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Abstract

We propose a novel copula approach to producing density forecasts of economic

aggregates combining models using disaggregate data. Our copula approach is more

�exible compared to existing techniques, because it is applicable to any econometric

model that produces density forecasts. We construct a set of Monte Carlo studies to

investigate the properties of the suggested approach. In our empirical application, we

use the Norwegian index for goods consumption (VKI) and the Norwegian consumer

price index for underlying in�ation (CPI-ATE). We �nd that the copula approach

compares well to alternative methods using recursive out-of-sample estimation.

Keywords: Aggregate forecast, disaggregates, density forecast, copula

JEL classi�cation: C53, E27

*This working paper should not be reported as representing the views of Norges Bank. The views
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1 Introduction

Policymakers rely on well-calibrated forecasts of economic aggregates to form good economic

decisions. In order to assess forecast uncertainty, density or interval forecasts can provide

useful information (see Granger and Pesaran (2000) and G. Elliot and Timmermann (2006)).

Several central banks, including the Bank of England and the Riksbanken, regularly pub-

lish probabilistic forecasts of economic aggregates in their monetary policy reports. Using

disaggregate data when forecasting aggregate series has proven to improve performance of

density forecasts (see Ravazzolo and Vahey (2014) and Mazur (2015)).

However, previous studies that explore techniques to produce density forecasts of eco-

nomic aggregates based on disaggregate information, only consider a restrictive subset of the

now available econometric models. Mazur (2015) applies a restricted vector autoregression

(VAR) approach to produce probability forecasts, building on the methodology from Hubrich

(2005) and Hendry and Hubrich (2011). Ravazzolo and Vahey (2014) produce forecast den-

sities for economic aggregates from disaggregate ensembles by exploiting the connection

between the ensemble approach, as put forward in Jore et al. (2010), and the bottom-up

approach, as surveyed in Lütkepohl (2009).

In this paper, we extend the methodology from Ravazzolo and Vahey (2014) and apply

copula methodology to produce density forecasts of economic aggregates using disaggregate

models. Our copula approach allows us to construct a joint probability distribution, even

when the disaggregates are forecasted with di�erent econometric methods. It also compares

well with alternative methods using recursive out-of-sample estimation.

More speci�cally, we parameterize a Gaussian copula with an estimate of an auto-cross-

correlation matrix between the disaggregate time series. By using the copula in combination

with the di�erent marginal distributions, we are able to construct an estimate of the desired

joint distribution for the density forecast. This enables us to draw consistent forecast paths

of the disaggregate time series over the entire forecast horizon. In contrast to Ravazzolo and

Vahey (2014), we make use of the historical autocorrelation found between the disaggregated

series to produce density forecasts of the aggregate series.

Our copula approach relates to Smith and Vahey (2016). They use a Gaussian copula

model to take into account cross-sectional and serial dependence in time series. The copula

model is set up using a correlation matrix that is parameterized using a latent stationary

Markov vector autoregression (MVAR) model and marginal distributions that are estimated

using a kernel density estimator or a skew t distribution. Smith and Vahey (2016) document

that their model compares well, in terms of out-of-sample real time forecast, with Bayesian

vector autoregression models that assume symmetric marginal distribution of the data. We

could model the disaggregated series using their approach and construct a density forecast

of the aggregate using the joint density produced by this model. Nevertheless, this would

not make us able to combine density forecasts from a set of models for each disaggregate
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series and then combine these afterwards, which is the case for our approach.

We explore di�erent weighting schemes for aggregating the disaggregate forecasts. Hendry

and Hubrich (2011) argue that the bottom-up approach, where the weights are �xed and

known ex ante, cannot approximate a true multivariate model. Previous studies on time-

varying weights for density forecasting give support to this view (see for instance Waggoner

and Zha (2012), Billio M. and Dijk (2013), Del Negro and Schorfheide (2016) and Aastveit

et al. (2018)). Using simulations from the joint distribution with our copula approach, we

apply the summation formula with �xed weights as well as dynamically selected weights

based on forecast performance to calculate the density forecast of the aggregate series.

To apply the copula approach empirically, we use data on the Norwegian index for goods

consumption (VKI) and the Norwegian consumer price index adjusted for tax changes and

excluding energy products (CPI-ATE). We model each of the subgroups as univariate AR(1)

models and generate recursive out-of-sample forecasts. We utilise our copula approach to

construct recursive out-of-sample forecasts on the aggregate index. To compare the method

against alternative approaches, we estimate an AR(1) model of the aggregate series and a

VAR with 2 lags of the disaggregate series. We evaluate the forecasts using mean square

errors (RMSE) and mean log scores (MLS). We also provide a Monte Carlo simulation where

we use two di�erent approaches (copula and VAR) for producing recursive out-of-sample

density forecasts of the aggregate series. We �nd that our copula based method compares

well with the alternative approaches. More importantly, our approach gives more �exibility

to practitioners in central banks in terms of methods for forecasting the disaggregate time

series.

The paper is organized as follows. In section 2, we describe the problem in general terms.

In section 3, we describe in detail the assumptions we need and the methodology we use.

In section 4, we perform a Monte Carlo based application to test the performance of the

algorithm presented in this paper, while in section 5 we give an empirical application. In

the �nal section we conclude.

2 General problem

Assume we start out with a set of known marginal distributions. For clarity, we restrict it

to two marginal distributions. We abbreviate the two marginal distributions with b(x) and

g(y). We are interested in the distribution of z = F (x, y), where F (x, y) is a function in the

random variables X and Y . This means that we must �nd the joint distribution p(x, y) such

that

b(x) =

∫
y

p(x, y)dy (1)

and

3



g(y) =

∫
x

p(x, y)dx. (2)

One possible solution to this problem is to use a copula. First, let us assume that B(x),

G(y) and P (x, y) represent the cumulative density functions of the corresponding probability

density functions. By Sklar's theorem we then have

P (x, y) = C(B(x), G(y)), (3)

i.e. there exists a copula C(ux, uy), where ui ∼ U(0, 1) for i ∈ {x, y}, and a set of marginal

distributions which can equally represent the joint distribution P (x, y). As we do not know

P (x, y), we cannot �nd C(ux, uy) either. However, we can postulate the shape of P (x, y) or

C(ux, uy). As an example, if P (x, y) is the multivariate normal distribution with correlation

matrix Ω and B(x) and G(y) are normally distributed, then the Gaussian copula CΩ(ux, uy)

will be the correct copula to use.1 If we are able to �nd p(x, y), we can then simulate x and

y from this distribution and use z = F (x, y) to simulation from the distribution of z.

3 Aggregating density forecast

When we have an aggregate time series that is a weighted sum of a set of disaggregate series,

the copula approach is able to use information from the disaggregate in order to improve

forecast accuracy on the aggregate.

Since we are generally interested in more than a one-step-ahead forecast, we have to

adjust the general problem from the previous section. The joint distribution needs to be

formulated for all forecast horizons, as the macroeconometric time series are autocorrelated.

Let Zh be the forecast of the aggregate series at horizon h ∈ {1, ..., H}, where H is

the maximum forecast horizon. In the same way, we de�ne Xh and Y h to be the forecast

of the disaggregate series at horizon h. In this case, we are interested in the marginal

distribution of Zh for each horizon h. As the disaggregate time series exhibit autocorrelation,

we cannot �nd an estimate of these marginal distributions without �nding an estimate of

the distribution P (x1, . . . , xH , y1, . . . , yH), i.e. the joint distribution of the forecast of all

disaggregate series at each horizon. Based on this distribution we can draw consistent paths

of the disaggregate series, both over time and states. As the aggregate series are a weighted

sum of the disaggregate series, we have that Z = F (X, Y ) = wxX + wyY , where wx and wy

are diagonal matrices with size h · h, Z is the stacked forecast of the aggregate series over

all horizons, while X and Y are the stacked forecast of the disaggregate series. This can of

course be generalized to the case that a series consists of more than two disaggregate series.

Seeing that we were able to apply our problem to the general form, we now have two

1See section A for the de�nition of a Gaussian copula.
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options. Either �nd a model that provides us with the joint distribution directly, or make a

model for each disaggregate series that provides us with the marginal distributions and then

estimate a copula. In the latter case the marginal distributions and the copula are enough

to provide us with an estimate for the joint distribution.

One way to provide the joint distribution directly, is to model the disaggregate series

jointly in a VAR, as in Hubrich (2005) and Hendry and Hubrich (2011). We will use this

as our benchmark in the empirical applications in section 5, and as the true model in our

monte carlo exercise in section 4.

We model each disaggregate series separately. We then estimate the auto-cross-correlation

matrix of the disaggregate series to estimate a Gaussian copula. To be able to do so we need

some assumptions, these are provided in section 3.1, while the methodology is described in

detail in section 3.2.

3.1 Assumptions

Let {Xn,t} represent N stochastic processes, for n ∈ {1, ..., N}, with known weights, wn,t,

that are time-varying or �xed and
∑N

n=1wn,t = 1. Let {Yt} be a multivariate stochastic

process consisting of the N stochastic processes {Xn,t}.

Assumption 1. The stochastic process {Yt} is assumed in this paper to satisfy

1. Strict stationarity

2. Ergodicity

3. E [Y 2
t ] < ∞.

3.2 Methodology

Let Y be the series of historical observations of all the disaggregate series with size N × T ,

where T is the number of historical observations and N is the number of disaggregate series.

Let θn,t+h be the marginal distribution (CDF) of the density forecast for variable n at time

t and horizon h ∈ {1, ..., H}, where H is the maximum forecast horizon. We assume that

these density forecasts can come from any econometric time series model or survey. We are

interested in constructing a density forecast of the aggregate series by drawing paths from

the n · h marginal distributions θn,t+h, given the estimated auto-cross-correlation between

the disaggregate series. We do this by constructing a Gaussian copula. This copula is the

marginal distribution of the density forecasts that are produced by the models in this paper,

which are either normal or close to normal.2

2A more general class of copulas may be found in Demarta and McNeil (2005), i.e. T-copulas with
extensions. This class of copulas may perform better if the marginal distributions exhibits fat tails or strong
skewness.
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Given the assumptions 1, we can consistently estimate the auto-cross-covariance matrix

γk,t for all k ∈ {1, ..., H} up until time t by

γk,t =
1

t− k

t∑
s=1+k

(Ys − y)′ ⊗ (Ys−k − y), (4)

where ⊗ is the Kronecker product operator and y is the mean of the process. By stacking

the auto-cross-covariance matrices γk,t for the di�erent k's we get the covariance matrix of

our copula.

Γt =



γ0,t γ1,t · · · · · · · · · γh−1,t

γ1,t
. . . · · · · · · · · · ...

...
... γ0,t γ1,t · · · ...

...
... γ1,t γ0,t · · · ...

...
...

...
...

. . .
...

γh−1,t · · · · · · · · · · · · γ0,t


. (5)

Constructing Γt in this way leads to estimation of N(N+1)
2

h covariance coe�cients. To scale

down the number of estimated covariance coe�cients and to prevent over-�tting we may set

all γk,t = 0 for k > τ . We can get the correlation matrix by using the following relationship

Ωt = Γt ⊘ γt. (6)

where ⊘ is the Hadamard division operator and

γt =
√
diag(Γt)

√
diag(Γt)

′
. (7)

Ωt is the auto-cross-correlation matrix we need to make consistent draws from the density

forecasts from the disaggregate series. We can construct a Gaussian copula over the H step

ahead forecasts as3

CΩt |I = ΦΩt

(
Φ−1(u1,1), ...,Φ

−1(uN,H)
)
, (8)

where I is the information set up until the time of the forecast. The full multivariate

distribution is then given by

GΩt |I = ΦΩt

(
Φ−1(θ1,1(y1,1)), ...,Φ

−1(θN,h(yN,H))
)
, (9)

where yn,t+h is the forecast for variable n at time t and horizon h, which is a random variable.

By using the algorithm presented in appendix B, we can make Q draws from the multivariate

3See appendix A for more on the concept of a Gaussian copula.
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distribution GΩt|I, i.e. draw realizations of the random variables yn,t+h. Abbreviate these

draws by yn,t+h,q, for all q ∈ {1, ..., Q}. Finally, to make Q draws from the density forecast

of the aggregate series X we use

xt+h,q =
N∑

n=1

wn,t+hyn,t+h,q, (10)

where wn,t+h is the weight of each variable n in the aggregate series and xt+h,q is the qth

realization from the distribution of the aggregate density forecast at time t and horizon h.

4 Monte Carlo experiment

We simulate three disaggregate series to compare the forecasting capabilities of our algorithm.

We use a vector autoregressive model that is estimated on the true data generating model

which reports forecasts using the actual weights of each component as our benchmark model.

4.1 Simulation of data

For each simulation iteration s, we draw two 4×4 coe�cient matrices, ϕs
1 and ϕs

2, and then we

run j simulations of four time series, where j ∈ {1, ..., H}, by using a vector autoregressive

model of the form

Y s
t,j =

2∑
i=1

ϕs
iY

s
t−i,j + εst,j, (11)

where

Y s
t,j =


ys1,t,j
ys2,t,j
ys3,t,j
ys4,t,j

 , (12)

ε ∼ N (0, 1), t ∈ {−9, ..., 100} (we use a burn-in period of 10 observations), and Y s
t,j = 0 for

t ∈ {−9,−8}. In this experiment we draw 100 pairs of coe�cient matrices and scale all 100

pairs by 1, 1.5, and 2.54. For every draw s we simulate j paths of the three disaggregate series

resulting in a total of 9000 paths. The simulated series all have a length of 100 observations.

The aggregate series Xs
j is then constructed by

xs
t,j =

3∑
n=1

wny
s
n,t,j, (13)

4We make sure that all eigenvalues lies within the unit circle, resulting in a stationary time series.
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where s ∈ {1, ..., 300} is the draw index, t ∈ {1, ..., 100} is the observation index, j ∈
{1, ..., 30} is the simulation path index, and n ∈ {1, ..., 4} is the series index.

Since we are generating data from a VAR model, we are also interested in how the

properties of the coe�cient matrices, ϕs
1 and ϕs

2, a�ect our results. For each draw of the

coe�cient matrices, we �nd the eigenvalues and store them in a vector, vs. We then take

the norm of the vector to determine the magnitude of the eigenvalues

norms = ∥vs∥.

We use norms to see how our results are a�ected by di�erent magnitudes of the eigenvalues.

4.2 Model estimation and forecasting

We use two di�erent approaches (copula and VAR) for producing recursive out-of-sample

density forecasts of the aggregate series Xs
j for the periods t ∈ {40, ..., 100} at horizons

h ∈ {1, ..., 6}.
In the �rst approach (copula) we estimate an AR(1) model for each disaggregate series

for every simulated path j ∈ {1, ..., 30} for each coe�cient draw s ∈ {1, ..., 300}. These

recursive estimates are then used to produce recursive out-of-sample forecasts for the periods

t ∈ {40, ..., 100}. To produce density forecasts we do 1000 draws of the residual using the

estimated standard deviation of the residual, which makes a total of 1000 draws from the

unknown probability distributions of each forecast.5 This procedure is done for each series

individually at all horizons h ∈ {1, ..., 6}. We let Z = 60 be the number of recursive

forecasting periods. For each variable Xs
n,j, we estimate the PDF of the density forecast

θsn,h,z,j using a Gaussian kernel density estimator. These estimates are based on the 1000

draws, at horizons h ∈ {1, ..., 6}, simulation s ∈ {1, ..., 300}, and periods z ∈ {1, ..., 60}.
We then have all we need to construct the density forecasts of the aggregate series using a

copula, as described in section 3.2, as we use the known weights wn for n ∈ {1, ..., 4}. In

this experiment we have set τ = 2.

In the second approach (VAR) we estimate a VAR(2), i.e. we estimate equation (15)

on the simulated data. This will serve as the benchmark model. We use the recursive

estimates to produce out-of-sample forecasts recursively for the periods t ∈ {40, ..., 100}.
To produce density forecasts we take 1000 draws of the residuals using the estimate of the

covariance matrix of the residuals of the VAR(2), which in the simulation step is assumed to

be equal to the identity matrix, I. This makes a total of Q = 1000 draws from the unknown

probability distributions of the forecasts. The procedure is done for each series individually

at all horizons h ∈ {1, ..., 6}.
5Indeed, we could have use the theoretical distribution in this case, but in the general case the theoretical

distribution is not available, and we want to describe an experiment that can be easily extended to more
advanced modeling approaches.
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To construct the density forecasts of the aggregate series in the last case we use

xs
h,j,z,q =

4∑
n=1

wny
s
n,h,j,z,q, (14)

where ysn,h,j,z,q is the forecast of the disaggregate series n, at horizon h, for period t, coe�cient

draw s, simulation path j, and draw q ∈ {1, ..., 1000}. wn are the known weights. We can

then estimate the PDF of the aggregate forecasts constructed in this way by using a Gaussian

kernel density estimator on the Q draws.

For each coe�cient draw s we run j ∈ {1, ..., 30} simulated paths. For each j, we get

reported mean log scores. Then, we calculate the mean and variance of the reported mean

log scores across j for all horizons h ∈ {1, ..., 6}. We then have the expected mean log

scores (µs
MLS,h), the corresponding variances to those estimates (σs

MLS,h), and the norm of

the eigenvalues (norms) at every horizon h.

Results from experiment To evaluate our algorithm we are mainly concerned about

1. How is the preciseness of the forecasts, as measured by the mean log score, compared

to our benchmark (VAR)?

2. How do the properties of the coe�cient matrix used to simulate the series a�ect the

uncertainty of our results?

To evaluate 1, we get the reported mean of the mean log scores of the density forecasts and

the associated variance of the mean log scores at every horizon, h, from subsection 4.2. By

assuming that the mean of the mean log scores are normally distributed, we can form a 95%

con�dence interval as µs
MLS ± 1.96σs

MLS, for each horizon h. We plot the benchmark model

and the lower and upper 95% limits for each simulation s and horizon h against an increasing

norms. See �gures 14 to 19. From the �gures, we see that norms seems to play a role in the

performance of our algorithm. We see that at the lower half of norms, the precision of our

algorithm is not statistically signi�cantly di�erent from the benchmark (VAR) at the 95%

signi�cance level. At the upper part of norms, the precision of our algorithm decrease and

becomes more unstable. The mean of the mean log score is often outside the 95% interval

of the benchmark (VAR).

To evaluate 2, we look at the sensitivity of the variance of the mean log score towards

increasing norms for our algorithm (copula) against our benchmark (V AR). This is to

see whether or not their sensitivities are statistically signi�cantly di�erent from each other.
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First, we run a regression of the form

σs
RMSE,i = cs + βinorm

s + εs,

for i ∈ {copula, V AR}. Then, we do a test for di�erences in slopes where the test statistic

is calculated as

t =
βs
copula − βs

V AR√
S2
copula + S2

V AR

∼ t
(
2s− 4).

The associated p-value of our test statistic, t, is summarized in Table 4.2. With a signi�cance

level of 95%, the slopes βs
copula and βs

V AR, are statistically signi�cantly di�erent from each

other at horizons 1, 2 and 3, but not at longer horizons.

Table 1: P-values

Horizon 1 2 3 4 5 6

P-value 0.0000 0.0010 0.0283 0.0576 0.0700 0.2145

To summarize, our algorithm does not perform statistically signi�cantly di�erently from

the benchmark. However, our algorithm is sensitive to an increase in the norm of the

eigenvalues of the coe�cient matrix of the model that drives the data at longer horizons.

4.3 Additional tests

To investigate the performance of the copula approach even further, we compare 4 Monte

Carlo studies. They are equal to the Monte Carlo study described in section 4, except that

the simulation of ϕ is drop, i.e. we set it to

ϕ =


0.2063 0.0180 0.0290 −0.0120

0.0017 0.2759 −0.0115 −0.0187

−0.3209 0.0850 0.4522 0.4415

−0.0336 0.0552 0.0080 0.2853

 . (15)

Otherwise the studies depart as follows

1. Benchmark: No more departures from the Monte Carlo described in section 4.

2. Only two observed: We only observed 2 out of the 4 disaggregated variables. In this

case we construct a third variable which is constructed by subtracting the contribution

of the 2 observed disaggregated variables from the aggregated variable. Then we create

a AR(1) model of this variable and treat it like any other disaggregated variable. The

weight of this third variable will be set to 1.
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3. In this case we let ϕ vary over time. We do this by adding a time-varying component

(ϕt) that is simulated using the process

ϕt = λϕt−1 + ϵt, (16)

where λ is a 16× 16 diagonal matrix, where all coe�cients along the diagonal is set to

0.95. All elements of ϵt are uncorrelated and are distributed N (0, 0.01).

4. Time-varying weights: In this case we let wn vary over time for all n ∈ {1, ..., N}. We

do this by adding a time-varying component (wt,n) that is simulated using the process

wt,n = λnwt−1,n + ut,n, (17)

where λn = 0.95 and ut,n ∼ N (0, 0.01).

The reported mean of mean log scores are found in Table 4.3, while the mean of root

mean squared errors are found in Table 4.3. The results from the Copula and VAR ap-

proaches are never signi�cantly di�erent, but the copula approach is marginally better at

the benchmark and when only two disaggregated variables observed, otherwise the VAR

approach is marginally better.

Table 2: Mean of mean log scores of Monte Carlo studies

Horizon Copula VAR

Benchmark 1 -0.78 -0.82

Only two observed 1 -0.76 -0.79

Time-varying parameters 1 -0.78 -0.77

Time-varying weights 1 -0.79 -0.78

Benchmark 2 -0.86 -0.89

Only two observed 2 -0.85 -0.87

Time-varying parameters 2 -0.85 -0.85

Time-varying weights 2 -0.87 -0.87

Benchmark 3 -0.87 -0.90

Only two observed 3 -0.87 -0.88

Time-varying parameters 3 -0.86 -0.87

Time-varying weights 3 -0.88 -0.89

Table 1: Mean over 500 simulations of the mean log scores at di�erent horizons for the 4
monte carlo studies.
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Table 3: Mean of root mean squared errors of Monte Carlo studies

Horizon Copula VAR

Benchmark 1 0.53 0.54

Only two observed 1 0.51 0.52

Time-varying parameters 1 0.52 0.51

Time-varying weights 1 0.53 0.52

Benchmark 2 0.57 0.58

Only two observed 2 0.56 0.57

Time-varying parameters 2 0.56 0.56

Time-varying weights 2 0.57 0.57

Benchmark 3 0.58 0.58

Only two observed 3 0.57 0.58

Time-varying parameters 3 0.57 0.57

Time-varying weights 3 0.58 0.58

Table 2: Mean over 500 simulations of root mean squared errors at di�erent horizons for the
4 monte carlo studies.

5 Empirical application

In the empirical application of our approach, we use data on the Norwegian index of house-

hold consumption of goods (VKI) and the Norwegian consumer price index adjusted for tax

changes and excluding energy products (CPI-ATE). Both VKI and CPI-ATE consist of a

set of subgroups that are likely to inhabit a certain degree of correlation, thereby giving

relevance to the copula approach.

5.1 Modeling approach

We model each disaggregate series as univariate AR(1) models

xn,t = λxn,t−1 + ϵt, (18)

where the λ is the AR coe�cient. We also assume that

ϵt = N(0, σ2), (19)

i.e. the residual is a white noise process. We estimate equation (18) using OLS. It is estimated

recursively using an expanding window. These recursive estimates are then used to produce

recursive out-of-sample forecasts from 2010M1 to 2019M12. To produce density forecasts

from the model we simulate 1000 draws of the residual using the estimated parameters of λ

and σ. This makes a total of 1000 draws from the unknown probability distributions of the

forecasts. This procedure is done for each series individually at all horizons h ∈ {1, ..., H}.
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We let S be the number of recursive forecasting periods. For each variable Xn, we

estimate the PDF of the density forecast based on the 1000 draws, at horizons h ∈ {1, ..., H}
and periods s ∈ {1, ..., S}, using a Gaussian kernel density estimator. We then have all we

need to construct the density forecasts of the aggregate series, as described in section 3.2. We

replicate this step for all recursive forecasting periods, as we want to evaluate the forecasting

performance against a set of alternative models. We denote the density forecasts of the

aggregate series constructed by this algorithm as Copula method on disaggregate series.

In order to evaluate the proposed copula approach, we estimate two additional models.

The �rst reference model consists of an AR(1) model of the aggregate series. We replicate

the same forecasting steps, as in the case for the disaggregate models, i.e. a simple resid-

ual sampling method is used to draw 1000 draws form the probability distributions of the

forecasts. Again, these draws are used to estimate the PDF of the density forecasts, using

a Gaussian kernel density estimator. We denote the density forecasts produced in this way:

AR on aggregate series.

The second reference model is a VAR with two lags, where we include the disaggregate

series. Since the series are modelled jointly, we can directly sample from the joint probability

distribution of the forecasts of the disaggregate series. We apply the weights directly to each

draw from this distribution to get a simulation of the probability distribution of forecast

of the aggregate series. Again we use a residual sampling method to draw from the joint

distribution of the forecast from the VAR. We denote the density forecasts produced in this

way: VAR model on disaggregate series.

5.2 VKI

The Norwegian index of household consumption of goods (VKI) is a volume index that

measures movements in household consumption of both durable and non-durable goods. The

data set employed is obtained from Statistics Norway and includes aggregate consumption

of goods as well as a decomposition of four subgroups: (i) Food, beverages and tobacco, (ii)

Electricity and heating fuels, (iii) Purchase of vehicles and petrol, and (iv) Other goods. The

subgroups follow de�nitions from the Classi�cation of Individual Consumption by Purpose

(COICOP). We apply seasonally adjusted data for the period 2000M1 to 2019M12. For all

series we use 3-month log di�erence. We apply �xed weights, that represent the average of

the actual historical weights, as well as weights based on out-of-sample forecast performance

from Ravazzolo and Vahey (2014).

To evaluate the performance of the density forecasts, we look at root mean square errors

(RMSE) and mean log scores (MLS). Figures 1, 2, 3, and 4 show the forecast errors scores

at horizon 1 and 2. The three approaches perform relatively similar. Over the estimation

period, RMSE and MLS scores are not signi�cantly di�erent for the three model approaches.

In order to judge the calibration of the densities, we calculate the probability integral
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6 Conclusion

In this paper we have put forward a new approach to producing density forecasts of aggregate

series using models on disaggregate data. Our approach applies copula methodology to

simulate consistent draws across disaggregate density forecasts. Empirically, our approach

compares well with a simple AR and VAR model when it comes to out-of-sample density

forecast performance.

In a Monte Carlo experiment, the copula approach fares well compared with the bench-

mark (true) model, as long as the underlying processes of the aggregated and disaggregated

series are not too close to being non-stationary.

The methodology presented does not limit itself to AR models. Any econometric model

that produces density forecasts can be applied. In this respect, the copula approach is more

�exible compared to other approaches suggested in previous literature. Future work should

investigate how to select optimal models for forecasting disaggregate series.
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A Copula theory

A copula can be used to decompose a multivariate distribution into two parts: (i) The

marginal distributions of each variable which describes the randomness in each variable and

(ii) a copula which describes the dependence between the random variables. A copula is

de�ned as a multivariate distribution where each marginal distribution is uniform. There

are many such copulas, but in this paper we will only focus on the Gaussian copula. The

cumulative distribution function (CDF) of this copula is given by

CΣ = ΦΣ

(
Φ−1(u1), ...,Φ

−1(uN)
)
, (20)

where ΦΣ is the multivariate normal CDF with correlation matrix Σ of size N ×N and Φ is

the univariate standard normal CDF. This means that

un ∼ U(0, 1) for n ∈ {1, ..., N}, (21)

where U(0, 1) is the uniform distribution on the interval [0, 1]. Let the marginal distributions

of the N variables be given by

xn ∼ Fn for n ∈ {1, ..., N}, (22)

where Fn can be any marginal CDF. By Sklar's theorem we can then represent the full

multivariate CDF as

GΣ = ΦΣ

(
Φ−1(F1(x1)), ...,Φ

−1(FN(xN))
)
. (23)

The corresponding multivariate probability density function (PDF) is given by

cΣ =
1√
|Σ|

exp

−1

2

 Φ−1(F1(x1))
...

Φ−1(FN(xN))


′ (
Σ−1 − I

) Φ−1(F1(x1))
...

Φ−1(FN(xN))


 (24)

gΣ = cΣ · f1(x1) · . . . · fN(xN), (25)

where cΣ is the PDF of the copula, and fn(xn) is the marginal PDFs.

A.1 Example

Let y ∼ N(2, 2) and x ∼ GAMMA(2, 2). Let the linear correlation between y and x be

given by

Σ =

[
1 0.7

0.7 1

]
. (26)
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B Drawing random numbers from a Copula

To make draws from a general multivariate distribution GΣ that is decomposed into a copula

and a set of marginal distribution the following algorithm may be used

1. Draw Q number of observations from the multivariate normal distribution ΦΣ. Abbre-

viate the draws from this distribution for variable n ∈ [1, N ] as yn, which then has size

Q× 1.

2. For each variable n ∈ {1, ..., N} map the observation found in step 1 to the interval

[0, 1] using un = Φ(yn).

3. Map to the �nal draws from the marginal distribution of variable n ∈ {1, ..., N} by

xn = F−1
n (un).

C Graphs and tables

Figure 14: Monte carlo experiment at horizon 1. mean_aggregated_forecast is the mean of
the mean log scores for the copula model, mean_true is the mean of the mean log scores for
the true VAR model (estimated by OLS), mean_true_lower is mean_true minus 1.96 times
the standard deviation of the mean log scores of the true VAR model, and mean_true_upper
is mean_true plus 1.96 times the standard deviation of the mean log scores of the true VAR
model
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Figure 15: Monte carlo experiment at horizon 2. mean_aggregated_forecast is the mean of
the mean log scores for the copula model, mean_true is the mean of the mean log scores for
the true VAR model (estimated by OLS), mean_true_lower is mean_true minus 1.96 times
the standard deviation of the mean log scores of the true VAR model, and mean_true_upper
is mean_true plus 1.96 times the standard deviation of the mean log scores of the true VAR
model
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Figure 16: Monte carlo experiment at horizon 3. mean_aggregated_forecast is the mean of
the mean log scores for the copula model, mean_true is the mean of the mean log scores for
the true VAR model (estimated by OLS), mean_true_lower is mean_true minus 1.96 times
the standard deviation of the mean log scores of the true VAR model, and mean_true_upper
is mean_true plus 1.96 times the standard deviation of the mean log scores of the true VAR
model
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Figure 17: Monte carlo experiment at horizon 4. mean_aggregated_forecast is the mean of
the mean log scores for the copula model, mean_true is the mean of the mean log scores for
the true VAR model (estimated by OLS), mean_true_lower is mean_true minus 1.96 times
the standard deviation of the mean log scores of the true VAR model, and mean_true_upper
is mean_true plus 1.96 times the standard deviation of the mean log scores of the true VAR
model
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Figure 18: Monte carlo experiment at horizon 5. mean_aggregated_forecast is the mean of
the mean log scores for the copula model, mean_true is the mean of the mean log scores for
the true VAR model (estimated by OLS), mean_true_lower is mean_true minus 1.96 times
the standard deviation of the mean log scores of the true VAR model, and mean_true_upper
is mean_true plus 1.96 times the standard deviation of the mean log scores of the true VAR
model
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Figure 19: Monte carlo experiment at horizon 6. mean_aggregated_forecast is the mean of
the mean log scores for the copula model, mean_true is the mean of the mean log scores for
the true VAR model (estimated by OLS), mean_true_lower is mean_true minus 1.96 times
the standard deviation of the mean log scores of the true VAR model, and mean_true_upper
is mean_true plus 1.96 times the standard deviation of the mean log scores of the true VAR
model
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