odd columns consider only “frequent traders” and even columns include “infrequent traders”. 

 

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable:

Regression specification:

Gains,i,t 0.066*** 0.052***

(0.000) (0.000)

Constant 0.282*** 0.223*** 0.174*** 0.150*** 0.115*** 0.079*** 0.257*** 0.227***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Fixed effects Yes Yes

Include "infrequent traders" Yes Yes Yes Yes

Observations 10,504 21,452 10,478 21,368 9,847 18,826 182,043 266,476

Adjusted R-squared 0 0 0 0 0 0 0.224 0.238

Number of traders 44 93 44 93 44 93 44 93

(10) (11)(8) (9)

Panel A: humans

PGRi,t PLRi,t DEi,t PRs,i,t

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable:

Regression specification:

Gains,i,t 0.018 0.019

(0.307) (0.261)

Constant 0.344*** 0.321*** 0.329*** 0.304*** 0.015 0.019 0.416*** 0.398***

(0.000) (0.000) (0.000) (0.000) (0.571) (0.385) (0.000) (0.000)

Fixed effects Yes Yes

Include "infrequent traders" Yes Yes Yes Yes

Observations 8,468 11,042 8,454 11,008 8,159 10,286 167,524 183,980

Adjusted R-squared 0 0 0 0 0 0 0.291 0.297

Number of traders 30 38 30 38 30 38 30 38

Standard errors are clustered at trader level; p-values are reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Panel B: algorithms

(8) (9) (10) (11)

DEi,t PRs,i,tPGRi,t PLRi,t
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TABLE 4 

The impact of air temperature on the disposition effect 

 

 
Table 4 shows an estimated impact of air temperature on the proportions of gains (PGR𝑖,𝑡) and losses (PLR𝑖,𝑡) realized and the 

disposition effect (DE𝑖,𝑡) for humans (Panel A) and algorithms (Panel B). We report coefficients of interest for specifications:  

PGR𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡            (13) 

PLR𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡           (14) 

DE𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡           (15) 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡 + 𝛽2T_dummy𝑖,𝑡 + 𝛽3Gain𝑠,𝑖,𝑡×T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑠,𝑖,𝑡    (16) 

Dependent variables are observed daily at 10 am CET. Temperature T𝑖,𝑡 and other weather variables C𝑖,𝑡 used as controls are 

observed daily between 8 am and 9 am. T_dummy𝑖,𝑡 equals 1 if T𝑖,𝑡 was higher than the median for that city-month. 

Subscripts s, i and t represent stock, trader and day, respectively. In specifications (13)-(15), FE stands for trader-fixed and 

day-fixed effects. In specification (16), PR𝑠,𝑖,𝑡 is a proportion of either a gain or a loss realized, Gain𝑠,𝑖,𝑡 is a dummy equal to 1 

for non-losing positions and 0 for losing positions, and FE stands for stock-day, trader-day and stock-trader fixed effects. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent variable: PGRi,t PLRi,t

Regression specification: (13) (14)

T_dummyi,t -0.009* 0.007* -0.021*** -0.028*** -0.038*** -0.021**

(0.051) (0.075) (0.001) (0.000) (0.001) (0.014)

Ti,t -0.004**

(0.027)

Gains,i,t × T_dummyi,t -0.016*** -0.011***

(0.002) (0.004)

Gains,i,t × Ti,t -0.001*

(0.095)

Constant 0.187*** 0.098*** 0.096*** 0.423 0.808 0.123 0.199 0.140*** 0.115*** 0.115***

(0.000) (0.000) (0.000) (0.413) (0.384) (0.823) (0.733) (0.000) (0.000) (0.000)

Weather controls Yes Yes Yes Yes Yes Yes Yes

Fixed effects Yes Yes Yes Yes Yes Yes

Include infrequent traders Yes Yes Yes Yes

Observations 7,843 7,707 7,101 7,101 7,101 11,325 11,594 71,778 99,145 101,745

Adjusted R-squared 0.000 0.000 0.001 0.008 0.114 0.101 0.102 0.168 0.166 0.166

Number of traders 44 44 44 44 44 93 93 44 93 93

DEi,t PRs,i,t

(16)(15)

Panel A: humans

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent variable: PGRi,t PLRi,t

Regression specification: (13) (14)

T_dummyi,t -0.004 0.001 -0.004 -0.006 0.006 0.013

(0.469) (0.846) (0.578) (0.392) (0.674) (0.350)

Ti,t 0.003

(0.180)

Gains,i,t × T_dummyi,t -0.002 -0.001

(0.656) (0.850)

Gains,i,t × Ti,t -0.001

(0.542)

Constant 0.185*** 0.167*** 0.021 0.294 0.384 0.875 0.688 0.217*** 0.211*** 0.211***

(0.000) (0.000) (0.244) (0.554) (0.644) (0.223) (0.322) (0.000) (0.000) (0.000)

Weather controls Yes Yes Yes Yes Yes Yes Yes

Fixed effects Yes Yes Yes Yes Yes Yes

Include infrequent traders Yes Yes Yes Yes

Observations 7,359 7,284 6,847 6,847 6,846 7,837 7,988 95,596 101,100 103,186

Adjusted R-squared -0.000 -0.000 -0.000 0.000 0.067 0.055 0.057 0.270 0.273 0.273

Number of traders 30 30 30 30 30 38 38 30 38 38

Standard errors are clustered at trader level; p-values are reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

DEi,t PRs,i,t

(15) (16)

Panel B: algorithms
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TABLE 5 

The difference between humans and algorithms 

 
Table 5 shows an estimated difference in the disposition effect and an estimated difference in the impact of air temperature on 

the disposition effect between human and algorithmic “frequent traders”. We report coefficients of interest for specifications:  

DE𝑖,𝑡 = 𝛼 + 𝛽1Human𝑖 + 𝜖𝑖,𝑡                 (17) 

DE𝑖,𝑡 = 𝛼 + 𝛽1Human𝑖 + 𝛽2T_dummy𝑖,𝑡 + 𝛽3Human𝑖×T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡      (18) 
PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡 + 𝛽2Human𝑖 + 𝛽3Gain𝑠,𝑖,𝑡×Human𝑖 + 𝐹𝐸 + 𝜖𝑠,𝑖,𝑡        (19) 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡×T_dummy𝑖,𝑡×Human𝑖 + V&I𝑠,𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑠,𝑖,𝑡          (20) 
Subscripts s, i and t represent stock, trader and day, respectively. Human𝑖 is a dummy variable equal to 1 for humans and 0 

for algorithms. DE𝑖,𝑡 is the disposition effect measured as the difference between a proportion of gains realized and a 

proportion of losses realized by trader i in day t. In specification (18), FE represents trader-fixed effects and day-fixed effects. 

In specifications (19) and (20), PR𝑠,𝑖,𝑡 is a proportion of either a gain or a loss realized, Gain𝑠,𝑖,𝑡 is a dummy variable equal to 

1 for non-losing positions and 0 for losing positions, and FE represents stock-day, trader-day and stock-trader fixed effects. 

Dependent variables in specifications without weather variables, i.e., (17) and (19), are observed at 5 pm CET, while at 10 am 

in the other two specifications. Temperature T𝑖,𝑡 and other weather variables C𝑖,𝑡 used as controls are observed daily between 8 

am and 9 am. T_dummy𝑖,𝑡 equals 1 if T𝑖,𝑡 was higher than the median for that city-month. V&I𝑠,𝑖,𝑡 denotes the three variables 

that constitute the triple interaction term in specification (20) and the three possible interactions among them. 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6) (7)

Dependent variable:

Regression specification: (17) (19)

Humani 0.099** 0.075** 0.129 -0.990*

(0.011) (0.017) (0.855) (0.063)

Temp_dummyi,t × Humani -0.017* -0.022** -0.015* 0.008

(0.071) (0.027) (0.089) (0.174)

Gains,i,t × Humani 0.046* -0.317 -0.484

(0.062) (0.426) (0.191)

Gains,i,t × Temp_dummyi,t × Humani -0.014** -0.013**

(0.023) (0.019)

Constant 0.015 0.021 0.294 0.591 0.331*** 0.985** 0.180***

(0.565) (0.234) (0.547) (0.276) (0.000) (0.012) (0.000)

Weather controls Yes Yes Yes Yes

Fixed effects Yes Yes Yes

Observations 18,006 13,948 13,948 13,948 359,630 182,275 174,603

Adjusted R-squared 0.020 0.011 0.015 0.100 0.279 0.014 0.243

Number of traders 74 74 74 74 74 74 74

Standard errors are clustered at trader level; p-values are reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

DEi,t PRs,i,t

(18) (20)

47



 

 

TABLE 6 

Robustness checks 

 

 
Table 6 presents an average disposition effect (DE𝑖,𝑡) in odd columns (estimated by the constant) and an impact of temperature 

on the disposition effect (DE𝑖,𝑡) in even columns (estimated by coefficient 𝛽1 on variable T_dummy𝑖,𝑡) for human (Panel A) 

and algorithmic (Panel B) “frequent traders” obtained using regression specifications (10) and (15):  

DE𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡    (10) 

DE𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡 (15) 

Variable DE𝑖,𝑡 is observed daily at 5 pm CET for specification (10) and at 10 am for specification (15). Temperature T𝑖,𝑡 and 

other weather variables C𝑖,𝑡 used as controls are observed daily between 8 am and 9 am. T_dummy𝑖,𝑡 equals 1 if T𝑖,𝑡 was 

higher than the median for that city-month. Subscripts i and t represent trader and day, respectively. FE represents trader-fixed 

effects and day-fixed effects. We estimate the results under five different assumptions specified in row “Robustness check”: 

1) Columns (1) and (2) consider only long positions, i.e., assume that gains and losses in short positions were zero. 

2) Columns (3) and (4) consider only short positions, i.e., assume that gains and losses in long positions were zero. 

3) Columns (5) and (6) consider positions that are either long from the daily perspective (assuming every day starts 

with zero inventory) but short from the long-term perspective (assuming only the first day starts with zero 

inventory) or short from the daily perspective but long from the long-term perspective. 

4) Columns (7) and (8) consider the realization of gains and losses only for those trader-stock-day positions that were 

completely closed at least once throughout a day. 

5) Columns (9) and (10) use first-in-first-out (FIFO) method, instead of WAPP, to calculate realized gains and losses. 

 

 

 

 

 

Dependent variable: DEi,t (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Robustness check:

Regression specification: (10) (15) (10) (15) (10) (15) (10) (15) (10) (15)

T_dummyi,t -0.032** -0.030* -0.040*** -0.025** -0.037***

(0.030) (0.097) (0.010) (0.020) (0.001)

Constant 0.126*** 0.772 0.112*** 0.652 0.123*** 1.529 0.079*** 0.748 0.094*** 0.846

(0.000) (0.500) (0.000) (0.696) (0.000) (0.293) (0.001) (0.408) (0.000) (0.445)

Weather controls Yes Yes Yes Yes Yes

Fixed effects Yes Yes Yes Yes Yes

Observations 8,602 5,315 8,228 5,501 8,345 5,421 9,847 7,101 9,955 7,105

Adjusted R-squared 0 0.119 0 0.089 0 0.069 0 0.101 0 0.069

Number of traders 44 44 44 44 44 44 44 44 44 44

Panel A: humans

Only long positions Only short positions Mental gains/losses Only full realizations FIFO method

Dependent variable: DEi,t (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Robustness check:

Regression specification: (10) (15) (10) (15) (10) (15) (10) (15) (10) (15)

T_dummyi,t 0.001 -0.001 -0.031 -0.005 0.005

(0.967) (0.949) (0.284) (0.679) (0.747)

Constant 0.015 1.360 0.031 1.548 0.023 1.039 0.010 0.801 0.022 0.388

(0.569) (0.379) (0.258) (0.266) (0.381) (0.416) (0.673) (0.229) (0.321) (0.683)

Weather controls Yes Yes Yes Yes Yes

Fixed effects Yes Yes Yes Yes Yes

Observations 7,209 5,585 7,249 5,523 7,267 5,485 8,159 6,846 8,268 6,849

Adjusted R-squared 0 0.115 0 0.108 0 0.051 0 0.068 0 0.041

Number of traders 44 44 44 44 44 44 44 44 44 44

Standard errors are clustered at trader level; p-values are reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Panel B: algorithms

Only long positions Only short positions Mental gains/losses Only full realizations FIFO method
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FIGURE 1 

Disposition effect for individual humans and algorithms sorted by trading frequency 

  

Figure 1 plots on the y-axis an average disposition effect estimated separately for every trader in our sample, i.e., 93 humans 

and 52 algorithms that have at least 30 non-zero end-of-day observations of disposition effect variable DE𝑖,𝑡. Variable DE𝑖,𝑡 is 

defined as the gap between the proportion of gains realized (PGR) and the proportion of losses realized (PLR) by trader i at 

time t (for more details, see “Methodology” subsection 4.1 “The measure of the disposition effect”). The average disposition 

effect is estimated for every trader by regressing the variable DE𝑖,𝑡 (observed daily at 5 pm) on a constant and using robust 

standard errors. Traders are sorted along the x-axis by an average trading frequency, which is calculated for every trader as an 

average time gap (in seconds) between trades executed throughout the sample period. Blue and red circles represent humans 

and algorithms, respectively. Colored circles represent estimates of the disposition effect that are statistically different from 

zero at the 99% significance level. Algorithms that trade more frequently than the most frequently trading human, i.e., every 

54 seconds on average, are labeled “HFTs”. Traders that trade less frequently than every 600 seconds on average are labeled 

“infrequent traders”. The remaining traders in between are labeled “frequent traders”.  

FIGURE 2 

Intraday proportion of gains realized (PGR) and proportion of losses realized (PLR) 

  

Figure 2 plots an average intraday development of variables PGR𝑖,𝑡 and PLR𝑖,𝑡 observed at the end of every trading hour for 

human and algorithmic “frequent traders”. Every data point is an average across traders (i) and days (t). Variables PGR𝑖,𝑡 and 

PLR𝑖,𝑡 are described in detail in section 4 “Methodology”. The PGR-PLR gap provides an estimate of the disposition effect. 
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FIGURE 3 

An example of price-reversal and momentum trading patterns for HFTs 

   

Figure 3 plots, for the first 10 days of our sample, hourly (end-of-hour) observations of the stock price (solid line, rhs) of 

Pandora, one of the most traded stocks in terms of average daily turnover, and inventory (dotted line, lhs) of Pandora stock 

held by two different HFTs: one that, according to Figure 1, exhibits a significant disposition effect on average (Panel A) and 

one that does not (Panel B). We assume zero starting inventory on the first day. In Panel A, the price and inventory appear to 

be correlated negatively, which hints towards a price-reversal trading strategy, while in Panel B, the correlation appears to be 

positive, which suggests a momentum trading strategy.  

 

 

FIGURE 4 

Price-reversal trading and the disposition effect among HFTs 

 

Figure 4 plots the distribution of a trader-level variable 𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙_𝑡𝑟𝑎𝑑𝑖𝑛𝑔_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖, defined in sub-section “5.7. Belief-

based explanations”, equation (21), across HFTs. The variable measures a proportion of stock-day-hours spent on price-

reversal trading, i.e., either significantly increasing stock inventory as the price has decreased for the second consecutive 

period, or significantly decreasing stock inventory as the price has increased for the second consecutive period. The red 

columns represent HFTs that, according to Figure 1, on average exhibit a statistically significant disposition effect, and the 

white columns represent HFTs that do not. We consider 22 algorithms that on average trade more frequently than once every 

100 seconds (see Figure 1). 
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